
Int. J. Renew. Energy Dev. 2023, 12(5), 902-912 
| 902 

https://doi.org/10.14710/ijred.2023.54452  
ISSN: 2252-4940/© 2022.The Author(s). Published by CBIORE 

 

 
Contents list available at IJRED website 
 

International Journal of Renewable Energy Development 
 

Journal homepage: https://ijred.undip.ac.id 

 

 

Estimating mixture hybrid Weibull distribution parameters for wind 
energy application using Bayesian approach 

Agbassou Guenoupkatia,b,c , Adekunlé Akim Salamia,b,c,* , Yao Bokovia,b,c , 
Piléki Xavier Koussetoub , Seydou Ouedraogoc,d  

aCentre d'Excellence Régional pour la Maîtrise de l'Electricité (CERME), University of Lome, Lome, P.O. Box 1515, Lome Togo 
bDepartment of Electrical Engineering, Ecole Polytechnique de Lomé (EPL), University of Lome, P.O. Box 1515, Lome Togo 
cLaboratoire de Recherche en Sciences de l’Ingénieur (LARSI), University of Lome, P.O. Box 1515, Lome Togo 
dPolytechnic University of bobo-Dioulasso, Burkina-Faso 

Abstract. The Weibull distribution function is essential for planning and designing wind-farm implementation projects and wind-resource 
assessments. However, the Weibull distribution is limited for those areas with high frequencies of calm winds. One solution is to use the hybrid Weibull 
distribution. In fact, when the wind speed data present heterogeneous structures, it makes sense to group them into classes that describe the different 
wind regimes. However, the single use of the Weibull distribution presents fitting errors that should be minimized. In this context, mixture distributions 
represent an appropriate alternative for modelling wind-speed data. This approach was used to combine the distributions associated with different 
wind-speed classes by weighting the contribution of each of them. This study proposes an approach based on mixtures of Weibull distributions for 
modelling wind-speed data in the West Africa region. The study focused on mixture Weibull (WW-BAY) and mixture hybrid Weibull (WWH-BAY) 
distributions using Bayes' theorem to characterize the wind speed distribution over twelve years of recorded data at the Abuja, Accra, Cotonou, Lome, 
and Tambacounda sites in West Africa. The parameters of the models were computed using the expectation-maximization (E-M) algorithm. The 
parameters of the models were estimated using the expectation-maximization (E-M) algorithm. The initial values were provided by the Levenberg-
Marquardt algorithm. The results obtained from the proposed models were compared with those from the classical Weibull distribution whose 
parameters are estimated by some numerical method such as the energy pattern factor, maximum likelihood, and the empirical Justus methods based 
on statistical criteria. It is found that the WWH-BAY model gives the best prediction of power density at the Cotonou and Lome sites, with relative 
percentage error values of 0.00351 and 0.01084. The energy pattern factor method presents the lowest errors at the Abuja site with a relative 
percentage error value of -0.54752, Accra with -0.55774, and WW-BAY performs well for the Tambacounda site with 0.19232. It is recommended 
that these models are useful for wind energy applications in the West African region. 
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algorithm 

@ The author(s). Published by CBIORE. This is an open access article under the CC BY-SA license 
 (http://creativecommons.org/licenses/by-sa/4.0/). 

Received: 21st May 2023; Revised: 24th June 2023; Accepted: 30th July 2023; Available online: 20th August 2023   

1. Introduction 

Environmental problems are currently of great concern on a 
global scale; for example, the problem of the depletion of certain 
resources of fossil origin and the pollution of the environment 
(Zhou et al., 2015). Then the use of renewable energies is an 
alternative to ensure both energy transition and sustainable 
development. In this case, solar and wind power are commonly 
used (García-caballero et al., 2023; Höök & Tang, 2013; Speirs 
et al., 2015). In the case where the energy needs should be 
ensured by wind power, knowledge about the wind is essential. 
However, the wind is characterized by its variability, non-
linearity, and intermittence (Bastin et al., 2023). Therefore, wind 
modeling is required to size the wind turbines. To this end, the 
first approach consists to exploit wind speed data over a given 
period and the second is to use the distribution function that 
provides information on the probabilities of the occurrence of 

 
* Corresponding author 

Email: akimsalami11@gmail.com (A. A.Salami) 

wind speeds. Moreover, during these decades, West Africa has 
benefited from wind farm projects in some of its countries to fill 
the energy gap characterized by a large part of its population 
with no access to electricity (Salami et al., 2018).  

For the optimal use of wind energy, the choice of the 
appropriate distribution function is very important (Alcalá et al., 
2019). Therefore, the Machine Learning method, Rayleigh, log-
normal, Gaussian, and Weibull distributions are most often 
found in the literature (Elamouri & Ben Amar, 2008; Elmahdy, 
2015; Kiss & Jánosi, 2008; Liu et al., 2023; Mohammadi et al., 
2015; Adekunlé Akim Salami et al., 2018; Sedzro et al., 2022). 
Among them, the Weibull distribution function is widely used 
for wind energy applications because of its adaptability to 
multiple wind speed regimes and allows to have better results 
(Albani & Ibrahim, 2013; Celik, 2004; Morgan et al., 2009; Salami 
et al., 2013; Ucar & Balo, 2009). However, (Carta & Ramírez, 
2007; Jaramillo & Borja, 2004b; Salami et al., 2016) highlighted 
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that the conventional Weibull distribution should not use in a 
generalized way when wind speed distribution on certain sites 
is multimodal. The Mixture distributions are a viable alternative 
for modeling wind speed data. The mixture model is a linear 
combination of other distribution functions called mixture 
components (Jaramillo & Borja, 2004a; Kollu et al., 2012). In the 
case of the mixture model, the estimation errors vary according 
to the method of estimation of its parameters. 

