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Abstract. The paper presents the effects of blend injection and dual injection strategies on mixture formation and combustion of syngas-biogas-
hydrogen fueling engine working in the solar-biomass hybrid renewable energy system. The research was performed by simulation method on a 
retrofitted Honda GX200 spark-ignition engine. The results show that at the end of the compression process, in the case of blend injection of 50% 
syngas-50% biogas, the fuel-rich zone was positioned on the top of the combustion chamber, whereas in the case of dual injection, this zone was 
found on the top of the piston. In the case of 50% syngas-50% hydrogen supplied, at the end of the compression process, the fuel-rich area observed 
on the top of the piston with slightly deflected towards the inlet port in both cases of blend and dual injection. When shifting from blend injection 
mode to dual injection mode, in the case of 50% syngas-50% biogas fueling engine, the mean temperature of the exhaust gas decreased from 1208 K 
to 1161 K and the NOx concentration decreased from 1919 ppm to 1288 ppm. In the case of a 50% syngas-50% hydrogen fueling engine, the mean 
exhaust gas temperature decreases from 1283 K to 1187 K leading to a decrease in NOx concentration from 3268 ppm to 2231 ppm. The dual injection 
has the advantage of lower NOx emission, whereas the blend injection has the advantage of higher efficiency.  
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1. Introduction 

With the aim of limiting the increase in atmospheric 
temperature below 2°C compared to the pre-industrial levels 
under the commitment of the 2015 Paris Agreement, the annual 
global CO2 emission ought to be reduced to Zero or Net 
Negative by the middle of the 21st Century (Bakır et al., 2022; 
Malla et al., 2022; Masson-Delmotte et al., 2018). As reported, 
internal combustion engine-based transportation means are 
found to be the main source of emitting toxic emissions 
including NOx, CO, HC, PM, and soot into the environment, 
which could be clearly seen during the lockdown period in 
Covid19 pandemic (Al-Tawaha et al., 2019; Balasubramanian et 
al., 2020; Huynh et al., 2021; Ölçer et al., 2020), resulting in the 
environmental pollution and climate change (Atarod et al., 2020; 
Sandro et al., 2021; Vinayagam et al., 2021). Therefore, in recent 
years, there have been a large number of studies focusing on 
improving the combustion characteristics of internal 
combustion engine by using biofuels such as bioethanol, 
butanol, biodiesel, bio-oil, furan-based biofuel, ether, ammoniac, 
and others (Le et al., 2021; Nguyen et al., 2020; Hoang and 
Pham, 2021; Tabatabaei et al., 2021; Tran et al., 2022; Veza et al., 
2022b, 2022c, 2021); using additives/nano-additives/bio-
additives (Ağbulut et al., 2022; Hoang, 2021; Lawrence et al., 
2022; Nachippan et al., 2022; S. K. Nayak et al., 2021; Rajamohan 
et al., 2022; Vali et al., 2022), transferring internal combustion 
engine to the electric/hybrid propulsion (Bui et al., 2021b; Pham 
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and Hoang, 2019; H. P. Nguyen et al., 2020, 2021; Subramanian 
et al., 2021), application of advanced injection strategies 
(Hoang, 2020a; Khandal et al., 2017), or application of low-
temperature combustion mode (Elumalai et al., 2022; Ganesan 
et al., 2022) aiming to minimize the above-mentioned toxic 
emissions. Indeed, developing a strategy to achieve the goal of 
Net Zero emissions is becoming more and more imperative for 
countries around the world (Escalante et al., 2022; Lee et al., 
2022; X. P. Nguyen et al., 2021a; Rogelj et al., 2021; Said et al., 
2022; Sharma et al., 2022c, 2022b).  

