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Abstract. In recent years, power quality has become a major concern for electric network managers. Active filtering control schemes ensure improved 
power quality of the electric network and are able to maintain a desired voltage level at the point of connection, regardless of the current absorbed 
by nonlinear loads. Harmonics can cause vibrations, equipment distortion, losses and sweatiness in transformers. The main objective of this work is 
to enhance the quality of energy in a microgrid consisting of 100 kW photovoltaic (PV) system and a 50 kW battery storage connected to nonlinear 
and unbalanced loads. This paper proposes a the four-arm parallel active filter with a on Proportional-Integral (PI) controller to mitigate the harmonic 
problems in a microgrid. In addition, an algorithm has been designed to eliminate the neutral current. The identification function is one of the most 
particular approach for extracting harmonics, it involves providing a current reference imposed by the active filter in order to carry out the filtering 
operation. Both the performance and the quality of the current harmonic compensation's depend strongly on the strategy adopted for the generating 
the current reference. In this work, the instantaneous power strategy p-q is chosen outstanding the simplicity and effectiveness in implementation. 
The proposed control strategy has been tested under simulations and the results have shown good tracking of the references and a significant 
reduction in the Total Harmonic Distorsion (THD) level under highly unbalanced conditions of the nonlinear loads. The current THD is reduced from 
43.64 before filtering to 3.74% after the application of the four-arm filter, following the recommendations of IEEE-519 standard (THD less than 5%).  
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1. Introduction 

The terminology 'Total Harmonic Distortion' or 'THD' 
denotes the relative contribution of harmonics to the distortion 
of an ideal voltage or current waveform. Harmonics can cause 
a buzz, vibrations, losses, overheating in transformers, and even 
equipment malfunction. Every power quality problem has a 
different reason. Some of them are derived from the shared 
infrastructure. A network failure can cause, for example, a dip 
that harms some energy consumers connected to the network. 
The increase in the level of the defect consequently leads to a 
significant number of affected customers. A problem raised on 
the site of a customer produces a transient, which can 
subsequently affect other customers located in the same 
neighborhood. In addition, problems, such as harmonics, 
originating within the customer's facility, propagate through the 
network, and affect other customers. Hence, a combination of 
good design practices and proven mitigation equipment can 
solve harmonic problems.  

A tool providing an instantaneous analysis of the reactive 
and active power is required to filter harmonics. Earlier theories 
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developed in the 1940s served as the foundation for the 
concepts of apparent, reactive, and active powers among these 
is the p-q theory or the instantaneous active and reactive power 
theory (Akagi et al. 2017). The p-q theory can also provide 
compensation for harmonic currents into the electrical grid and 
simplifies the calculations for active and reactive powers. The 
p-q theory has been widely used in the literature (Dobrucký et 
al. 2022; Huaman et al. 2022 ; Boukadoum et al. 2022 ; Rath et 
al. 2022 ; Chennai et al. 2022 ; Benedicte et al. 2022 ; El Ghaly et 
al. 2022 ; Tsvetanov et al. 2022).  

Shunt active filters have been extensively used for the 
attenuation of harmonics. A comparison of simulation and 
realization results has been studied in (Rohouma et al. 2020; 
Raman et al. 2022; Albasri et al. 2022). The software used in the 
practical portion is based on the dSPACEScalexio simulation 
and is run on a 7.5 kVA test bench. At the Point of Common 
Coupling (PCC), the current's THD is reduced from 26.88% to 
2.99%. As a result of realization, the current's THD is reduced 
from 26.99 to 3.43%. Active filters are increasingly finding 
applications in PV systems. Similarly, a series of recent studies 
including (Goud et al. 2021; Devassy et al. 2017; Rasul et al. 2017; 
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Bezerra et al. 2017; Saleh et al. 2021; Azzam-Jai et al. 2019) have 
investigated the connection between an active shunt filter and a 
PV farm. The former has shown effectiveness against harmonics 
against nonlinear loads. Kamala et al. (2018) conducted a study 
to improve the quality and dependability of the power supply in 
petrochemical industries using Active Power Filters (APF). 
However, the cases of unbalanced loads were not considered in 
all these contributions cited above. 

