
Int. J. Renew. Energy Dev. 2023, 12(4), 666-676 
| 666 

https://doi.org/10.14710/ijred.2023.53193  
ISSN: 2252-4940/© 2023.The Author(s). Published by CBIORE 

 Contents list available at IJRED website 

International Journal of Renewable Energy Development 

Journal homepage: https://ijred.undip.ac.id 
 

Offering strategy of a price-maker virtual power plant in the day-
ahead market 

Nhung Nguyen-Hong* , Khai Bui Quang, Long Phan Vo Thanh, Duc Bui Huynh 

Department of Electrical Engineering, School of Electrical and Electronics Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam 

Abstract. With the rapid increase of renewable energy sources (RESs), the virtual power plant model (VPP) has been developed to integrate RESs, 
energy storage systems (ESSs), and local customers to overcome the RESs’ disadvantages. When the VPP’s capacity is large enough, it can participate 
in the electricity market as a price-maker instead of a price-taker to obtain a higher profit. This study proposes a bi-level optimization model to 
determine the optimal trading strategies of a price-maker VPP in the day-ahead (DA) market. The operation schedule of the components in the VPP 
is also optimized to achieve the highest profit for the VPP. In the bi-level optimization problem, the upper-level model is maximizing the VPP’s profit 
while the lower-level model is the DA market-clearing problem. The bi-level optimization problem is formulated as a Mathematical Problem with 
Equilibrium Constraints (MPEC), reformulated to a Mixed Integer Linear Problem (MILP), then solved by GAMS and CPLEX. This study applies the 
bi-level optimization model to a test VPP system, including wind plants (WP), solar plants (PV), biogas energy plants (BG), ESSs, and several 
customers. The maximum power outputs of WP and PV are 100MW and 90MW, respectively. The total installed capacity of BG is 70MW, while the 
ESS’ rated capacity is 100MWh. The local customers have the highest total consumption of 100MW. In addition to the VPP, four GENCOs and three 
retailers participate in the DA market. The results show that the market-clearing price varies depending on the participants’ production/consumption 
quantity and offering/bidding price. However, based on the optimization model, the VPP can take full advantage of WP and PV available power 
output, choose the right time to operate BG, then obtain the highest profit. The results also show that with the ESS’ rated capacity of 100MWh, the 
ESS’ rated discharging/charging power increased from 10MW to 50MW will increase VPP’s profit from 45987$ to 49464$. The obtained results show 
that the proposed model has practical significance. 
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1. Introduction 

In recent years, the penetration level of renewable energy 
sources (RES), such as wind and solar power, into the power 
system has rapidly increased. These energy sources satisfy the 
ever-increasing electricity demand and reduce the use of fossil 
fuel sources and greenhouse gas emissions. Therefore, 
governments have launched attractive policies to promote 
investment in RES, such as allowing RESs to participate in the 
competitive electricity market. However, due to the difficulties 
in the power system’s operation, most electricity markets 
require a minimum size of all participants. In some markets, this 
minimum threshold may be quite small; such as PJM or AESO 
only requires a tiny threshold of 100kW  (Helman, 2019; Neme 
et al., 2014; Oureilidis et al., 2020). In contrast, some markets 
require this value to be much higher; for example, in Vietnam, 
RESs must have an installed capacity of at least 30MW to 
participate in the electricity market (Electricity Regulatory 
Authority of Vietnam, 2018). This not only makes small-scale 
sources not fully exploited but also reduces the interest of 
investors.  

To solve these above problems, the concept of a Virtual 
Power Plant (VPP) has been developed and gradually become 
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popular over the past decade. This model can integrate various 
small-scale RESs, flexible loads, energy storage systems (ESS), 
and retailers and represents them to enter the wholesale 
market. The VPP model has been and is being put into practice 
in Europe and Australia, and the obtained results have shown 
the effectiveness of this model (AEMO, 2021; Kuiper, 2022; 
Next-Kraftwerke, n.d.). The reports (AEMO, 2021; ARENA, 
2021) show that VPPs in Australia mainly include solar farms, 
batteries, and residential customers. By contrast, the inner 
resources of Next-Kraftwerke’s VPP are more diverse with wind 
farms, solar farms, batteries, and biogas power plants (Next-
Kraftwerke, n.d.). Until now, Next-Kraftwerke’s VPP includes 
about 15,000 medium- and small-scale producers and 
consumers. Meanwhile, AEMO reports that almost 168MW of 
residential batteries were registered to VPP in June 2021. These 
reports show the potential of VPP in the future. 

According to (Kieny et al., 2009; Pudjianto et al., 2007), there 
are two types of VPP: Technical VPP (Technical – TVPP) and 
Commercial VPP (Commercial – CVPP). While the CVPP model 
only pays attention to profit maximization and ignores the 
network constraint, the TVPP considers the grid structure and 
operating standards, such as the voltage at the bused as well as 
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transmission line capacity. However, both models have an 
exciting research direction: determining the operating plan for 
optimal coordination among members in the VPP, also called 
VPP’s self-scheduling problem, thereby achieving maximum 
profit.  

In the literature, many studies have considered VPP as a 
price-taker that should predict the day-ahead (DA) price as well 
as the demand/available power output of each 
customer/resource belonging to VPP (Nguyen et al., 2018; Pal 
et al., 2021; Yazdaninejad et al., 2020; Zhou et al., 2019). Based 
on these forecasted data, the VPP operator determines the 
amount of buying/selling energy each hour on the next day and 
submits its trading strategy to the market. Also, the operation 
between flexible loads, RES, or ESSs is coordinated to take 
advantage of RES’s available power output and compensate for 
forecasting errors. In (Baringo & Baringo, 2017; Pal et al., 2021; 
Yazdaninejad et al., 2020; Zhao et al., 2016), the authors only 
consider the VPP’s optimal scheduling in the energy market. In 
(Lee & Won, 2021), the VPP operator should determine the 
VPP’s optimal schedule based on predicted prices of both DA 
and real-time (RT) markets. In (Nguyen et al., 2018), the VPP 
can buy demand response service from the intraday demand 
response exchange (DRX) market to ensure the selling/buying 
power as the offering/bidding strategy submitted to the day-
ahead (DA) market in case the inner resources are insufficient.   
Besides, in some other studies, VPP not only participates energy 
market but also provides ancillary services such as spinning 
reserve (Baringo et al., 2019; Fernández-Muñoz & Pérez-Díaz, 
2023; Mashhour & Moghaddas-Tafreshi, 2011; Nguyen-Duc & 
Nguyen-Hong, 2020; Vahedipour-Dahraie et al., 2021; Zhou et 
al., 2019). However, regardless of which markets the VPP 
participates in, the VPP cannot influence the market-clearing 
price.  

Meanwhile, based on advanced information and 
communication technology and control systems, VPP can fully 
integrate, manage and operate many resources regardless of 
geographical location. As a result, VPPs can have a large enough 
capacity to influence cleared prices, thereby being able to 
participate in the wholesale electricity market as price-makers. 
In this case, VPP can increase the overall profit by devising 
different trading strategies to change the market price. In (Ding 
et al., 2017), an operational strategy of a price-maker wind farm 
– energy storage systems in the DA offering and RT operation 
is proposed to maximize its profit. In (Hu et al., 2019; Kardakos 
et al., 2016), the VPP operator determines the VPP optimal 
offering strategy to maximize the VPP’s profit in the DA market 
and minimize the imbalance penalty fee in the RT operation. In 
(Baringo et al., 2021; Yi et al., 2021), the price-maker VPP joints 
the energy and reserve market while the DA and RT markets 
are considered in (Gazijahani & Salehi, 2020). In these articles, 
the authors propose a bi-level optimization model that includes 
the upper-level problem of maximizing the VPP’s profit and the 
lower-level problem of determining the market-clearing price. 
However, it can be seen that there are not many articles 
focusing on the price-maker VPP model. Not only that, but the 
current studies also do not pay much attention to biogas power 
plants, while the potential of biogas power plants in practice is 
very high.  In (Gazijahani & Salehi, 2020), a combined heat and 
power (CHP) unit is considered; however, the authors focus on 
only the power part. By contrast, studies (Tavakoli et al., 2021; 
Yang et al., 2023) take the chemical process to produce biogas 
fuel into account the optimization problem. Using such a 
complex model may not be necessary from the viewpoint of the 
VPP’s operator. 