As reported in the literature, using renewable energy is 
considered a sagacious approach to attain a Net Zero strategy 
(Chen et al., 2021a; Foley et al., 2022; Vakili et al., 2022), in which 
solar, wind, tidal, hydropower, biomass are known as available 
and cheap renewable energy sources (Chen et al., 2021b; Nižetić 
et al., 2021; Pandey et al., 2022; Wang et al., 2022). Moreover, 
to reach net zero emissions, countries need to stop applying 
coal projects and developing renewable power plants. Indeed, 
Vietnam is a tropical country where solar power, wind power, 
and biomass are abundant (Huang et al., 2022; X. P. Nguyen et 
al., 2021b). However, the main disadvantage of renewable 
energy power plants is unstable, the generation capacity 
randomly changes according to climate and weather conditions. 
Therefore, to ensure the stability of the renewable energy 
system, it is necessary to coordinate the use of different 
renewable energy sources, called hybrid renewable energy 
systems (HRES) (Chandrasekaran et al., 2021; Xuan et al., 2021). 
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Fig. 1 presents a hybrid renewable energy system that combines 
solar energy and biomass energy. The working principle of a 
solar-biomass HRES is as follows: the hard degradable solid 
wastes in rural areas are processed into fuel pellets RDF and 
then transformed into syngas through a gasification process 
while degradable organic wastes are used to produce biogas 
(Atabani et al., 2022; Forruque et al., 2022; Goldfarb et al., 2022; 
Petar et al., 2022). When the capacity of solar power is higher 
than the load capacity, the excess power is used to produce 
hydrogen through the electrolysis system (Imanuella et al., 
2022). Syngas, biogas, and hydrogen are stored together in 
gaseous fuel storage bags. When the required load is greater 
than the capacity of the solar system, the generator powered by 
the gas engine provides supplementary energy (Bui et al., 2022). 
Due to the random conditions of gas fuel production, the 
compositions of the biogas-syngas-hydrogen mixture vary in a 
large range. Therefore, the fuel supply system for the engines 
working in HRES must also be flexibly adjusted to improve 
combustion efficiency and reduce pollutant emissions. 

The air-to-fuel ratio (Vair/Vfuel) of syngas is much lower than 
that of conventional fuels (Rakopoulos and Michos, 2008). This 
is a huge engineering challenge for the engine's fuel supply 
system. A low Vair/Vfuel value leads to prolonging injection time, 
which means that the fuel supplied to a cycle is not fully drawn 
into the cylinder at the end of the intake stroke. This makes it 
impossible for the engine’s equivalence ratio to reach the 
stoichiometric value, especially for high-speed engines. On the 
other hand, fuel accumulated on the intake manifold during the 
previous cycle makes losing control of the mixture equivalence 
ratio in subsequent cycles and creates the backfire 
phenomenon. Therefore, with a low Vair/Vfuel ratio of fuel, the 
mixing device must not only be able to create a homogeneous 
fuel-air mixture but also ensure that all fuel supplied to the cycle 
is sucked into the cylinder at the end of the intake stroke. 

In the syngas-biogas-hydrogen fuel, the hydrogen 
component plays a significant role in mixture formation and 
combustion. The problems related to hydrogen need to be 
concerned such as early combustion, backfire high combustion 
temperature, high-pressure rise, and increase in NOx 
concentration (Heffel, 2003; Hoang and Pham, 2020; Ma et al., 

2007). Many studies on fuel supply systems for spark-ignition 
(SI) engines using gaseous fuels have been reported about the 
addition of a hydrogen injector on the intake manifold to 
improve the performance of the gasoline SI engine 
(Banapurmath et al., 2011; Fiore et al., 2020; Ji and Wang, 2011; 
Konde and Yarasu, 2014; Le et al., 2020). Adjusting injection 
time to reduce the amount of hydrogen residual on the intake 
manifold can limit the backfire (Duan et al., 2014; Liu et al., 2008; 
Subramanian and Salvi, 2016). For SI engines, directly injecting 
hydrogen into the combustion chamber improves engine 
efficiency and reduces pollutant emissions (Fiore et al., 2020; 
Hagos et al., 2016). Apart from adding hydrogen to the lean fuel 
mixture, many authors have also studied the addition of HHO 
(a mixture of 2/3 hydrogen and 1/3 oxygen) into lean mixtures 
to improve combustion (Bui et al., 2021c). Similar to hydrogen, 
HHO is very flammable, so the backfire effect on the intake 
manifold needs to be taken care of. Bui et al. (Bui et al., 2021a) 
have developed a special mixer to handle this problem. The 
simulation study on biogas-HHO injection was presented in a 
study by Bui et al. (Bui et al., 2020). The research results allow 
to establish a suitable biogas-HHO injection scheme.  

