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Abstract. Fossil fuels are the main source of energy for transportation operations around the world. However, fossil fuels cause extremely negative 
impacts on the environment, as well as uneven distribution across countries, increasing energy insecurity. Biodiesel is one of the potential and feasible 
options in recent years to solve energy problems. Biodiesel is a renewable, low-carbon fuel source that is increasingly being used as a replacement 
for traditional fossil fuels, particularly in diesel engines. Biodiesel has several potential benefits such as reducing greenhouse gas emissions, improving 
air quality, and energy independence. However, there are also several challenges associated with the use of biodiesel including the compatibility of 
biodiesel with existing engine technologies and infrastructure as well as the cost of production, which can vary depending on factors such as location, 
climate, and competing uses for the feedstocks. Meanwhile, studies aimed at comprehensively assessing the impact of biodiesel on engine power, 
performance, and emissions are lacking. This becomes a major barrier to the dissemination of this potential energy source. Therefore, this study will 
provide a comprehensive view of the physicochemical properties of biodiesel that affect the performance and emission properties of the engine, as 
well as discuss the difficulties and opportunities of this potential fuel source. 
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1. Introduction 

Fossil fuel reserves include areas where the existence of 
fossil fuels is "proven, probable, or possible" to approach and 
extract (Speight, 2011). There are obvious differences between 
reserve and resource. While all reserves are resources, the 
reverse does not happen. Resources become reserves when two 
conditions are met: (i) - they must be discovered and recorded, 
(ii) - the economic feasibility of being able to access and extract 
mineral resources. Therefore, though there are many 
calculations about how much time humanity has left before 
fossil fuel reserves are exhausted, most of the calculations are 
inaccurate when it is common to consider only "proven, 
probable, or possible" reserves while the number of resources 
that exist is still unexplored (Perera and Nadeau, 2022; 
Plantinga and Scholtens, 2021). With technology in the field of 
resource extraction increasingly developed, more and more 
resources are discovered as well as the ability to exploit 
reserves that were previously unexploitable is also improving. 
That is good news when in the short term, the problem of 
running out of fuel is not a threat (Shafiee and Topal, 2009). 
However, the nature of these resources is still non-renewable, 
not to mention the number of actual resources being able to 
become reserves is unknown.  On the other hand, despite the 
increasingly developed technologies that help machines operate 
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more efficiently and smoothly, directly helping to improve 
energy efficiency, the world's resource consumption is 
increasing every year and there is no sign of a decline (Martins 
et al., 2018; Peters et al., 2017). Therefore, their depletion is 
inevitable. Research to find and shift to renewable resources is 
essential and helps humanity best prepare before any serious 
energy crisis can occur.  

Energy has always been a burning issue throughout the 
development of mankind. Along with the population explosion, 
the demand for energy of each individual also increases, making 
energy is never enough even though newly invented technology 
has helped people increasingly exploit and create more energy 
from different sources (Pham et al., 2023). Transport is an 
important industry in every economy (Hoang et al., 2022a). 
They not only serve the travel needs of people but also play a 
lifeline role in the supply chain, especially in the current period 
of globalization (Nguyen and Bui, 2021; Rudzki et al., 2022). 
Most of the energy supplied to the transportation industry 
comes from fossil fuel sources such as gasoline or diesel 
(Fernández et al., 2020; Serbin et al., 2021). Even so, the misuse 
of fossil fuels can create negative impacts on society (Stelmasiak 
et al., 2017; Yang et al., 2019). Energy consumption is an 
important economic driver fueling growth and prosperity 
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(Venugopal et al., 2023). Recent decades have observed 
exceptional growth in global energy demand with forecasts 
predicting a steady increase in the coming years as countries 
around the world continue on their paths of economic 
development. Since it was first invented, internal combustion 
engines have played an important role in propelling societies 
forward in both the literal and metaphorical senses of the world 
(Balasubramanian et al., 2022; Sharma et al., 2023).  

