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Abstract. This study presents a modern version of the economic load dispatch (MELD) problem with the contribution of renewable energies and 
conventional energy, including wind, solar and thermal power plants. In the study, reduction of electricity generation cost is the first priority, while 
the use of multiple fuels in the thermal power plant is considered in addition to the consideration of all constraints of power plants. Two meta-heuristic 
algorithms, one conventional and one recently published, including Particle swarm optimization (PSO) and Equilibrium optimizer (EO), are applied to 
determine the optimal solutions for MELD. A power system with ten thermal power plants using multiple fossil fuels, one wind power plant, and three 
solar power plants is utilized to evaluate the performance of both PSO and EO. Unlike other previous studies, this paper considers the MELD problem 
with the change of load demands over one day with 24 periods as a real power system. In addition, the power generated by both wind and solar 
power plants varies at each period. The results obtained by applying the two algorithms indicate that EO is completely superior to PSO, and the 
solutions found by EO can satisfy all constraints. Particularly in Case 1 with different load demand values, EO achieves better total electricity 
production cost (TEGC) than PSO by 0.75%, 0.87%, 0.13%, and 0.45% for the loads of 2400 MW, 2500 MW, 2600 MW and 2700 MW. Moreover, EO 
also provides a faster response capability over PSO through the four subcases although EO and PSO are run by the same selection of control 
parameters. In Case 2, the high efficiency provided by EO is still maintained, though the scale of the considered problem has been substantially 
enlarged. Specifically, EO can save $51.2 compared to PSO for the minimum TEGC. The savings cost is equal to 0.33% for the whole schedule of 24 
hours. With these results, EO is acknowledged as a favourable search method for dealing with the MELD problem. Besides, this study also points out 
the difference in performance between a modern meta-heuristic algorithm (EO) and the classical one (PSO). The modern metaheuristic algorithm 
with special structure is highly valuable for complicated problem as MELD.  
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1. Introduction 

Economic load dispatch (ELD) is considered one of the most 
crucial problems in power system operation. The determination 
of an optimal solution to ELD allows the operators to save more 
operation cost and reduce environmental damage (Xiang et al., 
2021). Nowadays, the concept of the conventional economic 
load dispatch (CELD) is obsoleted and does not fit modern 
power systems anymore because of its static nature. In addition, 
CELD only considers thermal generators as the sole generating 
source. However, the modern economic load dispatch (MELD) 
was updated once multiple objective functions and renewable 
energy sources (RES) (Zhang et al., 2021; Shen et al., 2019; Li et 
al., 2020) were taken into account. Specifically, several objective 
functions can be listed, such as reducing the total electricity 
generating cost (TEGC), reducing the entire emissions (REE), 
etc. These objectives can be considered simultaneously or 
separately, depending on the different targets such as financial 
factor or/and technical factor. Besides, both CELD and MELD 
have a lot in common, such as the set of related constraints and 
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the type of variable needed to be found. In terms of related 
constraints, several typical constraints can be named, such as 
the power balance constraint, the generator operational 
constraints, the multiple fuel constraint, etc. About the types of 
variables when dealing with both CELD and MELD problems, 
there are two of them, including the control and the dependent 
variables. These variables must be defined prior to any kind of 
computation. Particularly with these mentioned problems, 
control variables are the power generated by all the existent 
generators in the system except for the first generator, which is 
considered the dependent variable. In the whole process of 
solving such CELD and MELD problems, an optimal solution is 
acknowledged if only both control variables and dependent 
variables satisfy all the related constraints with the minimum 
value of the fitness function. The types of RES integrated with 
power systems are mainly solar and wind energies. Therefore, 
the thermal, wind and solar power plants supply enough power 
to loads in MELD, while only thermal power plants are in charge 
of the role in CELD (Hlalele et al., 2021; Kim and Kim, 2020). In 
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this study, MELD problem with the integration of RES into 
thermal power plants is solved. 