This article focuses on the impact of the shunt active filter 
with four legs connected to a microgrid which consist of a 100 
kW PV farm and an energy storage system based on Lithium-
ion batteries.  Acharya et al. (2022) proposed an algorithm called 
nm-Predator Prey Fire-Fly (nm-PPFO) for the reduction of 
THD. Conventional methods such as Gravitational Search 
Algorithm (GSA), Particle Swarm Optimization (PSO), and 
Accelerated PSO have also been applied. The simulation study 
has been performed under MATLAB/Simulink environment 
and the results obtained demonstrate the robustness of the 
proposed method an its effectiveness in reducing harmonics as 
compared to other techniques. A control scheme was proposed 
in (Maciel et al. 2018) to mitigate harmonic problems in four-
wire three-phase systems based on a two capacitors to a 
common neutral topology. The neutral point between these two 
capacitors can be used to eliminate harmonics in the neutral. An 
active power filter based on a three-level neutral-point clamped 
(NPC) type T converter with LCL input filter is presented in 
(Buła et al. 2021). The main objective of this work is to analyze 
the control of reactive power flow independently and reduce the 
THD level. The work has been validated experimentally. 
However, these methods are complicated and/or do not handle 
the current in the neutral.  

In this paper, a simple algorithm is proposed to eliminate the 
neutral current in a microgrid in a more effective way. The 
remaining of the paper is organized as follows: Section 2 
presents the mircrogrid system considered in this study. Section 
3 presents the control methods of the various system 
components. Section 4 presents the results of the simulation 
using MATLAB/Simulink to demonstrate the impact of the filter 
on the improvement of the energy quality of the microgrid 
connected with an unbalanced nonlinear load. Section 5 
summarises the conclusion of the paper. 

2. Description and Modeling of the Studied Microgrid 
System 

The microgrid system shown in Figure 1 consists of a PV 
system with a nominal power 100 kW at 1000W/m2, a battery 
energy storage system with 50 kW nominal power, nonlinear 
single-phase loads, and an active four-wire shunt filter.  

A voltage source inverter with four-leg is used to 
compensate for the harmonic currents generated by the three 
arms. The elimination of the current in the neutral is achieved 
using the fourth leg. The reverse current produced by the 
inverter is introduced into the system to compensate for the 
harmonic currents; these currents are obtained using the p-q 
theory. To achieve neutral current compensation, two main 
topologies are used: (i) inverters to generate voltages; (ii) 
Inverters with two midpoint capacitors and a four-arm inverter 
(used as an active filter) (Barva et al. 2018; Kumar et al. 2022; 
Collins et al. 2022; Zhang et al. 2022; Challa et al. 2022). Mainly, 
the four-wire shunt active filters, with three phases, have three 
branches with two switches controlled by the PWM technique 
and the fourth leg is on standby and has two switches controlled 
by the PWM technique. The four-wire converter compensates 
for the neutral current using an additional bridge, as shown in 
Figure 1. When the four-leg topology is used in a shunt active 
filter, it always gives better results because the four-arm inverter 
drives all three-phase currents and the neutral. On the other 
hand, the three-arm inverter with midpoint capacitors directly 
drives only three currents. The fourth one is the result of the 
sum of the currents on the DC side. 

The PV array is modelled using the one-diode equivalent 
circuit and is described by the following equation (Mankour et 
al. 2017; Pradhan et al. 2017 ; Rao et al. 2017; Hilali et al. 2022; 
Asgharian et al. 2019; Diab et al. 2020): 

 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑠 [𝑒
(
𝑉𝑝𝑣+𝑖𝑝𝑣𝑅𝑠

𝑚𝐾𝑇
)
−1]

𝑉𝑝𝑣 + 𝐼𝑝𝑣𝑅𝑠

𝑅𝑠ℎ
           (1) 

Where 𝐼𝑝ℎ represents the photo-current generated by the PV 

cell (A), 𝐼𝑠 is the diode saturation current or dark current (A), 
𝑉𝑝𝑣 denotes the voltage applied across the diode (V), 𝑅𝑠  is serial 

resistance of the PV cell (Ω), 𝑅𝑠ℎ is the parallel or shunt 
resistance (Ω), 𝑚 is the ideality coefficient of the PV cell, K 

denotes the Boltzmann constant (1,38*10-23 J/K), and T is the 

absolute temperature expressed in Kelvin (K). 