Today, the internal combustion engine model is one of the 
most common heat engines installed among vehicles, 
production machinery, and manufacturing equipment. Due to 
the better energy conversion efficiency and cheaper fuel costs, 
the diesel engine is often favored over the gasoline counterpart 
as the main power source in electric generators, machinery, and 
equipment that are used in various sectors including 
construction, agriculture, and heavy industry, as well as among 
road vehicles and maritime transport fleets (Hoang and Pham, 
2019; Lamas et al., 2015). One of the biggest drawbacks of diesel 
engines is the significant amounts of air pollutants emitted 
during the combustion process. With the common application 
of diesel engines worldwide, this negative impact on the 
environment is only further exacerbated by the annual increase 
in the number of passenger vehicles. High-density urban areas 
are often subjected to hazardous air quality conditions due to 
the heavy city traffic which has become a fairly common 
occurrence (Hoang et al., 2021a). As a proportion of the urban 
population in countries around the world continues to grow, 
environmental and health impacts caused by poor air quality 
present a major challenge to today’s government leaders (Bakır 
et al., 2022. On the other hand, the urgent need for alternative 
sources of energy that could potentially replace traditional fossil 
fuels has become increasingly apparent. According to a study 
by Lamb et al. (Lamb et al., 2021), the total GHG emissions from 
transport operations worldwide were about 8.5 GtCO2eq in 
2018, accounting for about 14% of total emissions. Among them, 
emissions from road transport activities account for a staggering 
73% of the industry's emissions. Figure 1 shows the contribution 
of GHG emissions in the transport industry in 2018 (Lamb et al., 
2021). With the characteristics of being able to be used flexibly 
for short distances and only having to bear a small load when 
compared to aircraft and ships, along with a densely located and 
easily accessible distribution and repair facility, the application 
of alternative fuel sources in road traffic is not only easier but 
also much safer than changing fuel sources for aviation or ships. 

In addition, since it accounts for the majority of the industry's 
emissions, being able to successfully use environmentally 
friendly fuel sources in road transport will rapidly reduce 
emissions in the transportation industry. Therefore, research on 
alternative fuels for cars and motorcycles is of the utmost 
interest and development. Another serious problem is the 
uneven distribution of fossil fuel deposits around the world, this 
leads to energy insecurity in these resource-deficient countries. 
According to the latest statistics in 2022, only the ten countries 
possessing the largest oil reserves in the world account for more 
than 85% of the total oil reserves of the whole world (“Oil 
Reserves by Country 2022,” n.d.). For the above reasons, 
researchers have been making great efforts to find a fuel that 
can be widely used to replace fossil fuels. Among them, 
biodiesel is considered to be one of the most suitable and 
potential alternatives (Nguyen and Vu, 2019; Prabhu et al., 
2023). 

Four generations of biodiesel have been researched and 
developed depending on the raw materials used for production 
(Singh et al., 2019). While first-generation biodiesel uses edible 
resources like rapeseed oil, palm oil, and soybean oil for 
production, second and third-generation biodiesel uses non-
edible resources (Goh et al., 2022). Jatropha curcas, rubber seed, 
or neem oil are commonly used to produce second-generation 
biodiesel (Singh et al., 2020), while animal fat and waste cooking 
oil are the main sources of third-generation biodiesel (N et al., 
2023; Hadiyanto et al., 2018). In addition, algae are usually used 
for synthesizing fourth-generation biodiesel (Jeyakumar et al., 
2022; Maroušek et al., 2023b). The difference between the 
second, third, and fourth-generation biodiesel is that the third 
and fourth-generation use more economically optimal raw 
materials as well as do not depend on the seasonal 
characteristics of the crop, and do not affect the food chain and 
use the land for cultivation (Sakthivel et al., 2018). Usually, food 
crops such as rapeseed, soybean, sunflower, safflower, palm, 
coconut, and animal fats, etc. are processed and it is converted 
into biodiesel. These biodiesels are obtained and are named 1st 
generation biofuels as this was the earliest alternative idea in the 
production of biodiesel. Still, various types of research have 
been carried out and many found that biodiesel production can 
also be done by the processing of non-food crops and novel 
starch like jatropha, pongamia, mahua, pine, nerium, and 
Calophyllum inophyllum, etc. These biodiesels obtained are 
named as 2nd generation biofuels as this was taken as the next 
initiative in the production of biofuels. Many improvements 
were found in 2nd generation biofuels when comparing them 
with the 1st generation biofuels in terms of performance, 
combustion, and emission characteristics of the diesel engine. 
But the availability of these 1st and 2nd generation biofuels is 
limited. For large-scale production of biodiesel from algae in 
countries like India, Vietnam, etc. is available in plenty among 
various water reserves. Hence, the yielding of biofuel from the 
micro-algae feedstock seems to be better than the other 
feedstocks in the ASEAN countries. Therefore, biodiesel is 
renewable energy with extremely diverse production materials 
and can be found in every country (Silviana et al., 2022; 
Zullaikah et al., 2021; Hadiyanto et al., 2016). Figure 2 shows the 
main sources of biodiesel production (“Global biodiesel 
production is increasing - Renewable Carbon News,” n.d.). It 
can be seen that biodiesel production sources are extremely 
diverse, and it should be noted that these are statistics on 
commercialized biodiesel sources when the percentage of 
edible sources still accounts for a fairly high proportion. 
Meanwhile, in recent years, advances in the field of fuels have 
helped researchers to propose more efficient and less socially 
harmful sources of biodiesel production (Kolakoti et al., 2022; 