This study aims to investigate the potential of mixture 
distributions for modeling wind speed data in a West African 
environment. To take into account calm winds in wind speed 
characterization, this study proposed two mixture models 
named mixture Weibull (WW-BAY) and mixture Hybrid Weibull 
(WWH-BAY) distributions using Bayes’ approach to 
characterize the wind speeds at five sites in West Africa such as 
Abuja (Nigeria), Accra (Ghana), Cotonou (Benin), Lome (Togo) 
and Tabacomda (Senegal). A comparison was carried out to the 
Weibull distribution which parameters are estimated by Energy 
Pattern Factor (EPF), Empirical Method of Justus (EMJ), and 
Maximum Likelihood Method (ML). The contributions made by 
this research are promising with huge academic and economic 
impacts such as the proposal of an innovative approach using a 
mixture of Weibull distribution and Bayes’ theorem for wind 
energy modeling, the highlight of the limits of the Hybrid 
Weibull distribution for areas with calm winds, decision making 
during the design and implementation of wind power plant 
projects, reduction of financial risks due to the variability of the 
wind, the optimization of the power generated by wind farms, 
evaluation of the wind potential, and the comparative basis of 
methods for modeling wind speed. Moreover, this is the first 
time these methods have been applied specifically in the West 
Africa area. 

The rest of the paper is organized as follows: Section 2 
formulates the problem descriptions in the context of slower 
windy sites. Section 3 exhibits wind power density calculation, 
Section 4 presents some numerical methods for estimation of 
Weibull parameters, hybrid Weibull mixture distribution 
followed by the model presentation in Section 5, the Bayesian 
approach in Section 6, and the expectation-maximization (E-M) 
algorithm in Section 7. Section 8 is dedicated for mixture 
Weibull distribution parameter estimation. In Section 9, the 
methodology is exposed. Section 10 presents the results and 
discussions, and ended the conclusion in Section 11. 

2. Problem Description 

The classical Weibull distribution function is the most widely 
used for modeling wind speed data. However, for multiple wind 
regimes, it presented errors in estimating wind occurrence 
probabilities that vary with the nature of the frequency 
histogram. The classic Weibull distribution is ill-suited to 
regions with relatively high calm frequencies. In this case, it is 
advisable to process the data by removing the calm wind values 
from the data series and indicating them separately using the 
Hybrid Weibull distribution (Salami et al., 2013). In this 
circumstance, mixture models using Expectation-Maximization 
(E-M) algorithm based on Bayes' theorem are suitable for the 
heterogeneous aspects of the distribution (Akpinar & Akpinar, 
2009; Elmahdy & Aboutahoun, 2013; Mazzeo et al., 2018). To 
increase the power of this iterative method, Bayes' theorem, has 
been developed, taking into account the conditional 
probabilities of membership of wind speeds to predefined 
classes. This alternative proves its performance in the modeling 
of multimodal failures of industrial materials for the fitting of 
frequency histograms. (Elmahdy, 2015; Kececioglu & Wang, 

1998). To utilize the advantages of the Bayesian estimation 
method for wind energy applications, we use it to model wind 
speed data by combining it with its hybrid variant due to the 
sensitivity of the model to calm winds to provide a better 
prediction of wind energy in the West African region. 

3. Wind power density calculation 

Wind energy density is an important indicator to evaluate wind 
resources and to describe the amount of wind energy at 
different values of wind speed in a particular location. 
Knowledge of wind energy density is also useful for evaluating 
the performance of wind turbines and for naming the optimal 
wind turbine wind. Wind power density is similar to the level of 
energy available at the site that can be converted into electricity 
using a wind turbine. The wind power density is calculated from 
the measured wind speed data. The wind energy at a given 
location depends on the wind speed cube. Thus, the power 
density for the time series of actual wind speed data can be 
calculated using Equation (1) (Sedzro et al., 2022). 

�̄� =
1

2
𝜌𝑆𝑣3           (1) 

where  denotes the air density, a parameter that varies with 
latitude and temperature, but is generally considered to be 
constant and averages about 1.25 kg/m3 which depends on 
altitude, air pressure, and temperature; and v is the wind speed 
in m/s. S is the swept area by the wind turbine. The previous 
expression shows that the available power varies with the 
average cubic speed of the observed wind. The other expression 
is based on a statistical analysis of the raw wind data and the 
calculation of frequencies at a given threshold of speed. The 
classical Weibull probability density function is given by 
Equation (2) (Alavi et al., 2016). 

𝑓(𝑣) = (
𝑘

𝑐
) (

𝑣

𝑐
)
𝑘−1

𝑒𝑥𝑝 (−(
𝑣

𝑐
)
𝑘
)        (2) 

where k is the shape parameter that indicates the wind 
distribution of any region, and c is the scale parameter in m/s 
indicates how windy the location is. The cumulative function 
can be obtained by calculating the integral of the probability 
density function. The cumulative distribution function is 
expressed by Equation (3). 

𝐹(𝑣) = 1 − 𝑒𝑥𝑝 (−(
𝑣

𝑐
)
𝑘
)         (3) 

The wind density energy calculated from the density of the 
Weibull probability density function is estimated using the 
following Equation (4) (Tizpar et al. 2014), where Г denotes the 
Gamma function. 