 
Fig.1. Micro-grid connected to a non-linear load. 
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3. Proposed Control Scheme 

3.1 Control of the four-legs filter  

The balanced, symmetrical, non-linear, three-phase loads 
connected to the neutral produce harmonic currents of order 
three and multiples of three in this conductor. The effective 
value of the neutral current may be higher than the phase 
current (a phase's current value may be up to √3 times).  The 
simplest way to prevent overloading the neutral conductor is to 
select a neutral conductor with a cross section that is twice that 
of the phase conductor. The cost and lack of equipment 
protection are the disadvantages of this strategy. To eliminate 
the current in the neutral, as illustrated in Figure 2, the 
integration a fourth leg is proposed.  

The instantaneous active and reactive power p-q theory 
allows the identification of the references currents. The DC 
component of the instantaneous  active and reactive powers is 
eliminated. Given the three load currents and the voltages of a 
three-phase network (connected to a polluting load), denoted as 
 𝑖𝐿𝑎, 𝑖𝐿𝑏  , 𝐼𝐿𝑐 et  𝑣𝑔𝑎 , 𝑣𝑔𝑏  , 𝑣𝑔𝑐 respectively. 

The Concordia algebraic transformation of voltage components 
is: 

[
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]                               (2) 

The current components are: 
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]                                  (3) 

The following relation defines the instantaneous active and 
reactive powers, denoted p and q, respectively (De Araujo 
Ribeiro et al. 2014; Hoon et al. 2016; Tounsi et al. 2021): 

[
𝑝
𝑞] = [

𝑣𝑔𝛼 𝑣𝑔𝛽

−𝑣𝑔𝛽 𝑣𝑔𝛼
] [

𝑖𝐿𝛼

𝑖𝐿𝛽
]                                             (4) 

Generally, the powers p and q each comprise a continuous part 
and a relative part, allowing to write the following expression: 

{
 𝑝 = �̅� + �̃�
𝑞 = �̅� + �̃�

                                                         (5) 

�̅�: A continuous power related to the active fundamental 
component of current and voltage.  
�̅�: A continuous power related to the fundamental component 
of tension and reactive current. 
𝑝 ̃and �̃�∶ Alternating powers related to the total of the unsettling 
current and voltage components. 
In our article, these components are denoted by: 𝑝𝑟𝑒𝑓 = 𝑝 + 𝑝𝑐 

and 𝑞𝑟𝑒𝑓 = 𝑞, where 𝑝𝑐  is the DC bus voltage regulator's output.  

Using the relation (4);  

[
ĩLα

ĩLβ
] = [

vgα −vgβ

vgβ vgα
]
−1

[
p̃
q̃
]                           (6) 

Define the determinant of the matrix as   = 𝑣𝑔𝛼
2 + 𝑣𝑔𝛽

2   (Khalid 

et al. 2020; Hasan et al. 2017 ; Kumar et al. 2020)  then: 

{
�̃�𝐿𝛼 =

𝑣𝑔𝛼

∆
�̃� −

𝑣𝑔𝛽

∆
�̃�

�̃�𝐿𝛽 =
𝑣𝑔𝛽

∆
�̃� +

𝑣𝑔𝛼

∆
�̃�
                                           (7) 

Based on these equations, a notification that from the 
expression of iα and iβ the homopolar power is absent. The 
current homopolar is defined as: 
 

{

𝑖𝑓𝛼𝑟𝑒𝑓 = �̃�𝐿𝛼

𝑖𝑓𝛽𝑟𝑒𝑓 = �̃�𝐿𝛽

𝑖𝑓𝑜𝑟𝑒𝑓 = 𝑖𝑜  
                                                     (8) 

Where: 𝑖𝑜is a current homopolar component. 