Vietnam is a tropical country with a geographical position 
north of the equator and a long coastline, so Vietnam has 
abundant potential for both solar and wind energy. The 

Vietnamese government also has many policies to help promote 
the development of these energy sources. According to reports 
(British Chamber of Commerce Vietnam, 2022; Das, 2020), it is 
estimated that by 2030, Vietnam can reach 18.6GW of solar and 
18GW of wind capacity. Also, the potential for electricity 
production from biogas is great in Vietnam. Reports 
(Internationale Klimaschutzinitiative, 2022; Noi et al., 2022) 
show Vietnam’s biogas power capacity can reach 1,400 MW by 
2035. Similar to many other power systems worldwide, 
integrating RESs into the system also causes many challenges 
due to the uncertainty in RES affecting the power system 
stability. To solve this problem, the national load dispatch 
center had to curtail at least 1.3 billion kWh of RES per year to 
ensure the safety of the power system (Ngo, 2021). 
Consequently, the profit of RES owners is still reduced despite 
being allowed to sell electricity at a preferential price. Therefore, 
developing VPPs to solve the disadvantages of an individual 
RES operation and increase profit opportunities in a competitive 
market will become inevitable in Vietnam. However, until now, 
studies on the VPP model, especially price-maker VPP, are still 
scarce in Vietnam.  

Hence, in this paper, the authors present a bi-level 
optimization model to obtain VPP’s optimal trading strategy in 
DA as a price-maker. This VPP is assumed to include wind 
power plants (WP), solar power plants (PV), biogas power plants 
(BG), large customers, and ESS, in which the operating 
schedules of these inner resources are also optimally 
coordinated to utilize their available power output fully. In this 
paper, the biogas power plant is modeled as a biogas storage 
and electrical power plant. The flow of gas into the storage each 
hour is also considered. In the bi-level problem, the upper-level 
model optimizes the VPP’s profit while the lower-level model 
simulates the DA market clearing process. This problem is 
formulated as a Mathematical Problem with Equilibrium 
Constraints (MPEC). By linearization methods proposed by 
(Steven A. Gabriel et al., 2013), this problem is turned into a 
Mixed Integer Linear Problem (MILP) and solved by GAMS and 
CPLEX. The impact of ESS sizing as well as VPP 
offering/bidding price on the VPP’s optimal schedule are 
analyzed. The rest of the paper is organized as follows: Section 
2 demonstrates the optimal scheduling model of a price-maker 
VPP in the DA market. Section 3 presents the case study, then 
summarizes and analyzes the results. Finally, Section 4 
concludes the paper. The linearization process from MPEC to 
MILP model is presented in Appendix. 

2. Problem Description 

This paper considers a CVPP model including WP, PV, BG, 
ESS and demand, as shown in Fig. 1. This is a typical VPP model 
that has been applied in practice (AEMO, 2021; Kuiper, 2022; 
Next-Kraftwerke, n.d.).The VPP can act as a supplier or a 
consumer in the DA market, depending on the difference 
between RESs’ available power output and local demand. ESS 
accumulates energy if the RESs power output is surplus and the 
market price is low. By contrast, ESS discharges energy if the 
RESs cannot satisfy the local demand or the market price is 
high. In addition, the forecasting error of RES and the customer 
can also be compensated by ESS’ charge/discharge operation. 
Hence, VPP can ensure its trading schedule in the DA market 
regardless of inner resources’ uncertainty. 

In this paper, the VPP is assumed to have a large enough 
production/consumption to affect the market clearing price. 
Therefore, the VPP can participate in the DA market as a price-
maker. From the VPP operator standpoint, a bi-level 
optimization problem is proposed to determine the market-
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clearing price and the VPP’s buying/selling energy at each hour 
while maximizing the VPP’s profit. The upper-level presents the 
VPP profit maximization, while the lower-level presents the DA 
market-clearing process. The impact of the VPP’s trading 
strategy on the market-clearing price is formulated by the price 
quota curves of VPP each hour. Because most of VPP’s power 
sources are RES with very low production costs, the influence 
of VPP on market prices becomes even more pronounced. It 
can be seen that the market price is reduced if VPP offers all 
RESs available power output with an offering price close to the 
production cost. By contrast, the market price becomes high if 
RESs in VPP cannot operate. 

The below section provides the formulation of the trading 
strategy of a price-maker VPP participating in the DA market. 

2.1 Upper-level problem: The VPP’s trading strategy 

2.1.1 Objective function 

This problem is proposed to maximize VPP’s overall profit 
with the objective function including three major parts as 
follows: 

max 𝐹1 = 𝜆𝑡
𝐸(𝑝𝑡

𝐸+𝛥𝑡 − 𝑝𝑡
𝐸−𝛥𝑡) − (𝐶𝑊𝐷 + 𝐶𝐵𝐺)        (1) 

In equation (1), the first term 𝜆𝑡
𝐸(𝑝𝑡

𝐸+𝛥𝑡 − 𝑝𝑡
𝐸−𝛥𝑡) defines the 

VPP’s revenue obtained from the DA market. The second term 
𝐶𝑊𝐷 = 𝑐𝑊𝐷 × 𝑝𝑡

𝑊𝐷 is the WP’s operating cost while the third 

term 𝐶𝐵𝐺 = ∑ 𝐶𝑖
𝐹𝑃𝑖

𝐵
𝑢𝑖𝑡

𝐵 + 𝐶𝑖
𝑉𝑝𝑖𝑡

𝐵
𝑖  is the BG’s operating costs that 

consist of two components, fixed costs and variable costs 
(Renewable Energy Agency, 2012). 

2.1.2 Constraints 

The upper-level problem is accomplished under a set of 
technical constraints describing the offering/bidding between 
the VPP and DA market. 

• Power balance in VPP: 

Equation (2) shows that the VPP's buying/selling power in 
the DA market must be balanced with the 
production/consumption of the inner resources/customers.  

𝑝𝑡
𝑊𝐷 + 𝑝𝑡

𝑃𝑉 + 𝑝𝑡
𝐵 + 𝑝𝑡

𝑆,𝐷 = 𝑃𝑑,𝑡
𝑉𝑃𝑃 + 𝑝𝑡

𝑆,𝐶 + 𝑝𝑡
𝐸+ − 𝑝𝑡

𝐸− (2) 

 

• Constraint of VPP offering/bidding strategy in the DA 
market 

Equations (3) and (4) show that the limitation of the VPP 
offering/bidding power quantity during each hour. These 

constraints also keeps that the VPP can only buy or sell 
electricity to the power system at any time. Equation (5) restricts 
the VPP’s  offering/bidding price in the DA market 

{
0 ≤ 𝑃𝑡

𝐸+
≤ 𝑢𝑡

𝑉𝑃𝑃 (𝑃𝑡

𝑊𝐷
+ 𝑃𝑡

𝑃𝑉
− 𝑃𝑑,𝑡

𝑉𝑃𝑃 + 𝑃
𝐵𝐺

+ 𝑃
𝑆,𝐷

)

0 ≤ 𝑝𝑡
𝐸+ ≤ 𝑃𝑡

𝐸+
 (3) 

 

{
0 ≤ 𝑃𝑡

𝐸−
≤ (1 − 𝑢𝑡

𝑉𝑃𝑃) (𝑃𝑑,𝑡
𝑉𝑃𝑃 + 𝑃

𝑆,𝐶
)

0 ≤ 𝑝𝑡
𝐸− ≤ 𝑃𝑡

𝐸−
  (4) 

 
𝑣𝑡

𝐸+, 𝑣𝑡
𝐸− ≥ 0     (5) 

• WP operating constraints: 

This constraint shows that the given forecasted available 

wind power 𝑃𝑡

𝑊𝐷
 and the minimum power threshold 𝑃𝑊𝐷 limit 

the WG’s power output. This model assumes that the WP 
cannot be forced to stop. 

