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Abstract. Prediction accuracy is crucial for higher heating value (HHV) models to promote renewable biomass energy, especially its consistency is 
crucial when retraining data and knowledge of the range are unavailable. Current HHV models lack consistency in accuracy and interpretability due 
to various reasons. Thus, this study aimed to construct an interpretable and consistent proximate-based biomass HHV model on a wide-range dataset. 
The model, regime-lasso, integrated the concepts of regime-switching, lasso regression, and federated averaging to construct a consistent HHV 
model. The regime-switching partitioned the dataset into optimal regimes, and the lasso trained the regime models. The regime-lasso model is a 
collection of these models. It provided root  mean square error of 0.4430– 0.9050, mean absolute error of 0.2743–0.6867, and average absolute error 
of 1.512–4.5894% in the literature’s wide-range datasets. The Kruskal–Wallis test confirmed the in-sample performance consistency at α=0.05, 
regardless of the training sets. In the out-of-sample situations without retraining, the model preserved its accuracy in six out of 11 datasets at α = 
0.01. The interpretability of regime-lasso indicated the regime characteristic to be a factor of inconsistent prediction. The increase in FC had the 
maximum positive impact on HHV in the 2nd and 3rd regimes, while the increase in ASH negatively impacted the 1st and 2nd regimes. VM variation 
had neutral effects in all regimes. The regime-lasso solves the issues of accuracy declination and addresses the challenges in sensitivity analysis of 
the HHV model. The prediction accuracy issues of the model’s direct implementation were fixed. 
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1. Introduction 

Biomass is a crucial sustainable energy source to reduce carbon 
dioxide levels, greenhouse gases, and dependency on fossil 
fuels (Core Writing Team 2015). Proximate and ultimate 
analyses are the main approaches to evaluate biomass energy 
yields; the former utilizes the percentage fraction of fixed carbon 
(FC), volatile matter (VM), and ash (ASH), while the latter 
applies the chemical element to estimate the higher heating 
value (HHV). The ultimate-based models have superior 
accuracy but require sophisticated equipment and are time 
consuming. The proximate-based models are more practical. 
Previous studies  have tried to improve the HHV prediction 
accuracy of these models. 

The mathematical proximate-based HHV model was 
extended from carbonaceous to lignocellulosic materials 
(Cordero et al. 2001) in specific locations. Then, the research 
field was expanded to several materials: solid fuels (Parikh et al. 
2005), lignocellulosic compound biomass (Chun-Yang Yin 
2011), non-woody biomass torrefaction char (Soponpongpipat 
et al. 2015), torrefied biomass (Nhuchhen and Afzal 2017), 
poultry waste (Qian et al. 2018), and biochar (Qian et al. 2020). 
These models were empirical correlations based on lower-order 
ordinary least squares regressions (OLS) and represent the 
interpretable relationship between sets {FC, VM, ASH}, called 
the property set, and HHV. These OLS models provided 
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accurate prediction values. Their average absolute error (AAE) 
and R-squared (R2) were 2.00–6.17% and 0.916–0.929, 
respectively. These models were practical, accurate, and 
interpretable; however, their validations were limited to a 
specific range of property sets. 

Nhuchhen and Abdul Salam (2012) studied a wide-range 
proximate-based model. They constructed the fourth order OLS 
between sets {VM/FC, ASH/VM, FC/ASH}, called the ratio set, 
and HHV; the wide-range proximate-based models were 
documented by Mohammed et al. (2014). Further, the non-linear 
machine learning (ML) models successfully constructed wide-
range proximate-based models. 

Akkaya (2013) implemented an artificial neural network 
(ANN) to predict coal HHV. Subsequently, Ghugare et al. (2014) 
predicted a wide-range solid biomass HHV through genetic 
programming (GP). Various models have been developed to 
support wide-range materials: adaptive neuro-fuzzy inference 
system (ANFIS) (E. Akkaya 2016), ANN (Uzun et al. 2017), and 
genetic algorithms radial basis function (GA-RBF) (Dashti et al. 
2019). Their AAE, R2, and root mean square error (RMSE) were 
2.64–5.0%, 0.8836–0.9852, and 0.375–1.3006, respectively. 
Estiati et al. (2016) confirmed the superior accuracy of ANN to 
lower-order OLS on wide-range data and reported the effects of 
sample number on the model accuracy. Recent studies have 
used superior ML models to predict HHV on specific materials: 
municipal solid waste (Taki and Rohani 2022). 
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Some disagreements on the model’s accuracy arose in 
comparison studies. Xing et al. (2019) used random forest (RF) 
models that benefited from bootstrap sampling to predict the 
HHV model and generated an R2 of 0.94. They compared RF, 
ANN, support vector machine (SVM), and OLSs and insisted on 
the superiority of MLs to OLSs in terms of accuracy. They found 
that OLSs provided R2 < 0.7, which was much lower than those 
reported in earlier studies. The ANN’s R2 and RMSE were 0.856 
and 4.669, respectively, as compared to an R2 of 0.963 and 
RMSE of 0.375 by Uzun et al. (2017). Thus, the decline in 
accuracy was apparent. The Monte-Carlo sensitivity analysis 
reported that ASH, VM, and FC have maximum, medium, and 
minimum effects. Samadi et al. (2021) were skeptical that the 
overfitting issues would render MLs to exhibit superior 
accuracy. Thus, they selected the gradient-boosted regression 
tree (GBRT), an unsupervised machine learning approach, to 
construct a proximate-based HHV model. Their AAE and R2 
were 3.783% and 0.93, compared to the OLS’s AAE of 4.66–
10.72%, R2 of 0.43–0.89, and RMSE of 1.121–2.410 in their 
experiments. Their linear correlation indicated a more 
significant impact of FC on HHV than of ASH. The non-
interpretation of ML models renders sensitivity analysis 
challenging, resulting in diversity. The linear models are 
interpretable but limited in their specific range of materials. 
Some factors affect the linear models’ validity. The sensitivity 
analyses can be improved if an interpretable linear model is 
made in the wide-range material. 

An accurate and consistent model to predict the HHV for 
biomass is necessary to promote renewable energy handling, 
especially in data-poor regions that must implement the model 
without retraining. The wide-range models are crucial as the 
range information is absent. Research focusing on consistency 
of HHV prediction, even in the ultimate-based model, is lacking. 
Kijkarncharoensin and Innet (2022a) examined and reported the 
decreasing accuracy, called performance inconsistency, of the 
ultimate-based models. The models can maintain accuracy in 
neither in-sample nor out-of-sample conditions and must be 
retrained before implementation. Boumanchar et al. (2019) also 
documented the ultimate-based models’ accuracy declination. 
These studies also demonstrated that accuracy-decreasing 
issues emerged when implementing the models on the out-of-
sample dataset. 

This study’s objective was to construct an interpretable and 
consistent proximate-based HHV model of wide-range biomass 
material. The interpretation refers to identifying the features’ 
degree of sensitivity to the response. Consistency is the 
statistical indifference of the error distributions on distinct 
datasets. The strong definition of consistency is the similarity in 
accuracy ranking. This study is the first to demonstrate that an 
HHV model can statistically maintain the latter definition 
among the datasets. The research challenges are to identify the 
source of inconsistency that rendered the linear models 
unsuitable in a wide range of conditions and to prove the 
invariant accuracy of the proposed model. 