𝑃 =
1

2
𝜌𝑐3𝛤 (1 +

3

𝑘
) [

𝑊

𝑚2]        (4) 

4. Weibull parameters estimating methods 

The Statistical estimation of the unknown parameter from 
random variables is an important problem that can be solved by 
numerical methods. In the case of Weibull distribution 
parameters estimated from wind speed data (Aras et al., 2020; 
Guenoukpati et al., 2020; Nage, 2016) several numerical 
methods are used. There are several methods in the literature 
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to compute the parameters k and c of the Weibull distribution 
function. We have the graphical method (GP), the empirical 
method of Justus (EMJ), the empirical method of Lysen (EML), 
the energy pattern factor method (EPF), the maximum 
likelihood method (ML), and the Moroccan method (MMa) are 
used to calculate these parameters. The EPF, EMJ, and ML 
methods are recognized as those that minimize errors in wind 
characterization (Mostafaeipour, 2016). The three numerical 
methods used in this study to estimate the parameters of the 
Weibull distribution are the Energy Pattern Factor Method 
(EPF), the Empirical method of Justus (EMJ), and the Maximum 
Likelihood method (ML). Other variants can be found in the 
literature (Akdağ & Güler, 2018; Arrabal-Campos et al., 2020). 

4.1. Empirical method of Justus (EMJ) 

Based on the empirical method introduced by Justus, the 
parameters, k, and c are calculated respectively by Equation (5) 
and Equation (6). 

𝑘 = (
𝜌

�̄�
)
−1,086

           (5) 

𝑐 =
�̄�

Γ(1+
1

𝑘
)
            (6) 

4.2. Energy Pattern Factor Method (EPF) 

To calculate the parameters c and k by this process, the Energy 
pattern factor as a parameter used for the aerodynamic design 
of the turbines must be defined first. The energy pattern factor 
is obtained by using Equation (7) (Salami et al., 2022). 

𝐸𝑝𝑓 =
1

𝑛
∑ 𝑣𝑖

3𝑛
𝑖=1

1

𝑛
∑ 𝑣𝑖
𝑛
𝑖=1

=
𝑣3

�̄�3
=

𝛤(1+
3

𝑘
)

𝛤3(1+
1

𝑘
)
  (7) 

where 𝑣3̅̅ ̅ is the average wind speed cube,  �̅�3 is the cube of the 
average speed. Then, the parameter can be calculated by 

Equation (8). The parameter c is also calculated in the same 

way using Justus empirical method. 

𝑘 = (1 +
3,69

(𝐸𝑝𝑓)
2)    (8) 

4.3. Maximum likelihood method  

The maximum likelihood method is a mathematical expression 
recognized as a likelihood function of wind speed data in time 
series format. In this method, extended numerical iterations are 
required to determine the k and c parameters of the Weibull 
distribution. Using the maximum likelihood method, the 
parameters k and c are respectively calculated by Equation (9) 
and Equation (10) (Salami et al., 2018;  Salami et al., 2013). 

𝑘 = [
∑ 𝑣𝑖

𝑘 𝑙𝑛(𝑣𝑖)
𝑛
𝑖=1

∑ 𝑣𝑖
𝑘𝑛

𝑖=1

−
∑ 𝑙𝑛(𝑣𝑖)
𝑛
𝑖=1

𝑛
]
−1

                    (9) 

𝑐 = [
∑ 𝑣𝑖

𝑘𝑛
𝑖=1

𝑛
]

1

𝑘

                     (10) 

where 𝑣𝑖 is the wind speed at time i in m/s and n is the number 
of non-zero wind speed data. 

5. Theorical background of the proposed model 

In statistics, the probability function of the mixture of Weibull 
distributions is a linear convex combination of two or more 
Weibull probability density functions (Elmahdy, 2017). Its 
probability density function is sometimes called the mixture 
distribution. The individual distributions that are combined to 
form the mixture distribution have the mixture components, and 
the probabilities associated with each component of the mixture 
probabilities (Jaramillo & Borja, 2004a). The number of 
components in the mixture distribution is often limited. The 
distribution function is expressed as a weighted sum with 
positive probabilities of other distribution functions. For an m-
components mixture model, the probability density function is 
expressed by Equation (11). 

𝑓(𝑣|𝜇) = ∑ 𝜔𝑖𝑓𝑖(𝑣|𝑘𝑖 , 𝑐𝑖)
𝑚
𝑖=1        (11) 

With:  

∑ 𝜔𝑖
𝑚
𝑖=1 = 1         (12) 

𝑤𝑖 is the ith mixing proportion associated with the hybrid Weibull 
distribution function 𝑓𝑖, μ is the complete set of parameters and 
F0 the frequency of calms for the model with m component given 
by Equation (13). 

𝜇 = (𝜔1, 𝜔2, . . , 𝜔𝑚, 𝑘1, 𝑘2, . . , 𝑘𝑚, 𝑐1, 𝑐2, . . , 𝑐𝑚, 𝐹0)     (13) 

This study is limited to 𝑚 =  2. The Weibull PDF and CDF 
become the expressions given by Equations (14) and Equation 
(15). The wind power density is expressed by Equation (16). 

𝑓(𝑣) = 𝜔 (
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𝑣
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𝑣
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𝜔) (
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𝑐2
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𝑣

𝑐2
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𝑒𝑥𝑝 [− (
𝑣

𝑐2
)
𝑘2
]                                              (14) 

𝐹(𝑣) = 𝜔 (1 − 𝑒𝑥𝑝 (−(
𝑣

𝑐1
)
𝑘1
)) + (1 − 𝜔) (1 − 𝑒𝑥𝑝 (−(

𝑣

𝑐2
)
𝑘2
))                                          

          (15) 

𝑃 =
1

2
𝜌 [𝜔𝑐1

3Γ(1 +
3

𝑘1
) + (1 − 𝜔)𝑐2

3Γ(1 +
3

𝑘2
)] [

𝑊

𝑚2
]     (16) 

The expression of the Mixture Hybrid Density function and its 
cumulative distribution function are respectively given by 
Equations (17) and (18). The wind power density is calculated 
by Equation (19). 

