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Abstract. Most solid electrolyte materials have not shown enough conductivity to be used as an electrolyte for a battery in electronic devices. The 
mixture of 1.5 Li2O and P2O5 has been reported to show a good conductivity higher than that of Li3PO4, which is thought to be due to phase mixtures 
that are formed during manufacturing process. Montmorillonite (MMT) was used to explore the effect of phase mixture on conductivity of new 
1.5Li2O-P2O5-MMT solid electrolyte composite, which was prepared through conventional solid-state reaction procedures. This study was 
conducted, how the addition of MMT affects process of forming 1.5Li2O-P2O5-MMT compound, and whether it influences electrical properties and 
permittivity of compound. Morphology, hygroscopicity, and electrochemical characteristics of this material were analyzed in this study. The shape of 
glassy-like flakes was reduced in micrographs, and granular lumps were getting larger as MMT was added. Addition also tended to reduce 
hygroscopicity, as indicated by a reduced rate of porous absorption. Whole Nyquist plot consisted of only one imperfect semicircular arc, indicating 
only one relaxation process occurred in materials. Capacitance of all arcs indicated main contribution of response was from bulk material. Slope of 
dielectric loss of samples indicated that conduction in the samples was mainly dominated by dc conduction. MMT clays acted as a medium that 
absorbed liquid phase in solid-state reaction, increasing formation of dominant phase, which determined total conductivity of compound. Conductivity 
was higher than that of Li4P2O7, where the sample of 20 wt% MMT addition was most polarizable and most dielectric compound. 
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1. Introduction 

Batteries play a very important role, both as energy storage 
devices, and as energy suppliers, in electrical and electronic 
devices. However, research on batteries has not yet found 
Lithium-ion battery specifications that meet the application 
requirements, namely high energy density, long service life, 
good safety factors, and wide usage temperature range (Koniak 
& Czerepicki, 2017). Researchers broadly see the aspects in the 
battery that make it possible to improve its performance, 
including electrolyte material, stable electrode material, high 
energy density, additives, binders, current collector, and 
efficient packaging (Oleg et al, 2022). Among these aspects, 
electrolytes play an important role in the development of 
battery technology. 

Traditional batteries, such as lithium-ion batteries in mobile 
phones, generally depend on the flow of charge in a liquid 
electrolyte made of lithium salt solution in organic solvents. This  
will cause an irreversible decrease in the capacity, as a result of 
the formation of a stable layer between the electrodes and 
electrolytes, which is   often   called   the   Solid     Electrolyte 
Interphase (SEI). In addition, the use of liquid electrolytes also 
inhibits the increase in the battery life cycle, limits the 
temperature range of use, makes packaging difficult, and causes 
leakage, and safety problems in the batterie (Lin et al., 2020). 
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Therefore, the utilization of solid inorganic electrolytes with 
high thermal stability is an interesting choice to replace liquid 
organic electrolytes, to solve problems related to loss of 
capacity, lifetime, and safety issues (Sahu et al., 2014;  
Purwamargapratala et al., 2020). Because it has the same 
function as liquid electrolytes, some conditions absolutely must 
be met by solid electrolyte materials, including having high 
room temperature conductivity, negligible electronic 
conductivity with high ionic transfer value, and considerable 
electrochemical stability (Kaur et al., 2021). One important 
requirement for obtaining high ionic conduction is that the 
microstructure of solid ionic material has disorders, which can 
be attempted by raising the temperature to increase the number 
of intrinsic defects, or by adding impurities to create vacancies 
or defects in the structure (Hou et al., 2018). In general, solid 
electrolytes have advantages in terms of ease of design to make 
greater battery density, do not cause leakage, and have better 
resistance to collisions and vibrations (Guo et al., 2022). Solid 
electrolytes are also conductors which only deliver one type of 
charge so during operation are very beneficial to reduce the 
overpotential of the cells (Quartarone and Mustarelli, 2011; 
Ohno et al., 2021). In addition, solid electrolytes show better 
electrochemical stability and good compatibility with higher 
potential cathodes for increasing their energy density (Xiayin et 
al., 2016). Moreover, some solid electrolytes have a 
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conductivity value equivalent to liquid electrolytes, with 
negligible electronic conductivity values (Kartini et al., 2014). 