Three procedures were conducted to achieve the goals. 
First was to integrate the concepts of regime-switching, least 
absolute shrinkage and selection operator (lasso), and federated 
averaging (FedAvg) into the regime-lasso model. The regime-
switching, lasso, and FedAvg concepts were embedded into the 
biomass HHV models for the first time. Second was to 
statistically test the performance consistency. The article set the 
formal experiments and extended Samadi et al. (2021), covering 
12 models from 2001–2020 Yr. presented in Section 3.2. Two 
definitions of performance consistency were defined based on 
the accuracy rankings and error distributions, as indicated in 

section 3.3. The Kruska–Wallis H-test determined these 
distributions’ equivalence and verified the consistency of the 
performance. Third was to ensure the estimators’ unbiasedness. 
The Kolmogorov–Sirmanov test examined the distributions’ 
normality and guaranteed unbiased estimation of FedAvg 
within a number of samplings. 

The remaining sections are organized as follows: Section 2 
describes the regime-lasso model in detail and presents the 
schemes of k-means clustering, lasso, and FedAvg; Section 3 
exhibits the experiments’ schematic diagrams to evaluate the 
accuracy of the regime-lasso model, compares it with earlier 
studies, and tests its consistency; Section 4 indicates and 
discusses the performance evaluation of five measurements. 
The experimental results of Section 3 are expressed and 
discussed here; and lastly, the article ends with the research 
conclusion. 

2. Theoretical models 

The fundamentals of the regime-lasso concepts are the dataset’s 
clustering, model’s training, and aggregation of local to global 
model. Economics implement K-means-clustering to cluster the 
data into economic states (Liao 2017), called regimes. 
Kijkarncharoensin and Innet (2022b) embedded this idea with 
the correlation distance metric to classify biomass datasets into 
uncorrelated regimes treated as different populations. The HHV 
models can be separately trained in these regimes; however, the 
consistency improvement should solve the feature collinearity 
issue and the estimated coefficient error. 

The collinearity in the models’ feature set affects the OLS’s 
variance (Mela and Kopalle 2002). However, correlation 
distance clustering increases the degree of collinearity within 
the regime. Therefore, the OLS-based model cannot be 
considered as these regimes' unique minimum variance 
unbiased estimator.  

The lasso conditionally searches the OLS’s hypothesis space 
solutions regardless of the collinearity (Tibshirani 1996). This 
model intelligently sacrifices some bias for robustness by 
shrinking some coefficients to zero. The model’s variance 
reduction improves its overall accuracy. Thus, the lasso can 
efficiently solve the collinearity issue and train the HHV model 
in the regimes. 

The FedAvg, a federated learning algorithm, can handle the 
estimated coefficient error. It distributes the training across the 
decentralized database and aggregates them into a new model 
through averaging (Hard et al. 2018). According to the central 
limit theorem, the normality of the linear model’s error 
distribution leads to the mean of the estimated coefficient being 
the true value within a finite number of samples. If the errors 
follow a normal distribution, FedAvg guarantees that the 
average linear model coefficient is an unbiased estimator within 
a finite number of bootstrapped. 

2.1 K-means clustering 

K-means clustering is a type of unsupervised learning that 
groups the dataset into k similar clusters. Let 𝒙𝒙𝒙𝒙ℝ𝒑𝒑 be a p-
dimension data and 𝒄𝒄𝒙𝒙ℝ𝒑𝒑 be a centroid of those k clusters. The 
correlation distance metric, as given in Equation (1), measures 
the interval between 𝒙𝒙 and the k clusters’ centroids 𝒄𝒄.  
 

𝑑𝑑(𝑥𝑥, 𝑐𝑐) = 1 − �𝑥𝑥−�⃗̅�𝑥 �
′
�𝑐𝑐−𝑐𝑐̅⃗�

 ��𝑥𝑥−�⃗̅�𝑥�
′
�𝑥𝑥−�⃗̅�𝑥 ���𝑐𝑐−𝑐𝑐̅⃗�

′
�𝑐𝑐−𝑐𝑐̅⃗ �

  (1) 
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Let 𝑎𝑎𝑖𝑖 be the average intracluster distance between the ith 
point and its centroid, while 𝑏𝑏𝑖𝑖 be the average inter-cluster 
distance of that point and other centroids. Silhouette value, 𝑆𝑆𝑖𝑖, 
in Equation (2), defined as the ratio of 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖, measures the 
distance between clusters. Si has a [–1, 1] range; the higher, the 
better. The excellent partitions should have 𝑆𝑆𝑖𝑖 above 0.8. 

 
𝑆𝑆𝑖𝑖 = 1 − 𝑎𝑎𝑖𝑖

𝑏𝑏𝑖𝑖
     (2) 

 
The k-means clustering starts by randomly selecting the 

initial k centroids and using Equation (1) to group the data. 
Then, the algorithm calculates new k centers' positions and 
iteratively groups the data based on these centroids. These 
iterative processes run until all the cluster's centers remain 
stable. . 

2.2 Least absolute shrinkage and selection operator (Lasso) 

The lasso model minimizes the sum of square errors subject to 
its absolute coefficients’ summation (3), equivalent to the 
Lagrangian objective function (4). 
 

min
𝛽𝛽

1
2𝑁𝑁
∑  �𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝
𝑖𝑖=1 �
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𝑖𝑖=1

𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠 𝑠𝑠𝑡𝑡 ∑ �𝛽𝛽𝑖𝑖� ≤ 𝑠𝑠𝑝𝑝
𝑖𝑖=1

  (3) 
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𝑝𝑝
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      (4) 
 

Suppose 𝑥𝑥𝑖𝑖𝑖𝑖 are standardized: ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 0𝑁𝑁
𝑖𝑖=1 , 1

𝑁𝑁
∑ 𝑥𝑥𝑖𝑖𝑖𝑖2 = 1𝑁𝑁
𝑖𝑖=1 , 

so 𝛽𝛽0 = 𝑦𝑦�. Then, coordinate descent fast algorithms (Friedman 
et al. 2010) solve Equation (4) through Equation (5)–(7). 𝑦𝑦�𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂 is 
the OLS response, thus 𝑦𝑦�𝑖𝑖

(𝑖𝑖) in Equation (6) is the OLS estimator 
excluded 𝑥𝑥𝑖𝑖𝑖𝑖’s contribution. Function (⋅)+refers to the positive 
value. Choose the pre-determine 𝜆𝜆 such that minimizes MSE in 
the testing set. 

 

𝛽𝛽�𝑖𝑖 ← 𝑆𝑆 �1
𝑁𝑁
∑ 𝑥𝑥𝑖𝑖𝑖𝑖 �𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖

(𝑖𝑖)�𝑁𝑁
𝑖𝑖=1 , 𝜆𝜆 �   (5) 

 

𝑦𝑦�𝑖𝑖
(𝑖𝑖) = 𝑦𝑦�𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽�𝑖𝑖    (6) 

𝑆𝑆(𝑧𝑧, 𝜆𝜆) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧)(|𝑧𝑧| − 𝜆𝜆)+   (7) 
 
The coordinate-wise update determines the lasso coefficient 

𝛽𝛽 instead of explicitly using the OLS estimation. Therefore, the 
lasso can handle the collinearity issues in the predictor 𝑥𝑥 and 
reduces the estimator’s variability. 

2.3 Federated averaging 

FedAvg is a distributed optimization algorithm that trains the 
models through the decentralized dataset and aggregates these 
models into one global model. FebAvg is an improved version, 
robust to unbalanced and non-IID distributed local datasets 
(McMahan et al. 2017). 

