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Abstract. This study aims to investigate the impact of various factors, such as wall shape, Rayleigh number, and volume fraction of nanoparticles, on 
natural convection in a square cavity that is filled with a mixture of Al2O3 solid particles and liquid water. The research employs numerical simulations 
based on the radial basis function meshless method and the artificial compressibility technique. The results of the study showed that the temperature 
distribution in the cavity was mostly uniform, except in the vicinity of the hot wall, while the flow was primarily dominated by convection as the 
Rayleigh number increased. Furthermore, the heat transfer rate increased with the volume fraction of nanoparticles, indicating the significance of 
nanoparticles in improving the thermal performance of the system.  Additionally, the study found that the average Nusselt number, which characterizes 
the heat transfer efficiency, was highest when the cavity had a wavy wall. For single and double wavy walls, there were respective enhancements of 
32% and 6% compared to a regular wall. Additionally, the Nusselt number increased as the volume fraction of nanoparticles, indicating a significant 
influence of nanoparticle concentration and wall geometry on the fluid flow and heat transfer characteristics in the square cavity. Consequently, this 
study's outcomes provide crucial insights into designing and optimizing thermal management systems, particularly those utilizing nanofluids. 
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1. Introduction 

The improvement of heat transfer in heat exchangers has 
long been of interest to industrialists and, by extension, to 
scientific researchers. Demand for cavities, which are 
commonly used to cool electronic components, is on the rise. 
The heat transfer inside these cavities can be significantly 
improved by various methods, including the use of nanofluids 
with high thermal conductivity instead of conventional fluids 
like air or water (Keshtkar  et al 2018; Aghakhani et al. 2018 ; 
Shahsavar et al. 2021 ; Miroshnichenko et al.2018 ;  Muhammad 
et al. 2020 ; Kadhim et al. (2022) and Shoeibi et al (2023)). 
Additionally, designing alternative cavity configurations with or 
without obstacles can change flow behavior and increase heat 
transfer. Researchers have used different methods to study the 
impact of nanofluids on heat transfer in different types of 
cavities. 

Due to extensive research in the field, some authors have 
focused on reviewing existing studies. Recent studies have 
explored natural convection flow and heat transfer in enclosures 
of various shapes. Rahimi et al. (2019) conducted a review of the 
latest work in this area, analyzing the effects of different physical 
and thermal boundary conditions, governing parameters, and 
fluid parameters on convective flow and heat transfer 
performance in square and rectangular, trapezoidal, triangular, 
and parallelogram-shaped enclosures. Similarly, Das et al. 
(2017) summarized work on flow in triangular, trapezoidal, 
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parallelogram-shaped enclosures, and nanofluid-filled 
enclosures. Bairi et al.(2014)provided an overview of natural 
convection in parallelogram-shaped cavities, relevant for 
technical applications. 

The improvement of thermal performance in rectangular 
cavities is still a focus of research. Alqaed et al. (2022) recently 
numerically studied natural convection of an alumina/H2O 
nanofluid in a cavity with two hot triangular blades on the 
bottom wall, insulated side walls, and a low-temperature top 
wall. They analyzed heat transfer by estimating variations of 
Nusselt number, Bejan number, and entropy generation rate 
with cavity angle, Hartmann number, and Rayleigh number. The 
study showed that as the Bejan number decreased, the Nusselt 
number and entropy generation rate increased with the 
Rayleigh number but not with increasing Hartmann numbers. 
The maximum values of entropy generation and Nusselt 
number and the minimum value of Bejan were found at a 30° 
angle. The modification of geometry and use of a high thermal 
conductivity fluid significantly improved thermal performance. 

Zarei et al.(2022)  used a finite volume method with the 
SIMPLE algorithm to study two-dimensional natural convection 
in a corrugated wall cavity filled with a water-based nanofluid. 
They analyzed the effect of wall wavelength, amplitude, and 
volume fraction of nanoparticles on heat transfer for a Rayleigh 
number of 104. Results showed that the volume fraction had the 
greatest effect on heat transfer and increased the average 
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Nusselt number by 2.5 times when increasing from 0 to 0.04. 
The wall wavelength had the least effect on heat transfer. 

