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Abstract. A novel nano-catalyst based on iron oxide (MnO2/Fe2O3) was developed to promote wet oxidation of phenol. MnO2 was doped in Fe2O3 
matrix to prepare composite nano-catalyst with different doping percentage (0, 2 and 5%). The catalytic phenol oxidation was conducted under 
different reaction temperatures and residence times. To evaluate the optimal kinetic parameters aiming to maximize phenol removal under the optimal 
conditions for the catalytic wet phenol oxidation process, modeling was applied on the batch reactor using the novel synthesis nano-catalyst 
(MnO2/Fe2O3) and the model developed was fed with the experimental data. gPROMS package was used to model the process of phenol oxidation 
and to optimize the experimental data. The error predicted between the simulated and experimental data was less than 5%. The optimal operating 
conditions were 294 min residence time, 70oC reaction temperature, and 764 ppm initial concentration of phenol over the prepared 5% MnO2/Fe2O3. 
Running of wet oxidation of phenol under the optimal operating conditions resulted in 98% removal of phenol from refinery wastewater.  
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1. Introduction 

The water contamination by organic compounds is considered 
as a threat to the health of human and overall quality of water 
since the wastewater is predominating released from industrial 
plants without any efficient treatment. Phenol and phenolic 
compounds are considered a priority pollutant contaminant 
categorized as teratogenicity and carcinogenic (Saravanan et al., 
2021; Stefanakis & Thullner, 2016; Wang, Bian, & Li, 2012; 
Yaqub, Isa, Ajab, & Junaid, 2017). Different technologies, such 
as electrochemical degradation (Iniesta, González-Garcıa, 
Exposito, Montiel, & Aldaz, 2001; Li, Cui, Feng, Xie, & Gu, 2005; 
Luo, Li, Wu, Zheng, & Dong, 2015), biodegradation (Amor, 
Eiroa, Kennes, & Veiga, 2005; Kumar, Kumar, & Kumar, 2005; 
Peyton, Wilson, & Yonge, 2002), physical sorption (Hamad et al., 
2022b; Humadi et al., 2022; Li et al., 2002; Pan et al., 2003), and 
the advanced oxidation Processes (AOPs) (Amor et al., 2019; 
Aziz, Asaithambi, & Daud, 2016; Esplugas, Gimenez, Contreras, 
Pascual, & Rodrı́guez, 2002; Hamad et al., 2022b; Martins & 
Quinta-Ferreira, 2011; Xu, Siracusa, Di Gregorio, & Yuan, 2018) 
have been employed to purify the wastewater. The advanced 
oxidation processes (AOPs) are characterized by producing 
highly reactive oxidizing radicals, can degrade these organic 
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contaminants to carbon dioxide, water, and mineral salts 
(mineralization) (Covinich, Bengoechea, Fenoglio, & Area, 2014; 
Gągol et al., 2020; Lozano, Devard, Ulla, & Zamaro, 2020; 
Shahidi, Roy, & Azzouz, 2015). AOPs processes include 
treatment with UV/H2O2, ozonation, photocatalysis, air wet 
oxidation and catalytic wet peroxide oxidation (CWPO). 
Hydrogen peroxide (H2O2) is a green oxidant has the ability to 
work in the CWPO at moderate operating conditions 
(atmospheric pressure, T<80 °C) (Busca, Berardinelli, Resini, & 
Arrighi, 2008; Martin-Martinez et al., 2016; Piccinin, 2022; 
Shahidi et al., 2015). Also, hydrogen peroxide is utilized as liquid 
oxidant in CWPO to overcome the gas–liquid mass transfer 
limitations and significantly enhance the efficiency of process.  
CWPO is superior to other AOPs technologies because it 
provides lower activation energy by utilizing a catalyst to enable 
the reaction to proceed under mild operating conditions (Baloyi, 
Ntho, & Moma, 2018; Wang et al., 2021; Yan, Wu, & Zhang, 
2016). Recently, there is a growing attention in the use of iron 
oxide nanoparticles for the removal of heavy metal found in 
wastewater owing to their availability and simplicity. In general, 
due to the small size of Nano sorbent materials, their separation 
and recovery from contaminated water is an important issue for 
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water purification. The application of Fe2O3 nanoparticles as 
catalysts in organic synthesis is a large field and has become the 
focus of research community in recent years. Fe2O3 
nanoparticles have interesting physical and chemical properties 
that are quite different from their corresponding bulk phases, 
which make them very efficient catalysts for a variety of 
reactions. Efficient distribution of the catalyst in the reaction 
medium, large surface area of the particles, and easy recovery 
by magnetic separation are some of the benefits of using these 
materials. Fe2O3 nanoparticles are considered as a promising 
catalyst for oxidation reactions of different organic compounds 
(Ahmed, El-Katori, & Gharni, 2013; Khasawneh & Palaniandy, 
2021; Lokhat, Oliver, & Carsky, 2015). Manganese oxide (MnO2) 
is an important catalyst or oxidant in the natural environment, 
which can efficiently degrade a variety of organic pollutants. 
Manganese oxides have diverse catalytic uses due to their 
extremely efficient redox properties, and the mixed valences 
have been emphasized  as essential in redox catalysis as well as 
electron and energy transfer (Fei et al., 2017; Hu et al., 2019) . 