At the beginning of the foundation for the CELD problem, 
the solution for the problem is commonly given by the old 
fashion computing methods such as the gradient method, the 
quadratic method, and the conventional iterative method. The 
real efficiency of these methods seems to be good and 
acceptable as the theorem study. However, at the time, MELD 
is widely studied and the scale of the problem is enlarged so 
much over CELD. Besides, many complicate constraints are 
also taken into account. As a result, the whole complicated 
degree of MELD is increased substantially. The application of 
old fashion computing methods begins showing more 
drawbacks such as a low response, a poor accuracy. Luckily, in 
two past decades, computing methods have witnessed a huge 
leap forward in meta-heuristic methods to cope with high-
degree complicated problems. There have been a huge number 
of meta-heuristic applied to MELD problem, such as Genetic 
algorithm (GA) (Chen and Chang, 1995), Particle swarm 
optimization (PSO) (Park et al., 2005), Artificial algae algorithm 
(AAA) (Kumar and Dhillon, 2018), Modified differential 
evolution (MDE) (Nguyen et al., 2018), Grey wolf optimal 
(Pradhan et al., 2016), Tunicate Swarm Optimizer (TSO) in  
(Hien et al., 2021), differential evolution (DE) in (Parouha and 
Das, 2018), improved firework algorithm (IFA) (Zare et al., 
2021), quantum PSO (QPSO) (Xin-gang et al., 2020), improved 
Manta ray optimization (IMRO) (Hassan et al., 2021), simplex 
search-based PSO (SSM-PSO) (Chopra et al., 2021), improved 
bird swarm optimization (IBSO) (Fu et al., 2020), Distributed 
roust optimization (DRO) (Chang et al., 2021), hybrid grey wolf 
optimizer (Al-Betar et al., 2020), Pattern search and Sequential 
quadratic programing-based genetic algorithm (PS-SQP-GA) 
(Alsumait et al., 2010), Double weight-based PSO (DW-PSO) 
(Kheshti et al., 2018), improved bacterial foraging algorithm 
(IBFA) (Pandit et al., 2012),  acceleration coefficients-based PSO 
(AC-PSO) (Ghasemi et al., 2019), Nondominated sorting-based 
genetic algorithm (NSGA) (Basu, 2008), Chaotic differential 
evolution (CDE) (Coelho and Mariani, 2006), biogeography 
optimization (BO) (Xiong and Shi, 2018), and Ameliorated 
dragonfly algorithm (ADA) (Suresh et al., 2019). These 
algorithms have shown a good performance as compared to 
deterministic algorithms based on Lagrange relaxation, newton, 
gradient search (Vaisakh and Reddy, 2013; Nguyen et al., 2019); 
however, these algorithms have not been applied to deal with 
the complex fuel cost functions of thermal units with three fuel 
options (Chen et al., 2020; Pham et al., 2022). Multiple fuel 
options can be used for generating units in thermal power plants 
and the different options can bring more benefits to thermal 
power plants. But the units with several fuel options can bring 
more challenges to optimization tools since the generation of 
unit is not continuous within allowable ranges (Dieu et al., 2013; 
Jeyakumar et al., 2006). Almost applied algorithms for the 
multiple fuel units are strong and not much dependent on 
Lagrange function, excluding augmented Lagrange Hopfield 
network (ALHN) (Dieu et al., 2013). In fact, these applied 
methods are comprised of Modified PSO (Jeyakumar et al., 
2006), Differential evolution (Noman and Iba, 2008), Self-
Adaptive Differential Evolution (SDE) (Balamurugan and 
Subramanian, 2007), adaptive real coded genetic algorithm 
(ARC-GA) (Amjady and Nasiri-Rad, 2010), and Improved 
evolutionary programming (IEP) (Park et al., 1998). These 
algorithms have reported good results with minimum fuel cost 
and high stable search ability; however, the search speed was 
almost neglected once the comparison of setting parameters 
was not implemented. 

In this study, the original version of PSO (Kennedy and 
Eberhart, 1995) and one modern meta-heuristic algorithm 

called Equilibrium optimizer (EO) (Faramarzi et al., 2020) are 
applied to determine the optimal solution for MELD with 
multiple fuel options and renewable energies. The multiple fuel 
options are examined in the operation cost function belonging 
to thermal generators. The renewable generating sources, 
including one wind farm and three solar power plants, and the 
variation of power output values from these sources within 24 
hours are included. The first priority of this study is to reduce 
the total operation cost as much as possible. The application of 
both EO and PSO is considered to be a good example for 
evaluating the performance of a modern meta-heuristic 
algorithm and a classical algorithm. 

Briefly, the novelties of this study can be seen on different 
aspects, including proposing the MELD problem where varied 
load demands are employed with a day and the 24-single 
periods, the variation of power generated from both wind and 
solar power plants is examined throughout the 24 periods, and 
the difference in raw performance between the modern meta-
heuristic algorithm and the classical one is clarified and pointed 
out based on the results. The key contributions of the study are 
stated in the four claims. Firstly, the proposed MELD is 
successfully solved considering the presence of both solar and 
wind power plants. Secondly, the optimal solution for MELD is 
determined under the consideration of the multiple fuel 
constraints. Thirdly, EO is proved to be the best applied method 
for the proposed problem through the comparisons of the 
results reached by PSO and other previous studies. Lastly, the 
superiority of a modern meta-heuristic algorithm (EO) over the 
classical one (PSO) is proved and demonstrated by results and 
figures. 