Let 𝛽𝛽�𝑟𝑟,𝑘𝑘𝜖𝜖ℝ𝑝𝑝 ; k = 1 to K, be the kth fold lasso coefficient of 
the regime; r = 1 to R, and 𝛽𝛽�𝑟𝑟 be the aggregated coefficient of 
that regime. The regime-lasso coefficients of the rth regime are 
the aggregation of 𝛽𝛽�𝑟𝑟,𝑘𝑘, as follows in Equation (8). 

 

𝛽𝛽�𝑖𝑖𝑟𝑟 ←
1
𝐾𝐾
∑ 𝛽𝛽�𝑖𝑖

𝑟𝑟,𝑘𝑘𝐾𝐾
𝑘𝑘=1      (8) 

 
The k-mean clustering divides the article dataset into R 

regimes. Then, the lasso model runs on all R regimes to 
generate R equations. The K-fold cross-validation iteratively 
evaluates these R models and develops K × R models. Finally, 
FedAvg uses Equation (8) to integrate them into the lasso 
models for these R regimes. 

The clustered datasets may be the non-IID distribution. 
However, if the 𝛽𝛽�𝑟𝑟 is normally distributed, Equation (8) 
guarantees the unbiased estimator on the finite number of cross-
validations. The regime-lasso model is the set of these R 
regressions. 

3. The experimental design 

This study classified the article dataset (Kijkarncharoensin 
2022b) through the k-means clustering algorithm on correlation 
distance [Equation (1)]. The maximum silhouette value from 
Equation (2) was a proxy for the optimal cluster number. The 
lasso model was separately trained on these clusters and 
aggregated to be the regime-lasso model. Then, two 
experiments measured the model performances through 
Equations (9)–(13) and compared them with literature. 

 

 

Fig. 1  Schematic flowchart representing the experimental design to evaluate the regime-lasso model; fixed carbon (FC), volatile matter (VM), ash 
(ASH), higher heating value (HHV), root mean square error(RMSE), mean absolute error (MAE), average absolute error (AAE), average bias error 
(ABE), and R-squared (R2). 
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Fig. 2 Schematic flowchart representing the statistical testing of indifference in the error distributions. The distribution equivalence is a proxy of 
performance consistency in the article. 

 

Table 1 
Literature models and datasets for the regime-lasso model's accuracy comparison and consistency examination. 

 HHV model Dataset 
Size Source 

I -30.3FC2+62.5ASH2+55.4FC-48.5ASH+9.591 33 C. Qian et al. (2020) 
II 140.2-1.167FC-0.210VM-1.558ASH-0.02739VM2+0.000191VM3+0.00104FC×ASH 37 X. Qian et al. (2018) 
III 0.1846VM+0.3525FC 207 Nhuchhen and Afzal (2017) 
IV.A 0.3368FC+0.1646VM+0.0113ASH 12 Estiati et al. (2016) 
IV.B 0.3241FC+3.7667×10-4FC2-4.1530×10-4FC×VM+0.1947VM-2.8207×10-4VM2-0.0025ASH   
V 35.4879-0.3023ASH-0.1905VM 28 Soponpongpipat et al. (2015) 
VI 

0.365FC+0.131VM+
1.397

FC
+

328.568VM

10283.138+0.531ASH×FC3-6.863×ASH×FC2 
382 Ghugare et al. (2014) 

VII 1.9999+0.248FC+0.162VM-0.137ASH - Mohammed et al. (2014) 
VIII 

20.7999-0.3214
VM
FC

+0.0051 �
VM
FC

�
2

-11.2277
ASH
VM

+4.4953 �
ASH
VM

�
2

-0.7223 �
ASH
VM

�
3

+0.0383 �
ASH
VM

�
4

+0.0076
FC

ASH
 

250 Nhuchhen and Abdul Salam 
(2012) 

IX 0.2521FC+0.1905VM 53 Chun-Yang Yin (2011) 
X 0.3536FC+0.1559VM-0.0078ASH 100 Parikh et al. (2005) 
XI 354.3FC+170.8VM 24 Cordero et al. (2001) 
XII This study regime-lasso model 802 Kijkarncharoensin (2022b) 

 
 
3.1 Regime-lasso analysis 

Two feature sets were fitted into the model. The first one was 
the proximate analysis data, {FC, VM, ASH}, called property; and 
the other was the ratio of these data, {VM/FC, ASH/VM, 
FC/ASH}, called the ratio implemented in Nhuchhen and Abdul 
Salam, 2012. The experiment base case was the lasso model of 
the property set trained on the entire sample. 

The experiment exhibited in Fig. 1 implements the ratio set 
on the base case, called case 2, to identify the improvement. 
Next, k-mean clustering divided the article dataset into k 
regimes. Two sets of {FC, VM, ASH, HHV} and {VM/FC, 
ASH/VM, FC/ASH, HHV} classified the dataset through the 
correlation distance metric. Then, the lasso models with the 
property set were applied to the clusters generated from {FC, 
VM, ASH, HHV} and named case 3 (with two regimes) and case 
5 (with three regimes). Similarly, case 4 (with two regimes) and 
case 6 (with three regimes) were the lasso with the ratio set on 
the regimes generated by {VM/FC, ASH/VM, FC/ASH, HHV}. 
Cases 3–6 were examined for accuracy improvement after 
embedding the regime-switching concepts. 

These experiments involved 10 evaluation schemes, the full 
sample substitution, p% hold-out, and k-fold cross-validation. 
The average of RMSE, MAE, AAE, ABE, and R2 measure the 
prediction accuracy. The following section compares the most 
accurate model with the literature models. 

3.2 Literature comparison 

The experiments compared the regime-lasso model, evaluated 
in the previous section, with 12 literature models (Chun-Yang 
Yin 2011, Cordero et al. 2001, Estiati et al. 2016, Ghugare et al. 
2014, Mohammed et al. 2014, Nhuchhen and Abdul Salam 2012, 
Nhuchhen and Afzal 2017, Parikh et al. 2005, C. Qian et al. 2020, 
X. Qian et al. 2018, Soponpongpipat et al. 2015) listed in Table 
1. The 11 examination datasets were the models' training data 

reported in the literature. The regime-lasso should outperform 
these literature models in their environments. 

The experiment ended with the performance comparison 
conducted on the article dataset. The performance comparison 
relied on a total sample, which promoted reproducibility and 
improved the model performance as high as possible. The 
performance consistency of the proposed model was verified as 
a result. 

3.3 Testing of the performance consistency 

The article defined two definitions of performance consistency. 
The first was the similar ranking in prediction accuracy, while 
the other was the indifference in the error distributions. 

Definition 1 Performance consistency in the ranking: The 
performance of an HHV prediction model is consistent 
if its accuracy rankings in all testing datasets are the 
same. 

Definition 2 Performance consistency in the error 
distribution: The performance of an HHV prediction 
model is consistent if its error distributions in all testing 

datasets are statistically indifferent. 
The consistency examinations of these definitions were 

conducted differently. The study assumed that the early study 
models were the most accurate in their training sets. The proof 
of definition 1 was straightforward if the model outperformed 
them in their datasets. Definition 2’s verification proceeded 
through the hypothesis testing of the distribution similarity. For 
example, the Kruskal–Wallis H-Test, a nonparametric ANOVA, 
inspects the prediction errors based on the null of the 
distribution equivalence. Fig. 2 presents the schematic diagram 
to prove the 2nd definition. 