𝑓(𝑣) =

{
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 𝑓𝑜𝑟 𝑣 ≥ 1
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𝑃 =
1

2
𝜌(1 − 𝐹0) [𝜔𝑐1

3𝛤 (1 +
3

𝑘1
) + (1 − 𝜔)𝑐2

3𝛤 (1 +
3

𝑘2
)] [

𝑊

𝑚2
]    

  (19) 

where F0 represents the frequency of calms, which is 
determined from the wind data. To fit a mixture model from 
data, the ML method could be used. This process consists to 
search the parameters that maximize the logarithm of the 
likelihood function. Setting partial derivatives of the log-
likelihood to zero leads to a set of n-nonlinear equations which 
become complex to solve using a gradient descent algorithm. A 
wide-use alternative in this context is the Expectation – 
Maximization (E-M) algorithm based on the Bayes rule (Bishop 
& Nasrabadi, 2006; Dempster et al., 1977). 

6.  Bayesian Method Formulation  

Let X be a set of n data samples with incomplete distributions 
such that X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn} an unknown 
vector, such that y ∈ Γ. Each yi refers to a component of the 
mixture through which an observation xi is evaluated. Let's 
assume that complete data exists D = (X, Y), and let's assume a 
joint probability density function with parameter µ. 

𝑓(𝑋, 𝑌|𝜇) = 𝑓(𝑌|𝑋, 𝜇) ⋅ 𝑓(𝑋|𝜇)        (20) 

Our goal is to find the parameter γ that will maximize the log-
likelihood defined by Equation (21). The estimation of the 
parameters by the E-M will therefore go through the Estimation 
and Maximization stages until the optimal parameters are 
obtained. 

𝐿(𝜇|𝑋, 𝑌) = ∑ (𝑙𝑜𝑔(𝑓(𝑦𝑖|𝑥𝑖 , 𝜇)) + 𝑙𝑜𝑔(𝑓(𝑥𝑖|𝜇)))
𝑛
𝑖=1    (21) 

7. Expectation – Maximization (E-M) algorithm 

The E-M algorithm is an iterative algorithm that starts from 
some initial estimate of parameter μ using random initialization 
and other algorithms and then proceeds to iteratively update μ 
until convergence is detected. Each iteration operates in two 
steps: first, E-M finds the expected values of the completed log-
likelihood log(f (xi| µ)); Y being the unknown data or the latent 
variable, X the given observation, and µs the estimated 
parameters. The expectation of the likelihood function is 
calculated using Equation (22). 

𝑄(𝜇, 𝜇𝑠  ) =  Ε [𝐿(𝜇|𝑋, 𝑌), 𝜇𝑠]       (22) 

Second, the expected values compiled in the first step are 
maximized Q (µ, µs) according to the relation (23), which defines 
a set of values Ψ. 

( )1  arg max ,  s sQ
 

  +



=         (23) 

These two steps are iterated until convergence is obtained. In 
practice, if the local maximum is to be reached, the E-M 
algorithm runs a large number of times from different initial 
values to have a greater chance of reaching the global maximum 
likelihood. 

8. Mixture hybrid Weibull parameters estimation 

The E-step computes the posterior probability using Bayes 
theorem at each iteration with the order l using Equation (24). 

𝑓𝑖(𝑣𝑗 ; 𝜇
(𝑙)) =

𝜔𝑖
(𝑙)
𝑓𝑖(𝑣𝑗|𝑘𝑖

(𝑙)
;𝑐𝑖
(𝑙)
)

∑ 𝜔𝑖
(𝑙)
𝑓𝑖(𝑣𝑗|𝑘𝑖

(𝑙)
;𝑐𝑖
(𝑙)
)𝑚

𝑖=1

       (24) 

In the M-step the algorithm computes the new parameter values 
that maximize the likelihood, now made possible by using the 
estimation of the data made in the previous step, and updates 
the values of the parameters for the next order iteration. The 
optimal value of the proportion parameter or responsibility is 
obtained by Equation (25). 

𝜔𝑖
(𝑙+1)

=
1

𝑛
∑ 𝑓𝑖(𝑣𝑗; 𝜇

(𝑙))𝑛
𝑖=1         (25) 

Similarly, the optimal values of shape and scale parameters are 

respectively given by Equations (26) and (27). 

𝑐𝑖
(𝑙+1)

= [
∑ 𝑓𝑖(𝑣𝑗;𝜇

(𝑙))(𝑣𝑗)
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𝑖=1
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𝑖
(𝑙+1)
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(𝑙))𝑛

𝑖=1

]

1

𝑘
𝑖
(𝑙+1)

      (26) 

𝑔 (𝑘𝑖
(𝑙+1)) =

1

𝑘𝑖
(𝑙+1)

+
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𝑛
𝑖=1 (𝑣𝑗; 𝜇

(𝑙)) 𝑙𝑛(𝑣𝑗)

∑ 𝑓𝑖
𝑛
𝑖=1 (𝑣𝑗; 𝜇

(𝑙))
− 

∑ 𝑓𝑖
𝑛
𝑖=1 (𝑣𝑗;𝜇

(𝑙))(𝑣𝑗)
𝑘
𝑖
(𝑙+1)
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∑ 𝑓𝑖
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𝑖=1 (𝑣𝑗;𝜇

(𝑙))(𝑣𝑗)
𝑘
𝑖
(𝑙+1) = 0            (27) 

The Newton-Raphson method is applied (Elmahdy, 2017), 
(Elmahdy, 2015); by making a judicious choice of the initial 
value of the shape parameter, the value of the local maximum is 
obtained by successive iterations from Equation (28). 