In this study, two power systems with different complicated 
levels are considered for reaching the objective function of 
reducing the total electric generation cost over optimal schedule 
horizon, one hour for the first system and 24 hours for the 
second system. The two systems use the same ten thermal 
generating units in which each thermal generating unit can use 
two or three fuel types for electric production. The total cost 
values from the two systems are comparison criteria to 
evaluating the performance of EO and other algorithms.  

2. Problem descriptions. 

2.1 Main objective function 

As mentioned earlier, there are three types of generating 
sources in this study, including thermal power plants, wind 
power plants, and solar power plants. However, only the 
operation process of thermal generators consumes fossil fuels. 
So, the major target of the problem is to reduce the total 
electricity generation cost (TEGC) from thermal power plants. 
The target can be formulated as follows. 

𝑅𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑇𝐸𝐺𝐶 =  ∑𝐸𝐺𝐶𝑔

𝐺

𝑔=1

 (1) 

Where EGCg ($/h) is the fuel cost of the gth thermal generator 
and formulated by (Park et al., 2005): 

𝐸𝐺𝐶𝑔 = 𝜀𝑔 + 𝛿𝑔𝑃𝐺𝑔 + 𝛾𝑔𝑃𝐺𝑔
2 𝑤𝑖𝑡ℎ 𝑔 = 1, … , 𝐺 (2) 

TEGC is the total fuel cost of all G generators working in one 
hour meanwhile 𝐸𝐺𝐶𝑔 is the fuel cost of one generator only. So, 

the unit of TEGC is $ but that is $/h for EGCg. The cost function 
of the thermal generator, 𝐸𝐺𝐶𝑔described in Equation (2) is 

depicted at Fig.1a. 
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Fig. 1 Models of fuel cost function for thermal units: a) One fuel 
option; b) multiple fuel options 

 

In addition, the multiple fuels aspect is also considered in this 
study, as shown in Fig. 1b. According to (Dieu et al., 2013), The 
mathematical expression of 𝐸𝐺𝐶𝑔 is represented by: 

𝐸𝐺𝐶𝑔

=

{
 

 
𝜀𝑔1 + 𝛿𝑔1𝑃𝐺𝑔 + 𝛾𝑔1𝑃𝐺𝑔

2 , 𝑓𝑢𝑒𝑙 1, 𝑃𝐺𝑔1,𝑙𝑠 ≤ 𝑃𝐺𝑔 ≤ 𝑃𝐺𝑔1,ℎ𝑠

𝜀𝑔2 + 𝛿𝑔2𝑃𝐺𝑔 + 𝛾𝑔2𝑃𝐺𝑔
2 , 𝑓𝑢𝑒𝑙 2, 𝑃𝐺𝑔2,𝑙𝑠 ≤ 𝑃𝐺𝑔 ≤ 𝑃𝐺𝑔2,ℎ𝑠

…
𝜀𝑔𝑤 + 𝛿𝑔𝑤𝑃𝐺𝑔 + 𝛾𝑔𝑤𝑃𝐺𝑔

2, 𝑓𝑢𝑒𝑙 𝑤, 𝑃𝐺𝑔𝑤,𝑙𝑠 ≤ 𝑃𝐺𝑔 ≤ 𝑃𝐺𝑔𝑤,ℎ𝑠

 
(3) 

Where 𝜀𝑔1, 𝛿𝑔1, and 𝛾𝑔1 are fuel consumption factors while using 

fuel 1 of generator g; 𝑃𝐺𝑔1,𝑙𝑠  and 𝑃𝐺𝑔1,ℎ𝑠 are the lowest and 

highest power generated by generator g whilst using fuel 1. 
Similarly, 𝜀𝑔2, 𝛿𝑔2 and 𝛾𝑔2 are fuel consumption factors of 

generator g whilst using fuel 2. 𝑃𝐺𝑔2,𝑙𝑠  and 𝑃𝐺𝑔2,ℎ𝑠 are the lowest 

and highest power generated by generator g whilst using the 
fuel 2. Finally, 𝜀𝑔𝑤, 𝛿𝑔𝑤, and 𝛾𝑔𝑤 are fuel consumption factors 

while using the fuel 𝑤 of generator g; and 𝑃𝐺𝑔𝑤,𝑙𝑠 and 

𝑃𝐺𝑔𝑤,ℎ𝑠 are the lowest and highest power generated by 

generator g whilst using the fuel 𝑤. 