In this study, the catalytic oxidation of phenol was carried 
out H2O2 as an oxidant in the presence of a novel nano-catalyst 
composite (MnO2/Fe2O3) under mild operating conditions. To 
scaling up and zero emission, the experimental results were used 
to optimize the kinetic parameters and to produce the optimal 
operating conditions of the process.  

2. Experimental work 

2.1 Materials 

In this work, the feedstock was prepared by adding the desired 
initial phenol concentration (supplied by Alpha Chemika 
Company, ~99% pure) to demineralized water. The oxidant 
used in the oxidation process was hydrogen peroxide (H2O2) 
obtained from (Merck Millipore Company, Germany) with a 
purity of 31.0 %. 

2.2 Catalyst preparation 

The materials used to prepare the nano-catalyst (MnO2/Fe2O3) 
were Manganese (II) chloride (MnCl2.4H2O, 98%, (Thomas 
Baker), Iron oxide (Fe2O3, 98%, (Sky spring)), and deionized 
water. Manganese oxide was loaded over the catalyst support 
(iron oxide) via wet impregnation method. A desired quantity of 
MnCl2.4H2O salt was dissolved in deionized water, to obtain the 
precursor salt solution. Then, Fe2O3 was gradually added to the 
prepared salt solution with stirring. The impregnated solution 
was heated by oven to 120 °C for overnight and then calcined in 
a furnace at 550 °C for 4 h at a heating ramp of 10 °C/min. The 
samples were left overnight to cool to room temperature. 

2.3 Catalyst evaluation  

The conditions used to catalyze the phenol oxidation process are 
shown in Table 1. The prepared catalysts (MnO2/Fe2O3) were 
evaluated for oxidation of phenol in the simulated refinery 
wastewater (initial phenol concentration = 634 ppm) in a 3-neck 

glass batch reactor connected to a condenser and temperature 
controller. In all experiments, the prepared catalyst (1 g) was 
added after the wastewater reached the desired reaction 
temperature. Then, the H2O2 solution was added to the catalyst-
phenol solution. After each oxidation reaction run, the reaction 
mixture was cooled to room temperature and the catalyst was 
separated from the oxidant-phenol solution by filtration. Figure 
1 was showed the experimental setup for the catalytic wet 
phenol oxidation process.  
 

3. Mathematical model of batch reactor for catalytic 
phenol oxidation reaction 

A mathematical model of the catalytic phenol oxidation process 
was developed in the gPROMS program (Pan et al., 2003). 
(General Process Modeling System, Version 7.07 (2021, License 
ref: 27552) is officially licensed to Tikrit University by Siemens 
AG, UK). The equations used in the mathematical modeling are 
summarized  in Table 2. 

4. Evaluation of kinetic parameters 

4.1 Constant parameters for determining of kinetic parameters 

The optimal kinetic parameters of the catalytic phenol oxidation 
were specified by applying mathematical modeling technique 
that minimized the error between the concentrations of phenol 
produced by experimental runs and values determined by the 
model. The constant parameters applied in the mathematical 
modeling technique are summarized in Table 3. 

 
4.2  Kinetic parameters estimation technique using process 

modeling 

To evaluate appropriate values of kinetic parameters for 
catalytic phenol oxidation, the following objective function must 
be minimized, as follows: 

𝑂𝐵𝐽 = ∑ (𝐶𝑝ℎ𝑒𝑛𝑜𝑙
𝑒𝑥𝑝

− 𝐶𝑝ℎ𝑒𝑛𝑜𝑙
𝑝𝑟𝑒𝑑 )

2𝑁𝑡

𝑛=1
                                   (18) 

In equation (18), 𝐶𝑝ℎ𝑒𝑛𝑜𝑙
𝑒𝑥𝑝

, 𝐶𝑝ℎ𝑒𝑛𝑜𝑙
𝑝𝑟𝑑

 and Nt   represent the final 

phenol content obtained from the experimental run, the final 
phenol content evaluated by the mathematical model, and the 
number of experimental runs, respectively. The amount of 
phenol degradation was estimated by using the following 
equation (19):  

Table 1 
Operating conditions for catalytic phenol oxidation processes 

Operating parameter Value 

Type of catalyst CAT-1= Fe2O3 
CAT-2= 2%MnO2/Fe2O3 
CAT-3= 5%MnO2/Fe2O3 

Reaction temperature, °C 30, 45, 60, 75 
Residence time, min 20, 40, 60, 80, 100, 120 

H2O2, M 1 
Pressure, atm 1 

 

 

Fig 1. Experimental setup for the catalytic wet phenol oxidation 
process. 
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𝑋𝑝ℎ𝑒𝑛𝑜𝑙 = 1 −
𝐶𝑝ℎ𝑒𝑛𝑜𝑙

𝐶𝑝ℎ𝑒𝑛𝑜𝑙.𝑡
                                                     (19) 

In this study, the expectation of the appropriate values of kinetic 
parameters is conducted by utilizing two approaches. These 
approaches are summarized below: 

1. Linear regression: The kinetic parameters of reaction 
(constant of reaction rate (k) and order of reaction (n)) 
are appreciated. Then, the Arrhenius equation is 
linearized so as to estimate the activation energy (EA) 
and pre-exponential factor (ko). 