𝑘𝑖
(𝑙+1)

= 𝑘𝑖
(𝑙)
−

𝑔(𝑘𝑖
(𝑙)
)

𝑔′(𝑘𝑖
(𝑙)
)
         (28) 

For the global parameter convergence, the estimation and 
maximization steps are repeated until the difference between 
the estimated likelihood of two consecutive iterations is below 
a certain threshold. The initial values are provided by the 
Levenberg-Marquardt algorithm (LMA) (Kumar & Sahay, 2018). 
In MATLAB software, the command "lsqnonlin" allows selecting 
the LMA algorithm among the least squares methods. The 
standard value of the threshold is fixed at 10 and can be 
modified by the command "initdamping". The stopping 
condition of the algorithm is the same as that of the Expectation-
Maximization algorithm. The advantage of this algorithm is that 
it always finds a solution whatever the initial values given to it. 
This is why we use it in parallel with the Bayesian method to 
generate the initial values of the E-M algorithm. The LMA 
iteratively solves the nonlinear problem of finding the 
parameters of the mixture model that make the quadratic sum 
of residuals (SQR), which are the errors due to the estimation of 
the values of the probabilities of occurrence of wind speed 
(Marquardt, 1963). The problem of minimizing SQR compared 
to θ is equivalent to making the SQR expression as minimal as 
possible according to Equation (29). The value of SQR is 
expressed by Equation (30). 

�̂� = 𝐴𝑟𝑔𝑚𝑖𝑛
𝜇

{𝑆𝑄𝑅(𝜇)}     (29) 
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𝑆𝑄𝑅 = ∑ (𝑓𝑖 − 𝑓𝑖)
2𝑛

𝑖=1       (30) 

Where 𝑓�̂� is a matrix containing the approximate numerical 
values of the distribution function of the mixture model 
computed at each wind speed data point. 𝑓𝑖   is a matrix 
containing the observed values of the probabilities of 
occurrence of wind speeds, and n is the total number of wind 
speed data. The Equation (31) can be written as: 

𝑆𝑄𝑅 = 𝐸′𝐸       (31) 

With:  

𝐸𝑖 = 𝑓𝑖 − 𝑓𝑖        (32) 

𝐸′ is the transpose of the matrix 𝐸. Levenberg-Marquardt 
method depends on the search for the SQR gradient of Equation 
(30) concerning µ following: 

𝜕(𝐸 ′×𝐸)

𝜕𝜇
= −2𝑋′𝑓 + 2𝑋′𝑓(𝜇) = −2𝑋′𝐸       (33) 

where µ is the matrix containing the vectors wi, ki, ci, and X is 
the dimension matrix mxn which contains the partial derivatives 
of f concerning the parameters: 

𝑋 =
𝜕𝑓

𝜕𝜇
        (34) 

𝐸 is the matrix with size nx1 which contains the errors at each 
point of wind speed data. The vector of the set of parameters 
that makes it possible to obtain the sum of the minimum 
possible quadratic residues is then obtained after the 
combination of the Gauss-Newton method and the conjugate 
gradient by the general iterative Equation (35) with µi the vector 
of parameters expressed by Equation (36) 

𝜇𝑖+1 = 𝜇𝑖 + (𝑋′. 𝑋 + 𝜆𝐼)
−1
. 𝑋′. 𝐸       (35) 

𝜇𝑖 = (𝜔𝑖 , 𝑘𝑖 , 𝑐𝑖 , 𝐹0)     (36) 

Where λ is a scale constant, m is the number of components of 
the model. 

9. Methodology 

This section highlights the process for developing the models in 
our work from mixtures of Weibull and hybrid Weibull 
distributions whose parameters are estimated by the 
Expectation-Maximization algorithm. 

9.1. Description of the proposed approach 

The most suitable wind turbine model which needs to be 
installed in a wind farm is selected by careful wind energy 
resource evaluation. An accurate evaluation could be done 
using the best-fit distribution model. Thus, using inappropriate 

 
Fig. 1. Methodology adopted for modeling wind speed data 
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distribution models gives an inaccurate estimation of wind 
turbine capacity and annual energy production which leads to 
an improper estimation of levelized production cost. Hence, it is 
important to choose an accurate distribution model which cl 
osely mimics the wind speed distribution at a particular site. 
Hence, let us consider the output V as a random variable on a 
set Ω, taking values vi with i ∈ {1, 2, ..., n}. We define on Ω, a 
distribution of V which ∀ vi, we associate the distribution 
function f(vi). Fig. 1 shows the methodology adopted for 
modeling wind speed data. This process follow these steps :  

• the wind speed data over a significant period are collected. 
They come from wind sites where measuring devices are 
installed on wind turbines; 

• the pre-processing of the wind speed data to remove 
outliers and correct for other contingencies to ensure data 
quality Before performing statistical analysis. The collected 
wind data are first filtered to eliminate errors, omissions, 
gaps, and other non-exploitable values. For wind energy 
applications, wind speeds above 25 m/s are not exploited, 
so for this study, these speeds are not considered; 

• an exploratory statistical analysis of the data to understand 
the nature of the distribution and overall behavior of this 
data is proceeded;  