The neutral current should be noted in and the homopolar 
current 𝑖𝑜are linked by the following relationship: 

{

𝑖𝑛 = 𝑖𝐿𝑎 + 𝑖𝐿𝑏 + 𝑖𝐿𝑐

𝑖𝑜 =
1

√3
(𝑖𝐿𝑎 + 𝑖𝐿𝑏 + 𝑖𝐿𝑐) =

1

√3
𝑖𝑛

                               (9) 

Finally, it is very easy to derive the currents of reference by the 
Concordia inverse transformation: 

 
Fig. 2. Control flow chart of the neutralization of the current in the neutral line. 
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[
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]                       (10) 

Fig. 3 shows the detailed diagram of the shunt active filter 
control (Belalia et al. 2021).  

The main concept is to add in the direct loop control, 
upstream a proportional regulator (Kpdc) is used to keep the DC 
voltage bus and requires the current to follow its references 
generated by the strategy PQ. Current regulation consists of 
enslaving the currents from the network (indirect control of the 
igabc network). The instantaneous power method is only 
applicable if the network voltage is perfectly sinusoidal and 
balanced. The first step is to bring the voltage of the vgabc 
network and the currents of the iLabc load into the Concordia 
frame. This transformation makes it possible to switch from a 
three-phase system to a two-phase system, which simplifies the 
mathematical expressions. 

The design of all the PI regulators is based on this scheme: 
All regulators are synthesized from Fig.4. The control loops are 

chosen rigorously. For example, outer loops are laid faster than 

inner loops to ensure overall control system stability. This 

constraint determines the choice of the gains of the PI regulators 

in order to ensure good tracking of the references. 

In this case, the synthesis applied in the paper for 
determining the gains of the PI regulators uses pole placement 
and is presented in Table 1. 

 

3.2 MPPT strategy   

The method of incremental inductance is used in this work. 
It consists of finding the slope of the power and voltage curve at 
the Maximum Power Point (MPP). This is done by calculating 
the derivative of the power of the PV panel in relation to the 
voltage and set it to zero. The slope is positive to the left of the 
MPP point and negative to the right as shown in Table 2 (Patel 
et al. 2020; Nayak et al. 2017; Başoğlu et al. 2022; de Jesus et al. 
2019).  

 
3.3 Direct Power Control (DPC)  

Based on the objectives highlighted above, the renewable 
energy system has been dimensioned and controlled to adapt 
the battery charging and discharging control algorithms 
according to climatic conditions and load demands to ensure 
system reliability. 

Figure 5 shows the power and control circuit for power 
management between the hybrid PV/battery storage system 
and the loads, with four different operating modes based on the 
PV generation, which depends on the irradiation and the 
temperature. The DC output of the PV generator side converter 
(rectifier to PWM) is connected to the DC bus. This is directly 
connected to the battery bank. The energy exchanges of the 
system are therefore carried out on the DC bus between PV-
battery-load-grid.  

The block 𝐶𝑏(𝑠) represents the function of the PI regulator 
and is expressed as: 

𝐶𝑏(𝑠) = 𝑘𝑝𝑏 +
𝑘𝑖𝑏

𝑠
                                  (11) 

.    
A bidirectional buck-boost converter connects the battery to 

the DC bus. An algorithm is responsible for controlling the 
battery charge and discharge, which gives the command for the 
selection of either buck-mode or boost-mode. The bounds of the 
algorithm are set in between 40-80% to increase battery life 
duration as shown in Figure 6 (Zhang et al. 2021; Olabi et al. 
2022; Amini et al. 2019; Wu et al. 2022; Okay et al. 2022). 
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Fig. 3. Utilizing the instantaneous power technique for identification. 

 
Table 1  
Transfer functions for the strategy of PI controllers. 