The proof of definition 2 was conducted in two situations. 
The first situation retrained the model in Table 1 before 
performance measuring. A total of 11 datasets were involved in 
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the experiments, except the dataset of Mohammed et al. (2014), 
as it was unpublished. The other situation was to implement the 
model in Section 3.1 without retraining. The hypothesis testing 
results in Section 4.4 emphasize the accuracy and consistency 
of the regime-lasso model. The author publishes the source 
code (Kijkarncharoensin 2022a) to promote the experiment's 
reproducibility. 

 

3.4 Evaluation indicators 

The article measures prediction accuracy through five 
indicators; RMSE, mean absolute error (MAE), AAE, average 
bias error (ABE), and R2.  

 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = √𝑅𝑅𝑆𝑆𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1    (9) 

𝑅𝑅𝑀𝑀𝑅𝑅 = 1
𝑁𝑁
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑁𝑁
𝑖𝑖=1     (10) 

 

𝑀𝑀𝑀𝑀𝑅𝑅 = 100
𝑁𝑁
∑ |𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖|

𝑦𝑦𝑖𝑖
𝑁𝑁
𝑖𝑖=1     (11) 

 

𝑀𝑀𝐴𝐴𝑅𝑅 = 100
𝑁𝑁
∑ 𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖

𝑦𝑦𝑖𝑖
𝑁𝑁
𝑖𝑖=1     (12) 

 
𝑅𝑅2 = 1 − 𝑂𝑂𝑂𝑂𝑆𝑆

𝑂𝑂𝑂𝑂𝑆𝑆
     (13) 

 
RMSE is the standard error. MAE is the absolute value, while 

AAE is the relative one. ABE measures relative bias. R2 refers to 
the ratio of error sum of squares (SSE) and total sum of squares 
(SST). In addition, the study implemented the Kolmogorov-
Smirnov test to inspect the residual distribution. 
 

  

 

Fig. 3 K-means clustering analysis on the set of {FC, VM, ASH, HHV} and correlation distance metric. The correlation-based centroids are c = [ c1 
c2 c3 ]T, where c1 = [ –0.30 0.80 –0.50]T, c2 = [–0.33 –0.35 0.69]T, and c3 = [0.76 –0.26 –0.50]T; fixed carbon (FC), volatile matter (VM), ash (ASH), 
and higher heating value (HHV). 

 

 

Fig. 4 K-means clustering analysis on the set of {VM/FC, ASH/VM, FC/ASH, HHV} and the correlation distance metric. The correlation-based 
centroids are c = [ c1 c2 c3 ]T, where c1 = [ –0.22 –0.53 0.75]T, c2 = [0.75 –0.53 –0.21]T, and c3 = [0.39 –0.80 0.41]T; fixed carbon (FC), volatile matter 
(VM), ash (ASH), and higher heating value (HHV). 
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4. Results and Discussion 

The experimental results are composed of four parts. The first 
Section 4.1 indicates and inspects the practical techniques to 
classify the data into thermal regimes. Section 4.2 constructs the 
regime-lasso model and evaluates its accuracy based on the 
schematic flowchart in Section 3. The sensitivities of the 
regime’s thermal properties on the HHV are compared with 
those of previous studies. The sources of the inconsistency are 
identified. Section 4.3 compares the regime-lasso’s in-sample 
accuracy with that of the literature models. The out-of-sample 
accuracies of the earlier study's models are examined. Section 
4.4 presents the statistical consistency in the regime-lasso’s 
accuracy. The regime-lasso’s invariant accuracies are proved, 
and the study’s objectives on the consistency and 
interpretability of the HHV model are addressed. 

4.1 Regime clustering 

The data clustering indicates that three regimes were optimal 
for the present study dataset. The set of {FC, VM, ASH, HHV} 
provided 0.9545 silhouette value, which was higher than that of 
{VM/FC, ASH/VM, FC/ASH, HHV}. The cluster analysis of the 
former set is expressed in Fig. 3, while that of the latter is shown 
in Fig. 4. 

The left and right plots in the lower panel of Figs 3 & 4 are 
the parallel coordinate and silhouette plots, respectively. The 
former plot presents the 25% quantile of the properties, while 
the latter indicates the regimes’ data similarity through the 
silhouette value; its range is [–1, 1]; the higher the better. The 
silhouette values of all the data in each cluster were higher than 
0.8, which was the criterion. Therefore, {FC, VM, ASH, HHV} 
can distinctly cluster the article dataset effectively. The negative 
silhouette value in Fig. 4 indicates the dissimilarity in the cluster 
data. Additionally, overlaps in the parallel coordinates insisted 
on the inappropriate clustering received from {VM/FC, 
ASH/VM, FC/ASH}. The results supported Kijkarncharoensin 
and Innet (2022b) using {FC, VM, ASH, HHV} to cluster the data 
into regimes. 

Table 2 
Correlation matrix of the whole article dataset and its regime, indicated 
in Fig. 2; Sample size (N), fixed carbon (FC), volatile matter (VM), ash 
(ASH), and higher heating value (HHV). 

Full Sample 
 FC VM ASH HHV 

FC 1.0000 -0.7844 -0.0706 0.7405 
VM -0.7844 1.0000 -0.5601 -0.3007 
ASH -0.0706 -0.5601 1.0000 -0.5009 
HHV 0.7405 -0.3007 -0.5009 1.0000 

Cluster 1: N = 747 
 FC VM ASH HHV 
FC 1.0000 -0.4411 -0.3382 0.3331 
VM -0.4411 1.0000 -0.6855 0.3842 
ASH -0.3382 -0.6855 1.0000 -0.6745 
HHV 0.3331 0.3842 -0.6745 1.0000 
Cluster 2: N = 14 
 FC VM ASH HHV 
FC 1.0000 -0.6363 -0.4480 0.9020 
VM -0.6363 1.0000 -0.4046 -0.2919 
ASH -0.4480 -0.4046 1.0000 -0.7311 
HHV 0.9020 -0.2919 -0.7311 1.0000 
Cluster 3: N = 40 
 FC VM ASH HHV 
FC 1.0000 -0.7572 -0.5734 0.8618 
VM -0.7572 1.0000 -0.0932 -0.4873 
ASH -0.5734 -0.0932 1.0000 -0.6663 
HHV 0.8618 -0.4873 -0.6663 1.0000 

 

Table 2 presents the correlation matrix of the regime's 
feature sets and indicates high collinearity among them. These 
highly linear relationships arose from clustering by correlation 
distance metric, which generated a high correlation between the 
response HHV and the property set. The entire sample exhibited 
a correlation of 0.7405 between FC and HHV. The correlation 
increased to 0.9020 and 0.8618 in the 2nd and 3rd regimes, 
respectively, after clustering. 

The lasso regression was implemented coordinate-wise as 
given in Section 2.2, to handle the feature collinearities. 
Accuracy improvement from training the lasso into these 
regimes can be expected. 

4.2 Model evaluation 

A total of 10 evaluation schemes were conducted on the lasso 
model to measure the prediction accuracy. The average value 
of 10 schemes, a complete substitution, six sets of hold-out, and 
three sets of k-fold cross-validation were considered proxies of 
the model performance. Table 3 indicates the base and second 
cases' mean values of the five indicators (RMSE, MAE, AAE, 
ABE, R2). The base case provided an average RMSE, MAE, AAE, 
ABE, and R2 as 1.449, 1.0647, 5.8088%, 0.0166%, and 0.7985, 
respectively. Likewise, these parameters for the second case 
were 2.5821, 1.6505, 9.0535%, –0.1208%, and 0.3603, 
respectively. The ratio set did not improve prediction accuracy 
because the base case provided a lower magnitude of RMSE, 
MAE, AAE, and ABE and a higher one of R2 than did the second 
one. The KS-test informed the residual non-normality in both 
cases with a 0.0000 p-value. 