• the distribution law that best describes the behavior of the 
wind speed of the site studied is choose. In our context, we 
used the Weibull law, hybrid Weibull, Weibull mixture, and 
hybrid Weibull mixture to model the wind speed; 

• the parameters are fitted to real data using statistical 
estimation methods, such as EPF, W-EMJ, W-ML, and E-
M algorithm. Then, from these data, we calculate the 
Weibull parameters k and c by the three methods EPF, W-
EMJ, and W-ML, as well as those of the mixing model and 
the hybrid mixing model. The parameters of the mixture 
model and the mixture hybrid model are estimated by the 
Bayesian approach using the expectation-maximization 
algorithm, generating the initial values from the Levenberg-
Marquardt algorithm. The parameters estimated by all the 
mentioned methods will be used to calculate the wind 
power density; 

• Subsequently, it is essential to validate the chosen model 
by comparing the values predicted by the latter to the 
actual data. The use of performance criteria such as relative 
percentage error (RPE), root mean square error (RMSE), 
and correlation coefficient (R2) highlights the good 
agreement between the predicted values and the observed 
data indicating a good fit; 

• finally, the model can be used for various applications, such 
as resource assessment for wind energy projects, 
estimation of energy yields, or other wind-related studies. 
 

9.2. Description of the modeling data 

Table 1 presents the characteristics of the selected sites. The 
collected wind data cover the period from January 2012 to 

December 2022, i.e. a twelve (12) year registration period for all 
sites except the Accra site where data covers the period from 
January 2006 to December 2018. The data are recorded daily 
at one-hour intervals at 10 meters height. At the annual scale, 
wind data collected over 12 years for the Abuja, Accra, Cotonou, 
Lome, and Tambacounda sites are used to represent frequency 
histograms that represent the actual probabilities of wind 
occurrence.  

9.3. Performance criteria 

Several statistical indicators, including relative percentage error 
(RPE), root mean square error (RMSE), and correlation 
coefficient (R2) calculated respectively by Equations (37), (38), 
(39) are used to evaluate the performance of the methods.  

𝑅𝑃𝐸 = |
𝑃𝑤−𝑃𝑚

𝑃𝑚
| × 100        (37) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑓𝑖,𝑤 − 𝑓𝑖,𝑚)

2𝑛
𝑖=1           (38) 

𝑅2 =
∑ (𝑓𝑖,𝑤−𝑓𝑖,𝑤)(𝑓𝑖,𝑚−𝑓𝑖,𝑚)
𝑁
𝑖=1

√∑ (𝑓𝑖,𝑤−𝑓𝑖,𝑤)
2
∑ (𝑓𝑖,𝑚−𝑓𝑖,𝑚)

2𝑁
𝑖=1

𝑁
𝑖=1

      (39) 

10. Results and discussions 

The Table 2 summarizes the parameters estimated by the 
mentioned methods pour Abuja, Accra, Cotonou, Lome, and 
Tambacounda. The Analysis of the k and c (m/s) form factor 
values for each site shows variations according to the methods 
used. The peak value of k is reached for Cotonou with the ML 
method. With the EMJ method, on the other hand, Abuja has 
the lowest c (m/s) value. Furthermore, the k and c (m/s) values 
observed at the wind farm sites studied show similar trends. 
However, on some sites there is a slight discrepancy. This is 
because the shape factor k characterizes the asymmetry of the 
distribution and the scale factor c (m/s) the dimension of the 
wind speed. Generally, for all methods, k is in the range 1 to 3, 
and c (m/s) between 0 and 5. For the Abuja site, the estimated 
values of the k parameters by EPF, EMJ, and ML are 1.92332, 
2.02298, and 2.21170 respectively, while the values of the c 
(m/s) parameters are 2.73997, 2.74300 and 2.85822. For the 
Accra site, the k-parameter values estimated by these methods 
are respectively in the order of 2.06160, 1.98199, and 2.38247, 
while the c (m/s) parameter values are 4.69648, 4.69359, and 
5.01723. At the Cotonou site, the specific variations in the 
parameters of the Weibull distribution follow the same trend for 
the different EPF, EMJ, and ML methods (k equal to 2.43719, 
2.36714, and 2.57223) and (c (m/s) equal to 4.52393, 4.52638 
and 4.61735). The same is true for Lome and Tambacounda, 
where the k and c (m/s) parameters estimated by EPF, EMJ, 
and ML have the following values respectively: (1.88456, 

Table 1 

Characteristics of the selected sites 

Sites Latitude Longitude 
Altitude 

(m) 

Mean 

(m/s) 

St. dev. 

(m/s) 
Skewness Kurtosis 

Height 

(m) 
Period 

Abuja 9.25N 7.00 °E 344 2.43045 1.27036 1.25746 11.03356 10 2012-2022 

Accra 5.60N 0.17 °W 69 4.16032 2.21591 0.08801 2.76699 10 2006-2018 

Cotonou 6.35N 2.38 °E 9 4.01159 1.81438 -0.12249 2.49218 10 2012-2022 

Lome 6.17N 1.25 °E 25 3.52870 2.02964 0.26247 2.33358 10 2012-2022 

Tambacounda 13.77N 13.68 °W 50 2.95754 1.64106 1.36276 8.59716 10 2012-2022 
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1.82327, and 2.03100 for Lome) and (1. 79351, 1.89586 and 
0.02326 for Tambacounda) for k values, and (3.97553, 3.97037 
and 4.17884 for Lome) and (3.32516, 3.33272 and 3.43488 for 

Tambacounda) for c (m/s) values. Indeed, when c (m/s) value 
is low, the site is less windy; and windy in the opposite case. 
These c (m/s) values show the presence of several wind regimes 