2.2 Constraints 

There are important constraints that must be respected while 
solving both CELD and MELD. They are described one by one 
as follows: 

• Power balance constraint:  This constraint is mainly 
about the relationship between the generating side 
and the demand side. According to (Duong et al., 
2021), the mathematical expression of the constraint is 
presented by Eq 4: 

𝑃𝐷 + 𝑃𝐿 = ∑𝑃𝐺𝑔

𝐺

𝑔=1

+ 𝑃𝑊 + 𝑃𝑆 (4) 

In Equation (4), PL is calculated by using the Equation 
(5) below (Dieu et al., 2013): 

𝑃𝐿 = ∑∑𝑃𝐺𝑔𝐵𝑔ℎ𝑃𝐺ℎ

𝐺

ℎ=1

𝐺

𝑔=1

+∑𝐵0𝑔𝑃𝐺𝑔

𝐺

𝑔=1

+ 𝐵00 (5) 

• Generator operational constraints: This constraint is 
about the working limit belonging to thermal 
generators. That means power output must allocate in 
the allowed range as depicted in Equation (6). Besides, 
the working limitation of a typical thermal generator is 
illustrated in Fig. 2. According to (Dieu et al., 2013), 
this constraint is formulated as follow: 

𝑃𝐺𝑔,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑔 ≤ 𝑃𝐺𝑔,𝑚𝑎𝑥 (6) 

• The electricity producing constraint of solar power 
plant: according to (Phan et al., 2021) the power 
generated by solar power plant is limited as follows: 

∑𝑃𝑆𝐺,𝑞

𝑁𝑆

𝑞

≤ 80%× 𝑃𝐷 (7) 

𝑃𝑆𝐺,𝑞
𝑚𝑖𝑛 ≤ |𝑃𝑆𝐺,𝑞| ≤ 𝑃𝑆𝐺,𝑞

𝑚𝑎𝑥 (8) 

3. The applied methods 

To determine the optimal solution for MELD in this study, two 
meta-heuristic methods, Particle swarm optimization (PSO) 
(Kennedy and Eberhart, 1995) and Equilibrium optimizer (EO) 
(Faramarzi et al., 2020) are applied to solve the given problem. 
PSO is inspired by the foraging practice of animal swarms in real 
life such as fish, bird, ox, etc., while EO is inspired by physical 
law named equilibrium state of mass. The key difference 
between PSO and EO is their update process for new solutions, 
which will be described in the following subsections: 

 

Fig. 2 The working limitation of a thermal generator 
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3.1 The original version of PSO 

The update process for new solutions belonging to PSO 
includes two main steps: the velocity update and the new 
position update. These steps are clarified by mathematical 
Equations (9) and (10) as follows: 

𝑉𝑖
𝑛𝑒𝑤 = 𝑉𝑖 + 𝑐𝑞1 × 𝛾1 × (𝑃𝐵𝑒𝑠𝑡,𝑖 − 𝑃𝑖)

+ 𝑐𝑞2 × 𝛾2 × (𝑃𝐺𝑏𝑒𝑠𝑡,𝑖 − 𝑃𝑖) 
(9) 

𝑃𝑖
𝑛𝑒𝑤 = 𝑃𝑖 + 𝑉𝑖

𝑛𝑒𝑤 (10) 

3.2 The Equilibrium optimizer (EO)  

The update process of EO is conducted based on the 
references around the four best solutions at each iteration. The 
key elements of the whole process are described as follows: 

𝑆𝑖
𝑛𝑒𝑤 = 𝑆𝑠 + (𝑆𝑖 − 𝑆𝑠)𝐸𝑥 +

𝐺𝑒

𝑣𝑟
(1 − 𝐸𝑥) 

𝑤𝑖𝑡ℎ 𝑖 =  1, . . . , 𝑁𝑃 
(11) 

In Equation (11), the exponential term (Ex) and the generation 
rate (Ge) are calculated by using the Equations below: 

𝐸𝑥 = 𝜃1𝑠𝑖𝑔𝑛(𝜔 − 0.5)(𝑒
−𝑡𝑓.𝑣𝑟 − 1) (12) 