The accuracy improvement due to regime-switching is 
expressed in Table 4 for two regimes and in Table 5 for three, 
the optimal number of clusters. Case 3 in Table 4 generated 
mean values of 1.4168, 1.0455, 5.7543%, –0.0050%, and 0.8076 
for RMSE, MAE, AAE, ABE, and R2, respectively, while these 
values for case 4 were 1.7495, 1.2386, 6.6772%, 0.1168%, and 
0.7065, respectively. Case 5 in Table 5 presents the mean 
RMSE, MAE, AAE, ABE, and R2 of 1.3933, 1.0249, 5.5786%, 
0.0300%, and 0.8139, respectively. Case 6 in Table 5 generated 
average RMSE, MAE, AAE, ABE, and R2 of 1.7313, 1.2208, 
6.5565%, 0.0323%, and 0.7125, respectively. Cases 3 and 4 in 
Table 4 outperformed the base and second cases. The 
accuracies of cases 5 and 6 in Table 5 were better than those in 
Table 4. The optimal regime cases provided a lower mean of 
these accuracy indicators and a higher mean of R2. The regime-
switching concept improved the prediction power of the 
property and ratio sets of the lasso model. Case 5 provided a 
lower values for RMSE of 0.338, MAE of 0.1959, AAE of 
0.9779%, ABE of 0.0023%, whereas a higher R2 of 0.1014 
compared to those of case 6. The ratio set did not improve the 
prediction accuracy, contrasting with Nhuchhen and Abdul 
Salam (2012). 

The regime-lasso models exhibited the highest accuracies at 
the optimal number of regimes on the property set. Case 5, 
constructed on the property set and optimal regime number, 
presented the highest accuracies in the experiments. An 
average p-value of 0.0281 of its KS-test indicates the residual 
normality at 𝛼𝛼 = 0.01, indicating that with a finite fold number 
of the cross-validation, 𝛽𝛽�s in Equation (5) aggregated from the 
FedAvg of Equation (8) is the unbiased estimator of 𝛽𝛽. The 
benefits of FedAvg implementation and normality guarantee are 
superior to the bootstrap sampling Xing et al. (2019)’s RF 
received. Their bootstrap samplings on non-normal 
distributions require a number of samples 𝑠𝑠 → ∞ for an 
unbiased 𝛽𝛽 estimator. 



A. Kijkarncharoensin et al  Int. J. Renew. Energy Dev 2023, 12(1), 87-98 
| 93 

 

ISSN: 2252-4940/© 2023. The Author(s). Published by CBIORE 

Case 5's 20% hold-out evaluation provided the highest 
accuracy among all other evaluations. The 5-fold cross-
validation, composed of 20% hold-out for five times, provided 
the highest accuracy of the k-fold cross-validation. The 5-fold 
cross-validation’s RMSE, MAE, AAE, ABE, and R2 were 1.3831, 
1.0204, 5.5523%, –0.0547%, and 0.8166, respectively, which 
equivalently improved a lower RMSE of 0.0668, lower AAE of 
0.2565%, and a higher R2 of 0.0181 from the base case. The case 
5’s 𝛽𝛽�s were benefited by the FedAvg to be the unbiased 
estimator with the normality guaranteed at a KS-test’s p-value 
of 0.0335, while the 20% hold-out did not. In this study, we 
selected a 3-cluster regime-lasso model generated with the 
property set on 5-fold cross-validation to compare the model’s 
accuracy with that of published models, as presented in the 
following sections. Table 6 and Fig. 5 exhibit 𝛽𝛽�s of this model; 
the FedAvg aggregated them based on 5-fold cross-validation. 
These coefficients indicate the features’ sensitivities to the 
response HHV. The regime-lasso’s interpretable characteristics 
of sensitivity analyses lead to a better understanding of the 
regimes’ thermal properties. 

The HHV in the regimes was distinctly reacted to {FC, 
VM, ASH}. ASH decreased the HHV in the 1st and 2nd regimes 
but had a neutral effect in the 3rd regime. A percentage increase 
in ASH decreased the HHV by 18.1 kJ/kg and 67.9 kJ/kg in the 
1st and 2nd regimes, but that in the 3rd did not change. The 

negative effect of ASH on the HHV partially supports the 
findings of Soponpongpipat et al. (2015) and Qian et al. (2020), 
because ASH can have a neutral or even positive effect on the 
HHV. The ASH–FC and ASH–VM interactions can decrease, 
neutralize, or increase the HHV depending on the regime 
characteristics. An increase of 1% in ASH–FC interactions leads 
to a 1.8 kJ/kg decline in the 1st regime’s HHV, a 0.1 kJ/kg 
change in the 2nd regime’s HHV, and a 2.8 kJ/kg increase in the 
3rd regime’s HHV. The ASH–VM interactions had similar effects. 
A 1.9 kJ/kg drop in the 1st regime’s HHV, zero change in the 2nd 
regime’s HHV, and 9.9 kJ/kg increase in the 3rd regime’s HHV 
from a 1% change in ASH–VM interactions. FC exhibited the 
most positive impact on HHV except in the 1st regime. An 
increase of 1% in FC increased 99.8 kJ/kg and 295.6 kJ/kg 
HHV in the 2nd and 3rd regimes, but with no HHV change in 1st 
regime. Thus, the positive effects of FC depend on the regime, 
contrasting with Samadi et al. (2021), who implemented a 
relevancy factor to report the highest positive impact of FC on 
HHV. The FC-square rendered the HHV to increase in all 
regimes; its 1% increase resulted in 1.7, 2.7, and 1.8 kJ/kg 
increases in the HHV in the 1st, 2nd, and 3rd regimes, respectively. 
This study found that VM solely had neutral effects on HHV in 
all regimes; however, VM-square led to a 0.2 kJ/kg increase in 
the 1st regime. VM had a positive impact on HHV upon 
interaction with FC. An increase in 1% FC–VM resulted in a 5.5 
kJ/kg increased HHV in the 3rd regime.

 
 

 

Table 3 
Performance of the lasso model training on the entire dataset. It indicates the accuracy improvement of the ratio set over the properties set. The KS-
test exhibits the p-value of the Kolmogorov-Smirnov test, in which the null refers to the standardized residual's normality. The abbreviations are root 
mean square error (RMSE), mean absolute error (MAE), average absolute error (AAE), average bias error (ABE), and R-squared (R2). 