Hu et al. (2022) in their study extended the scope of 
nanofluids research by using the finite volume method to 
examine the oscillatory characteristics of natural convection 
near its maximum density in a narrow horizontal ring. The 
equations used were written in polar coordinates. They 
analyzed the effect of variables such as the nanoparticle volume 
fraction, Rayleigh number, and density inversion parameter on 
the flow pattern and heat transfer capacity. A significant finding 
of the study is that the addition of nanoparticles stabilizes and 
preserves the symmetry of the flow structure, and the heat 
transfer by natural convection is improved with an increase in 
the nanoparticle fraction. 

The advent of meshless methods has expanded the 
spectrum of numerical methods available, offering high 
flexibility in handling complex geometries(Sophy et al.  2002 ; 
Zhang et al. 2015 ; Jeyar et al. 2022 ; Luo et al.  2015 ; Najafi etal. 
2014 ; Pranowo et al. 2021 ; Sheikhi et al 2018). In this vein, the 
work of Nuwairanet al. (2023)  analyzed natural heat convection 
in square and equilateral triangular cavities using a collocation-
based meshless method using local radial basis functions (RBF). 
The nanofluids studied were Cu-water or water-nanoparticle 
mixtures with a volume fraction range of 0.2. The RBF method 
was used to approximate the partial derivatives in the governing 
equations. Results showed that the addition of nanoparticles 
significantly improved heat transfer compared to pure fluid. As 
the Rayleigh number increased, heat transfer dominated 
conduction, resulting in heat transfer from the hot walls to the 
cool walls. 

Pekmen and Oztop (2022)  investigated the effect of a 
periodic magnetic field on the natural convection of a nanofluid 
in an isosceles triangular cavity using a meshless method based 
on radial basis function-based unit partition method. The 
numerical solution of the dimensionless time-independent 
equations was carried out. The results analyze the effect of 
partially or fully tilted magnetic fields, as well as the Hartmann 
parameter and period variation. It was concluded that an 
increase in the Hartmann number suppresses fluid flow and heat 
transfer, with a full magnetic field having a greater suppressing 
effect than a partial magnetic field. In a triangle configuration 
with a horizontal periodic magnetic field, the suppression by a 
full magnetic field was greater than that by a partial magnetic 
field. 

The literature review above indicates that the issue of 
natural convection in a rectangular container remains 
unresolved, particularly when new mixed fluids are used in such 
a cavity. This paper aims to conduct a more extensive 
investigation into the topic of natural convection of nanofluid in 
square containers with varying wall shapes and under varying 
conditions of heat transfer and nanoparticle volume fraction.  

The structure of this paper is as follows. In Section 2, we 
provide an overview of the governing equations used to model 
the natural convection of nanofluids. In Section 3, the meshless 
method is presented as well as the artificial compressibility 
technique. In Section 4, we present numerical results and 
discussions. Section 5 is devoted to closing remarks. 
 

2. Problems definition and governing equations 

2.1 Problem definition 

In this research, a numerical analysis of heat transfer and fluid 
flow within a cavity with three distinct walls is conducted. The 
cavity and the analyzed walls are shown in Figure 1. The three 
walls are aligned vertically and have the following shapes: a 
wavy wall (w1), a zig-zag wall (w2), and a square wall (w3). The 

amplitude of the waves in the wavy wall, or the height of the zig-
zag or square shapes in the wall, is represented by distance a, 
which is set to 0.05. The distance b is set to 0.2 so that there are 
N=5 waves, zig-zags, or squares on each wall. The two vertical 
walls are kept at constant and uniform temperatures, Th and Tc, 
respectively, and the horizontal walls are considered adiabatic. 
The cavity is filled with a Newtonian, incompressible, and 
laminar Al2O3-water nanofluid. The thermophysical properties 
of the nanofluid are assumed to be constant, except for the 
density change, which is modeled using the Boussinesq 
approximation in the buoyancy term (Bejan, 2013). The water 
and Al2O3 phases are considered to be in thermal equilibrium, 
with no temperature or velocity difference between them, and 
are modeled as a single-phase homogeneous fluid. The effects 
of thermal radiation and viscous dissipation are not taken into 
account, and the gravitational acceleration is only considered in 
the y-direction. 