2. Non-linear regression: In this approach, the evaluation of 
the kinetic parameters (the interaction order (n), the pre-
exponential factor (ko) and activation energy (EA)) is 
directly determined without a linearization step. 

4.3 Optimization problem formulation for evaluation of kinetic 
parameter 

For estimating the optimal kinetic parameters for wet oxidation 
process, the optimization problem formulation configured as 
follows: 

Given: The conditions oxidation reaction, the catalyst, and the 
reactor formation 
Determine: Kinetic parameters (n, ko and EA) for each designed 

catalyst. 
So, to reduce: The sum of squared error (SSE). 
Subject to: By calculating the mathematical operation constraints 

of the first method (the upper and lower constraints for 
the linear approach), the optimization problem is as 
follows:  

 

Table 2 
 Equations used in mathematical modeling 

Parameter (Symbol) Equations/values Eq. no. Ref. 
Rate of reaction (−𝑟𝑝ℎ) (−𝑟𝑝ℎ) = ƞ0 𝑘 𝐶𝑝ℎ

𝑛 (1) (Hamad et al., 2022a; Humadi et al., 2023; 
Humadi et al., 2022) 

Arrhenius equation (k) k=k0𝑒
(−

𝐸𝐴

𝑅𝑇
) (2) (Huang, Luo, Kang, Zhu, & Dai, 2017; 

Humadi et al., 2023; Saha, Kumar, & 
Sengupta, 2019) 

The final phenol content (𝐶𝑝ℎ)  𝐶𝑝ℎ = [ 𝐶𝑝ℎ,𝑡
(1−𝑛) + (𝑛 − 1). 𝑡. 𝐾𝑖𝑛 ƞ0](

1
1−𝑛

) (3)  

The effectiveness factor (ƞ0) 
ƞ0 =

3(ɸ cothɸ − 1) 

ɸ2
 

(4) (Esplugas et al., 2002) 

Thiele modulus (ɸ) 

ɸ =
𝑉𝑃  

𝑆𝑃

√(
𝑛 + 1

2
)

𝑘𝑖𝑛 𝐶𝑝ℎ
(𝑛−1)𝜌𝑝

𝐷𝑒𝑖

 

(5) (Humadi et al., 2022) 

The catalyst effective diffusivity (𝐷𝑒𝑖) 𝐷𝑒𝑖 =
ℇ𝐵

𝒯

1

1
𝐷𝑚𝑖

+
1

𝐷𝑘𝑖

 
(6) (Martins & Quinta-Ferreira, 2011) 

The porosity of catalyst (ℇ𝐵) ℇ𝐵 = 𝑉𝑔𝜌𝑝 (7) (Xu et al., 2018) 

Particle density (𝜌𝑝) 𝜌𝑝 =
𝜌𝐵

1 − ℇ𝐵

 (8) (Xu et al., 2018) 

The tortuosity factor (𝒯) The value of tortuosity factor (𝒯) of the pore 
network ranged between 
(2 to 7) 

---- (Aziz et al., 2016) 

The Knudsen diffusivity (𝐷𝑘𝑖) 𝐷𝑘𝑖 = 9700 𝑟𝑔(
𝑇

𝑀𝑤,𝑝ℎ

) 0.5 
(9) (Amor et al., 2019) 

Mean pore radius (𝑟𝑔) 
𝑟𝑔 =

2𝑉𝑔

𝑆𝑔

 
(10) (Amor et al., 2019) 

The molecular diffusivity (𝐷𝑚𝑖) 
𝐷𝑚𝑖 = 8.93 ∗ 10−8(

𝑣𝑙
0.267𝑇

𝑣𝑝ℎ
0.267µ𝑝ℎ

) 
(11) (Duduković, Larachi, & Mills, 2002; 

Paraskos, Frayer, & Shah, 1975) 

The molar volume of the liquid (𝑣𝑙) 𝑣𝑙 = 0.285(𝑣𝑐𝑙)
1.048 (12) (Lozano et al., 2020) 

The molar volume of the phenol 
compound (𝑣𝑝ℎ) 

𝑣𝑝ℎ = 0.285(𝑣𝑐𝑝ℎ)1.048 (13) (Lozano et al., 2020) 

The external volume of the catalyst 
(For sphere particle) (𝑉𝑝) 

𝑉𝑝 =
4

3
𝜋(𝑟𝑝)3 

(14) (Amor et al., 2019) 

The external surface of the catalyst 
(For sphere particle) (Sp) 

𝑆𝑝 = 4𝜋(𝑟𝑝)2 (15) (Amor et al., 2019) 

The phenol viscosity (µ𝒑𝒉) 
µ𝒑𝒉 = exp [𝑙𝑛(𝛼 ∗ µ𝒑𝒉,𝒃) ∗

𝑙𝑛(µ𝒑𝒉,𝒃)

𝑙𝑛(𝛼 ∗ µ𝒑𝒉,𝒃)
]𝜙 

(16) (Busca et al., 2008) 