However, to our best knowledge, the publication found in 
the literature mostly focused on sizing the HRES (Çetinbaş et al., 
2019; Hassane et al., 2022; Oladeji et al., 2021)The research on 
engines fueled with renewable gaseous fuel engines focussed 
mainly on a given fuel or a blend with given fuel compositions. 
In a solar-biomass HRES, the engine is fueled by a flexible blend 
with a large variety of compositions. The engine can run on 
syngas, biogas, hydrogen, or a mixture containing two or three 
of these fuel components. Due to a significant difference in the 
Vair/Vfuel ratio of syngas from the other fuels, there is a huge 
technical challenge in designing the fuel supply system of the 
engine fueled by syngas-biogas-hydrogen. For bridging the gap, 
this work focused on the comparative study of blend injection 
and dual injection of two couples of fuels: syngas-biogas and 
syngas-hydrogen. Effects of injection configuration on mixture 
formation and combustion were analyzed by simulation 
method. The results help to orient future experimental research 
to develop an appropriate fuel supply system for the engine 
operating in solar-biomass HRES.

 

 

 

 
Fig. 1: Diagram of a solar-biomass hybrid renewable energy system 
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Table 1 
Tested fuel compositions 

Fuel Compositions (mol/mol) M 
(g/mol) 

mair/mfuel 
(g/g) 

Vair/ Vfuel 
(l/l) 

CH4 H2 CO CO2 N2 

Biogas (B) 0.7 0 0 0.3 0 24.40 7.98 6.71 

Syngas (S) 0.05 0.18 0.20 0.12 0.45 24.64 1.64 1.39 

Hydrogen (H) 0 1 0 0 0 2 34.78 2.4 

Blend1 (50S-50H) 0.025 0.59 0.1 0.06 0.225 13.32 4.13 1.9 

Blend2 (50S-50B) 0.375 0.09 0.1 0.21 0.225 24.52 4.79 4.05 

LHV (MJ/Nm3)  33,906 10,246 12,035 - -    

 
 
 

 

Fig. 2 Computational space meshing and injector positions setting 

 
 

2. Material and method  

2.1 Engine and Fuels 

This study was conducted on the syngas-biogas-hydrogen 
engine converted from the Honda GX200 gasoline engine. The 
engine has a cylinder diameter of 68mm, piston stroke of 54mm, 
and compression ratio of 8.5. Originally, it is fueled with gasoline 
by a traditional carburetor and produced a capacity of 4.8 kW 
at a speed of 3600 rpm. The main characteristics of biogas, 
syngas, hydrogen and fuel mixtures used in the study are shown 
in Table 1. 

 

2.2 Model establishment 

The simulation was performed based on Ansys Fluent 
2021R1 software. Computational space includes the combustion 
chamber, cylinder, and intake manifold as shown in Fig. 2. The 
dynamic meshing was applied for the cylinder volume due to its 
deformation with crankshaft rotation angle. The system of 
convection-diffusion equations was closed by the k- turbulence 
model. The thermodynamic parameters of the mixtures were 
calculated through the Partially Premixed Combustion model. 
At the entrance of the intake manifold, there is only air, thus the 
mixture fraction f = 0. The gauge pressure and the temperature 
of the air at the entrance are 0 bar and 310 K, respectively. At 
the nozzle inlet, there is only fuel, thus f = 1. The gauge pressure 
and the temperature of fuel at the nozzle inlet are 1 bar and 

320 K, respectively. The local equivalence ratio of the mixture 
could be calculated in terms of fuel composition and oxygen 
composition, or through the mixture fraction f. Different 
injection system configurations were studied (Fig. 2). In this 
work, only injector 1 (nozzle diameter dj=4mm) and injector 2 
(nozzle diameter dj=6mm) were considered. Syngas, biogas, 
and hydrogen can be injected separately through these different 
nozzles (case of dual injection) or they can be mixed and then 
injected through a common nozzle (case of blend injection). The 
detail of model establishment was presented by (Bui et al., 2022). 