𝑃𝑊𝐷 ≤ 𝑝𝑡
𝑊𝐷 ≤ 𝑃𝑡

𝑊𝐷
    (6) 

• PV operating constraints 

Similar to the WP, the power output of the PV be limited by 

the forecasted available power 𝑃𝑡

𝑃𝑉
. The binary variable 𝑢𝑡

𝑃𝑉 in 
equation (7) shows that the PV can be decommissioned. This 
issue will affect the price quota curves of VPP. 

0 ≤ 𝑝𝑡
𝑃𝑉 ≤ 𝑢𝑡

𝑃𝑉𝑃𝑡

𝑃𝑉
      (7) 

• BG operating constraints 

Equation (8) shows that the BG power output must be in the 
operating range between the minimum threshold 𝑃𝑖

𝐵 and the 

maximum threshold 𝑃𝑖

𝐵
. The binary variable 𝑢𝑖𝑡

𝐵  keeps the BG 
power output equal to zero if it is shut down. 

𝑢𝑖𝑡
𝐵 𝑃𝑖

𝐵 ≤ 𝑝𝑖𝑡
𝐵 ≤ 𝑢𝑖𝑡

𝐵 𝑃𝑖

𝐵
    (8) 

 

Each biogas plant has a storage of gas that is input fuel for 
the plant's electricity production. Assuming that there is a flow 
of gas 𝐹𝑡 (expressed in MWh) into this storage. Equation (9) 
defines the change of storage level 𝑠𝑜𝑐𝑡

𝐵 (expressed in MWh) 
after hour 𝑡 based on the gas quantity 𝐹𝑡 and the electrical 
energy generated during each hour. Besides, equation (10) also 
imposes that the storage level at any time should be smaller than 

storage capacity 𝑠𝑜𝑐𝑡
𝐵

.  

𝑠𝑜𝑐𝑡
𝐵 = 𝑠𝑜𝑐𝑡−1

𝐵 + 𝐹𝑡 − 𝑝𝑡
𝐵 × 𝛥𝑡   (9) 

 

0 ≤ 𝑠𝑜𝑐𝑡
𝐵 ≤ 𝑠𝑜𝑐𝑡

𝐵
     (10) 

• ESS operating constraints 

Equation (11) describes the ESS charging/discharging 
process during each hour. Equation (12) shows that the energy 
level in the ESS must be set to a certain level after each 
operating day. Besides, equation (13) also shows that the ESS 
energy level is limited by the minimum and maximum energy 
level to ensure ESS’ lifetime. Equations (14) and (15) show that 
the charging or discharging power of the ESS should be smaller 

 

Fig. 1 The VPP’s structure 
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than the rated power.  The binary variable 𝑢𝑡
𝑆 makes sure that 

ESS can only operate in charge or discharge mode at any time. 

𝑒𝑡
𝑆 = 𝑒(𝑡−1)

𝑆 + 𝜂𝑆𝑃𝑡
𝑆,𝐶𝛥𝑡 −

𝑃𝑡
𝑆,𝐷𝛥𝑡

𝜂𝑆    (11) 

 
𝑒24

𝑆 = 𝑒0
𝑆      (12) 

 

𝐸𝑡
𝑆 ≤ 𝑒𝑡

𝑆 ≤ 𝐸𝑡

𝑆
     (13) 

 

0 ≤ 𝑝𝑡
𝑆,𝐷 ≤ 𝑢𝑡

𝑆𝑃
𝑆
     (14) 

 

0 ≤ 𝑝𝑡
𝑆,𝐶 ≤ (1 − 𝑢𝑡

𝑆)𝑃
𝑆
    (15) 

2.2 Lower-level problem: Day-ahead market clearing process 

2.2.1 Objective function 

This problem describes the market-clearing process in the 
DA market from the power market operator’s standpoint, so the 
objective function is minimizing the minus social welfare as 
follows: 

min 𝐹2 = 𝑣𝑡
𝐸+𝑝𝑡

𝐸+ + ∑ 𝛼𝑔𝑡
𝐺,𝐸𝑝𝑔𝑡

𝐺,𝐸
𝑔∈Ω𝐺 − 𝑣𝑡

𝐸−𝑝𝑡
𝐸− −

                                                                    ∑ 𝛼𝑞𝑡
𝑄,𝐸

𝑝𝑞𝑡
𝑄,𝐸

𝑞∈Ω𝑄  (16) 

In equation (16),  the first two terms, 𝑣𝑡
𝐸+𝑝𝑡

𝐸+ and 

∑ 𝛼𝑔𝑡
𝐺,𝐸𝑝𝑔𝑡

𝐺,𝐸
𝑔∈Ω𝐺 , are the revenues of the VPP and other 

producers participating in the DA market, respectively. The 

remaining two term, 𝑣𝑡
𝐸−𝑝𝑡

𝐸− and ∑ 𝛼𝑞𝑡
𝑄,𝐸

𝑝𝑞𝑡
𝑄,𝐸

𝑞∈Ω𝑄 , are the 

purchasing costs of the VPP and other demand. 

2.2.2 Constraints 

The lower-level problems is characterized be the following 
constraints 

• The power balance constraint 

Equation (17) guarantees that the selling and purchasing 
power in the DA market will be matched, thereby ensuring the 
power balance. 

𝑝𝑡
𝐸+ + ∑ 𝑝𝑔𝑡

𝐺,𝐸
𝑔∈𝛺𝐺 = 𝑝𝑡

𝐸− + ∑ 𝑝𝑞𝑡
𝑄,𝐸

𝑞∈𝛺𝑄 : 𝜆𝑡
𝐸  (17) 

• Constraint of each producer/customers in the DA market 

Equations (18) and (19) show the limitation of VPP’s 
selling/purchasing power in the DA market. Meanwhile, 
equations (20) and (21) limit the trading power of producers and 
customers, respectively. 