Regulator of Reference 𝑅 Disturbance 𝐷 Transfer function 𝐺(𝑠) Output 𝑌 

Current of the filter 
d-axis 𝑖𝑓𝑑𝑟𝑒𝑓 

q-axis 𝑖𝑓𝑞𝑟𝑒𝑓 
0 

1

𝐿𝑓𝑠
 

𝑖𝑓𝑑  

𝑖𝑓𝑞 

Current of the batteries 𝑖𝑏𝑟𝑒𝑓 0 
1

𝐿𝑏𝑠
 𝑖𝑏 

DC voltage of the filter 𝑣𝑑𝑐𝑟𝑒𝑓 0 
1

𝐶𝑠
 𝑣𝑑𝑐 

 

PI
+

-

R G(s) Y

D

+
-

 
Fig. 4 Scheme of the PI regulators. 
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4. Results and discussion 

Two scenarios were carried out to test the four-leg active filter 
and the efficiency of the PV+battery microgrid (Table 3 shows 
the parameter values of the simulated model.). The method of 
identifying instantaneous powers to detect the reference 
harmonic currents is used in the simulation. Besides, the cut-off 
frequency of the second order low pass extraction filter is set to 
50Hz and all switching (for the DC-DC or DC-AC converters) 
are controlled by PWM strategy. 

4.1 Study of filter efficiency 

The overall system includes a PV generator with the boost 
converter controlled by MPPT control and the storage system 
controlled by a bidirectional buck/boost converter. The non-
linear unbalanced load has been connected in the AC side 
(between the PV-Batteries system and the distribution network). 
The following single-phase loads are considered: (i) for phase A: 
𝑅𝑎 = 4 𝛺, 𝐿𝑎 = 0.07 𝐻; (ii) for phase B: 𝑅𝑏 =  6 𝛺 and 𝐿𝑏 =
0.04 𝐻; (iii) finally phase C: 𝑅𝑐 = 8 𝛺 and 𝐿𝑐 = 0.06 𝐻. The 
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Bidirectional converter  
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Fig.5. Flowchart describing the different operating modes of the PV system with battery storage. 
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Fig.6. Block diagram of different operating modes of the photovoltaic system with battery storage. 

 

Table 2 

Steps of the MPPT inductance increment method. 
The solar panel's power is provided by: 

P=V.I 

The partial derivative
dP

dV
is given by : 

dP

dV
= V

dI

dV
+ I 

  dP

dV
= V

dI

dV
+ I ≅ V 

∆I

∆V
+ I 
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∆V
= −

I

V
   in  MPP 

∆I

∆V
> −

I

V
   at the left of MPP 

∆I

∆V
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I

V
   at  the right of the MPP 
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active power and the three-phase currents of the grid are shown 
in Fig. 7.  

The unbalanced current in the load generates a current in 
the neutral where the sum of the three-phase currents is not 
zero. Before using the neutral current neutralization procedure, 

the current imbalance is clearly visible. Due to the existing 
imbalance between non-linear loads; the network current is not 
sinusoidal even if an active filter is used at time t=0.5s. As shown 
in Figure 8, it can be noticed that the current in the neutral is 
not zero because the unbalance of the nonlinear loads in the 
time range [0, 0.7s].  

After using the neutralization algorithm, the neutral current 
becomes zero and thus the network current becomes sinusoidal 
at time 𝑡 = 0.7 𝑠, and consequently an improvement of THD. 
The three-phase network voltages at the PCC and the DC bus 
voltage are shown in Figure 9.  

The DC bus voltage regulation loop is used to keep the 
voltage at the terminals of the capacitor at a fixed value, in order 
to compensate for losses in the circuit filter and limit the 
variations in dynamic mode. After using the algorithm, the 
network voltages become balanced. The DC voltage is 
equivalent to about 450 V before using the filter. When the filter 
is switched on, the voltage is not following perfectly the 
reference (an error due to the unbalancing exists). Applying the 
fourth leg of the converter controlled by the algorithm of neutral 
currents neutralization, it can be observed that the voltage 
perfectly tracks its reference.  

Fig. 10 shows the shape of the currents in the rotating frame 

 

Fig.7 Responses of the power and the three-phase current of the grid. 

 

Table 3 
Parameters used in simulation. 