2.2 Governing Equations 

Considering the above assumptions, the continuity, momentum, 
and energy equations governing the steady-state heat transfer 
and laminar flow of the nanofluid are as follows (Mahmoodi 
&Sebdani,2012): 

1
x y xx yy
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where u, and v are the components of the velocity vector in (x, y) 
directions, respectively. The indicatives x, y, xx, and yy denote 
the first and second differentiation operators with respect to x 
and y, T is the nanofluid temperature, ρnf is the nanofluid 
density, νnf is the nanofluid kinematic viscosity, g is the 
gravitational acceleration, βnf is the nanofluid thermal 
expansion, and αnf is the nanofluid thermal diffusivity. 

Following dimensionless variables are used for converting 
the above equations in dimensionless form: 

𝑋 =
𝑥

𝐿
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𝑦

𝐿
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𝐿2
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𝛼𝑓
, 
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𝜌𝛼𝑓
2 , 𝜃 =

𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐

     

(2) 

Using the above dimensionless variables, the system of 
governing equations takes the following dimensionless form: 

 
Fig 1. Geometry of physical problem 
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where Pr and Ra represent the Prandtl and Rayleigh numbers, 
respectively, and are defined as follows: 

3

h c(T T ) L
Pr ,

f f

f f f

g
Ra

 
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−
= =    (4) 

Furthermore, Dirichlet and Newmann boundary conditions are 
used to update the flow field (U, V, θ) on the boundary walls of 
the cavity. With these two boundary approximations, the 
dimensionless boundary conditions are formulated as follows: 

0
n


=



𝜕𝜃

𝜕𝑛
= 0For Temperature,

𝜕𝜃

𝜕𝑛
= 0, on the upper and lower 

horizontal walls, 𝜃(𝑋 =0, 𝑌) = 𝜃ℎ = 1 on the left vertical wall 
and 𝜃(𝑋 =𝐿, 𝑌) = 𝜃𝑐 = 0 on the right vertical wall. For Velocity,

0u v= = on all walls.  

The local Nusselt number is one of the most commonly used 
numbers to measure the rate of heat transfer. It represents the 
ratio of convective to conductive heat transfer across a 
boundary and is given by 

𝑁𝑢𝑙 = −
𝐾𝑛𝑓

𝐾𝑓

𝜕𝜃

𝜕𝑥
|
𝑋=0

    

(5) 

The average Nusselt number is calculated by integrating the 
local Nusselt number along the hot wall of the cavity as follows: 

𝑁𝑢𝑎𝑣𝑔 = ∫ 𝑁𝑢𝑙𝑑𝑥
𝐿

0
     

(6) 

2.3 Nanofluid thermophysical properties 

Thermophysical properties of water and Al2O3 nanoparticles are 
given in Table 1. The effective density of the nanofluid is 
calculated based on the density of the base fluid (ρf), the density 
of the solid nanoparticles (ρs), and the volume fraction of the 
particles (ϕ), as follows (Khanafer et al., 2003): 

𝜌nf = (1 − 𝜙)𝜌𝑓 + 𝜙𝜌𝑠
    

(7) 

The thermal capacity of the nanofluid is determined as: 

(ρc𝑝)nf =
(1 − 𝜙)(ρc𝑝)𝑓 + 𝜙(ρc𝑝)𝑠   

(8) 

where (ρc𝑝)𝑓 is the thermal capacity of the base fluid, and 

(ρc𝑝)𝑠is the thermal capacity of the solid particles. Thermal 

diffusivity of the nanofluid is determined by 

𝛼nf =
𝑘nf

(ρc𝑝)nf

     

(9) 

and the thermal expansion coefficient of the nanofluids can be 
determined as: 

(ρβ)nf = (1 − 𝜙)(ρβ)𝑓 + 𝜙(ρβ)𝑠
   

(10) 

where ( )ρβ
f

 and ( )ρβ
s

 are the thermal expansion coefficient of 

the base fluid and the solid particles, respectively. According to 
the Brinkman model (Brinkman 1952), the effective viscosity of 
the nanofluid is given by 

( )
f

nf 2.5

μ
μ

1 
=

−
     

(11) 

here μf represents the effective viscosity of the base fluid. 