0 ≤ 𝑝𝑡
𝐸+ ≤ 𝑃𝑡

𝐸+
: 𝜇𝑡

𝐸+, 𝜇𝑡
𝐸+

     (18) 

 

0 ≤ 𝑝𝑡
𝐸− ≤ 𝑃𝑡

𝐸−
: 𝜇𝑡

𝐸−, 𝜇𝑡
𝐸−

    (19) 

 

0 ≤ 𝑝𝑔𝑡
𝐺,𝐸 ≤ 𝑃𝑔𝑡

𝐺,𝐸
: 𝜇𝑔𝑡

𝐺,𝐸 , 𝜇𝑔𝑡
𝐺,𝐸

    (20) 

 

0 ≤ 𝑝𝑞𝑡
𝑄,𝐸

≤ 𝑃𝑞𝑡

𝑄,𝐸
: 𝜇𝑔𝑡

𝑄,𝐸
, 𝜇𝑔𝑡

𝑄,𝐸
    (21) 

The dual variables in each constraint is declared after a 
colon, in which the dual variable of the power balance constraint 
is the DA market-clearing price. Besides, notice that the VPP 

offering/bidding price should be determined in the upper-level 
problem so that in the lower-level problem, these values are 
treated as input parameters 

2.3 MILP model 

To simplify the presented bi-level problems, the lower-order 
problem, i.e., the DA market-clearing problem, can be replaced 
by its Karush-Kuhn-Tucker (KKT) conditions. The 
transformation is possible because the lower-level problem (16) 
is convex and linear over its decision variables. Using the 
transformation approach in (Steven A. Gabriel et al., 2013), we 
obtain a single-level MPEC problem shown in Appendix. This 
model comprises primal and dual constraints as well as 
complementarity slackness conditions corresponding to the 
inequalities of the original model. It can be seen that the single-
level MPEC model contains two nonlinear components: the 
term 𝜆𝑡

𝐸(𝑝𝑡
𝐸+𝛥𝑡 − 𝑝𝑡

𝐸−𝛥𝑡) in the objective function of the upper-
level problem; and the complementarity slackness conditions. 
Applying the linearization method provided by (Steven A. 
Gabriel et al., 2013), the single-level MPEC model is converted 
to the following MILP model. The processes of transformation 
and linearization are presented in Appendix.  

max ∑ {(∑ 𝛼𝑞𝑡
𝑄,𝐸

𝑝𝑞𝑡
𝑄,𝐸

𝑞∈Ω𝑄 − ∑ 𝑃𝑔𝑡

𝐺,𝐸

𝑔∈Ω𝐺 μ𝑔𝑡
𝐺,𝐸

−𝑡∈Ω𝑇

− ∑ 𝛼𝑔𝑡
𝐺,𝐸𝑝𝑔𝑡

𝐺,𝐸
𝑔∈Ω𝐺 −  ∑ 𝑃𝑞𝑡

𝑄,𝐸

𝑞∈Ω𝐺 μ𝑞𝑡

𝑄,𝐸
) − (𝑐𝑊𝐷 × 𝑝𝑡

𝑊𝐷 +

𝐶𝑖
𝐹𝑃𝑖

𝐵
𝑢𝑖𝑡 + 𝐶𝑖

𝑉𝑝𝑖𝑡
𝐵 )}    (22) 

Subject to:  

𝑝𝑡
𝑊𝐷 + 𝑝𝑡

𝑃𝑉 + 𝑝𝑡
𝐵 + 𝑝𝑡

𝑆,𝐷 = 𝑃𝑑,𝑡
𝑉𝑃𝑃 + 𝑝𝑡

𝑆,𝐶 + 𝑝𝑡
𝐸+ − 𝑝𝑡

𝐸− (23) 

𝑁 ≤ 𝑝𝑡
𝑊𝐷 ≤ 𝑃𝑡

𝑊𝐷
     (24) 

0 ≤ 𝑝𝑡
𝑃𝑉 ≤ 𝑢𝑡

𝑃𝑉𝑃𝑡

𝑃𝑉
     (25) 

0 ≤ 𝑝𝑖𝑡
𝐵 ≤ 𝑢𝑖𝑡

𝐵 𝑃
𝑖

𝐵
     (26) 

𝑠𝑜𝑐𝑡
𝐵 = 𝑠𝑜𝑐𝑡−1

𝐵 + 𝐹𝑡 − 𝑝𝑡
𝐵 × 𝛥𝑡   (27) 

0 ≤ 𝑠𝑜𝑐𝑡
𝐵 ≤ 𝑠𝑜𝑐𝑡

𝐵
     (28) 

𝑒𝑡
𝑆 = 𝑒(𝑡−1)

𝑆 + 𝜂𝑆,𝐶𝑃𝑡
𝑆,𝐶𝛥𝑡 −

𝑃𝑡
𝑆,𝐷𝛥𝑡

𝜂𝑆,𝐷    (29) 

𝑒24
𝑆 = 𝑒0

𝑆      (30) 

𝐸𝑡
𝑆 ≤ 𝑒𝑡

𝑆 ≤ 𝐸𝑡

𝑆
     (31) 

0 ≤ 𝑝𝑡
𝑆,𝐷 ≤ 𝑢𝑡

𝑆𝑃
𝑆,𝐷

     (32) 

0 ≤ 𝑝𝑡
𝑆,𝐶 ≤ (1 − 𝑢𝑡

𝑆)𝑃
𝑆,𝐶

    (33) 

𝑃𝑡

𝐸+
≤ (𝑃𝑡

𝑊𝐷
+ 𝑃𝑡

𝑃𝑉
− 𝑃𝑑

𝑉𝑃𝑃 + 𝑃
𝐵

+ 𝑃
𝑆,𝐷

)𝑢𝑡
𝑉𝑃𝑃  (34) 

𝑃𝑡

𝐸−
≤ (𝑃𝑑

𝑉𝑃𝑃 + 𝑃
𝑆,𝐶

)(1 − 𝑢𝑡
𝑉𝑃𝑃)   (35) 

𝑃𝑡

𝐸+
, 𝑃𝑡

𝐸−
≥ 0     (36) 

𝑣𝑡
𝐸+, 𝑣𝑡

𝐸− ≥ 0     (37) 

𝑢𝑡
𝑃𝑉 , 𝑢𝑖𝑡

𝐵 , 𝑢𝑡
𝑆, 𝑢𝑡

𝑉𝑃𝑃 ∈ {0,1}    (38) 

𝑝𝑡
𝐸− + ∑ 𝑝𝑞𝑡

𝑄,𝐸
𝑞∈𝛺𝑄 − 𝑝𝑡

𝐸+ − ∑ 𝑝𝑔𝑡
𝐺,𝐸

𝑔∈𝛺𝐺 = 0  (39) 

𝑣𝑡
𝐸+ − 𝜆𝐸 + 𝜇

𝐸+
− 𝜇𝐸+ = 0    (40) 

−𝑣𝑡
𝐸− + 𝜆𝐸 − 𝜇𝐸− + 𝜇

𝐸−
= 0    (41) 
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𝛼𝑔𝑡
𝐺,𝐸 − 𝜆𝐸 − 𝜇𝑔𝑡

𝐺,𝐸 + 𝜇𝑔𝑡
𝐺,𝐸

= 0∀𝑔 ∈ 𝛺𝐺    (42) 

−𝛼𝑞𝑡
𝑄,𝐸

+ 𝜆𝐸 − 𝜇𝑞𝑡
𝑄,𝐸

+ 𝜇𝑔𝑡
𝐺,𝐸

= 0∀𝑞 ∈ 𝛺𝑄  (43) 

0 ≤ 𝜇𝑔𝑡
𝐺,𝐸 ≤ 𝑁𝑔𝑡

𝐺,𝐸𝑢𝑔𝑡
𝐺,𝐸 , ∀𝑔 ∈ 𝛺𝐺    (44) 

0 ≤ 𝑝𝑔𝑡
𝐺,𝐸 ≤ 𝑀𝑔𝑡

𝐺,𝐸(1 − 𝑢𝑔𝑡
𝐺,𝐸), ∀𝑔 ∈ 𝛺𝐺   (45) 

0 ≤ 𝜇𝑔𝑡
𝐺,𝐸

≤ 𝑁𝑔𝑡

𝐺,𝐸
𝑢𝑔𝑡

𝐺,𝐸
, ∀𝑔 ∈ 𝛺𝐺   (46) 

0 ≤ 𝑃𝑔𝑡

𝐺,𝐸
− 𝑝𝑔𝑡

𝐺,𝐸 , ≤ 𝑀𝑔𝑡

𝐺,𝐸
(1 − 𝑢𝑔𝑡

𝐺,𝐸
), ∀𝑔 ∈ 𝛺𝐺  (47) 