System Designation Values 

Power supply 

The effective voltage Vs = 220 √2 V 
The frequency f = 50HZ 
Internalresistance Rs = 0.1mΩ 
Internal inductance  Ls = 1μH 

Parallel power active filter 
Storage capacitor de  Cdc  = 2.5mF 
Output filter Lf  = 1 mH. 
Reference voltage   Vdc_ref = 900 V 

DPF Control Parameters 
DC bus voltage regulator kc = 100 

Reference current PI regulator 
kp = 300 

ki = 35 

Simulation Conditions  

Sampling time Te = 4μs 
Type of  step variable step 
Resolutionmethod ode15s (stiff /  NDF )NDF) 
Switchingfrequency (PWM) 2KHz 

Converter DC/DC 
Inductance Lb (H) 0.003 
Switching frequency (Hz) 5000 

Regulator Cb(s) 
Proportional gain Kpb 0.005 
Integral gain Kib 0.001 

Lithium-ion Battery 
Nominal voltage (V) 48 
Capacitor (Ah) 6.5 

 

 
Fig.8 Three-phase current supplied from the filter and the neutral 

current. 

 

 

   Fig. 9 Grid PCC three-phase voltages and the filter DC bus voltage. 
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of Concordia (direct current igα and quadratic current igβ) for 
three cases (a) before the application of the filter, (b) after the 
appli cation of the active filter with three arms, and (c) with the 
use of the fourth arm controlled by the neutral current 
neutralization algorithm).  

It can be seen that the load unbalance directly influenced 
the shape of the current in the axes (α, β) (Fig.10a and b). The 
improvements made by the control system and the 
neutralization algorithm eliminate all unbalances of the 
nonlinear load and it can be noticed that the shape of the 
currents takes the form of a circle for case (Fig 10c) which 
confirms that the system becomes balanced despite the 
unbalance of the nonlinear load. Fig. 11 represents the spectral 
analysis of phase 𝐴 of network voltage. 
The following remarks can be drawn: 

- Before filtering (Fig.11a), the distortion rate is equal to 
11.98 % as measured over two periods between times 
0.4 and 0.44 (sec), and the network voltage is more or 
less rich in harmonics. 

- After filtering by three-leg inverter (Fig.11b),ca slight 
increase in the THD is observed compared to case (a) 

with a value of 12.23 %. 
- After using the fourth leg (Fig.11c) the distortion rate is 

equal to 2.13% which shows the good filtering of the 
source currents.  

Fig. 12 shows the FFT analysis of the current in phase A. In the 
literature, there are several studies in the same context (Okwako 
et al. 2022; Sundarabalan et al. 2019; Suresh et al. 2019; 
Chebabhi et al. 2015; Chebabhi et al. 2016). The comparative 
study conducted in this article is not only based on the THD of 
the current obtained in the various studies, but also on the 
complexity of the topologies and/or controls used. 

In reference (Okwako et al. 2022), a study of a PV-battery 
system connected to the grid has been carried out for several 
scenarios. The problems of non-linear and unbalanced load 
were remedied by a UPQC (Unified Power Quality 
Conditioners). The proposed control (Artificial Neural Network) 
gives better results according to the recommendations of IEEE-
519 standard (less than 5% THD) (Sundarabalan et al. 2019). 

The THD obtained by the ANN control applied to the 
UPQC is approximately 3.3%. Similarly, a fuel cell-based system 
connected to the four-arm UPQC controlled by an adaptive 

 

(a) before the filter application  
  

(b) after the filter application  

 

  
(c) with neutral current  neutralization  

Fig.10. Shapes of the direct current compared to the quadratic current of the grid's reference (α,β). 

 

 
 

(a)    (b)    (c) 

Fig.11. FFT voltage analysis of phase 𝑨 of the network. 
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neural regulator achieves a current THD of 2.5%. In reference 
(Suresh et al. 2019), a PV-battery and shunt active filter system 
are connected to a non-linear load and an imbalance in the 
source. The filter is controlled by fuzzy logic, and it improves 
the THD from 22.1% before filtering to 2.10% after filtering.  

However, the complexity of either the control or topology 
will increase the size, weight, cost, and slower compu  tation 
time for advanced controls. Our proposed approach is simple, 
practical, and provides an improvement in THD of 3.47% (Fig 
12c) in the case of a heavily unbalanced load. A comparative 
study between controllers, including PI, Sliding Mode Control 
(MSC), and Backstepping Control, has been presented in 
(Chebabhi et al. 2015). After connecting an unbalanced and non-
linear load, the comparison showed a reduction in current THD 
(1.68%) for the Backstepping Control compared to the other PI 
and MSC controls, where the THD values are 1.85% and 1.75%, 
respectively. The same system is also controlled by 
Backstepping based on 3D vector PWM, as presented in 
(Chebabhi et al. 2016). Regardless of the controls used in this 
article that increase the complexity of the control system, the 
switching frequency of the 3D vector PWM chosen is 14kHz 
(Chebabhi et al. 2015) and 10kHz (Chebabhi et al. 2016), which 

limits the lifespan of power electronics components due to the 
high temperatures caused by opening and closing. 