Where 𝜃1 is set by 2, and the integer number (𝜔) is a random 
value between 0 and 1. Besides, the time length factor (𝑡𝑓) is a 
value that changes with each iteration, and its value depends 
entirely on the maximum iteration number (𝐼𝑡𝑀𝑎𝑥) and the 
current iteration number (𝐼𝑡). 𝑡𝑓 can be determined by using the 
Equation (13) 

𝑡𝑓 =  (1 − 
𝐻

𝐻𝑀𝑎𝑥
)
𝜃2(

𝐻
𝐻𝑀𝑎𝑥

)

 (13) 

where 𝛽2 is set by 1 (Faramarzi et al., 2020), 𝐻 is the current 
iteration, and 𝐻𝑀𝑎𝑥 is the maximum quantity of iteration. 

About the generation rate (Ge), this term can be found by 
using the Equation (14) below: 

 
𝐺𝑒 = 𝐸𝑥. 𝛿. (𝑆𝑠 − 𝑣𝑟. 𝑆𝑖) (14) 

Where, 

𝛿 = {
𝑟𝑑3
2
 𝑖𝑓 𝑟𝑑4 ≥ 𝑐𝑓

0 𝑒𝑙𝑠𝑒

 (15) 

Where 𝒄𝒇 is set by 0.5 (Faramarzi et al., 2020). 

4. Results and discussions 

The study is conducted on a personal computer with a Central 
processing unit (CPU) of 2.0 GHz and 8 GB of Random-Access 
Memory (RAM). The coding is implemented in MATLAB 
software with version 2018b. The two study cases are 
implemented as follows: 

- Study Case 1: The system with ten thermal units using 
multiple fuels for four load demand cases, including 
2400, 2500, 2600, and 2700 MW. Data of the system is 
taken from (Park et al., 1998). 

- Study Case 2: One wind and three solar photovoltaic 
power plants are integrated into the above ten-unit 
system. The power output supplied by wind farms and 
solar power plants over one day are taken from the 
studies (Zhang et al., 2017) and (Augusteen et al., 
2016), respectively. 

 

Fig. 3 The results obtained by PSO and EO after 50 independent runs corresponding to different load demand values: a) Load of 2400MW, b) 
Load of 2500MW, c) Load of 2600MW, and d) Load of 2700MW 
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4.1 The determination of population and maximum iteration 

Initially, the determination of optimal settings for the initial 
control parameters, including population and maximum 
iteration, is one of the first hurdles that must be overcome. To 
deal with the first hurdle, different simulations have been 
conducted before the certain values for the population and the 
maximum number of iterations are established. Due to the high 
complexity posted by the set of constraints, the large scale of 
search space explicitly seen in Case 2, and the non-convex 
characteristic of both CELD and MELD, EO and PSO are 
executed with different settings of population and maximum 
iteration. For Study Case 1, the population is set to 30, 40, 50, 
and 60, respectively. The maximum iteration is also varied from 
80, 90, 100, and 150, respectively. The results obtained by all 
experiments revealed that the value of the population strongly 
influences the quality of the solutions and the execution time of 
each iteration, while the iteration number highly involves the 
quality of the solutions and the execution time of an 
independent run. As a result, when the population is set to a high 
value, the quality of the solutions will be improved; however, 
each iteration will require more time to complete. If maximum 
iteration is fixed at a high value, the quality of the solution at the 
end of each independent run could be enhanced, but more time 
would be consumed to finish a run. More importantly, if both 
population and maximum iteration are set to large values, the 
applied methods will result in the same optimal solutions after a 
long execution time. In that circumstance, the performance of 
the two applied methods cannot be evaluated precisely and 
reliably. By analysing the results obtained by the mentioned 
experiments, 50 and 100 are considered the optimal setting for 
population and maximum iteration. These settings also perfectly 
serve the initial purpose of evaluating the performance of the 
EO and PSO. Study Case 2 is more complicated than Study Case 
1 by considering 24 periods instead of one period. The setting 
of Case 1 is applied for each hour of Case 2. So, Case 2 takes 
more simulation time than Case 1 as a result. 