0 ≤ 𝜇𝑞𝑡
𝑄,𝐸

≤ 𝑁𝑞𝑡
𝑄,𝐸

𝑢𝑞𝑡
𝑄,𝐸

, ∀𝑞 ∈ 𝛺𝑄   (48) 

0 ≤ 𝑝𝑞𝑡
𝑄,𝐸

≤ 𝑀𝑞𝑡
𝑄,𝐸

(1 − 𝑢𝑞𝑡
𝑄,𝐸

), ∀𝑞 ∈ 𝛺𝑄   (49) 

0 ≤ 𝜇𝑞𝑡
𝑄,𝐸

≤ 𝑁𝑞𝑡

𝑄,𝐸
𝑢𝑞𝑡

𝑄,𝐸
, ∀𝑞 ∈ 𝛺𝑄   (50) 

0 ≤ 𝑃𝑞𝑡

𝑄,𝐸
− 𝑝𝑞𝑡

𝑄,𝐸
≤ 𝑀𝑞𝑡

𝑄,𝐸
(1 − 𝑢𝑞𝑡

𝑄,𝐸
), ∀𝑞 ∈ 𝛺𝑄  (51) 

0 ≤ 𝜇𝑡
𝐸+ ≤ 𝑁𝑡

𝐸+𝑢𝑡
𝐸+    (52) 

0 ≤ 𝑝𝑡
𝐸+ ≤ 𝑀𝑡

𝐸+(1 − 𝑢𝑡
𝐸+)    (53) 

0 ≤ 𝜇𝑡
𝐸+

≤ 𝑁𝑡

𝐸+
𝑢𝑡

𝐸+
    (54) 

0 ≤ 𝑝
𝑡

𝐸+
≤ 𝑀𝑡

𝐸+
(1 − 𝑢𝑡

𝐸+
)    (55) 

0 ≤ 𝜇𝑡
𝐸− ≤ 𝑁𝑡

𝐸−𝑢𝑡
𝐸−    (56) 

0 ≤ 𝑝𝑡
𝐸− ≤ 𝑀𝑡

𝐸−(1 − 𝑢𝑡
𝐸−)    (57) 

0 ≤ 𝜇𝑡
𝐸−

≤ 𝑁𝑡

𝐸−
𝑢𝑡

𝐸−
    (58) 

0 ≤ 𝑝
𝑡

𝐸−
≤ 𝑀𝑡

𝐸−
(1 − 𝑢𝑡

𝐸−
)    (59) 

𝑢𝑔𝑡
𝐺,𝐸 , 𝑢𝑔𝑡

𝐺,𝐸
, 𝑢𝑞𝑡

𝑄,𝐸
, 𝑢𝑞𝑡

𝑄,𝐸
, 𝑢𝑡

𝐸+, 𝑢𝑡
𝐸+

, 𝑢𝑡
𝐸−, 𝑢𝑡

𝐸−
∈ {0, 1}, ∀𝑔 ∈ Ω𝐺 , ∀𝑞 ∈

Ω𝑄      (60) 

3. Results and Discussion 

3.1 Study system 

In this section, the proposed optimal model is applied to a 
CVPP test system including WPs, PVs, a BG with two 
generators, ESSs and local customers.  The VPP operator 
determines the VPP’s optimal scheduling based on the 
forecasted power output of WPs and PVs described in Fig. 3. 
Accordingly, the WPs’ aggregated power output can reach 
100MW at hour 15 while the PVs’ highest available power is 
90MW at hours 12 and 13. Besides, the ESSs are considered as 
a large-scale ESS with the technical data shown in Table 1. 
Similar, all local customers are aggregated as a single load with 
the forecasted consumption illustrated in Fig. 2a. The technical 
data of BG generators are presented in Table 2. The operating 
cost of WP and PV is assumed to be very small and can be 
ignored. 

The BG’s power output depends on the amount of biogas 
stored in the storage converted into electric power (MWh). In 
literature, some studies consider the additional amount of 
biogas in the storage every hour as a constant. However, this 
paper assumes that biogas production can be adjusted flexibly, 
obtained by demand-oriented feeding. Reference (Mauky et al., 
2017) shows that demand-driven biogas production not only 
saves a significant amount of gas reserve required but also 
makes power generation much more flexible than continuous 
gas production. Fig. 3b illustrates the flow of gas over the 24-
hour horizon. It can be seen that during the noon period, the 
additional amount of gas is not high, even zero in hours 10 and 
11, because the PV power output is quite high during these 
hours. Note that increasing the VPP’s power output can be more 

Table 1  
ESS’ technical data 

𝑃
𝑆,𝐶

(MW) 𝑃
𝑆,𝐷

(MW) 𝜂𝑆,𝐶 𝜂𝑆,𝐷 𝐸𝑡

𝑆
(MWh) 𝑒0

𝑆(MWh) 

25 25 0.9 0.9 100 0.5 × 𝐸𝑡

𝑆
 

 

 

Fig. 3 The forcasted data of WP and PV 

 

 

  

  

  

  

   

   

                                       

  
 
  
  
 
 
 

            

                

Table 2  
BG generators’ technical data 

Generator 𝑃𝑖
𝐵(MW) 𝑃𝑖

𝐵
(MW) 𝐶𝐹($/MWh) 𝐶𝑉($/MWh) 

1 0 30 4 3.7 
2 0 40 6 3.7 

 

 

Fig. 2 Forecasted data of the VPP’s demand and the flow of gas into 
the storage in each hour 
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profitable, but redundant power output will lead to a lower 
market-clearing price, thereby reducing the VPP’s profit. 

In addition to VPP, this paper assumes that four GENCOs 
and three retailers participate in the DA market. GENCOs have 
an offer curve consisting of three blocks of power quantities at 
different prices. Besides, GENCOs often proactively forecast the 
day-ahead electricity demand and give corresponding offer 
curves for each hour to increase profit opportunities. Table 3 
presents the offer curves of each GENCO submitted to the DA 
market for some hours.  It can be seen that at the peak-load 
hours, such as hour 10 and hour 16, each GENCO will offer more 
power at a higher offering price in comparison to the off-peak 
hour (hour 1). Similarly, each retailer submits a bid curve 
including three blocks of power quantities for each hour in the 
next operating day. The bid curves of retailers for some hours 
are shown in Table 4. The given data shows that the VPP’s 
maximum production/consumption is quite high compared to 
the other GENCOs/retailers. So, the VPP test system can act as 
a price maker in the DA market. 

The VPP optimal schedule in the DA market is determined 
by CPLEX version 12.6 (IBM, n.d.) under GAMS 40.3.0 
environment (Richard, 2016) on a 64-bit core i5 1.9GHz 
personal computer with 16GB RAM. The impact of different 
aspects, such as ESS sizing or RES capacity, is also evaluated. 

3.2 Numerical results 

  Based on forecast data of inner resources and demand as 
well as offer/bid information of other participants in the market, 
the VPP operator predicts the DA market price and determines 
its optimal offer/bid strategy to maximize its profit. The cleared 
market price is illustrated in Fig. 5. It can be seen that the 
market-clearing price is quite low at some hours; for example, 
the market-clearing prices in hours 1, 12, or 13 are equal or less 
than 20($/MWh). It can be explained that at these hours, the 
total demand of VPP and other retailers is low, and the offering 
power is redundant. By contrast, during peak-load hours, such 
as from hour 8 to hour 11, and hour 14 to hour 16, the power 
output of GENCOs is mobilized even in blocks of power 
quantities having high offer prices. As a result, the market price 
at these hours is significantly high – approximately 58($/MWh). 