Phosphate oxide-based electrolytes attract a lot of 
attention to be applied as solid electrolytes, ceramic glass, 
amorphous semiconductors, and optoelectronic devices 
(Kartini et al., 2014). This conductor material is relatively easy 
to prepare, resistant to heat and vibration, has a large coefficient 
of heat expansion, and the choice of composition is varied (Das 
et al., 2008). However, its use has become very limited due to its 
poor chemical resistance. Therefore, the development of 
phosphate-based conductors that are modified into alloys or 
composites, is an interesting thing to do further. 

The Li2O-P2O5 system has three polymorphs that can be 
prepared through the reaction of melt-quench solids, as shown 
in the Nakano phase diagram (Masaki et al., 2022), namely 
Lithium Orthophosphate Li3PO4, Lithium Pyrophosphate 
Li4P2O7, and Lithium Metaphosphate LiPO3.  However, these 
phases show low enough conductivity to be applied as a solid 
electrolyte to the battery. Research on the development of 
phosphate oxide-based solid electrolytes in the Li2O-P2O5 
system has been widely reported in the form of scientific 
articles. All these studies are carried out in a variety of 
compound formation compositions, using various 
characterization techniques, to investigate various aspects of 
solid electrolyte composition, including microstructure, physical 
properties, thermal properties, and electrochemical properties, 
to find ideal solid electrolytes stable with good performance to 
be applied in a cell (Jodi et al., 2017).  

The approaches to increase the conductivity are mostly 
done by adding one or more other metal oxides, such as 
aluminium, titanium, etc., into new alloys, or modifying them 
into composites, with the addition of carbonates or sulphates  
(Raguenet et al., 2012; Xie et al., 2022; Purwamargapratala et al., 
2019). All approaches have one thing in common: creating 
defects or disorders within the material framework. That is 
because irregularities or defects up to a certain concentration in 
the material provide more space for ions to move and polarize 
so it is expected to be able to increase its conductivity. The 
addition of clay montmorillonite to Li3PO4 compounds to form 
composites increased the conductivity of the compound (Jodi et 
al., 2016; Purwamargapratala et al., 2022; Takahashi et al., 2013). 
The conductivity of the Li2O-P2O5 compound also was 
improved by modifying the composition from stoichiometry 
(Muhammad et al., 2020). The deviation from the stable phase 
composition makes some materials do not react with other 
precursors but it reacts with the gas in the environment. This 
can cause oxidation or reduction reactions, which result in 
defects or impurity phases and increase the conductivity.  

In this study, montmorillonite (MMT) was used as an 
additive to the 1.5Li2O-P2O5 compound which is a composition 
that deviates from the stable phase of Li4P2O7. MMT is a soft 
phyllosilicate microcrystalline mineral that can be found in 
almost all corners of the world and can be extracted from 
bentonite. MMT has a multi-layered structure in which two 
tetrahedral silicate layers and an octahedral Aluminate layer 
form flat plate sheets in a sandwich configuration, in which 
between the plate sheets are cavities that can be filled with 
cations, as well as water molecules. This structure is expected 
to be able to store or receive ions from the outside, or in other 
words, be a pathway for ion movement. Free space and weak 
bonds between atoms in the MMT structure are expected to 
make it easier for atoms to vibrate, that matter can be proven 
by looking at the value of the dielectric characteristic of the new 
composite. How far the addition of MMT to the Li2O-P2O5 
system will influence the dielectric performance of the system 
and its conductivity, further research is needed. This study was 

conducted determine the effect of adding MMT affects the 
process of forming 1.5Li2O-P2O5-MMT compound, and whether 
it influences the electrical properties and permittivity of the 
compound. 
 
2. Experimental method 

2.1. Materials 

Li2CO3 (Lithium Carbonate, Alfa Caesar, 99%), and NH4H2PO4 
(Ammonium dihydrogen Phosphate, Merck, 98%) were the 
precursors used to synthesize the Li2O-P2O5 compound. The 
clay used in this study was Montmorillonite K10 (MMT K10, 
Sigma Aldrich). Supporting materials that were widely used are 
silver paste as a current collector in EIS measurements, liquid 
Nitrogen as a quenching medium, Stainless Steel dyes for pellet 
powder samples, and the furnace for the heating and sintering 
process. Digital scales, magnetic stirrers, ceramic mortar, glass 
and ceramic cups, bakers and plates, spatulas, etc., were the 
laboratory tools used during preparation and synthesis. 
 