 Case 1 (Property) Case 2 (Ratio) 
Evaluation RMSE MAE AAE(%) ABE(%) R2 KS-test RMSE MAE AAE(%) ABE(%) R2 KS-test 
Full - sample 1.4462 1.0602 5.7835 -0.0330 0.7995 0.0030 2.4917 1.6131 9.0670 0.2685 0.4048 0.0000 
10% hold-out 1.4470 1.0631 5.8058 0.0972 0.7993 0.0050 2.6700 1.7190 9.3962 0.0166 0.3165 0.0000 
15% hold-out 1.4474 1.0591 5.7735 -0.1545 0.7992 0.0018 2.4955 1.6222 8.9948 0.0630 0.4030 0.0000 
20% hold-out 1.4474 1.0573 5.7716 -0.1107 0.7991 0.0014 2.6479 1.6566 8.9648 -0.2068 0.3278 0.0000 
25% hold-out 1.4466 1.0650 5.8151 0.0548 0.7994 0.0086 2.5097 1.6076 9.2362 -0.2699 0.3962 0.0000 
30% hold-out 1.4497 1.0720 5.8543 0.1896 0.7985 0.0226 2.6839 1.6876 9.1228 -0.2077 0.3094 0.0000 
50% hold-out 1.4672 1.0771 5.8443 0.3166 0.7936 0.0055 2.6639 1.6826 8.9213 -0.6554 0.3197 0.0000 
3-fold cross-
validation 

1.4487 1.0629 5.8051 -0.0509 0.7988 0.0064 2.5717 1.6466 9.0851 0.0345 0.3659 0.0000 

5-fold cross-
validation 

1.4466 1.0606 5.7879 -0.0427 0.7994 0.0046 2.5547 1.6437 8.8736 -0.1834 0.3743 0.0000 

10-fold cross-
validation 

1.4520 1.0699 5.8470 -0.1005 0.7979 0.0117 2.5321 1.6257 8.8734 -0.0676 0.3853 0.0000 

mean 1.4499 1.0647 5.8088 0.0166 0.7985 0.0071 2.5821 1.6505 9.0535 -0.1208 0.3603 0.0000 
 
 
Table 4 
Performance of the 2-cluster regime-lasso generated from the article dataset. The KS-test exhibits the p-value of the Kolmogorov-Smirnov test, in 
which the null refers to the standardized residual's normality. The abbreviations are root mean square error (RMSE), mean absolute error (MAE), 
average absolute error (AAE), average bias error (ABE), and R-squared (R2). 

 Case 3 (Property) Case 4 (Ratio) 
Evaluation RMSE MAE AAE(%) ABE(%) R2 KS-test RMSE MAE AAE(%) ABE(%) R2 KS-test 
Full - sample 1.3959 1.0308 5.6717 -0.0194 0.8132 0.0226 1.7129 1.2225 6.5661 0.0788 0.7187 0.0001 
10% hold-out 1.4505 1.0743 5.9116 -0.2886 0.7983 0.0425 1.7436 1.2516 6.8000 -0.1058 0.7086 0.0001 
15% hold-out 1.4230 1.0486 5.7510 0.0300 0.8059 0.0203 1.7557 1.2420 6.6808 0.3204 0.7045 0.0003 
20% hold-out 1.4111 1.0385 5.6980 0.0284 0.8091 0.0223 1.7175 1.2236 6.5859 0.1455 0.7172 0.0004 
25% hold-out 1.4160 1.0518 5.8083 0.0769 0.8078 0.0501 1.7884 1.2529 6.6706 0.2386 0.6934 0.0001 
30% hold-out 1.4140 1.0464 5.7749 0.0882 0.8083 0.0471 1.7381 1.2440 6.9074 0.1835 0.7104 0.0013 
50% hold-out 1.4298 1.0390 5.7370 0.2583 0.8040 0.0084 1.7611 1.2360 6.7541 0.3037 0.7026 0.0000 
3-fold cross-
validation 

1.4078 1.0382 5.7106 -0.0608 0.8100 0.0177 1.8034 1.2523 6.6512 -0.0186 0.6882 0.0000 

5-fold cross-
validation 

1.4091 1.0420 5.7308 -0.0830 0.8097 0.0253 1.7330 1.2285 6.5700 0.0157 0.7121 0.0005 

10-fold cross-
validation 

1.4104 1.0451 5.7493 -0.0798 0.8093 0.0325 1.7415 1.2326 6.5861 0.0058 0.7092 0.0001 

mean 1.4168 1.0455 5.7543 -0.0050 0.8076 0.0289 1.7495 1.2386 6.6772 0.1168 0.7065 0.0003 
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Table 5 
Performance of the 3-cluster regime-lasso generated from the article dataset. The KS-test exhibits the p-value of the Kolmogorov-Smirnov test, in 
which the null refers to the standardized residual's normality. The abbreviations are root mean square error (RMSE), mean absolute error (MAE), 
average absolute error (AAE), average bias error (ABE), and R-squared (R2). 

 Case 5 (Property) Case 6 (Ratio) 
Evaluation RMSE MAE AAE(%) ABE(%) R2 KS-test RMSE MAE AAE(%) ABE(%) R2 KS-test 
Full - sample 1.3712 1.0088 5.4867 -0.0088 0.8197 0.0334 1.6814 1.1907 6.3576 0.0295 0.7290 0.0001 
10% hold-out 1.4063 1.0350 5.6168 -0.0384 0.8104 0.0201 1.7396 1.2150 6.7912 0.3482 0.7099 0.0003 
15% hold-out 1.3973 1.0232 5.5559 0.2037 0.8128 0.0179 1.8017 1.2707 6.8206 -0.0570 0.6888 0.0002 
20% hold-out 1.3826 1.0188 5.5775 0.0643 0.8167 0.0255 1.7131 1.2086 6.4774 0.1854 0.7187 0.0001 
25% hold-out 1.4096 1.0354 5.6139 -0.0671 0.8095 0.0198 1.7221 1.2208 6.5746 -0.0760 0.7157 0.0002 
30% hold-out 1.3972 1.0337 5.6446 0.0851 0.8128 0.0410 1.7062 1.2103 6.4882 0.2555 0.7209 0.0006 
50% hold-out 1.4010 1.0222 5.5858 0.2670 0.8118 0.0296 1.7618 1.2355 6.5732 -0.3089 0.7024 0.0001 
3-fold cross-
validation 

1.3910 1.0224 5.5676 -0.0905 0.8145 0.0257 1.7425 1.2227 6.5104 0.0392 0.7089 0.0000 

5-fold cross-
validation 

1.3831 1.0204 5.5523 -0.0547 0.8166 0.0335 1.7179 1.2101 6.4293 -0.0257 0.7171 0.0002 

10-fold cross-
validation 

1.3935 1.0293 5.5846 -0.0603 0.8138 0.0348 1.7271 1.2233 6.5424 -0.0672 0.7140 0.0005 

mean 1.3933 1.0249 5.5786 0.0300 0.8139 0.0281 1.7313 1.2208 6.5565 0.0323 0.7125 0.0002 
 
 
Table 6 
Regime-lasso's coefficient with federated averaging on the 5-fold cross-
validation 

 Regime 11 Regime 22 Regime 33 
Intercept 17.8847 12.5947 -12.1354 
FC 0.0000 0.0998 0.2956 
VM 0.0000 0.0000 0.0000 
ASH -0.0181 -0.0679 0.0000 
FC*VM 0.0000 0.0001 0.0055 
FC*ASH -0.0018 0.0001 0.0028 
VM*ASH -0.0019 0.0000 0.0099 
(FC)2 0.0017 0.0027 0.0018 
(VM)2 0.0002 0.0000 0.0000 
(ASH)2 0.0000 -0.0004 -0.0011 
1 Sample size = 747 
2 Sample size = 14 
3 Sample size = 40 
 
Figure 5 indicates the positive effects of FC on HHV, while 

ASH contributed to the adverse effects. VM tiny advocates for 
HHV via the interaction term on ASH. Xing et al. (2019) 
conducted the sensitivity analysis via Monte-Carlo simulations 
and reported ASH’s maximum, VM’s medium, and FC’s 

minimum effects on HHV. Their time-consuming investigations 
disagreed with those of Samadi et al. (2021) and this study. The 
interpretable regime-lasso model is superior to their Monte-
Carlo as the regime-lasso provides sensitivity analyses in all 
regimes without additional cost. The clusters’ distinct thermal 
sensitivities also insist on the regime-lasso concept's necessity. 
The regime’s thermal properties are a source of performance 
inconsistency. The HHV model should be trained through them, 
and not via geographical (Chun-Yang Yin, 2011) or materials 
(Parikh et al. 2005). 