The control used allows the filter to reproduce a current in 
phase opposition with respect to the reference current in order 
to improve the THD. But the return of the current in the neutral 
due to the unbalance of the load (there is no information on this 
dismaying the command all that). In order to overcome this 
problem, the addition of the fourth arm is proposed with the 
current neutralization algorithm in the neutral as shown in 
Figures 8 to 12. It can be seen that our filtering system studied 
is not only based on the elimination of harmonics but also on 
compensating for the unbalance of the phases caused by the 
secondary load. 
 

4.2 Reliability study of the microgrid 

In this scenario,  the study the behavior of the PV battery 
system  is carried out under low solar radiation conditions (200 
W/m2 and 0W/m2) in order to demonstrate the efficiency of the 
storage system. The nonlinear load constantly consumes a 
power of 5kW, and the four-leg filter is activated at the 
beginning of the scenario.  

 

(a) 

 

(b) 

 

(c) 

 

 

Fig. 13. Power output of the PV battery system. 

 
Fig.12. FFT current analysis of phase A of the network 



A.Mostefa et al  Int. J. Renew. Energy Dev 2023, 12(3), 488-498 

|496 

 

ISSN: 2252-4940/©2023. The Author(s). Published by CBIORE 

Figure 13a shows the response of the power produced by 
the PV system. It is observed that the PV system provides 
(negative sign) active power to the grid in the first case 
(G=200w/m2). In the second case, the radiation becomes zero 
and as a result, the PV system produces no power and the power 
becomes zero. Figure 13b shows the power of the batteries. 
Initially, the storage system is idle. Once the system becomes 
active, the batteries consume the additional power provided by 
the PV system in the range [0.5, 0.9s]. In the case where the 
solar radiation becomes zero, the batteries produce the power 
required by the load (5 kW). Figure 13c shows the Battery State 
of Charge (SOC). It can be seen that after a fixed storage state 
of 79% (rest state of the storage system), the SOC increases 
progressively to justify the storage of the additional power by 
the batteries. In the remaining of this scenario, a decrease in the 
storage state SOC is observed due to the battery system 
supplying the load in the absence of PV generation. This 
demonstrates the effectiveness of the proposed power 
management system.    

5. Conclusion  

The general idea of this article is based on the influence of 
using a four-leg shunt active filter connected between a 
PV/battery system and an unbalanced non-linear load. A 
battery energy management algorithm controls the 
photovoltaic/battery hybrid system by bidirectional DC-DC 
converter to increase the reliability of the microgrid. This 
system have been simulated and evaluated using MATLAB 
software. The obtained results indicate the proper functioning 
of the filter-PV-battery system. 

Moreover, based on the obtained results in which the use of 
the MPPT regulator proofs the increasing  of the photovoltaic 
generatorthe efficiency. In the other hand,  both the storage 
system and the energy management system have shown the 
availability service ensurance while considering the battery's 
protection by regulating the charge and discharge throughout 
the differents scenarios carried out. An efficiency of the control 
circuits against harmonics and non-linear load unbalances is 
shown altought the current quality was improved. Hence,  the 
THD of the current  is decreased from 43.64% before filtering to 
the acceptable value 3.74% after filtering. 

An example of simulation has been presented in order to 
show the advantages and the principle of operation of the four-
leg PAF (parallel active filter) whose performance is often 
influenced by the external conditions of the electrical micro-grid 
(PV-batteries), the various sizing parameters as well as applied 
control. 

According to the simulation results obtained, the 
instantaneous power method with the integration of the 
neutralization algorithm shows a good performance in the 
detection of reference harmonic currents. It well adapts to non-
linear load variations. 
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