2.2. Sample preparation  

The precursors were weighted with a digital scale based on a 
predetermined composition of 1.5Li2O-P2O5, while the MMT 
clay was added in certain compositions by wt%. All were mixed 
using a magnetic stirrer for 2 hours and then heated gradually 
to a temperature of 650 oC, to remove components that are not 
needed in the reaction. For the solid-state reaction of 1.5Li2O-
P2O5, there is a phase change of around 630 oC from β-Li4P2O7 
+ LiPO3 phases to α-Li4P2O7 + liquid phases (Masaki Shimoda, 
et al., 2022). The mixture was held for two hours at the reaction 
temperature and then rapidly quenched in liquid nitrogen. After 
being ground using a mortar for 1 hour, the mixture was dried 
at 80 oC for 4 hours. A part of the powder samples was formed 
into cylindrical pellets with a diameter of 15 mm, using press 
machines with a pressure of 6000 psi. Each sample is coded as 
LMKxx which means Lithium Phosphate MMT (1.5Li2O-P2O5-
MMT) composite with a total MMT content of xx wt%. 
 
2.3. SEM characterization 

SEM equipment integrated with EDS from JEOL, JSM 6510LA 
was used to take the micrograph photos of the samples for 
morphological characterization and elemental analysis.  The 
powder samples were affixed to a double tape and coated with 
gold used for this characterization. The resulting photo from the 
SEM is generated from electrons being fired at the surface of the 
sample. The result of the interaction between electrons and 
atoms on the surface of the sample in the form of Back 
Scattering electrons, Secondary electrons, or X-rays, is captured 
by the detector and converted into an image that can be seen 
on the monitor. 

The EDS (Energy Dispersive X-Ray Spectroscopy) testing 
was then carried out to see the elemental composition present 
in certain spots, which will be used as a test value to determine 
the composition of the compounds in the samples. 

2.4. Hygroscopicity characterization 

Hygroscopicity characterization quantitatively was carried out 
by weighing method (Muhammad et al., 2020). Although it 
depends on the accuracy and reliability of weight balance, this 
technique has advantages such as accessible and easy 
preparation, suitable for more than one form of sample, and 
does not require a special shape or form of sample. The pelleted 
sample was weighed and placed on a glass slide and put in an 
enclosed chamber with a specified relative humidity of 95% and 
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left exposed to the air in the chamber. After a predetermined 
amount of time, the sample is then weighed again to measure 
the change in sample weight before and after being exposed to 
the air. The level of hygroscopicity is then calculated by 
considering the change in the sample weight and the surface 
area of the sample exposed to the air. 
 
2.5. Impedance Spectroscopy characterization 

HIOKI 3532-50 LCR meter (Electrochemical Impedance 
Spectrometer) was used to characterize the electrical properties 
of the samples. A pelleted sample was held in sandwich 
geometry by silver paste electrodes. The impedance of the 
sample was measured within the 42 Hz to 5 MHz frequency 
range in ambient temperature. The output data, namely 
impedance value Z and phase angle θ, is then plotted in the form 
of a Nyquist plot as the relationship between the real part of the 
impedance and the imaginary part of the impedance. The value 
of solution resistance R is obtained from the intersection of the 
impedance loop with the x-axis, the relaxation frequency ω is 
from the frequency at the peak of the circular arc, while the 
capacitance value is calculated from the resistance value and 
the relaxation frequency using the equation 1. 