4.3 Performance comparison 

This section discusses the regime-lasso’s in-sample and 
literature models’ out-of-sample performance. Subsection (a) 
allocated ten literature datasets to train the regime-lasso and 
compared its accuracy with that of the 12 earlier studies 
mentioned previously; and (b) implemented the earlier studies’ 
models to the article set and measured the accuracy. The case 
of the regime-lasso’s out-of-sample performance has been 
explored later in the next section. 

 
 

 
 

 

Fig. 5 The plots of the regime-lasso coefficients when implementing the article dataset as the training set. Set {FC, VM, ASH, HHV} classified three 
clusters based on the correlation distance metric; fixed carbon (FC), volatile matter (VM), ash (ASH), and higher heating value (HHV). 
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a) Literature dataset 

The regime-lasso’s accuracy with property features was 
compared with those of the models from literature using their 
original training sets. The regime-lasso was retrained on these 
datasets prior to the comparison. Table 7 expresses the 
comparison results based on RMSE, MAE, AAE, ABE, R2, and 
KS-test via a complete sample substitution approach. As the 
literature did not report all these indicators, this study computes 
the missing indicators based on the literature model and its 
dataset. 

The models in Table 7 are classified into two groups. The 
first group comprises the wide-range models: IV.A, IV.B, VI, VII, 
and VIII. The remaining are the specific material HHV models. 
Among the wide-range models, model IV.B provided lowest 
RMSE (0.6885) and MAE (0.5918), while model IV.A provided 
the lowest AAE (3.24%) and ABE (0.3724%). Their accuracies 
were inferior to that of the regime-lasso’s, which generated 
RMSE of 0.4430, MAE of 0.2743, AAE  of 1.5122%, and ABE of 
–0.0038% in dataset IV. The regime-lasso also outperformed the 
remaining wide-range models, VI and VIII. The accuracy 
indicators of the regime-lasso were as follows: 0.9050 RMSE, 
0.6867 MAE, 3.7862% AAE, and 0.0003% ABE; whereas, the 
highest values of these accuracy indicators of models VI and 
VIII were as follows: 0.9410 RMSE, 0.8623 MAE, 3.8000% AAE, 
and 0.8000% ABE. The regime-lasso generated a higher 
accuracy than did all the wide-range models. The study 
excluded model VII from the comparison because its original 
training set was not revealed. 

The specific materials of the models in Table 7 are biochar 
(I), poultry waste (II), torrefied biomass (III), non-woody 
biomass & torrefaction char (V), geographical material (IX), 
solid fuel (X), and lignocellulosic & carbonaceous (XI). The 
regime-lasso generated (i) 0.3527, 0.0242, 0.1080, 0.3064, 
0.1893, 0.1059, and 0.0837 lower RMSE; (ii) 0.2639, 0.0425, 
0.0467, 0.2744, 0.1611, 0.1004, and 0.0975 lower MAE; (iii) 
1.4030%, 0.0833%, 0.2229%, 1.1829%, 0.8665%, 0.8320%, and 
0.4989% lower AAE; and (iv) a 0.0756%, 0.3223%, 0.5871%, 
0.5166%, 0.6624%, 1.8246%, and 0.0023% lower ABE in 
datasets I, II, III, V, IX, X, and XI, respectively. The highest R2 
of the specific range model was 0.9875, while that of regime-
lasso was 0.9897. Thus, the interpretable regime-lasso, 
constructed as a wide-range HHV model, can replace the earlier 
specific range models, with superior accuracy.  

b) Dataset from the current study 

Table 8 presents the accuracy comparisons between the 
regime-lasso and literature models executed on the article 
dataset. The performance of the earlier models on this study’s 
dataset represented their out-of-sample performance. The 
decreases in accuracy confirmed the necessity and importance 
of the regime-lasso. Table 8’s highest accuracy model was 
model VI, while that in Table 7 is XI. Model XI had a 1.2616, 
0.9277, 5.5020%, and 3.9210% increase in RMSE, MAE, AAE, 
and ABE, respectively, implying performance inconsistency. 
This issue was more pronounces in model I (biochar). The 
increases in AAE and ABE were 26.7204% and 25.5261% higher 
than the values computed in their original training set. These 
inaccuracies emerge from the improper model implementation 
of wide-range data. The accuracy declined even in the wide-
range models. The dataset allocation increased in model IV.B’s 
RMSE, MAE, AAE, and ABE by 0.8728, 0.5302, 2.6573%, and 
0.4098%, respectively. As model IV.B could not maintain its 
accuracy ranking, the first definition of performance 
consistency is not held. The accuracy measurements with 

equations (9)–(13) cannot infer the model’s consistent 
performance. 
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Accuracy comparison of the three-regime-lasso and literature models 
perform on the article dataset without retraining the models. {FC, VM, 
ASH} is the regime-lasso's feature set. The correlation distance metric 
divides the literature dataset into the regimes through {FC, VM, ASH, 
HHV}. The KS-test exhibits the p-value of the Kolmogorov-Smirnov test, 
in which the null refers to the standardized residual's normality. The 
abbreviations are root mean square error (RMSE), mean absolute error 
(MAE), average absolute error (AAE), average bias error (ABE), R-
squared (R2), and regime-lasso (RGL). 

Model RMSE MAE AAE(%) ABE(%) R2 KS-
test 

RGL 1.3933 1.0249 5.5786 0.0300 0.8139 0.0281 
I 3.9907 3.0995 29.3104 25.6061 -0.5268 0.0003 
II 3.4914 2.6303 13.3436 -7.4008 -0.1687 0.0001 
III 2.4219 2.0265 9.9970 -8.5861 0.4377 0.0003 
IV.A 1.6117 1.1582 6.2923 -0.4039 0.7510 0.0019 
IV.B 1.5613 1.1220 6.1273 -0.0751 0.7663 0.0051 
V 1.8625 1.3646 7.1895 -4.0763 0.6674 0.0025 
VI 1.5901 1.1634 6.6294 3.0763 0.7576 0.0013 
VII 2.6285 1.6537 22.7209 8.2613 0.3376 0.0000 
VIII 4.7162 1.8411 10.5754 3.2241 -1.1324 0.0000 
IX 2.2190 1.4495 7.7010 -1.0488 0.5280 0.0000 
X 1.6853 1.2236 6.9828 2.4101 0.7277 0.0003 
XI 1.8202 1.3512 7.0430 -3.9280 0.6824 0.0004 

 
 
The regime-lasso expectedly provided the highest accuracy 

in this study’s dataset, which was its original training set. The 
regime-lasso statistically generated the residuals' normal 
distribution in this study’s dataset, with a p-value of 0.0281. The 
results indicated that if the regime-lasso is retrained, it can 
outperform all models in all datasets listed in Table 1. The 
superior in-sample accuracy of regime-lasso cannot infer the 
unique minimum unbiased estimator (UMVUE), because the 
lasso sacrificed some biasness for robustness and 
interpretability. In this study, as focused on the consistency and 
interpretability of the model, the UMVUE property of an HHV 
model has to be further researched. 