Constant (𝛼) 0.1175 for alcohols and 0.248 for other 
compounds 

---- (Amor et al., 2019) 

Volume fraction of molecule (𝜙) 
𝜙 =

1 − (𝑇/𝑇𝑐)

1 − (𝑇𝑏/𝑇𝑐)
 

(17) (Busca et al., 2008) 
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Min:   SSE 

𝑛𝑗 , 𝐸𝐴𝑗 , 𝑘𝑖
𝑗
, (𝑖 = 1 − 4,  j = CAT1,2,3)   

𝑛𝑗 = 1 

S.t. f(z, x(z),ẋ(z), u(z),v) = 0 
CL ≤ C ≤ CU 

𝐸𝐴𝐿
𝑗

 ≤ 𝐸𝐴𝑗
 ≤𝐸𝐴𝑈

𝑗
 

𝑘𝑖𝐿
𝑗

 ≤ 𝑘𝑖
𝑗
 ≤𝑘𝑖𝑈

𝑗
 

While by utilizing the 2nd method (nonlinear approach), the 
problem and the upper and lower constraints are presented as 
follow: 

Min:  SSE 

𝑛𝑗 , 𝐸𝐴𝑗 , 𝑘𝑖
𝑗
, (𝑖 = 1 − 4,  j = CAT1,2,3)   

𝑛𝑗 ≠ 1 

S.t. f(z, x(z),ẋ(z), u(z),v) = 0 
  CL ≤ C ≤ CU 

𝑛𝐿
𝑗

 ≤ 𝑛𝑗 ≤𝑛𝑈
𝑗

 

𝐸𝐴𝐿
𝑗

 ≤ 𝐸𝐴𝑗 ≤𝐸𝐴𝑈
𝑗

 

𝑘𝑜𝐿
𝑗

 ≤ 𝑘𝑖
𝑗
 ≤𝑘𝑜𝑈

𝑗
 

S.t.f(z, x(z), ẋ(z), u(z), v) = 0, describe the process model that 
presented previously. 

z :   is the independent variable.     
u(z) :  is the decision variable.   
x(z) :  describe the set of variables.   
ẋ(z) :  describe the derivative of the variables with respect 

to time. 
v :  is the design variable. 
C,CL,CU : concentration, lower and upper bounds of 

concentration, respectively. 
L, U :  are the lower and upper bounds, respectively. 

5. Maximizing of phenol elimination via optimizing 
operating conditions   

 

The better value of kinetic parameters is utilized to determine 
the optimal operating conditions in which the maximum 
elimination of phenol is achieved. Therefore, the problem of 
optimization is created as follows: 

Obtain:   The optimal value of process conditions for high phenol 
elimination. 
So, as to minimize: The concentration of phenol found in 
wastewater. 
Subjected to: Constraints in the operation 
The problem is mathematically expressed as follows: 
Min  𝐶𝑝ℎ𝑒𝑛𝑜𝑙                 

𝑇𝑗 , 𝑡𝑖𝑚𝑒𝑖
𝑗
, 𝐶𝑝ℎ𝑒𝑛𝑜𝑙

𝑗
           (j= CAT-1,2,3) 

S.t. f(z, x(z),ẋ(z), u(z),v) = 0  

𝑡𝑖𝑚𝑒𝐿
𝑗

 ≤ 𝑡𝑖𝑚𝑒𝑗 ≤ 𝑡𝑖𝑚𝑒𝑈
𝑗
 

𝐶𝑝ℎ𝑒𝑛𝑜𝑙.𝑡𝐿
𝑗

 ≤ 𝐶𝑝ℎ𝑒𝑛𝑜𝑙.𝑡
𝑗

 ≤𝐶𝑝ℎ𝑒𝑛𝑜𝑙.𝑡𝑈
𝑗

 

𝑇𝐿
𝑗

 ≤ 𝑇𝑗≤𝑇𝑈
𝑗

 

𝑋𝑝ℎ𝑒𝑛𝑜𝑙.𝑡𝐿
𝑗

 ≤ 𝑋𝑝ℎ𝑒𝑛𝑜𝑙.𝑡
𝑗

 ≤𝑋𝑝ℎ𝑒𝑛𝑜𝑙.𝑡𝑈
𝑗

 

gPROMS software is utilized to conduct the optimization 
process. 
 
6. Results and discussion  

6.1 Catalyst characterization  

The surface area are 53.5460 m2/gm, 48.6814 m2/gm, 37.1567 
m2/gm and the pore size are 10.44995 nm, 9.93963 nm, 
14.44981 nm for Fe2O3, 2wt.% MnO2/Fe2O3, 5wt.% 
MnO2/Fe2O3 catalysts, respectively. The results proved that the 
surface area for the prepared catalysts was decreased via 
enhancing the quantity of active metal oxide (MnO2) over 
catalyst support (Fe2O3). This behavior can be returned to the 