 𝜏𝜏 = 𝑅𝑅𝑅𝑅 =  
1
𝜔𝜔𝑟𝑟

  (1) 

Conductivity data were calculated from the impedance 
considering the sample constant, using the formula (Eq 2), 

 𝜎𝜎 =  
1
𝑅𝑅𝑝𝑝

 
𝑑𝑑
𝐴𝐴  (2) 

where Rp, d, and A are the sample polarization resistance, 
sample thickness (the distance between the electrodes), and the 
interface area between the sample and electrode. Plotted 
conductivity data as a frequency function was then fitted to the 
formula of Jonschers universal power Law (Eq 3) to get the 
value of dc conductivity 

 𝜎𝜎(𝜔𝜔) = 𝜎𝜎𝑑𝑑𝑑𝑑 + 𝐴𝐴𝜔𝜔𝑠𝑠 (3) 

where σ(ω) is total conductivity, σdc is the direct current 
conductivity of the sample, and Aωs is the pure dispersive 
component of ac conductivity. The equation for the complex 
permittivity is given as (Eq 4), 

 𝜀𝜀∗(𝜔𝜔) = 𝜀𝜀′ + 𝑖𝑖𝜀𝜀" =  
𝑍𝑍"

(𝑍𝑍′)2 + (𝑍𝑍")2 + 𝑖𝑖
𝑍𝑍′

(𝑍𝑍′)2 + (𝑍𝑍")2 

  
(4) 

where ε*(ω) is complex permittivity, while Z is complex 
impedance. The ' and " signs indicate the real part and the 
imaginary part of the impedance (Z) and permittivity (ε).   
 
3. Results and discussion  

Figure 1 shows the SEM micrographs of 1.5Li2O-P2O5-MMT 
composites produced from a secondary electron beam. The 
LMK00 surface has a glassy surface covered in flakes that may 
have come from quenched melt LiPO3 glass. The surface shape 
of the flake was still seen on the surface of the LMK10 sample 
with 10% by weight MMT content. As the MMT content is 
added, the shape of the flake is reduced and appears to be an 
elongated dense lump (like a pillar) at 20% by weight MMT 
content. The lump size is getting clearer and bigger on larger 
MMT content. This may be related to the ability of MMT to 
absorb liquid during the reaction process. 

In the synthesis of the 1.5Li2O-P2O5 compound through 
the melt-quench solid reaction, a minor LiPO3 phase is 

produced, as the solid reaction process will follow the phase 
diagram provided by Ayu. (Ayu et al., 2016). At temperatures 
below 600 oC, the reaction will produce a mixed phase of 
Li4P2O7 + LiPO3. As the temperature rises, the LiPO3 phase turns 
to liquid, and at above 630oC, only the monoclinic Li4P2O7 phase 
remains. 

In the reaction without MMT, the liquid phase which has 
not reacted completely returns to glassy LiPO3 flakes when the 
mixture is quenched. However, when MMT particles are added 
to the reaction, the liquid phase may be mixed (or absorbed) 
into the MMT cavity, forming a solid granular-like pillar. 
Because this liquid phase is evenly dispersed, as the 
temperature increases, evaporation of this phase is faster and 
more evenly distributed, producing large solid large pillars. 

Elemental analysis of LMK00 using EDS provides an EDS 
diagram pattern which is dominated by Phosphorus and 
Oxygen, that interprets the Li2O-P2O5 phases. The composition 
of Phosphorus and Oxygen are respectively 23.38 and 76.62 
at%, implying that the alloy is dominated by the Li4P2O7 phase, 
which is in accordance with the result analysis conducted by 
Jodi (Jodi et al., 2021). For LMK composites with MMT content, 
the EDS diagram shows the Aluminium and Silicon peaks in 
addition to the Phosphorus and Oxygen, which imply the 
presence of an aluminium-silicate layer of MMT. The 
composition of elements on LMK compounds from the EDS 
scan is summarized in Table 1 which shows that the Aluminium 
and Silicon compositions increased with increasing MMT 
content. 

Some phases of the Li2O-P2O5 compound exhibit high 
hygroscopic properties such as the LiPO3 phase. Figure 2a 
shows the change in mass of the LMK samples when placed in 
an environment with high humidity of 95%, for 24 hours and 144 
hours. The first 24 hours showed that the LMK10 sample 
indicates a higher level of mass change due to water vapor 
absorption compared to other samples. This is probably 
because in the LMK10 sample there are still many LiPO3 glassy 
phases as shown by SEM results, so the vapor absorption occurs 
by two phases together, namely LiPO3 and MMT. However, 
after 144 hours, along with the addition of MMT content, there 
was a tendency to decrease the change in sample mass. It stated 
that the addition of MMT content can reduce the rate of 
absorption of water vapor, which means reducing the 
hygroscopicity level as explained by the average rate of 
absorption of water vapor as shown in Figure 2b. 