4.2 Results of Case 1  

Fig. 3 presents the results obtained by PSO and EO for 50 trial 
runs. The four subfigures have the same characteristic that EO 
can reach approximately the same solution for over 50 runs but 
those from PSO highly fluctuate. In addition, PSO cannot reach 
the same best solution as EO. Fig. 4 shows the best run of PSO 
and EO for the four cases. Specifically, for the first load demand 
case with 2400 MW, EO only needs over 50 iterations to reach 
the best value of the considered fitness function, while PSO 
cannot perform the same even if the last iteration is used on this 
best run. For the last three cases of load demand, EO still 
maintains its fast-response capability over PSO by reaching the 
fitness value with fewer iterations. Particularly, with load 
demands of 2500, 2600, and 2700 (MW), EO also requires 
approximately 60 iterations to obtain the best value, while PSO 
cannot achieve any similar value on the three comparisons. 
Clearly, EO is much faster than PSO in finding the most optimal 
generation solutions.  

Fig. 5 shows the best cost for the four cases obtained by 
PSO, EO and other methods. In the figure, PSO is the worst 
method while EO can reach the same or slightly smaller cost 
than others. It should be emphasized here that EO only search 
solution by using 50 and 100 for population and iterations, 
whereas others must use higher than 100 for iterations 
excluding ALHN (Dieu et al., 2013), which is a deterministic 
algorithm. Because of this evidence, the superiority of EO over 
other previous methods is not deniable, so this study focuses on 
analyzing the efficiency of EO and PSO for each subfigure 
corresponding to each level of load demand. Particularly, in the 
first case of load demand in Fig. 5 with 2400 MW, the TEGC 
achieved by EO is only $481.723, while the similar value 
obtained by PSO is up to $485.317. The savings cost saved by 
EO over PSO in this case is approximately $3.6, corresponding 
to 0.75%. On the three remaining load demand levels, the TGEC 
values achieved by EO are, respectively, $526.239, $574.381, 
and $623.809. The similar values resulted by PSO are, 

 

Fig. 4 The best convergences obtained by PSO and EO among 50 independent runs corresponding  
to different load demand values: a) Load of 2400MW, b) Load of 2500MW, c) Load of 2600MW, and d) Load of 2700MW 
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respectively, $530.826, $575.128, and $626.259. The savings 
costs saved by EO over PSO in these cases are $4.587, $0.747, 
and $2.784, corresponding to 0.87%, 0.13%, and 0.45%, 
respectively. As stated in the study (Nguyen et al., 2021), a 
method with better minimum, mean and maximum objective 
function is more effective than others. So, EO is more suitable 
than PSO for the system. 
 
4.3 The results of Case 2 

In the study case, the integrated system supplies electricity to 
loads over 24 hours as shown in Fig. 6. In addition, the 
generation of the wind and solar photovoltaic power plants are 

also given in Fig. 6. Both PSO and EO are applied to determine 
the optimal generation of the ten thermal generators and the 
summary of 50 runs is given in Fig. 7. In the figure, three 
comparison criteria are employed to analyse the efficiency of 
the two applied methods while dealing with the larger scale of 
the MELD problem, including the Minimum TEGC within 24 
hours (Minimum), Average TEGC within 24 hours (Average), 
and Maximum TEGC within 24 hours (Maximum). The green 
bars stand for the results obtained by PSO, while the blue ones 
represent the similar values achieved by EO. For the first 
criterion, EO achieves $15384.5 of the TEGC, while that of PSO 
is $15435.7. It is easy to figure out that EO has saved $51.2, or 
0.33%, over PSO on this criterion in an operation day. Next, in 

 

Fig. 5 The comparison between two applied methods and other methods on different values of load demand: : a) Load of 2400MW, b) Load of 
2500MW, c) Load of 2600MW, and d) Load of 2700MW  

 

 

Fig. 6 Load demand and generation of wind and solar plants over 24 hours 
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the average and maximum criteria, the savings costs saved by 
EO over PSO are even larger. Specifically, the savings costs in 
these criteria are $325.7 and $1132.1, corresponding to 2.12% 
and 7.31%, respectively.  Clearly, EO completely outperforms 
PSO while dealing with the large-scale MELD. 