3. Results and discussion 

3.1 Comparison between blend injection and dual injection of syngas-
biogas 

Fig. 3a shows the contour lines of CH4, CO, and HC 
concentration, as well as the equivalence ratio at the positions 
of 20CA, 200CA, and 330CA, respectively, in the case of 
blend injection of the Blend2 (50% syngas-50% biogas) through 
the injectors 1 and 2. The engine operates at a speed of 
3000 rpm. The concentration of CH4 is mainly present in biogas, 
and the component CO is mainly present in syngas. The results 
in Fig. 3a show that during the compression and before the 
combustion takes place, the distribution of individual 
components of CH4 and CO, as well as the distribution of the 
total fuel composition HC in the cylinder, are similar. The zone 
of high fuel concentration is concentrated towards the cylinder 

Injector 1
dj=4mm

Injector 2
dj=6mm
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wall opposite the inlet port. At the end of the compression 
process, the local equivalence ratio in the combustion chamber 
varies from 0.9 to 1.12 with a fuel-rich zone located on the top 
of the combustion chamber. 

Fig. 3b shows the variation of the mass flow rate of air (Qair), 
the mass flow rate of fuel (Qfuel), and the biogas/syngas ratio 
according to the crankshaft angle  when the engine was fueled 
with syngas at speed of n = 3000 rpm. When fuel injection is 
started at 10CA, the locally increased pressure pushes some air 
out of the intake manifold, thus, negative intake airflow is 
observed. But soon later the airflow increases due to the 
vacuum in the cylinder created by the piston going down. The 
biogas/syngas ratio is at a stable value of 100%. Fig. 3c shows 
that when the blend is introduced into the cylinder, the oxygen 
concentration decreases, thus the equivalence ratio increases 
very strongly to the maximum value of  =2.02 and then 
gradually decreases to a stable value.  

Fig. 4a shows the contour lines of CH4, CO, and HC 
concentration, as well as the equivalence ratio  at 20CA, 
200CA, and 330CA, respectively, in case of dual injection of 
syngas and biogas. Syngas is injected through the injector of 
6mm nozzle diameter with an injection duration of 36CA. 
Biogas is injected through the injector of 4mm nozzle diameter 
with an injection duration of 100CA. Unlike the case of blend 

injection, in the case of dual injection, CH4 (representing biogas) 
and CO (representing syngas) are distributed differently in the 
cylinder. The rich CH4 content zone is concentrated near the 
inlet port, while the high CO concentration zone is composed of 
two areas, one area on the top of the piston and the other 
moving towards the exhaust port. At the end of the compression 
stroke, the high CH4 zone is concentrated in the center of the 
piston top, and the CO-rich area is located on the piston half 
towards the inlet port. 
As can be seen from the chart of Fig. 4b, the curve of the 
biogas/syngas ratio fluctuates strongly during the intake 
process in the case of dual injection. This is because biogas and 
syngas are injected into the intake manifold through two 
separate nozzles, so they do not enter the cylinder at the same 
time. The biogas/syngas ratio is high when the syngas 
composition is low, producing peaks. In the case of blend 
injection, the mixture of syngas and biogas goes into the 
cylinder at the same time, so the ratio of biogas/syngas is 
determined from the beginning. The curve of the biogas/syngas 
ratio reached a stable value of 100%, equivalent to the Blend2 
fuel mixture (50% syngas and 50% biogas), during the 
compression process. Along with this injection condition, the 
equivalence ratio of the mixture reaches a stoichiometric value 
(Fig. 4c).