Table 2 

Parameters estimated by fitted models 

Method Parameters and indicators values Abuja Accra Cotonou Lome Tambacounda 

W-EPF 

k 1.92332 2.06160 2.43719 1.88456 1.79351 

c (m/s) 2.73997 4.69648 4.52393 3.97553 3.32516 

RMSE 0.02194 0.02266 0.02241 0.01949 0.02035 

R2 0.97324 0.93629 0.95881 0.96762 0.96860 

W-EMJ 

k 2.02298 1.98199 2.36714 1.82327 1.89586 

c (m/s) 2.74300 4.69359 4.52638 3.97037 3.33272 

RMSE 0.01854 0.02334 0.02249 0.01869 0.01788 

R2 0.98084 0.93033 0.95703 0.96872 0.97557 

W-ML 

k 2.21170 2.38247 2.57223 2.03100 0.02326 

c (m/s) 2.85822 5.01723 4.61735 4.17884 3.43488 

RMSE 0.01337 0.01972 0.02055 0.02004 0.01695 

R2 0.99008 0.95491 0.96701 0.96494 0.97796 

WW-LMA 

w 0.69577 0.88585 0.81547 0.52405 0.53894 

c1 (m/s) 2.46764 4.66468 4.56089 1.95598 2.67169 

c2 (m/s) 1.30956 0.65927 1.17173 4.87829 2.66792 

k1 2.53358 2.31051 3.20133 1.24766 1.64290 

k2 1.84830 1.89783 1.87836 3.95609 2.37055 

RMSE 0.04501 0.02347 0.02464 0.02038 0.02732 

R2 0.90566 0.92945 0.95139 0.96308 0.95008 

WW-BAY 

w 0.95462 0.99057 0.12621 0.19754 0.60601 

c1 (m/s) 3.11698 4.93447 1.62810 1.58985 2.75114 

c2 (m/s) 2.17732 6.28726 4.99847 4.79200 4.44858 

k1 2.23477 2.38442 3.08857 3.03324 2.78562 

k2 3.3957 9.95976 3.30687 2.68474 2.15675 

RMSE 0.01009 0.02023 0.00686 0.01331 0.00817 

R2 0.99665 0.95381 0.99676 0.98445 0.99525 

WWH-BAY 

F0 0.0396 0.0750 0.0219 0.0451 0.0250 

w 0.95462 0.99057 0.12621 0.19754 0.60601 

c1 (m/s) 2.75683 4.93447 1.62810 1.58985 2.75114 

c2 (m/s) 4.94110 6.28726 4.99847 4.79200 4.44858 

k1 2.57782 2.38442 3.08857 3.03324 2.78562 

k2 1.89848 9.95976 3.30687 2.68474 2.15675 

RMSE 0.00911 0.01913 0.00642 0.01243 0.00791 

R2 0.99565 0.95381 0.99676 0.98445 0.99525 

 

 
a. Probability distribution function - Abuja 

 
b. Probability distribution function - Accra 

 
c. Probability distribution functions – Lome 

 
d. Probability distribution function - Cotonou 

 
e. Probability distribution function - 
Tambacounda 

 
 
 
 
 
 
 
 
 
 

 
Fig.2. Probability distribution functions for 
select wind sites  
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at these wind farm sites (Abuja, Accra, Cotonou, Lome, and 
Tambacounda). This led to the use of the WW-BAY and WWH-
BAY methods (Table 2) based on the Bayes approach, with 
parameters estimated by the E-M algorithm whose initial values 
are given by the Levenberg-Marquardt algorithm (LMA). The 
RMSE and R2 values are used to evaluate the performance of 
each method. The best method can be selected based on a 
compromise between the highest value of R2 and the lowest 
value of RMSE. The RMSE results obtained with the WW-LMA 
model show high values for all sites compared with the other 
methods. For the EPF method, RMSE values for the different 
cities (Abuja, Accra, Cotonou, Lome, Tambacounda) vary 
between 0.01949 and 0.02266. R2 values for the cities range 
from 0.93629 to 0.97324. This indicates that the EPF method 
explains between 93.6% and 97.3% of the variance in the data 
for each site. For EMJ, RMSE values range from 0.01788 to 
0.02334, with R2 ranging from 93.0% to 98.1%. RMSE values for 
cities range from 0.01337 to 0.02055 using the ML method, with 
R2 values between 95.5% and 99.0%. RMSE values for WW-BAY 
are generally lower than those of the other methods. They range 
from 0.00686 to 0.02023. The R2 values for sites range from 
95.4% to 99.7%, and are generally high, indicating good model 
fit. With the WWH-BAY model, RMSE values for cities range 
from 0.00642 to 0.01913. This suggests that the predictions 
obtained with the WWH-BAY method have an average error 
between these values for each city. The R2 values are between 
0.95381 to 0.99676. These values indicate that the WWH-BAY 
method explains between 95.4% and 99.7% of the variance in 
the data for each city. The R2 values for WWH-BAY are also 
high. For all sites, WWH-BAY has low RMSEs compared with 
the other methods. It is followed by WW-BAY. From the above, 
we can see that WW-BAY and WWH-BAY provide the best fits, 
with generally lower RMSE values and higher R2 values, 
indicating a better model fit to the wind data. The Figs.2. a., b., 

c., d., e.; and Fig. 3. a., b., c., d., e. show that the WWH-BAY 
model performs well. In addition, to obtain the best estimate of 
wind power density, the RPE indicator is used. The lower the 
RPE indicator, the better the method.  