Fig. 8 shows the fuel cost at each hour for the best, mean, 
and worst solutions of over 50 solutions obtained by PSO and 

EO, corresponding with the subfigures a, b, and c. In terms of 
the best solution presented in Fig. 8a, EO always offers a better 
value of TEGC per hour. Particularly, regardless of the variation 
in load demand within 24 hours, the TEGC values found by EO 
at each hour are lower than the ones obtained by PSO at the 
same time. However, the differences between the TEGC values 
resulting from EO compared to the similar ones belonging to 

 

Fig. 7 Summary of 50 runs found by PSO and EO  
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Fig. 8 The TEGC of each hour obtained by PSO and EO: a) TEGC of the best run, b) TEGC of the mean run, c) TEGC of the worst run 
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PSO are not much in Fig. 8a. Hence, the outstanding 
characteristics of EO over PSO are not clearly shown. In Fig. 8b, 
the efficiency of a modern meta-heuristic algorithm such as EO 
starts to reveal itself. In the figure, the contrast in TEGC values 
obtained by EO and PSO starts to depart from each other in all 
hours and is easy to observe. EO always results in lower values 
of TEGC over PSO throughout the 24 hours. Noticeably, the 
TEGCs found by EO are always better than PSO even in the high 
load demand hours. Finally, the observations on Fig. 8c indicate 
that the high efficiency of EO is enhanced when compared to 
PSO. Particularly, the better degree of TEGC values resulted by 
EO can be seen vividly for 24 hours, regardless of high demand 
hours or low demand ones. In addition to that, the TEGC values 
from 8 to 17 hours found by EO compared PSO are substantially 
better than the same period as mentioned in Fig. 8b.    

The most optimal generations for the ten thermal units 
corresponding to the best solution are reported in Fig. 9. In 
general, the generation rate of the units is dependent on the load 
level at each hour and units with higher generation is more 
effective than units with lower generation.  

4.3 Discussion on performance of EO and on renewable energies 

EO is a metaheuristic algorithm mainly based on 
randomization, exploitation, and exploration. Randomization is 
a general characteristic for approximately all algorithms 
belonging to the metaheuristic family. So, EO as well as PSO are 
sensitive to settings of population, iterations and run number, 
leading to different results for the number of trials. Because of 
the unexpected characteristic, EO has been implemented for 50 
trials for each study case to summarize the best, mean and worst 
results for comparisons. Fig. 4 above indicates the very stable 
ability of EO in reaching the best solution for four study cases. 
EO found the same solution quality for the 50 runs, which can 
be seen via the line of fuel cost, meanwhile PSO must suffer very 
high fluctuation among the 50 runs, especially the deviation 
between the best and the worst runs. The two algorithms were 
tested by using the same population of 50 and the same iteration 
of 100. About the structure, EO only use one main Equation (11) 
to update solutions, here they are generation of thermal units. 
PSO has updated velocity and location in which velocity is 
equivalent to an increased interval and location is solution. The 
algorithms have the same characteristic of using randomization, 

but EO almost do not have sensitivity to the randomization. 
Here, the setting of population and iteration are 50 and 100, not 
having enough impact on the change of EO but they highly 
influence the fluctuations of PSO. As compared to other 
previous algorithms shown in previous studies, the best 
performance of EO cannot be shown in terms of reaching less 
fuel costs than these algorithms. EO only reached smaller cost 
than several algorithms such as SDE, IEP, and ARDGA. Other 
algorithms did not show all simulated results as the study, so the 
full comparison is impossible to carry out. On the other hand, 
presentation of settings of iterations and population was not 
done in the studies too. However, the use of 50 and 100 for 
population and iteration is not high setting for the algorithm. 
And the comparison with PSO is the evidence for this statement. 
PSO could not reach the best solution although it was run 50 
trials. So, EO is a very effective algorithm for this research. 

In the second case of testing EO performance, the supplied 
power to load over 24 hours with an additional supply from solar 
and wind power plants are both employed. The second case is 
much more complicated than the first case in terms of multiple 
hours and the presence of renewable energies-based generating 
units. The uncertainty of wind and solar have not been 
considered, and this is the major shortcoming of the study. 
However, the power sources have a high contribution to form a 
load curve for one day within 24 hours and reduce the fuel cost 
from thermal units. The fixed power of the renewable energies-
based units can guarantee energy security, i.e., load demand 
can be satisfied all hours. However, there are other cases that 
the real power of renewable power plants is smaller than 
predetermined values. This case is serious for the power system 
and frequency can be reduced to a smaller value than rated 
frequency. For this case, thermal units or battery energy storage 
system (BESS) as considered by (Kheiter et al., 2022) can supply 
more power to compensate for the lack of the renewable 
energies-based units. To reach the purpose, BESS must save 
enough energy for discharge meanwhile the thermal units copes 
with the challenge of increasing power or starting up shut down 
units. This unexpected issue should be solved in the future work 
and the power system will become more effective in the future. 
Besides, the uncertainties and the mathematical models of 
renewable energy sources, including solar and wind power 
plants, as considered in (Kaur et al., 2021; Khamharnphol et al., 

 
Fig. 9 The most optimal generations of each thermal unit over 24 hours 
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2022), should be employed while solving the MELD problem as 
another complex constraint for assessing the efficiency of a 
modern meta-heuristic algorithm such as EO. This 
implementation is also a great method to improve the overall 
quality of the study and make it closer to practice, where the 
penetration rate of these sources is growing.  