The effective thermal conductivity of the nanofluid is 
approximated using the Maxwell model (Maxwell 1904). This 
model allows us to express the effective thermal conductivity of 
the nanofluid as: 

( )
( )

p f f p

nf f

p f f p
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k k

k 2k 2 k k





 + − −
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     

(12) 

where kp is the thermal conductivity of the base fluid, and ks 

the thermal conductivity of solid particles. These relations have 
been widely used in the literature for numerical simulation of 
free convection of nanofluid (Aminossadati et al. (2009); Saleh et 
al. (2011); Sheikholeslami et al. (2016); Sheikhzadeh et al.(2011).  

3. Description of the numerical method 

When attempting to find a numerical solution for the equations 
(3), there are several challenges. The momentum equations 
contain a pressure gradient, and they cannot be solved without 
specifying the pressure term. In this work, we adopt the method 
of artificial compressibility proposed by Chorin (1997) to handle 
the pressure-velocity coupling. This method couples pressure 
with velocity by adding a pseudo-temporal derivative to the 
continuity equation, as follows: 

X(U ) 0Yt
P U+ + =

    
(13)

 

Here,   is an artificial compressibility parameter, a crucial but 

adjustable parameter that influences the convergence of the 
solution. In this study, a value of 10−5 was used to achieve 
convergence. For simplicity, the right-hand side elements of the 
above mathematical model (3) are rewritten in a compact form 
as follows: 
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where 𝑊 = (𝑃,𝑈, 𝑉, 𝜃)𝑇  is the unknown physical vector. 

Table 1 

Thermophysical properties of water and nanoparticles.  

Properties H2O Al2O3 

3[Kg/m ]  997.1 3970 

c [J/Kg/K]
p

 4179 765 

k[W/m/K]  0.613 40 

5[1/K] 10 −  1.67 0.85 

[Kg/m/s]  0.001 - 

 



Y. Es-Sabry et al  Int. J. Renew. Energy Dev. 2023, 12(5), 853-863 

| 856 

 

ISSN: 2252-4940/© 2023. The Author(s). Published by CBIORE 

3.1 Spatial derivative Approximation 

This work addresses the problem of interpolating an unknown 

function 𝑊:ℝ2 → ℝ  from N functional values  (x ),..., (x )
1 N

W W  , 

where the centers 𝑥1, . . . , 𝑥𝑁 ∈ 𝛺  and 𝛺 ⊂ ℝ2  is bounded 
domain and the centers are taken anywhere in the domain 𝛺. In 
local RBF approximation techniques, at every center𝑥𝑗 ∈ 𝛺 , the 

local interpolant (Kansa 1990): 

( )j(x , t) (t) ,
k j

k j k

x

W x x  


= −
   

(15) 

where 𝜆𝑗 = (𝜆1, . . . , 𝜆𝑛)  is expansion coefficients and ‖𝑥𝑗 − 𝑥𝑘‖  

is the Euclidean distance between 𝑥𝑗  and 𝑥𝑘 . Here, 

( ) 2
, 1 ||x x ||j kx xj k  − = − −  is a multiquadric function whereε 

is a shape parameter that plays a substantial role in the resulting 
accuracy (Bayona et al. (2011); Fasshauer et al. (2007); Liu et al. 
(2018); Uddin et al. (2014). Generally, the determination of the 
range of shape value can be obtained by using numerical tests. 
In this study, we use the formula employed in the work of 
Nuwairan et al. (2023).  