Table 3 
Values of constant parameters applied in the modeling operation 

Parameter, unit Value 

Initial concentration of phenol (Ct), ppm 634 

reaction time min 20, 40, 60, 80,100,120 

Reaction temperature (T1, T2, T3, T4), oC 303, 318, 333, 348 

R, J/mole.oK 8.314 

Vg (CAT-1, CAT-2, CAT-3), cm3/gm 0.139888, 0.120969, 0.134227 

Sg (CAT-1, CAT-2, CAT-3), cm2/gm 535460, 486814, 371567 

Vp (CAT-1, CAT-2, CAT-3), cm3 3.1759*10-16, 3.9680*10-16, 3.6061*10-16 

Sp (CAT-1, CAT-2, CAT-3), cm2 2.2511*10-10, 2.9680*10-10, 2.7474*10-10 

ρB. (CAT-1, CAT-2, CAT-3), gm/cm3 0.482, 0.534 ,0.556 

M.Wt of phenol 184 

rg, (CAT-1, CAT-2, CAT-3), nm 5.2249, 5.0757, 7.3701 

𝑣𝑐𝑙, cm3/gmole 55.95 

𝑣𝑐,𝑝ℎ, cm3/gmole 229 

Tc, oR 1250 
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significant occupation of the Fe2O3 pores via MnO2. The 
deposition of active metal oxide in the pores of the catalyst 
support also led to blockage and interference in nitrogen 
diffusion (Aabid et al., 2023; Fathi, Humadi, Mahmood, Nawaf, & 
Ayoub RS, 2022; Humadi et al., 2022; Humadi et al., 2023).The 
results of XRD patterns for the synthesis catalysts were 
explained in previous study (Hamad et al., 2022a). The scanning 
electron microscope (SEM) for the synthesis (2% MnO2/Fe2O3) 
and (5% MnO2/Fe2O3) catalysts were showed in Figures 2 and 
3. These results explained a uniform distribution of active metal 
oxide particles (MnO2) over catalyst support (Fe2O3). Also, the 
obtained images proved that the synthesis catalysts were nano 
sizes particles.  

6.2 Catalytic phenol oxidation 

oadedl 26.2.1 Effect of MnO 

Three catalysts were prepared by loading different 
concentrations of MnO2 (0%, 2% and 5%) on Fe2O3.  Figure 4 
shows the effect of MnO2 loading on the activity of phenol 
oxidation. The results showed that the oxidation activity of 
phenol increases linearly with the increase of MnO2 loading. 
Also, the results showed stable activity for catalyst through all 
times without deactivation effects (Hamad et al., 2022a; Humadi 
et al., 2022). This behavior can be returned to that the dispersion 
of MnO2 on the Fe2O3 differs based on the active metal oxide 
loading, the activity of wet catalytic phenol oxidation process 
may change as a result (Hamad et al., 2022a; Humadi et al., 
2023). In the consecutive experiments, the same catalyst was 
used without the replacing. There results proved the 
remarkability durability and lifetime for preparing catalyst. The 
results proved that 5wt.% MnO2/Fe2O3 achieved phenol 
removing of 94wt.% during 80 min or reaction time. In 
comparing with other used catalyst under the same reaction 
time, 80wt.% or less for 2wt.% MnO2/Fe2O3 and 71wt.% for only 
Fe2O3.These results can be attributed to that Mn coordination 
are stretched along z-axis of Mn atoms as a result of Jahn-Teller 
phenomenon( Li et al., 2014), causing deforming octahedral or 
tetragonal structure. Thus, larger space phenol is supplied to 

approach the core Mn ion. Also, Mn atoms have high redox 
potential.  

 
6.2.2 Influence of reaction time 

Figure 5 shows the impact of oxidation time on phenol 
elimination using the best catalyst 5 % MnO2/Fe2O3. The 
removal of phenol under 30°C was very low for the whole 
evaluated oxidation time. Under the maximum temperatures of 
60°C and 70°C, the phenol removal shows high and significantly 
under the lower oxidation time of 20 min. The reason of such 
behavior can be return to a fast adsorption (physically) on the 
surface of MnO2/Fe2O3 which led to the initial phenol removal. 
Increasing of time progressively improved the phenol oxidation 
up to 80 min (Aabid et al., 2023; Humadi, Gheni, Ahmed, & 
Harvey, 2022; Humadi et al., 2022). The results proved that the 
performance wet oxidation process improves by rising reaction 
times, as enhancing contacting time between the reactants 
(Adamu, Dubey, & Anderson, 2016; Hamad et al., 

 

 
Fig 2. SEM of the prepared catalyst (2wt.%MnO2/Fe2O3) at a) 100 
nm & b) 1 µm 

 

 
Fig 3. SEM of the prepared catalyst (5wt.%MnO2/Fe2O3) at a) 100 nm 
& b) 1 µm 
 

 
Fig 4. The effect of MnO2 loaded on the phenol oxidation activity 
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2022a; Jafar, Nawaf, & Humadi, 2021; Luo et al., 2015), H2O2 
improve the transfer of oxygen atoms and phenol in the 
MnO2/Fe2O3 pores. More enhancing in time is proved the stable 
results in removing of phenol up to 120 min. These obtained data 
can be returned to consume large amount of H2O2 through the 
oxidation process. The experimental data showed that 5wt.% 
MnO2/Fe2O3 achieved phenol removing of 94wt.% during 80 
min or reaction time. At the same oxidation time, 80wt.% or less 
for 2wt.% MnO2/Fe2O3 and 71wt.% for only Fe2O3 was achieved. 
Under various times for CWPO, there are nil content of reaction 
intermediates.  