Fig. 4 shows the VPP’s optimal schedule for each hour on the 
next operating day. The dashed line shows the VPP’s trading 
strategy in the DA market, with a positive value representing the 
selling power and a negative value presenting the purchasing 
power. Besides, the power output of WP and PV is described in 
Fig. 6, while Fig. 7a shows the operation of BG. As can be seen 
in Fig. 5 and Fig. 4, VPP will take advantage of its resources to 
sell energy at high-price hours, specifically from hour 8 to hour 
11, and hour 14 to hour 16. In detail, Fig. 7a shows that BG’s 
generators operate at maximum capacity during hours 8-11 and 
hours 14-16 because BG’s operating cost of 3.7($/MWh) is 
significantly lower than the market-clearing price of 
58($/MWh). Besides, the available power output of WP and PV 

Table 3 

Offer power and offer price of producers in some typical hours 

  Offer power (MW) Offer price ($/MWh) 

 Blo
ck 

t1 t10 t16 t1 t10 t16 

 

GENCO 1 

1 240 320 315 12 59 60 

2 50 100 100 14 61 62 

3 50 150 120 15 63 64 

 

GENCO 2 

1 300 420 420 42 58 57 

2 50 200 140 43 59 58 

3 50 200 100 45 61 60 

 

GENCO 3 

1 250 340 300 40 63 55 

2 70 140 120 42 65 57 

3 50 100 120 43 67 59 

 

GENCO 4 

1 180 260 230 10 51 47 

2 60 90 70 11 54 51 

3 30 90 50 13 57 53 

 

Table 4  
Bid power and bid price of retailers in some typical hours 

  Bid power (MW) Bid price ($/MWh) 

 Block t1 t10 t16 t1 t10 t16 

 

Retailer 1 

1 100 250 400 13 58 57 

2 300 225 150 12 56 56 

3 100 250 175 11 55 54 

 

Retailer 2 

1 100 425 500 20 59 56 

2 200 300 200 19 57.5 54.5 

3 300 150 250 17 55.5 53 

 

Retailer 3 

1 100 550 450 12 58 60 

2 100 200 350 10.5 57 59 

3 440 345 350 9.5 56 58 

 

 
Fig. 5 The DA market-clearing price  

 

 

  

  

  

  

  

  

  

                                       

 
 
  
  
  
  
 
  

 
 
 

            

        

 
Fig. 4 The VPP’s optimal schedule in the DA market    
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is fully utilized (Fig. 6). As a result, the VPP can achieve the 
highest profit. 

On the other hand, during hours 1 to 4 and hours 23 and 24, 
the VPP should buy energy from the power network because PV 
and WP’s power output is insufficient to supply the VPP’s local 
customers (Fig. 4). It can be seen that VPP can operate BG to 
supply the local customers during these hours at the cost of only 
3.7($/MWh) (Table 2), much lower than the market-clearing 
price of about 20($/MWh). However, buying electricity from the 
system during these periods and accumulating biogas to be able 
to operate BG at maximum capacity at high-price hours will help 
VPP gain more profit. Fig. 7a also clearly shows that BG only 
operates during hours with high market-clearing prices (hours 
8-11, hours 14-16). 

Fig. 7b shows the flexibility in the ESS operation. ESS will 
charge if the market-clearing price is low, for example, at 
midnight, with a market price of only 15($/MWh). Besides, ESS 
also charges when the available power output of VPP’s inner 
resources is redundant, but the market price is not attractive 
enough, specifically at hours 12 and 13. By contrast, ESS 
discharge during periods of high market-clearing prices, such as 
from hours 14 to 16, with market-clearing prices of 58($/MWh); 
consequently, the VPP can obtain more revenue.   
The impacts of different parameters on the VPP’s optimal 
operation are evaluated by the following sections: 

3.2.1 Impact of the offering/bidding price of each producer/retailer 
in the DA market. 

This section applies the optimal model to a new case study, 
named Case 1, to evaluate the impact of the offering/bidding 
price of other producers/retailers on the VPP’s optimal 
scheduling. In this case, we increase the offering/bidding prices 
of the other producer/ retailer during hours 1 to 4, hours 12 and 
13, hours 23 and 24 while keeping the offering/bidding prices 
of the remaining hours the same. For example, in the original 
case study, the offering prices of GENCO 1 in hour 12 

corresponding to three blocks of offering power are from 18, 20, 
and 22($/MWh). In Case 1, these prices increase to 55, 57, and 
59($/MWh), respectively. Meanwhile, the other input 
parameters are similar to the original case study.  

With the given above data, the obtained DA market-clearing 
price is presented in Fig. 9. It is easy to see that a higher 
offering/bidding price will cause the cleared market price to 
increase accordingly. For example, the market-clearing at hour 
12 in the original case is 20($/MWh) (Fig. 5); after the GENCOs 
increase their offering price, the price at hour 12 becomes 
52($/MWh) (Fig. 9). This is because VPP can only meet part of 
the needs of retailers, the rest is provided by GENCOs.  

Note that VPP includes WP and PV with almost zero 
production costs. In addition, Table 2 shows that the fixed and 
variable costs of BG generators are 4, 6, and 3.7($/MWh), 
respectively - much lower than the offering price of GENCOs 
(Table 3). So, the offering price of VPP can be lower than any 
GENCO, and VPP can sell all excess power output to the system 
after supplying to local demand. Consequently, when 
comparing the results of the original case and Case 1 presented 
in Fig. 4 and Fig. 10, it can be seen that the selling/purchasing 
power of VPP changes very little. However, at hour 12 and hour 
13, there is a significant difference in the DA cleared price of the 
original case and Case 1 leading to the change in the VPP’s 
operating plan at these hours. In detail, the original case has the 
DA cleared price at hours 12 and 13 only 20($/MWh) so that a 
part of VPP’s power output is stored in the ESS instead of being 
sold to the grid (Fig. 4). By contrast, this price in Case 1 is 
52$/MWh - much higher than in the original case - so VPP sells 
all excess energy to the system to obtain more revenue (Fig. 10).  

3.2.2 The impact of ESS sizing 

This section evaluates the effect of the ESS sizing on the VPP 
optimal operation. The proposed problem is performed with 
two scenarios of ESS sizing: Case 2 with ESS 10MW/100MWh 
and Case 3 with ESS 50MW/100MWh while the other input 

 

Fig. 6 The operating schedule of PV and WP: a) PV’s power 
production; b) WP’s power production 

 

 

  

  

  

  

   

   

                                       

 
 
 
 
  
  

 
 

            

                                    

 

  

  

  

  

   

                                       

 
 
 
 
  
  

 
 

            

                                    

  

  

 

Fig. 7 The operating data of BG and ESS: a) The BG’s power 
production; b) The ESS’ charging/discharging power 
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data are kept unchanged. The VPP’s optimal trading power and 
the ESS’ optimal operation in these cases are respectively 
presented in Fig. 8 and Fig. 11 and compared with the original 
case study in Fig. 4 and Fig. 7b.  It can be seen that the ESS’ 
discharging power can be a part of VPP’s selling power. 
Therefore, when the ESS’s rated power increases from 10MW 
to 50MW, the VPP’s selling power in some hours also increases. 
Based on VPP's operating plan optimization model in Section 2, 
the ESS’ discharging power mainly increases at the hours of high 
market-clearing price, such as hours 14. Fig. 7b shows that in 
the original case, ESS discharges with a rated power of 25MW 
at hour 14. Similarly, in Case 2, ESS discharges with the rated 
power of 10MW, while in Case 3, the ESS’ discharging power is 
31MW at this period. Consequently, the VPP’s selling power at 
hour 14 increases from 160MW to 175 and 180 MW when the 
ESS’ rated power increases from 10 to 25 and 50MW, 
respectively (Fig. 4, Fig. 8a, Fig. 11a). As a result, the VPP can 
obtain more revenue. Fig. 12 shows that VPP’s profit is 
approximately 46000$ in the case of ESS 10MW/100MWh 
while VPP can obtain about 50000$ if ESS sizing is 
50MW/100MWh.  