4.4 The performance consistency 

The comparison of performance with the models from earlier 
studies presented in Tables 7 and 8 indicates the performance 
consistency of the regime-lasso model on definition 1. In the 
case of the in-sample performance, the regime-lasso provided 
higher accuracy than those in the literature, regardless of the 
training data. Therefore, the regime-lasso model provides 
consistent performance in ranking over the different datasets. 
To the best of our knowledge, this is the first document 
demonstrated that the model maintained accuracy ranking 
among the experimental datasets. On the contrary, the increase 
in the earlier models' RMSE, MAE, AAE, and ABE in Table 8 
exhibited inconsistent performance. The R2s were –0.5268, –
0.1687, and –1.1325 in models I, II, and XIII, respectively, 
inferring unsuitable implementation of the specific range 
material to the wide-range data. 

Figure 6 and Table 9 report definition 2’s conformability in 
the case of model retraining, Section 3.3’s case A. The figure 
exhibits the error distributions of the regime-lasso model 
generated from 11 datasets. These residuals had a non-normal 
distribution with an approximate zero median. Nonparametric 
ANOVA played an important role in examining the distribution 
equivalence. A 0.9943 p-value of the Kruskal–Wallis H-test was 
reported in Table 9, which confirms the indifference of these 
distributions at α = 0.05. The regime-lasso model statistically 
guaranteed the in-sample performance and supported definition 
2’s conformability in the experimental datasets, regardless of 
the material range. 

 
Fig. 6 Box plot presenting the error distributions equivalence of the 
regime-lasso in the case of model retraining 

 
Table 9 
Kruskal–Wallis H-test of the regime-lasso’s error distributions in the 
case of model retraining 

Source SS. d.f. MS Chi-square p-value 
Treatments  717,896.20  10   71,790  2.23   0.9943  
Error  632,523,325.8  1,955   323,541   
Total  633,241,222.0   1,965     

 
The experiment in Table 7 and test in Table 9 represent 

cases of retraining. The regime-lasso model generated 
consistent accuracy in the literature datasets, supporting the 
retraining recommendation of Kijkarncharoensin and Innet 
(2022a). The normality test in Table 7 insists on the in-sample 
distribution invariability of the proposed models. Xing et al. 
(2019) reported the superiority of the ultimate-based ML models 
over the proximate-based with a 2.395 RMSE and 0.651 MAE 
on their wide-range training set. The literature’s OLSs had a 
2.00–6.17% AAE, while the MLs provided a 0.375–1.3006 RMSE 
and 2.64%–5.00% AAE. The results showed that: (i) the regime-
lasso generated a 0.4430–0.9050 RMSE, 0.2743–0.6867 MAE, 
and 1.512%–4.5894% AAE on the wide-range datasets (IV, VI, 
and VIII); and (ii) a consistent performance at 𝛼𝛼 = 0.05. 
Therefore, it could be suggested that a proximate-based model 
can provide more accurate and consistent results than do the 
ultimate-based models.  

Figure 7 and Table 10 exhibit error distribution if 
implementing Table 6 without retraining, Section 3.3’s case B. 
The regime-lasso can maintain its accuracy on 6 out of 11 
datasets at a 0.0128 p-value or 𝛼𝛼 = 0.01. The experiment 
statistically confirmed the regime-lasso’s out-of-sample 
performance on the datasets I (biochar), IX (geographical 
materials), X (solid fuels), and wide-range datasets (VI, VIII, this 
study). 

The model could not maintain the error distribution on the 
other five datasets for two reasons. First, dataset III was the 
torrefied biomass, while the article dataset was an ordinary 
material. The HHV of the former was higher than that of the 
latter (Nhuchhen and Afzal 2017). Second, the other datasets 
had a small sample size. Table 1 reports the 12–37 samples in 
datasets II, IV, V, and XI. Figures S1-S5 in the supplementary 
material present the scatter plot comparison of these five 
datasets with the present study’s dataset. As the regime-lasso 
preserved its accuracy in more than 50% of the datasets 
involved in the experiment, we believe that the model is 
practical to implement in data-poor regions, such as Thailand, 
which lack native datasets to retrain the model. 

I II III IV V VI
VIII IX X XI

This study
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Fig. 7 Box plot presents the error distribution equivalence of regime-
lasso model without retraining 

 
Table 10 
Kruskal–Wallis H-test of the regime-lasso’s error distributions without 
retraining 

Source SS. d.f. MS Chi-square p-value 
Treatments 3,167,690  5  633,538.0  14.49  0.0128  
Error 350,470,000  1,613  217,278.5    
Total 353,638,000  1,618      

 

5. Conclusion 

The regime-lasso’s prediction values were statistically 
interpretable, unbiased, and consistent across a wide-range of 
data. Its in-sample accuracies were 0.4430–0.9050 RMSE, 
0.2743–0.6867 MAE, and 1.512%–4.5894% AAE in wide-range 
literature datasets and 1.3831 RMSE, 1.0204 MAE, 5.5523% 
AAE, and –0.0547% ABE in our dataset. The unbiasedness was 
obtained from the 𝜷𝜷 coefficients’ FedAvg aggregation through 
the 5-fold bootstrap sampling. The error distribution from the 
KS-test’s 0.0281 p-values and central limit theorem confirmed 
the model’s unbiasedness. Its consistency was statistically 
achieved with 0.9943 and 0.0128 Kruskal–Wallis test’s p-values 
for in and out-of-sample data points, respectively. When 
retraining, the model maintained the highest accuracy and 
preserved the error distributions in all datasets. The definitions 
of performance and consistency were maintained. 

This article successfully proves that the data cluster's 
distinct thermal properties render the linear model’s 
performance inconsistent with the wide-range data. The 
interpretability of the model indicated different sensitivities 
between HHV and {FC, AV, ASH} regimes. Of note, training the 
model through the regimes advocates the prediction accuracy 
of the entire dataset. The sensitivity analysis through the 
regime-lasso coefficients provides the following interpretations: 

1. Increasing FC had the maximum positive impact on the 2nd 
and 3rd regimes, but slightly on the 1st through the FC-
square. 

2. Increasing ASH had a medium negative effect on the 1st and 
2nd regimes, but none on the 3rd; while the interactions 
between ASH and others had minor positive effects on the 
3rd regime’s HHV. 

3. Increasing VM had a neutral effect in all regimes; however, 
interactions with the FC and ASH had a minor positive 
impact on the 3rd regime. 

The article presents three significant contributions. First is 
the consistent and unbiased proximate-based HHV model. 
Second is the definition of consistent performance with the 
capability of statistical testing. Third is the proof of the source 
of inconsistency that rendered linear models unsuitable for a 
wide range of applications. The increase in the prediction power 
of the HHV models promotes the practical application of 
biomass. Further, it encourages the use of sustainable energy, 
reducing greenhouse gas emissions, and mitigating the climate 
change crisis. The article assumed that the earlier studied were 
the most accurate model in its dataset. If this assumption is 
violated, the proof of definition 1 might be completed with other 
approaches. Further research should study the different factors 
that affect performance consistency. This study clustered and 
labelled the data into three regimes; however, the implications 
of these regimes must be investigated further. 
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