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3 Mixture formation when injecting the Blend2 through injector 1 and injector 2: (a). Contour lines of CH4, CO, HC concentration, and f at 20CA, 
200CA, and 330CA, respectively; (b). Variation of the mass flow rate of air, fuel, and biogas/syngas ratio with crankshaft angle; (c). Variation of O2, 
HC concentrations, and  with crankshaft angle 
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(a) 

 
(b) 

 
(c) 

Fig. 4 Mixture formation with the dual injection of biogas through injector 1 and syngas through injector 2: (a). Contour lines of CH4, CO, HC 
concentration, and f at 20CA, 200CA, and 330CA, respectively; (b). Variation of the mass flow rate of air, fuel, and biogas/syngas ratio with 
crankshaft angle; (c). Variation of O2, HC concentrations, and  with crankshaft angle 

 

 
Fig. 5 Contours lines of temperature and NOx concentration at 370CA in the case of blend injection (a) and dual injection (b) with syngas-biogas 
through the injector 1 and the injector 2 (50% syngas, 50% biogas, n=3000rpm) 
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Fig. 5a and Fig. 5b compare the temperature contours and the 
NOx concentration contours on the axisymmetric plan of the 
combustion chamber at 35CA after ignition in the case of blend 
injection and dual injection of the Blend2. It can be seen that the 
zone of high combustion temperature is located around the area 
of approximately 1. As shown in Fig. 3a and Fig. 4a, the 
mixture in the combustion chamber right at the moment of 
ignition in the case of dual injection is less homogeneous than 
that in the case of blend injection, therefore the average 
combustion temperature of the first case is lower than that of 
the second case (Veza et al., 2022a). Due to the NOx formation 
being strongly affected by the temperature, the zone of high 
NOx concentration is found in the same region of high 
temperature (Aykut et al., 2021; Cao et al., 2020; Hoang, 2020b). 
In the case of dual injection, the flame front tends to move 
towards the zone of the rich mixture. The maximum combustion 
temperature in the case of dual injection is lower than that in the 
case of blend injection, hence the maximum concentration of 
NOx in the case of dual injection is also lower than that of blend 
injection (B. Nayak et al., 2021; Sharma et al., 2022a). 

Fig. 6. compares the variation of pressure (Fig. 6a), and, 
temperature (Fig. 6b), and NOx concentration (Fig. 6c) 
according to crankshaft angle in the case of blend injection with 
the Blend2 and dual injection with 50% syngas and 50% biogas. 
As seen from these figures, the in-cylinder pressure slightly 
decreases when shifting from blend injection mode to dual 
injection mode, resulting in a decrease in indicative engine work 
cycle from 175 J/cyc to 168 J/cyc, i.e. a reduction of engine 
power of 4%. The mean exhaust gas temperature decreased 
from 1208 K to 1161 K when switching from blend injection to 
dual injection (Fig. 6b). The NOx concentration in the exhaust 
gas decreased from 1919 ppm to 1288 ppm when switching 
from the blend injection mode to dual injection mode (Fig. 6c), 
corresponding with the reduction of temperature in these two 
cases.  

3.2 Comparison between blend injection and dual injection of syngas-
hydrogen 

Identical to the case of syngas-biogas injection, in the case of 
syngas-hydrogen blend injection, there is no significant 
difference in the distribution of CO and H2 concentrations in the 
cylinder. At the end of the compression process, the fuel-rich 
area located on the top of the piston is slightly deflected towards 
the inlet port (Fig. 7a). The curve of the H2/syngas ratio is stable 
when the fuel mixture enters the cylinders because the fuels 
were mixed (Fig. 7b). With the injection duration of 130CA 
through an injector of 4mm nozzle diameter and 46CA through 
the injector of 6mm nozzle diameter, the stoichiometric air-fuel 
mixture was obtained (Fig. 7c). 

Fig. 8a shows the contour lines of H2, CO, and HC in the case 
of dual injection. Hydrogen was injected through the injector of 
a 4mm nozzle diameter and syngas was injected through a 6mm 
nozzle diameter. During the compression stroke, the 
distribution of hydrogen completely deviated from the cylinder 
wall towards the inlet port. This skewed distribution takes place 
towards the end of the compression. At the end of the 
compression process, the hydrogen concentration in the 
combustion chamber varies from a minimum of 19% to a 
maximum of 24% (Fig. 8a). Meanwhile, in the case of blend 
injection, the hydrogen concentration in the combustion 
chamber varies from 18% to 22% (Fig. 7a). Therefore, it can be 
concluded that in the case of syngas-hydrogen mixture 

supplied, the blend or dual-injection method does not affect the 
distribution of fuel concentration in the combustion chamber. In 
the case of dual injection, the hydrogen/syngas ratio fluctuates 
strongly during the intake stroke and then becomes stable 
during the compression stroke (Fig. 8b). With the injection 
duration of 77CA for both injectors, the stoichiometric mixture 
is obtained (Fig. 8c). 
 