 
6.2.3 Influence of reaction temperature 

The temperature in CWPO is important process variable. The 
impact of various temperatures on the performance of CWPO 
was investigated. As shown in Figure 6, the catalytic oxidation 
of phenol was promoted by increasing the reaction temperature 
of all designed catalysts. This is because the increase of the 
reaction temperature will lead to the dissociation of H2O2 in the 
wastewater leading to an increase in the generation of hydroxyl 
radicals (Fathi et al., 2022; Humadi et al., 2021; Jafar et al., 2021; 
Zazo, Pliego, Blasco, Casas, & Rodriguez, 2011). Furthermore, 
increasing the reaction temperature may lead to a significant 

increase in H2O2 consumption and decomposition of organic 
pollutants in wastewater (Rueda Márquez, Levchuk, & Sillanpää, 
2018). Increasing of the performance of wet oxidation process 
via enhancing the reaction temperature can be attributed also to 
improve the activation energy which led to improve the diffusion 
phenol and oxygen molecules inside the pores of MnO2/Fe2O3. 
Therefore, this behavior of oxidation process improved via 
increasing temperature due to the higher impact of temperature 
factor on phenol removal from waste water (Humadi et al., 2021; 
Humadi et al., 2022; Inchaurrondo, Massa, Fenoglio, Font, & 
Haure, 2012). Gao et al. (2018) examined the impact of different 
temperatures (70°C, 80°C, and 90°C) on CWPO performance 
using Fe2O3-CeO2-Bi2O3/γ-Al2O3 as catalyst. They explained 
that increasing of temperature improved the phenol removing 
efficiency from 18 to 76wt.% after the 240 min reaction. This 
study used simpler catalyst which showed significant activity in 
eliminating of phenol under mild conditions. 
 
6.3 Evaluating results of kinetic parameters 

6.3.1 Results of linear regression 

For each prepared catalyst, the optimal value of model 
parameters specified by applying the linear methods is 
summarized in the following Tables 4 - 6. As shown in these 
Tables, the order of catalytic phenol oxidation reactions was 
reported to be 3.46 for CAT-1, 2.7 for CAT-2 and 1.98 for CAT-
3 for phenolic compounds found in wastewater. Kinetic 
parameters (activation energy (EA) and Frequency factor (ko)) 
are determined by plotting of (lnk) versus (1/T) as shown in 
Figure 7 for each prepared catalyst. 

The kinetic parameters values (EA and ko) obtained are 
illustrated in Table 7. As shown in Table 7, the catalyst type 
significantly affects the activation energy. In this work, the 
activation energies of phenolic compounds in wastewater are 
28.714 kJ/mol for CAT-1, 26 kJ/mol for CAT-2 and 26.4 kJ/mol 
for CAT-3. 

6.3.2 Results of non-linear regression  

Kinetic parameters (n, EA and ko) for the catalytic phenol 
oxidation have been evaluated based on nonlinear methods, and 
the values of these parameters are described in Tables S1 – S3. 
According to the results summarized in these Tables, CAT-3 

 
Fig 5. The effect of reaction time on the phenol oxidation activity 

for CAT-3 

 

0

20

40

60

80

100

0 50 100 150

C
o

n
v
e
rs

io
n

 (
%

)

Time, min

T = 30 C (Experimental data)

T = 45 C (Experimental data)

T = 60 C (Experimental data)

T = 75 C (Experimental  data)

T = 30 C (Model data)

T = 45 C (Model data)

T = 60 C (Model data)

T = 75 C (Experimental  data)

 
Fig 6. The effect of reaction temperature on the phenol oxidation 

activity for CAT-3 
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Fig 7. lnk versus (1/T) for kinetic parameters of the catalytic 
oxidation process using different prepared catalysts. 
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clearly outperforms the other catalysts based on the values of 
reaction order and activation energy under the same process 
conditions. The reaction order and activation energy values of 
CAT-3 are lower than the other catalysts, which mean that the 
reaction in the presence of CAT-3 occurs faster than the other 
catalysts. 

6.3.2 Comparison between linear and nonlinear approaches 

Figure 8 are explained the comparison between experimental 
and simulated data for different prepared catalyst based on the 
linear and nonlinear regressions. Based on these results for all 
types of used catalyst, the error between the experimental and 
predicted results based on the nonlinear approach is less than 
the error obtained by the linear approach for all runs. This 
behaviour can be returned to that the nonlinear approach predict 
the actual kinetic parameters which used in evaluating the 
conversion in comparing with the linear approach that assumed 

the order or reaction equal to 1and evaluated the conversion 
based on that with more error. 