5. Conclusion 

In this study, one conventional ten-thermal unit power system 
and one integrated ten-thermal unit, three-solar photovoltaic 
plant and one wind-plant power systems are successfully solved 
by conventional meta-heuristic algorithm, named Particle 
swarm optimization and a modern one, named Equilibrium 
Optimizer. The evaluation of results about the minimum and 
maximum total electricity generating cost values indicated that 
EO is completely superior to PSO. Specifically, EO provides a 
quick response capability, lower fluctuations of fitness values for 
fifty independent runs, and fast convergence to optimal results. 
Therefore, EO has been acknowledged as a highly effective 
method for solving MELD problems. In the future, the MELD 
should be expanded with the consideration of higher-degree 
complicated constraints such as prohibited operation zone, 
valve point effects and uncertainties of renewable.  
In addition to highly valuable contributions above, this study 
also copes with the following shortcomings:  

➢ Other constraints of thermal generating units are still 
not evaluated on this study such as valve point effects, 
ramp-rate limits, prohibited zones, etc.  

➢ The study only considers the case that both wind and 
solar power plants generate enough power to meet the 
demand as predicted. For other cases with a mismatch 
between the power generated by wind and solar 
power plants and the load demand, the evaluation in 
these cases is not taken place. As a result, no actions 
are proposed to deal with these scenarios while power 
from wind and solar power plants is lower or higher 
than load demand. 

➢ The uncertainties of the wind and solar power plants 
is not clearly discussed and evaluated strictly. 

By fully acknowledging the shortcomings, there are many 
improvements that must be conducted in the future. 

➢ More high-complex constraints related to MELD must 
be taken into account. 

➢ The uncertainties of power generated by wind and 
solar power plants must be fully evaluated while 
solving MELD. 

➢ More scenarios of power system operation must be 
employed and analyzed. Especially, as there is a 
mismatch between the forecast and the real power 
production from wind and solar power plants. 
Consequences as well as solutions for the cases have 
to be calculated and proposed to reach the least 
impact.  

Nomenclature 

G The number of thermal generators 
𝜀𝑔, 𝛿𝑔, and 𝛾𝑔 The fuel coefficients 

PGg 
 

The power output of thermal generator g (MW) 

𝑃𝐷  The power demand required by the load (MW) 

𝑃𝐿  
The total power loss of the transmission process 
(MW) 

∑ 𝑃𝑔
𝐺
𝑔=1   

The total power generated by all thermal 
generators (MW) 

𝑃𝑊 and 𝑃𝑆  
The power supplied by wind and solar 
generators (MW) 

Bgh, B0g, and B00 The loss factors 

PGg and PGh  
The power injected by the generators g and h 
(MW) 

𝑃𝐺𝑔,𝑚𝑖𝑛  and 

𝑃𝐺𝑔,𝑚𝑎𝑥  
The working limitations of generator g (MW) 

∑ 𝑃𝑆𝐺,𝑞
𝑁𝑆
𝑞   

The total power generated by all solar power 
plants (MW) 

𝑃𝑆𝐺,𝑞(MW)   
Active power generated by solar power plant q 
(MW) 

𝑃𝑆𝐺,𝑞
𝑚𝑖𝑛 and 𝑃𝑆𝐺,𝑞

𝑚𝑎𝑥  
The minimum and maximum power generated by 
solar generator q (MW) 

NP The population number 

𝑉𝑖
𝑛𝑒𝑤 and 𝑃𝑖

𝑛𝑒𝑤 
The new velocity and new position of the 
individual i. 

𝑉𝑖 and 𝑃𝑖 
The current velocity and current position of 
individual i 

qc1 and cq2 The accelerating factors 

𝛾1 and 𝛾2 
The random numbers in the interval between 0 
and 1 

𝑃𝐵𝑒𝑠𝑡,𝑖 and 𝑃𝐺𝑏𝑒𝑠𝑡,𝑖 
The best position at the time considered and the 
best position at all times of the individual i. 

vr A random value in the range of (0, 1) 

𝑟𝑑3 and 𝑟𝑑4 
The random values in the interval between 0 and 
1 

𝑐𝑓   The comparative factor 
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