 
 

 
(a) 

 

 
(b) 

 
(c) 

Fig. 6 Variation of pressure (a), temperature (b), and NOx concentration 
(c) in case of blend injection and dual injection with syngas-biogas 
through the injector 1 and the injector 2 (50% syngas, 50% biogas, 
n=3000rpm) 
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(a) 

 
(b) 

 
(c) 

Fig. 7 Mixture formation when injecting the Blend1 through injector 1 and injector 2: (a). Contour lines of CO, H2, and HC at 20CA, 200CA, and 
330CA, respectively; (b). Variation of the mass flow rate of air, fuel, and hydrogen/syngas ratio with crankshaft angle; (c). Variation of O2, HC 
concentrations, and  with crankshaft angle 

 
(a) 

 
(b) 

 
(c) 

Fig. 8 Mixture formation with a dual injection of hydrogen through injector 1 and syngas through injector 2: (a). Contour lines of CO, H2, and HC at 
20CA, 200CA, and 330CA, respectively; (b). Variation of the mass flow rate of air, fuel, and hydrogen/syngas ratio with crankshaft angle; (c). 
Variation of O2, HC concentrations, and  with crankshaft angle 
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(a) 

 
(b) 

Fig. 9 Variation of temperature (a) and NOx concentration (b) in case of 
blend injection and dual injection of syngas-hydrogen through injector 1 
and injector 2 (50% syngas, 50% hydrogen, n=3000rpm) 

 
In the same manner as the above case, when shifting from 

blend injection mode to dual injection mode of the Blend1, the 
average temperature of the exhaust gas decreases from 1283K 
to 1187 K (Fig. 9a) leading to a decrease in NOx concentration 
from 3268ppm to 2231 ppm (Fig. 9b). The combustion 
temperature of the syngas-hydrogen mixture is higher than that 
of the syngas-biogas mixture, so the NOx content in the exhaust 
gas of the syngas-hydrogen fueling engine is higher than that on 
syngas-biogas fueled engine. In both cases, NOx concentrations 
were reduced in the case of dual injection compared to blend 
injection. 
 

4. Conclusion 

From the obtained results, it could be concluded that, at the 
end of the compression process, in the case of blend injection of 
50% syngas-50% biogas, the fuel-rich zone is located on the top 
of the combustion chamber, whereas in the case of dual 
injection, the fuel-rich zone is positioned on the top of the piston 
with the equivalence ratio varies in the range from 0.9 to 1.12. 
In the case of 50% syngas-50% hydrogen fuel supplied, at the 
end of the compression process, the fuel-rich area concentrated 

on the top of the piston with slightly deflected towards the inlet 
port in both cases of blend and dual injections. The difference 
in hydrogen concentration in the combustion chamber is less 
than 5%.  

When shifting from blend injection mode to dual injection 
mode, in the case of a 50% syngas-50% biogas fueled engine, 
the average temperature of the exhaust gas decreased from 
1208 K to 1161 K and the NOx concentration decreased from 
1919 ppm to 1288 ppm with a reduction of 4% in engine power. 
In the case of a 50% syngas-50% hydrogen fueling engine, the 
average temperature of the exhaust gas decreases from 1283 K 
to 1187 K leading to a decrease in NOx concentration from 
3268 ppm to 2231 ppm. The simulation results show that a 
flexible adjusting fuel supply system is needed for the engine 
working in a solar-biomass hybrid renewable energy system. 
The difference in the distribution of fuel concentrations 
according to dual and blend injection strategies allows an 
appropriate design of the combustion chamber. The dual 
injection has the advantage of lower NOx emission, whereas 
blend injection has the advantage of higher efficiency. These 
observations orient the future experimental research of the 
engine. 
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