𝛺𝑗 ⊂ 𝛺  is the local support domain for each node xj and have n 

nearest centres with centre. The N number of 𝑁 × 𝑁 linear 
systems is 

𝑊𝑗 = 𝜙𝑗Γ𝑗𝑗 = 1, . . . , 𝑁
    

(16) 

where j  is the local matrix RBF, which elements are 𝛷𝑘
𝑗
=

𝛷(‖𝑥𝑘 − 𝑥𝑗‖), where kx   and 𝑥𝑗 ∈ 𝛺 . Applying the differential 

operator L    to Equation (Sarra 2012) 
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k j k

x
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
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(17) 

The expression in (17) can be written as element-wise product 
of two vectors, 

j j jW =  LL
     

(18) 

where 𝛤𝑗 is the 𝑛 × 1 vector of unknown coefficients, and 𝜙𝐿
𝑗
 is 

1 × 𝑛 vector with entries (||x x ||)j k −L . To eliminate the 

unknown coefficients, we rewrite Equation (16) as:  
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on substituting the values of  j  from (19) in (18) we have, 
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gives weight to centre𝑥𝑗 . For all centers, it gives 

j= LL M iW W
     

(22) 

where ℳℒ is 𝑀 ×𝑀 sparse differentiation matrix, each row has 
an 𝑀 −𝑚 zeros elements, where 𝑚 is the stencil size in each 
local domain 𝛺𝑗. This differentiation matrix will be used to 

approximate the derivatives of the governing equations. Thus, 
the first and second derivatives are evaluated using the matrix 

ℳ𝑥, ℳ𝑥𝑥 , ℳ𝑦 and ℳ𝑦𝑦 for the derivatives with respect to the 𝑥 

and y successively. 
Accordingly, using the differentiation matrix, the right-

hand side of the partial differential problem (3) can be 
approximated as: 
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3.2 Temporal approximation 

After spatial local RBF approximation, we obtained the 
following system of ODEs 

𝑊�̃� = 𝐹(𝑊)
     

(24) 

in which 𝐹(W) = ℒ(W). For an ordinary differential equation 
computation, the fourth-order Runge-Kutta method has been 
taken (Chaabelasri 2019). These recursive steps are expressed 
as follows: 
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  (25) 

The purpose of our study is to examine the steady state solution, 
despite the fact that the governing equations are time 
dependent. Thus, the steady state is reached when the 
variations of the variables approach zero with the help of this 
method. The convergence criterion for the steady state is: 

‖𝜃𝑛+1 − 𝜃𝑛‖∞ ≤ 𝜀𝑒𝑟𝑟 and‖𝑈𝑛+1 − 𝑈𝑛‖∞ ≤ 𝜀𝑒𝑟𝑟
 

(26) 

Here 𝑛 and 𝑛 + 1 denote two adjacent time steps and 𝜀𝑒𝑟𝑟 is 
taken equal to 10−5 in all cases. 

4. Result and discussion  

4.1 Grid independence and validation 

A grid sensitivity analysis was performed to investigate steady-
state natural convection and fluid flow in a square cavity filled 
with Al2O3-water nanofluid. The walls of the cavity are plane 
surfaces and the average Nusselt number along the heated wall 
was used to determine the number of nodes for numerical 
investigations. The grid independence solution was obtained 
using different numbers of nodes, including 1000, 2000, 3000, 
and 4000 nodes. The results for Ra = 105 and ϕ = 0.1 are 
shown in Table 2 and indicate that the solution becomes 
independent of the node number from 3000. Therefore, the 
uniform grid of 3000 nodes was selected due to its better 
balance between computational time and accuracy. The validity 
and accuracy of the numerical method were verified by 
comparing the average Nusselt number on the hot wall of the 
square cavity at ϕ = 0.1 and various Rayleigh numbers with 
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those obtained by Basak et al. (2012). The results in Table 3 
demonstrate that the code accurately reproduces the results 
reported inBasak et al. (2012). 

4.2 Natural convection in a square cavity with one irregular lateral 
wall 

In the initial part of this study, natural convection in a square 
cavity with one irregular lateral wall is analyzed. The irregular 
wall, which is located on the left side of the cavity, takes on three 
distinct shapes: corrugated wavy, zig-zag and square wall. The 
other walls of the cavity are flat. The cavity is filled with a 

mixture of Al2O3 solid particles and liquid water, with a Prandtl 
number of Pr= 6.2. The thermophysical properties of the solid 
particles Al2O3 and liquid water are outlined in Table 1. 
Numerical simulations are performed to examine the influence 
of the corrugated walls, Rayleigh number, and volume fraction 
of nanoparticles on the dimensionless temperature, stream 
function, and local and average Nusselt numbers. 