Table 8 showed the comparison between the kinetic 
parameters for the linear and nonlinear regressions. Based on 
the obtained results, the activation energy for the linear model 
is lower than that for the nonlinear model using CAT1 and CAT2 

Table 4 
Optimal values of model parameters are optimized using the linear method of CAT-1 

Parameter Value Unit 

n 3.463377 _ 

k1 18.90354 (𝑤𝑡−2.463377). 𝑚𝑖𝑛−1  

k2 32.36415 (𝑤𝑡−2.463377). 𝑚𝑖𝑛−1 

k3 43.39928 (𝑤𝑡−2.463377). 𝑚𝑖𝑛−1 

k4 88.81517 (𝑤𝑡−2.463377). 𝑚𝑖𝑛−1 

SSE 2.8000× 10-5 _ 

 

Table 5 
Optimal values of model parameters are optimized using the linear method of CAT-2 

Parameter Value Unit 

n 2.707247 _ 

k1 3.107599 (𝑤𝑡−1.707247). 𝑚𝑖𝑛−1 

k2 5.213272 (𝑤𝑡−1.707247). 𝑚𝑖𝑛−1 

k3 6.962609 (𝑤𝑡−1.707247). 𝑚𝑖𝑛−1 

k4 12.61321 (𝑤𝑡−1.707247). 𝑚𝑖𝑛−1 

SSE 1.6537*10-5 _ 

 

Table 6 
Optimal values of model parameters are optimized using the linear method of CAT-3 

Parameter Value Unit 

n 1.982137 _ 

k1 0.6192847 (𝑤𝑡−0.982137). 𝑚𝑖𝑛−1 

k2 1.0099570 (𝑤𝑡−0.982137). 𝑚𝑖𝑛−1 

k3 1.5946560 (𝑤𝑡−0.982137). 𝑚𝑖𝑛−1 

k4 2.3959250 (𝑤𝑡−0.982137). 𝑚𝑖𝑛−1 

SSE 9.2137*10-6 _ 

 

Table 7 
 Kinetic parameter values (EA and ko) for each prepared catalyst 

Catalyst EA (kJ/mol) Frequency factor 

CAT-1 28.714 1634749.271 

CAT-2 26.182 100307.926 

CAT-3 26.401 22019.858 
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but it is approximately similar for the tow regressions using 
CAT3. The low activation energy for all prepared catalyst 
proved that the wet catalytic phenol oxidation process is more 
efficient and the phenol oxidation reaction is faster (Ahmad & 
Ahmad, 2017; Humadi et al., 2022; Ibrahim, Noori, & Khasbag, 
2016). The phenol oxidation reactivity enhances via increasing 
the electron density of the phenol and this cause the decreasing 
in the activation energy (Humadi, Gheni, et al., 2022; Sachdeva 
& Pant, 2010). The low activation energy results can be returned 
to the electrophilic addition of oxygen or the high electron 
density on phenol.  

These results for the activation energy might be driving 
forces compel phenol which is thermally lower staggered in 
reacting with the H2O2, and improve the performance of 
oxidation process (Borah, 2006; Hasan, Jeon, & Jhung, 2012; 
Humadi et al., 2022). The results showed that the frequency 
factor for the nonlinear model is lower than that for the linear 
model using CAT1 and CAT2 but it is higher using CAT3. In 
general, the low pre-exponential factor of wet catalytic phenol 
oxidation process referred to the no spontaneity of phenol 

oxidation reaction (Borah, 2006; Humadi, Gheni, et al., 2022). 
Since the sum of squared errors (SSE) of the nonlinear regression 
is lower than that of the linear regression, so more accurate 
optimal parameters are obtained by applying the nonlinear 
regression. 

 
6.4 Experimental and simulation results 

The simulation process was carried out by using gPROMS 
software. The experimental results and prediction results are 
shown in Tables S4 to S9. As can be seen from these Tables, the 
optimal kinetic parameters predicted by the modeling process 
gave accurate results with low error (<5%) for all prepared 
catalysts. Furthermore, since the sum of squared errors (SSE) of 
the nonlinear method is lower than that of the linear method 
described in Table 9, more accurate optimal parameters are 
obtained by applying the nonlinear method. 

Additionally, Figures 9 shows a parity plot between the 
experimental run results and the results predicted by the 
modeling process. As shown, the correlation between the 

Table 8 
Comparison between the kinetic parameters for the linear and nonlinear regressions 

Parameter Linear Non linear 

CAT1 

Reaction order, n 3.463377 3.36 

Frequency factor, Ko 1.6348×106 2.0596×106  

Activation energy, EA (kJ/mol) 28.714 30.080 

CAT2 

Reaction order, n 2.707247 2.75 

Frequency factor, Ko 1.0031×105 2.0711×105  

Activation energy, EA (kJ/mol) 26.182 27.599 

CAT3 

Reaction order, n 1.982137 1.98 

Frequency factor, Ko 22020 20952  

Activation energy, EA (kJ/mol) 26.401 26.254 

 

   

Fig 8. Comparison between experimental and simulated data for different prepared catalyst based on the linear and nonlinear regressions, (a) 
for CAT 1, (b) for CAT 2, and (c) for cat 3. 
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experimental and predicted data appears to be a straight line 
with a slope close to 1.0, indicating a high match between the 
experimental and predicted results. 

At various conditions (catalyst types, temperatures, and 
times), the obtained data experimentally and by modeling 
technique showed much acceptable error (<5%) as shown in 
Figures 9. According to these data, the experimental and 
predicted runs are remarkably agreed at the same CWPO 
conditions.  
 