Besides, Fig. 8b and Fig. 11b show that ESS can only 
contribute to the VPP’s selling power for a few hours due to the 
limitation of ESS capacity. In detail, with the ESS’ capacity of 
100MWh, an increase in the ESS’ rated power from 10MW to 
50MW will reduce the charging/discharging time from 10 hours 
to 2 hours. Consequently, the number of hours that ESS can 
participate in VPP’s selling power decreases. While ESS 

10MW/100MWh can discharge continuously from hour 14 to 
hour 16 and hour 18, ESS 50MW/100MWh can only provide 
energy during hours 14 and 15. However, blue areas in Fig. 8b 
and Fig. 11b show that the proposed optimization model always 
keeps the ESS having enough energy to discharge during the 
hours of the high market price (hours 9-10, hours 14-15). In 
addition, it is exciting that the market price in these scenarios is 
almost unchanged. This can be explained by the fact that ESS 
only contributes a small part of VPP's trading power. 

 

Fig. 11 Case 3: The VPP’s optimal trading power and the ESS’ optimal 
operation with ESS sizing of 50MW/100MWh 

 

  

  

  

  

   

   

   

   

   

 

  

  

  

                                       

 
  
  
 
 
  
  
  

 
 
 

 
 
 
 
  
  

 
 

            

                      

                                     

 

  

  

  

  

  

  

  

   

 

  

   

   

   

                                       

 
  
  
  
 
  

 
 
 

 
 
 
 
  
  

 
 

            

                             

                                                     

 

Fig. 9 Case 1: The DA market-clearing price in case the 
offering/bidding of each producer/retailer increase 

    

Fig. 10 Case 1: The VPP’s optimal schedule in the DA market in case 
the offering/bidding of each producer/retailer increase 

 

  

  

  

  

  

  

  

  

  

                                       

 
  
  
  
  
 
 
 
 

            

        

    

    

   

 

  

   

   

   

   

   

                                       

 
 
 
 
  
  

 
 

            

                              

                                                        

                         

 

Fig. 8 Case 2: The VPP’s optimal trading power and the ESS’ optimal 
operation with ESS sizing of 10MW/100MWh  
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Fig. 12 The VPP’s optimal profit depending on the ESS sizing 

4. Conclusion 

This paper considers and analyzes the optimal trading 
strategy of a VPP that acts as a price-maker participant in the 
DA market. The main purpose is predetermining the DA 
market-clearing price based on the information collected about 
the offering/bidding quantity and price of the other producers 
and retailers, then calculating the VPP’s optimal 
selling/purchasing power at each hour on the next operating 
day. In addition, the optimal cooperation between the VPP’s 
inner resources, ESS, and customers are also determined to 
obtain the highest profit. To solve this problem, we build a bi-
level optimization model with the upper-level model 
maximizing the VPP’s profit, and the lower-level model is the 
DA market clearing problem. The cleared price and the VPP’s 
optimal scheduling are obtained. The influence of each agent’s 
offering/bidding price and ESS sizing on the results is studied 
and analyzed. 

The results show that due to low operating costs, VPP can 
offer excess capacity at a price equal to or lower than the 
anticipated market price. Therefore, all excess capacity of VPP 
is accepted to be sold to the power system. For the same reason, 
the offer/bid prices of other participants influence the market’s 
clear price but have almost no impact on the trading scenario of 
VPP. Meanwhile, the size of ESS affects VPP’s buying/selling 
capacity and thereby affects VPP’s profit. 

The proposed model can be applied to any VPP model 
regardless of the type of RESs or local load. Moreover, this 
model can also be adapted to study the effect of uncertainty in 
RES and loads. These other resources or demands, such as the 
demand response or electric vehicle charging station, can also 
be considered in the VPP. These topics are left to future works. 

Nomenclature 

A. Indexes and Sets 
𝑑      Demands in the VPP.  
𝑔 ∈ 𝛺𝐺    The other producers in the DA market. 
𝑞 ∈ 𝛺𝑄    The other retailers in the DA market. 
𝑡 ∈ 𝛺𝑇     Time intervals. 
𝑖 ∈ 𝛺𝐼      Generators of BG inside VPP. 

B. Parameters 

𝐶𝐵𝐺    The BG’s operating cost [$] 
𝐶𝑖

𝐹     The fixed cost of the BG’s generator i [$/MW] 
𝐶𝑖

𝑉      The variable cost of the BG’s generator i [$/MW] 
𝑐𝑊𝐷    The operating cost of WP [$/MW] 
𝐶𝑊𝐷   The total operating cost of WP [$] 
𝐸𝑆     The ESS’ minimum energy level [MWh]. 

�̅�𝑆     The ESS’ rated capacity [MWh]. 
𝜂𝑆     The ESS’ charging/discharging efficiency [%]. 

𝐹𝑡        The flow of gas (expressed in MWh) into the BG’s storage in 
hour t [MWh]. 

𝑃𝑖

𝐵
     Maximum power output of the BG’s generator i [MW]. 

𝑃𝑖
𝐵    Minimum power output of the BG’s generator i [MW]. 

𝑠𝑜𝑐
𝐵
    The rated capacity of gas storage inside BG [MWh]. 

𝑃𝑡

𝑊𝐷
     The WP’s forecasted power output at time t [MW]. 

𝑃𝑡

𝑃𝑉
      The PV’s forecasted power output at time t [MW]. 

𝑃
𝑆
    The ESS’ rated power [MW]. 

𝑃𝑑,𝑡
𝑉𝑃𝑃    The forecasted consumption of local customers in VPP at 

time t [MW]. 

𝑃𝑔𝑡

𝐺,𝐸
   The offer quantity of producer g in the DA market at time t 

[MW]. 

𝑃𝑞𝑡

𝑄,𝐸
    The bid quantity of retailer q in the DA market at time t [MW]. 

𝛼𝑔𝑡
𝐺,𝐸    Offer price of producer g in the DA market at time t [$/MWh]. 

𝛼𝑞𝑡
𝑄,𝐸    Bid price of retailer q in the DA market at time t [$/MWh]. 

C. Variables 

𝑝𝑡
𝑊𝐷      The WP’s power output at time t [MW]. 

𝑝𝑡
𝑃𝑉      The PV’s power output at time t [MW]. 

𝑢𝑡
𝑃𝑉      Binary variable shows the PV’s operating situation at time t 

𝑝𝑖𝑡
𝐵      The power output of the BG’s generator i at time t [MW]. 

𝑠𝑜𝑐𝑡
𝐵      The energy stored in the BG’s gas storage at time t [MWh]. 

𝑢𝑖𝑡
𝐵         Binary variable shows the operating situation of the BG’s 

generator i at time t. 

𝑝𝑡
𝑆,𝐶     The ESS’ charging power at time t [MW]. 

𝑝𝑡
𝑆,𝐷     The ESS’ discharging power at time t [MW]. 

𝑒𝑡
𝑆         The ESS’ energy at time t [MWh]. 

𝑢𝑡
𝑆       Binary variable shows the ESS’ charging/discharging state at 

time t. 
𝑝𝑡

𝐸+       The VPP’s selling power in the DA market at time t [MW].  
𝑝𝑡

𝐸−      The VPP’s purchasing power in the DA market at time t 
[MW]. 

𝑃𝑡

𝐸+
     The VPP’s offer quantity submitted to the DA market at time 

t [MW].  

𝑃𝑡

𝐸−
      The VPP’s bid quantity submitted to the DA market at time t 

[MW]. 
𝑣𝑡

𝐸+     The VPP’s offer price submitted to the DA market at time t 
[$/MWh].  