In Figure 2, the isothermal lines are displayed for different 
values of the Rayleigh number and volume fraction of 
nanoparticles. For all three configurations, the overall 
characteristics of the isotherms remain unchanged, except for 
the region surrounding the left hot wall. The isotherms reflect 

Table 2 
Comparison of average Nusselt numbers for different numbers of nodes at Ra = 104 and ϕ = 0.1 

Number of nodes Average Nusselt number 

1000 2.3034 

2000 2.7323 

3000 2.7376 

4000 2.7379 

 
 
Table 3 
 Comparison of the average Nusselt numbers with those obtained by Basak et al. (2012) at ϕ = 0.1 and different Rayleigh numbers. 

Parameter Average Nusselt number 

Ra Present study Basak et al. 

1000 1.3446 1.3901 

10000 2.7376 2.4752 

100000 5.0012 5.3050 

 

 
Fig 2. Distribution of isotherms inside the square cavity with one irregular wall of different shapes for different numbers of Ra, and the values 

of ϕ= 0.05 
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the wall’s curvature. We can see that, for low Rayleigh numbers 
and across all configurations, the isotherms are parallel to the 
vertical walls, indicating that conduction is dominant. As the 
Rayleigh number increases, the shape of the isotherms 
transforms and becomes parallel to the horizontal walls, 
signifying that convection is dominant. Additionally, the density 
of the isotherms near the cold and hot walls increases as the 
Rayleigh number increases, indicating an increase in the 
temperature gradient and, therefore, an increase in the rate of 
heat transfer along these walls. With an increase in the volume 
fraction of nanoparticles, the isotherms changed slightly. This is 
due to the increased viscosity of the fluid flow caused by the 
nanoparticles, which slows down the flow and decreases the 
natural convection mechanism, potentially reducing the rate of 
heat transfer. However, the overall rate of heat transfer 
throughout the cavity improved due to the increased thermal 
conductivity of the base fluid. 

In Figure 3, the streamlines are depicted for different 
values of the Rayleigh number and volume fractions of 
nanoparticles. As seen in the figure, the flow is characterized by 
a single vortex in the center of the cavity for all parameters and 
configurations. This vortex arises from the movement of fluid 
within the cavity, which is driven by the difference in density 
between the cold and hot walls. At low Rayleigh numbers, the 
fluid moves at a slow velocity, leading to conduction being 
dominant. As the Rayleigh number increases, the buoyancy 
force increases, causing the fluid to move faster within the cavity 
and leading to an increase in velocity and temperature 
gradients, making convection dominant. It is also noted that the 
size of the central vortex increases as the Rayleigh number 
increases, and this effect is more pronounced at higher values. 
Additionally, the density of the streamlines near the vertical 

walls increases, indicating an increase in the temperature 
gradient and improved heat transfer rate. The density of the 
streamlines also increases with an increase in the volume 
fraction of nanoparticles, due to the high energy transported by 
the flow caused by the irregular motion of the nanoparticles. 
The flow characteristics remain the same in each case, except 
for the region with the highest temperature, where the 
streamlines take on the shape of the heated wall. It’s important 
to note that the thermal lines and streamlines do not provide 
enough information about the influence of the irregular wall, so 
it is recommended to analyze the Nusselt number. 

The local Nusselt numbers for different values of the 
Rayleigh number at a volume fraction of ϕ = 0.05 for 
corrugated walls are depicted in Figure 4. The results show that 
the local Nusselt number exhibits a consistent behavior in each 
case. Additionally, it is observed that the Nusselt number 
increases at each crest due to the irregularity in the shape that 
causes more fluid particles to come into contact with the heated 
wall. An increase in the Rayleigh number results in an 
enhancement of the buoyancy force and the fluid velocity in the 
cavity, which in turn leads to an increase in the local Nusselt 
number. 