 

(a) (b) 

(c) (d) 
 

Fig 1. SEM micrographs of LMK samples. (a) 1.5Li2O-P2O5 with no 
MMT addition, (b) 10 wt%, (c) 20 wt%, and (d) 30 wt% MMT addition. 
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Table 1 
The composition of elements on LMK samples. 

Atomic %  LMK00 LMK10 LMK20 LMK30 
Oxygen-O 76.62 73.37 71.28 66.03 
Phosphorus-P 23.38 21.85 19.15 20.03 
Aluminium–Al  --- 0.62 0.72 1.77 
Silicon-Si --- 4.16 8.85 12.17 

 

  
Fig 2. Water vapor absorption characteristic of LMK samples. a). the 
change in mass of samples in high humidity environment, and b). the 
average rate of water vapor absorption. 

Figure 3. shows the Nyquist impedance plot of LMK composite 
samples measured at room temperature, which depicts the 
response of the material to the electric field applied to the 
sample. The whole curve in Figure 3 can be said to consist of 
only an imperfect semi-circular arc, which indicates that in all 
samples only one relaxation process occurs. The intersection of 
the impedance loop with the x-axis indicates the resistive 
properties of the material or solution resistance, which shows 
that the LMK30 has the highest value, while the LMK20 has the 
smallest resistance value. Similarly, the sample with 30 w% 
MMT content has the highest value of the capacitive 
impedance. The real part (resistive) and the imaginary part 
(capacitive) impedance values for each sample are summarized 
in Table 2, which are calculated from the experimental data plot 
that is fitted to the circle arc equation using data analysis and 
Graph Plotting Software. The capacitance value is calculated 
using equation (1) considering the relaxation frequency and the 
resistance. The capacitance of all arcs is in the order of pF 
(picofarad), which indicates that the main contribution of the 
response that occurs in the sample is the response of the bulk 
material (Taher et al., 2016). 

Figure 4 shows the impedance behaviour as a function of 
frequency. The resistive impedance of the LMK sample 
decreases with increasing frequency and is followed by a steep 
decrease to a certain impedance value. At higher frequencies, 
the resistive impedance values are likely to be coincident at low 
values as an indication of the charge release process (Jodi et al., 
2017). 

 
Fig 3. Nyquist impedance plot of LMK composite samples 

 
 
 
 
 
 
Table 2 
 Impedance parameters calculated from Nyquist impedance plot. 

Impedance parameter LMK00 LMK10 LMK20 LMK30 

Resistance Rb (Ω) 4.91x10+3 2.01x10+3 1.94x10+3 7.51x10+3 

Relaxation frequency ω (Hz) 1.21x10+7 2.47x10+7 3.14x10+7 1.21x10+7 

Relaxation time τ (s) 8.26x10-8 4.04x10-8 3.18x10-8 8.26x10-8 

Capacitance Cb (F) 1.68x10-11 2.01x10-11 1.64x10-11 1.10x10-11 
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Fig 4. The impedance behaviour of LMK composite samples as a 
function of measurement frequency. a). real part of impedance plot., b) 
imaginary part of impedance.  

The capacitive impedance behaviour of LMK samples is 
characterized by the appearance of peaks at higher frequencies. 
This shows the existence of a relaxation process in the sample 
(Subohi et al., 2016). The LMK30 has a larger capacitive 
impedance compared to other LMK samples, while the lowest 
capacitive impedance is owned by the LMK20. The peak 
impedance frequency (relaxation frequency) value shifted 
towards a greater frequency as the capacitive impedance value 
decreased, indicating the relaxation time is getting shorter. It 
indicates that the LMK20 compound has a faster time to reach 
a new equilibrium in response to an applied electric field 
compared to other compositions (Thomas et al., 2017). The 
addition of MMT content to the compound is estimated to add 
immovable ion content in the dielectric sample of the Li2O-P2O5 
compound and facilitate the relaxation process. Because in the 
dielectric material, in general, the relaxation process occurs due 
to the presence of an immovable charge at low temperatures 
and due to the presence of defects or vacancies at high 
temperatures (Sen et al., 2008). 