The results presented in Table 3 show that the WWH-BAY 
model performs best for wind power density estimation at the 
Cotonou and Lome sites. In contrast, the EPF method is suitable 
for the Abuja and Accra sites. In addition, the WW-BAY method 
gives the best performance for the Tabacomda site. This is 
reflected in the results of fitting the distribution of wind speed 
data at these different sites on Fig. 4. a., b., c., d., e., and 3.e., 
which show the variations in the absolute value of the EPR error 
relative to the calculation of power density using wind 
distribution functions. Table 3 shows the results of different 
methods for estimating power density and relative power error 
(using RPE) for five cities: Abuja, Accra, Cotonou, Lome, and 
Tambacounda. The methods used are W-EPF, W-EMJ, W-ML, 
WW-BAY, and WWH-BAY. A full analysis of Fig. 4. a., b., c., d., 
e., and Table 3 compares the estimated and measured power 
density for each site according to each method and the relative 
power error (RPE), reveals the following characteristics: overall, 
the EPF method provides relatively accurate power density 
estimates, with EPRs generally close to zero for most sites. The 
estimated power density values are usually relative to the 
measured values, indicating good agreement between both. 
However, the W-EPF method slightly underestimates the power 
density in a few cases, as observed for Abuja and Lome with 
negative EPRs. The W-EMJ method shows variable 
performance across sites. For some sites, such as Abuja and 
Lome, the power density estimates are quite close to the actual 
measurements, as shown by the low EPR values. However, for 

 

a. Cumulative distribution function - Abuja 
 

b.  Cumulative distribution function - 
Accra 

 
c. Cumulative distribution functions – Lome 

 
d. . Cumulative distribution function - Cotonou 

 
e. Cumulative distribution function - 
Tambacounda 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Cumulative distribution functions for select 
wind sites  
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other sites, such as Accra, the estimates show significant error, 
indicated by high EPR. The W-ML method shows a tendency to 
overestimate the power density compared to the actual 
measurements. For most sites, the EPR values are positive, 
indicating an overestimation of the estimated power density 
compared to the measurements. Despite this, the differences 
between the estimates and measurements remain relatively 
small, suggesting a reasonable approximation of the method. 
The WW-BAY method has a similar performance to the W-EPF 
method. The power density estimates are generally close to the 
actual measurements, with EPRs near zero for most sites. 
However, some notable differences are observed for specific 
sites, such as Lome, where the WW-BAY method overestimates 

the power density. The WWH-BAY method shows comparable 
results to the W-EPF method. The EPR values are generally 
close to zero, indicating good agreement between the estimates 
and the actual measurements. However, there are cases where 
the WWH-BAY method shows a significant error, as observed 
for Accra with a high EPR. 

11. Conclusion 

The distribution of wind speed is an important tool for the 
design of wind farms, and power generators. In most cases, 
Weibull distribution is widely used. However, in the case of the 
multimodal aspect of wind speed distribution, the use of 
classical Weibull distribution is limited. Thus, Weibull mixture is 

 
a. Power density errors - Abuja 

 
b.  Power density errors - Accra 

 
c Power density errors – Lome 

 
d. . Power density errors - Cotonou 

 
e. Power density errors - Tambacounda 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. Power density errors calculated for select 
wind sites 

 

 

Table 3 

Parameters estimated by fitted models  

Method Error Abuja Accra Cotonou Lome Tambacounda 

W-EPF 

Power density 

(W/m2) 
17.48318 81.76899 63.56021 54.68574 34.04155 

RPE (%) -0.54752 -0.55774 0.31634 -0.51109 -0.37414 

W-EMJ 

Power density 

(W/m2) 
16.60532 85.00413 65.00443 56.73312 31.99003 

RPE (%) -5.54118 3.37662 2.59574 3.21367 -6.37809 

W-ML 

Power density 

(W/m2) 
17.27552 88.11041 65.24766 58.47545 32.60194 

RPE (%) -1.72875 7.15429 6.38346 6.38346 -4.58728 

WW-LMA 

Power density 

(W/m2) 

7.60390  64.22049  46.46320  38.36405  16.91939 

RPE (%) -56.74548 -21.89912 -26.66767 -30.20489  -50.48377 

WW-BAY 

Power density 

(W/m2) 
17.96266 84.26982 64.77892 57.56959 34.23510 

RPE (%) 2.18001 2.48361 2.23983 4.73544 0.19232 

WWH-BAY 

Power density 

(W/m2) 
17.25066 78.86656 63.36200 54.97263 33.37868 

RPE (%) -1.87017 -4.08750 0.00351 0.01084 -2.31407 

Measured power density (W/m2) 17.57943 82.22761 63.35978 54.96667 34.16939 
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used. The purpose of our study is to determine the best model 
that accurately characterizes the wind potential of five sites in 
West Africa for estimating using mixture Weibull (WW-BAY) 
and mixture hybrid Weibull (WWH-BAY) distributions based on 
the Bayes approach, and the classic Weibull distribution which 
parameters were estimated by the EPF, EMJ, and ML methods. 
The results obtained show that the WWH-BAY method 
performs well the wind speeds distribution than other 
mentioned distributions. Based on the RPE values which are less 
than 10%, EPF, WW-BAY, and WWH-BAY give respectively the 
best estimate of the power density at the Abuja and Accra cites, 
Tambacounda site, Cotonou, and Lome sites. Therefore, the use 
of the WWH-BAY model is recommended to characterize the 
wind potential in West Africa, especially Lome and Cotonou 
sites. Overall, the use of the WWH-BAY model presents 
prospects for advanced wind energy planning and development 
in West Africa and other regions. This study contributes to the 
establishment of sustainable and adaptable energy systems, 
thus enhancing resilience. 
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