The variation of the average Nusselt number with respect 
to the Rayleigh number is also shown in Figure Figure 4 for 
regular and corrugated walls. The results indicate that when the 
regular wall is replaced with an irregular wall, the average 
Nusselt number increases more for the wavy wall compared to 
the regular wall and decreases for both the zigzag and square 
walls. This is because the fluid particles flow smoothly on wavy 
wall more than zig-zag or square, where they get stuck in 
confined areas. In addition, the wavy shape increases the 

 
Fig 3. Distribution of streamlines inside the square cavity with one irregular wall of different shapes for different numbers of Ra, and the values 

of Φ = 0.05 
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surface area of heat transfer compared to other configurations, 
resulting in a higher average Nusselt number. 

Finally, the variation of the average Nusselt number on the 
hot wall for different volume fractions of nanoparticles at 𝑅𝑎 =
105 for regular and irregular walls is analyzed and presented in 
Table 4. For all cases, it can be seen that the average Nusselt 
number increases with an increase in the volume fraction of 
nanoparticles, which is due to the improvement in the thermal 
conductivity of the base fluid caused by the addition of 
nanoparticles. The wavy wall keeps their higher efficiency 
compared to other corrugated or flat walls. 

4.3 Natural convection in a square cavity with two irregular lateral 
walls 

In this section of the study, the right and left vertical walls were 
considered corrugated, while the remaining walls were 
considered flat surfaces. The results demonstrate the impact of 

the two corrugated vertical walls, Rayleigh number, and 
nanoparticle volume fraction on the heat transfer rate. 

The distribution of isothermal lines inside three cavities for 
various Rayleigh numbers and two volume fractions of 
nanoparticles ϕ = 0.05 and 0.1, is shown in Figure 5. Except for 
the areas with hot and cold walls, where the isotherms distort 
into the shape of corrugated walls, the behavior of the isotherms 
is identical across all configurations. When the Rayleigh number 
is low, the isotherms are more vertical, which indicates that heat 
transfer is dominated by conduction. As the Rayleigh number 
increases, the isotherms begin to deform and become more 
pronounced, especially in the center of the cavities, which 
suggests that heat transfer through convection is becoming 
more dominant. The density of isothermal lines near the 
corrugated hot and cold walls is also increased, which 
strengthens the temperature gradient and leads to an increased 
rate of heat transfer. With increasing volume fraction of 
nanoparticles, the conductivity of the base fluid increases, and 
the density of isotherms becomes more significant near the 
vertical walls, causing the deformation of the isotherms to also 

 
 

Fig 4. Local and average Nusselt numbers on the hot irregular left lateral wall with different shapes for various Rayleigh numbers at ϕ= 0.05 

 

 
Table 4 
The variation of the average Nusselt number on the hot regular and irregular walls for different volume fractions of nanoparticles at the value of 
Ra =105 

Volume fraction of nanoparticles Type of wall Average Nusselt number 

0.05 =  Regular 4.63 

 Wavy 6.1314 

 Zigzag 3.8013 

 Square 2.3849 

   

0.1 =  Regular 5.0012 

 Wavy 6.4042 

 Zigzag 3.9479 

 Square 2.4717 
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increase. As a result, the heat transfer rate from the walls 
increases. 

Figure 6 shows the distribution of streamlines inside the 
cavity with different shapes of vertical hot and cold walls for 
various Rayleigh numbers and volume fractions of 
nanoparticles. At a fixed Rayleigh number, the flow pattern is 
qualitatively the same across all configurations, especially in the 
middle of the cavity where a clockwise recirculation vortex is 

formed. The streamlines on the left and right sides of the cavity 
are compressed due to the irregularity of the corrugated walls, 
while those on the top and bottom are not affected. As the 
Rayleigh number increases, the clockwise symmetric 
recirculation vortex observed at Ra = 103 disappears and is 
replaced by two small recirculation vortexes near the 
corrugated walls for Ra = 106. The density of the streamlines is 
enhanced near the hot and cold walls with increasing Rayleigh 

 
Fig 5. Distribution of isotherms inside the square cavity with two irregular walls of different shapes for different numbers of Ra, and the values 

of ϕ= 0.05. 
 