The conductivity curves of LMK composite alloys as a 
function of measurement frequency are shown in Figure 5. The 
conductivity of each frequency point on this curve is calculated 
from the measured impedance value. The complex conductivity 
curves of all samples have two parts of an area, namely the area 
where the conductivity forms a near-plateau region and the area 
where the conductivity value increases with increasing 
frequency. The near-plateau region marks dc conductivity 

where conductivity is independent of the frequency, while the 
second one is ac conductivity which is frequency dependent 
(Jayswal et al., 2013). The ac conductivity indicates the 
material's hopping ion conduction mechanism (Sassi et al., 
2015), and has characteristics of power law in terms of angular 
frequency (Aωs) where s is the degree of interaction between 
mobile ions and the lattices around them (0 ≤ s ≤ 1), and A is a 
constant which determines the strength of polarizability (Dhahri 
et al., 2018). The conductivity values are obtained by fitting the 
measurement curves in Figure 6 to equation (3). The fitted 
conductivity values are described as the dotted line curve in 
Figure 5 and summarized in Table 3. 

The conductivity of the compound increases with the 
addition of MMT and reaches a maximum in the LMK20. 
Further addition of MMT content decreases the conductivity 
value to smaller order than before the addition. The LMK 
conductivity with MMT content up to 20wt% is in order of 10-4 
S/cm, two orders higher than that of the 2Li2O-P2O5 compound, 
and 4-5 orders higher than the conductivity of the Li3PO4 
compound (Jodi et al., 2016). The exponential power value of all 
alloys is in the range of value s = 0.63 ~ 0.78. This value 
approaches the exponent value for the conductivity of glass 
material which contains a high alkaline content of s≈0.6, which 
is measured in the kHz ~ MHz frequency range at room 
temperature (Jodi et al., 2017). 

That is clearly seen that the addition of MMT is not linearly 
correlated with changes in the impedance and conductivity of 
the material. The morphology of the sample shows that the 
MMT acts as a medium that absorbs the liquid in the reaction, 
thereby accelerating the formation of the desired phase. Jodi et 
al stated that the addition of MMT to a certain level reduces the 
formation of the LiPO3 and increases the formation of the 
Li4P2O7 which has high conductivity and is the dominant phase 
determining the total conductivity (Heri Jodi. et al., 2021) 
However, more detailed research is needed to determine the 
direct correlation of changes in MMT volume to changes in 
Li4P2O7 conductivity. Further addition of MMT makes its own 
conductivity affect the total conductivity to be lower than the 
conductivity of the dominant phase. 

 

 

 
Fig 5. The complex conductivity plot of LMK samples. 
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Table 3  
The permittivity value of LMK samples at f=42 Hz. 

Permittivity Parameters LMK00 LMK10 LMK20 LMK30 

Dielectric constant ε’ (F/m) 1.03x10+5 4.98x10+4 1.13x10+5 1.42X10+4 

Dielectric loss slope m -0.96 -0.98 -0.99 -0.97

tandelta D 52.50 165.78 103.06 149.04 

4. Conclusion

The addition of MMT content to the 1.5Li2O-P2O5 compound 
formed a new 1.5Li2O-P2O5-MMT (LMK) electrolyte composite. 
MMT content in LMK composites influences the morphology of 
the compound which changes from a structure covered in glassy 
shapes to pillar-like lumps. It is believed that MMT acts as a 
medium that absorbs the liquid phase in the solid-state reaction 
and forms pillar-like lumps. EDS analysis shows the 
predominance of Oxygen and Phosphorus elements in all LMK 
compounds, where there is an increase in the content of 
Aluminium and Silicon elements along with the addition of 
MMT content. The impedance response of all compounds is 
dominated by the grain response, indicated by a semi-circle on 
the impedance curve, and picofarad order of capacitance value. 
The bulk resistance shows a decrease along with the addition of 
MMT content, and reaches a minimum in the LMK20 
composition, indicating the highest conductivity in the order of 
10-4 S/cm. LMK20 composites become the most polarizable and 
dielectric compound, which is shown by the smallest relaxation
time of 3.18x10-8 (s), and the highest dielectric constant of
1.13x105.
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