6.5 Results of optimal process conditions for maximum removal of 
phenol 

The optimal process conditions specified by applying the 
optimization process to each prepared catalyst are summarized 
in Table 10 below. According to the results explained in this 
Table, the maximum performance for CWPO was 84.5%, 90.1%, 
and 98% which achieved via 5wt.% MnO2/Fe2O3 at (779 ppm, 
67 0C, 295 min), 2wt.% MnO2/Fe2O3 (791 ppm, 61 0C, 280 min), 
and Fe2O3 (764 ppm, 70 0C, 294 min), respectively to meet the 
environmental regulations for keeping fresh water without 
harmful impurities. These results proved that the maximum 
phenol removal efficiency was obtained via enhancing oxidation 
temperature and oxidation time. Also, the results of phenol 

oxidation process was improved and maximized via selecting 
efficient process model under optimal conditions. The obtained 
data proved that the maximum phenol removal was achieved 
under mild operating conditions. The maximum phenol 
removing efficiency was (98%) under the obtained optimal 
conditions. So that, eco-friendly fresh water was regarded the 
important objective this study.  
 

7 Conclusions 

In this study, a novel nano-catalyst (MnO2/Fe2O3) was prepared 
to catalyze the phenol oxidation process. The effect of operating 
conditions on the oxidation process was experimentally 
investigated in the presence of the prepared catalysts. It has 
been concluded that 70°C is the final temperature for phenol 
oxidation as oxidation; above this temperature tends to 
decompose the hydrogen peroxide and lose the strength of the 
oxidant. The three nano-catalyst were also found to resist 
deactivation and show stable performance by enduring 
operation for a long time. Simulation and optimization 
techniques were used to determine the optimal kinetic values of 
the prepared phenol oxidation catalysts nonlinear regression 

Table 10 
Optimal process conditions for phenol oxidation using the prepared catalysts 

Parameter, unit 

Values 

CAT-1 CAT-2 CAT-3 

𝐂𝐩𝐡𝐞𝐧𝐨𝐥.𝐭 , ppm 779 791 764 

T, oC 67 61 70 

Time, min 295 280 294 

Conversion, % 84.5 90.1 98 

 

Table 9  
Comparison between sum of squared errors (SSE) 

Parameters Sum of squared errors (SSE) 

Linear approach Non-linear approach 

CAT-1 28.00 × 10-6 24.500 × 10-6 

CAT-2 16.537 × 10-6 13.750 × 10-6 

CAT-3 87.057 × 10-7 92.137 × 10-7 

 

   

Fig 9. Comparison between experimental and simulated data for different prepared catalyst, (a) for CAT 1, (b) for CAT 2, and (c) for CAT 3. 
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was found to be more accurate for calculation the sum of square 
errors (SEE). Based on the optimal kinetic parameters, the 
highest conversion of CAT-3 phenol was 98% at 70oC, a 
residence time of 294 min, and an initial phenol concentration of 
764 ppm.  

Nomenclature 

𝐶𝑝ℎ Phenol Concentration (mol/cm3) 

𝑋𝑝ℎ Conversion of phenol (-) 

𝐶𝑝ℎ    Concentration of phenol at the end of the reaction (mol/cm3) 

𝐶𝑝ℎ.𝑡         Initial concentration of phenol present in wastewater (mol/cm3) 

k Reaction Rate Constant 
kApp Apparent Rate Constant 
𝒟𝑒𝑖  Effective diffusivity (cm2/s) 
𝒟𝑘𝑖  Knudsen diffusivity 
𝒟𝑚𝑖  Molecular diffusivity (cm2/s) 
EA Activation Energy (J/mol K) 

𝑀𝑤,𝑝ℎ Molecular weight of phenol (gm/gmol) 

Tc Critical temperature of phenol (oR) 
Tb Boiling point temperature of phenol (oC) 
Tbr Reduced boiling point temperature 
Tr Reduced temperature 
R Gas constant (J/mol K) 
n Order of reaction 

−𝑟𝑝ℎ Reaction rate of phenol 

𝑟𝑔 Pore radius (nm) 

𝑟𝑝 Particle radius (nm) 

𝑆𝑝 External surface area of catalyst particle (cm2/gm) 

𝑆𝑔 Specific surface area of particle (cm2) 

𝑉𝑝 External Volume of catalyst particle (cm3) 

𝑉𝑔 Pore volume (cm3/gm) 

𝑣𝑙  Liquid molar volume 
𝑣𝑐𝑙  Critical molar volume of liquid (cm3/gmole) 
𝑣𝑝ℎ Molar volume of phenol 

𝑣𝑐,𝑝ℎ Critical volume of phenol (cm3/gmole)   

 
Greek Symbols 

η0  Effectiveness factor 
 𝛼         Constant factor 
Φ  Volume fraction of molecule 
ℰ𝐵  Porosity 
𝒯  Tortuosity 
𝜌𝐵  Bulk density (gm/cm3) 
𝜌𝑝  Particle density (gm/cm3) 

𝜇𝑝ℎ  Viscosity of phenol (mPa s) 

𝜇𝑝ℎ,𝑏  Viscosity of phenol at boiling point (mPa s) 

ᴼ  Initial (at time = 0) 
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