 
 

 

 
Fig 6. Distribution of streamlines inside the square cavity with two irregular walls of different shapes for different numbers of Ra, and the 

values of ϕ= 0.05. 
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number, indicating an increase in the temperature gradient and 
a higher rate of heat transfer. Additionally, the velocity of the 
recirculation vortex also increases, contributing to improved 
heat transfer inside the cavity. With an increase in the volume 
fraction of nanoparticles, the density of the streamlines also 
rises, further improving heat transfer. 

The illustration of the variation of the local Nusselt number 
for different values of the Rayleigh number at ϕ = 0.05 is shown 

in the Figure 7 for all corrugated walls. It can be observed that 
the Nusselt number increases at the high peaks and decreases 
at the lower peaks of the hot corrugated wall, which is due to 
the irregular shape of the walls. The irregular shape allows more 
fluid particles to come into contact with the higher peaks, 
resulting in an increase in the local Nusselt number at those 
locations compared to the lower peaks where the number of 
fluid particles in contact with the wall decreases, leading to a 
decrease in the local Nusselt number. This is evident in Figure 

6, particularly on the cavity with square corrugated vertical 

walls. It is also noted that the local Nusselt number for wavy 
walls is larger than for other configurations. For the triangular 
zigzag and square walls, fluid particles move up and down due 
to their corrugated shapes, causing a backflow that decreases 
the fluid flow rate. However, this phenomenon does not occur 
in the case of wavy hot walls, making the heat transfer rate 
higher in the wavy wall compared to the triangular and zig-zag 
walls. Additionally, the local Nusselt number increases with the 
increasing Rayleigh number, as the increase in the Rayleigh 
number enhances convection and improves heat transfer due to 
the increase in buoyancy forces inside the cavity. 

The variation of the average Nusselt number versus the 
Rayleigh number for regular and corrugated walls at ϕ = 0.05 
is also shown in same figure. The figure reveals a reduction in 
the average value of the Nusselt number for cavities with zig-
zag and square walls compared to the regular cavity and wavy 
cavity. Also, the Nusselt number for the wavy wall increased 
more than regular cavity or cavities with zig-zag and square 
walls, with the increase observed for all values of the Rayleigh 

 

 
Fig 7. Local and averaged Nusselt number along the irregular walls for various Rayleigh numbers at ϕ= 0.05 

 
 
 
Table 5 
The variation of the average Nusselt number along the regular and irregular walls for different volume fractions of nanoparticles at the value of 
Ra =105 

Volume fraction of nanoparticles Type of wall Average Nusselt number 

0.05=  Regular 4.83 

 Wavy 5.1348 

 Zigzag 4.1079 

 Square 2.1784 

   

0.1=  Regular 5.0012 

 Wavy 5.5545 

 Zigzag 2.2859 

 Square 2.262 
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number and larger for high values. At low Rayleigh numbers, the 
triangular square wall has no significant impact on the average 
Nusselt number compared to the other configurations, where 
the Nusselt number was increasing for the wavy wall and 
decreasing for the square wall for the same reasons mentioned 
before with one irregular wall. 

To summarize, the Table 5 shows the variation of the 
average Nusselt number on the hot wall of the cavity for two 
volume fractions of nanoparticles for the regular and all 
corrugated walls, with the Rayleigh number kept constant at 
105. The Table reveals that for all configurations considered, the 
average Nusselt number increases with an increase in the 
volume fraction of nanoparticles. This is because an increase in 
the volume fraction of nanoparticles leads to an increase in the 
thermal conductivity of the base fluid, which in turn increases 
the heat transfer rate. 

5. Conclusions 

The study investigates the effect of different wall, and the 
impact of the Rayleigh number and volume fraction of 
nanoparticles on natural convection in a square cavity filled with 
a mixture of Al2O3 solid particles and liquid water. The results 
of numerical simulations showed that the overall temperature 
distribution remained unchanged except near the hot wall, and 
the flow was dominated by convection as the Rayleigh number 
increased. The heat transfer rate improved with an increase in 
the volume fraction of nanoparticles. The flow was 
characterized by a central vortex that increased in size as the 
Rayleigh number increased. The average Nusselt number was 
found to be highest with the wavy wall, and to increase with an 
increase in the volume fraction of nanoparticles. 
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