𝑣𝑡
𝐸−      The VPP’s bid price submitted to the DA market at time t 

[$/MWh].  
𝑢𝑡

𝑉𝑃𝑃   Binary variable shows VPP’s selling/purchasing situation. 
𝜆𝑡

𝐸        The DA market-clearing price at time t [$/MWh]. 
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APPENDIX 

A. Converting the MPEC model to the MILP model 

A.1. Reformulating a bi-level MPEC problem into a single-level problem 

To reformulate a bi-level MPEC problem into a single-level problem, the lower-level problem, i.e., the DA market-clearing 
problem, is replaced by a Karush-Kuhn-Tucker (KKT) conditions as follows:   

𝐿 (𝑝𝑡
𝐸+, 𝑝𝑔𝑡

𝐺,𝐸 , 𝑝𝑡
𝐸−, 𝑝𝑞𝑡

𝑄,𝐸
, 𝜆𝐸 , 𝜇𝑔𝑡

𝐺,𝐸 , 𝜇𝑞𝑡
𝑄,𝐸

, 𝜇𝑔𝑡
𝐺,𝐸

, 𝜇𝑞𝑡
𝑄,𝐸

, 𝜇𝐸+, 𝜇
𝐸+

, 𝜇𝐸−, 𝜇
𝐸−

) 

= 𝑣𝑡
𝐸+𝑝𝑡

𝐸+ + ∑ 𝛼𝑔𝑡
𝐺,𝐸𝑝𝑔𝑡

𝐺,𝐸 −𝑔∈Ω𝐺 𝑣𝑡
𝐸−𝑝𝑡

𝐸− − ∑ 𝛼𝑞𝑡
𝑄,𝐸

𝑝𝑞𝑡
𝑄,𝐸

𝑞∈Ω𝑄 + 𝜆𝑡
𝐸(𝑝𝑡

𝐸− + ∑ 𝑝𝑞𝑡
𝑄,𝐸

𝑞∈Ω𝑄 − 𝑝𝑡
𝐸+ − ∑ 𝑝𝑔𝑡

𝐺,𝐸) + 𝜇𝑔𝑡
𝐺,𝐸(−𝑝𝑔𝑡

𝐺,𝐸)𝑔∈Ω𝐺 + 𝜇𝑔𝑡
𝐺,𝐸

(𝑝𝑔𝑡
𝐺,𝐸 −

𝑝
𝑔𝑡

𝐺,𝐸
) + 𝜇𝑞𝑡

𝑄,𝐸
(−𝑝𝑞𝑡

𝑄,𝐸
) + 𝜇𝑞𝑡

𝑄,𝐸
(𝑝𝑞𝑡

𝑄,𝐸
− 𝑝

𝑞𝑡

𝑄,𝐸
) + 𝜇𝐸+(−𝑝𝑡

𝐸+) + 𝜇
𝐸+

(𝑝𝑡
𝐸+ − 𝑝

𝑡

𝐸+
) + 𝜇𝐸−(−𝑝𝑡

𝐸−) + 𝜇
𝐸−

(𝑝𝑡
𝐸− −

𝑝
𝑡

𝐸−
)                                                                    (61) 

Find the partial derivative of  L concerning the variable 𝑝𝑡
𝐸+, 𝑝𝑡

𝐸−, 𝑝𝑔𝑡
𝐺,𝐸 , 𝑝𝑞𝑡

𝑄,𝐸
, the equations (40)-(43) are obtained. 

From equations (18)-(21), we have the following complementary slackness conditions: 

0 ≤ 𝜇𝐸+ ⊥ 𝑝𝑡
𝐸+ ≥ 0           (62) 

0 ≤ 𝜇
𝐸+

⊥ 𝑝
𝑡

𝐸+
− 𝑝𝑡

𝐸+ ≥ 0         (63) 

0 ≤ 𝜇𝐸− ⊥ 𝑝𝑡
𝐸− ≥ 0         (64) 

0 ≤ 𝜇
𝐸−

⊥ 𝑝
𝑡

𝐸−
− 𝑝𝑡

𝐸− ≥ 0         (65) 

0 ≤ 𝜇𝑔𝑡
𝐺,𝐸 ⊥ 𝑝𝑔𝑡

𝐺,𝐸 ≥ 0, ∀𝑔 ∈ 𝛺𝐺  (66) 

0 ≤ 𝜇𝑔𝑡
𝐺,𝐸

⊥ 𝑝
𝑔𝑡

𝐺,𝐸
− 𝑝𝑔𝑡

𝐺,𝐸 ≥ 0, ∀𝑔 ∈ 𝛺𝐺  (67) 

0 ≤ 𝜇𝑞𝑡
𝑄,𝐸

⊥ 𝑝𝑞𝑡
𝑄,𝐸

≥ 0, ∀𝑞 ∈ 𝛺𝑄  (68) 

0 ≤ 𝜇𝑞𝑡
𝑄,𝐸

⊥ 𝑝
𝑞𝑡

𝑄,𝐸
− 𝑝𝑞𝑡

𝑄,𝐸
≥ 0, ∀𝑞 ∈ 𝛺𝑄  (69) 

A.2. MILP model  

The single-level MPEC problem is a nonlinear single-level problem because it has these nonlinear functions:  

• 𝜆𝑡
𝐸(𝑝𝑡

𝐸+Δ𝑡 − 𝑝𝑡
𝐸−Δ𝑡) in the objective function (1) 

• Constraints (62)-(69). 

Therefore, these functions must be reformulate into linear form to apply MILP 

A.2.1. Linearization of 𝜆𝑡
𝐸(𝑝𝑡

𝐸+𝛥𝑡 − 𝑝𝑡
𝐸−𝛥𝑡)  

Nonlinear function 𝜆𝑡
𝐸(𝑝𝑡

𝐸+𝛥𝑡 − 𝑝𝑡
𝐸−𝛥𝑡)is reformulated into a linear problem by the approach presented in (Steven A. Gabriel et 

al., 2013) as follows: 

𝜆𝑡
𝐸𝑝𝑡

𝐸+ − 𝜆𝑡
𝐸𝑝𝑡

𝐸− = ∑ 𝛼𝑞𝑡
𝑄,𝐸

𝑝𝑞𝑡
𝑄,𝐸

𝑞∈𝛺𝑄 − ∑ 𝑃𝑔𝑡

𝐺,𝐸

𝑔∈𝛺𝐺 𝜇𝑔𝑡
𝐺,𝐸

− ∑ 𝛼𝑔𝑡
𝐺,𝐸𝑝𝑔𝑡

𝐺,𝐸 −𝑔∈𝛺𝐺 ∑ 𝑃𝑞𝑡

𝑄,𝐸

𝑞∈𝛺𝐺 𝜇𝑞𝑡
𝑄,𝐸

     

        (70) 

Replacing the term 𝜆𝑡
𝐸(𝑝𝑡

𝐸+𝛥𝑡 − 𝑝𝑡
𝐸−𝛥𝑡) in the objective function (1) by the righ-hand side of equation (70), we have the objective 

function (22) of a MILP model.   

A.2.2. Linearization of the complementary slackness conditions 

The nonlinear terms in the additional constraints have the form    x . y = 0, and x, y ≥ 0. These nonlinear constraints can be 
reformulated by the following MILP equations: 

0 ≤ 𝑥 ≤ 𝑀𝑢  (71) 

0 ≤ 𝑦 ≤ 𝑀(1 − 𝑢)  (72) 

𝑢 ∈ {0,1}  (73) 

where M is a large-enough positive constant. 

Consequently, constraints (62)-(69) can be reformulated by the equations (44)-(60). 