 

Fig. 1. Contribution of GHG emissions in the transport industry in 
2018 (Lamb et al., 2021) 
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Widayat et al., 2023). However, it is necessary to have a 
comprehensive review of the use of biodiesel for diesel engines. 
This study will focus on analyzing the properties of biodiesel and 
their influence on engine performance and emissions. In 
addition, the study also discusses challenges and provides the 
latest methods to solve outstanding problems. 

2. Biodiesel properties 

With the main purpose to replace mineral diesel in the 
internal combustion engine itself, biodiesel's physical and 
chemical properties have many similarities with diesel. These 
similar properties make the blending of biodiesel easy, as well 
as the use of biodiesel does not require the engine to be 
seriously modified. However, differences are still present and 
need to be analyzed to understand their effects before being 
widely used. Table 1 shows the important properties of some 
common biodiesel compared to diesel (Ayhan et al., 2020; 
Dinesha et al., 2019; Hoang et al., 2021b; Jafari et al., 2019; 
Nagaraja et al., 2012; Nayak et al., 2021). This section will focus 
on analyzing each fuel's characteristics and comparing it to 
diesel fuel. 

 
2.1. Kinematic viscosity 

Viscosity is one of the most important fuel parameters that 
every fuel research must consider first. Viscosity represents the 
ability of the fuel to flow and this parameter will directly affect 

how the fuel injection system works. From the data in Table 1, 
it can be seen that the viscosity of biodiesel is higher than diesel 
oil. Especially, kinematic viscosity will greatly affect 
performance and even cause engine damage if operating at low 
temperatures. This is the main reason for the obstacles when 
using biodiesel in engines that operate in low-temperature 
environments and can only be used as a secondary fuel to blend 
with diesel if there are no suitable engine modifications (Hoang, 
2021a). The reason for the high kinematic viscosity of biodiesel 
is because of their high chemical structure and molecular 
weight. The suitable viscosity range according to ASTM D445 
is 1.9–6.0 mm2/s and according to EN ISO 3104 is 3.5–5.0 
mm2/s (Balat, 2011; Balat and Balat, 2010). The viscosity of 
biodiesel is still in the area of satisfying the above standards, but 
when applied to each specific engine, it should be considered 
very carefully. 

2.2. Density 

Density is the weight per unit volume, density of the fuel is 
also a highly significant factor since it has been associated with 
other characteristics of fuel like the cetane number and heating 
value (Tesfa et al., 2010). Besides, based on density, engineers 
can measure and design the fuel tank and the amount of fuel in 
the system (Alptekin and Canakci, 2008). There is not much of 
a density difference between diesel and biodiesel although the 
density of biodiesel tends to be slightly higher than that of diesel. 

 
Fig. 2. Main sources of biodiesel production (Sarin, 2012) 

 

Table 1 
Physicochemical properties of diesel fuel and some popular biodiesel 

Fuel properties Diesel fuel 

Palm oil 
methyl 
ester 

(POME) 

Corn 
oil methyl 

ester 
(COME) 

Coconut 
biodiesel 

Waste 
cooking 

oil 
biodiesel 

Honge oil 
methyl 
ester 

(HOME) 

Rice bran 
oil-based 
biodiesel 

(RBO) 

Fish oil 
biodiesel 

(FBD) 

Kinematic viscosity 
(cSt) 

3.18 4.5 4.3 4.82 4.36 4.7 4.68 4.91 

Density (kg/m3) 839.0 870.0 870-880 860.0 890.0 890.0 892 877 
Lower heating value 
(MJ/kg) 

44.8 37 39.6 37.2 38.8 38.9 42.2 41 

Cetane number 40-55 56.5 >55 58.6 53.4 54 63.8 59 
Flashpoint (oC) 68 178 >100 150 to 170 175.4 210 183 156 
Pour point (oC) -7 -5 to -10 -10 to -15 5 to 12 0 to -5 -3 to -12 -11 5 
Cloud point (oC) -10 to 6 5 to 10 -5 to -10 9 to 14 -3 0 to -9 -10 9 
Oxygen content (%) 0 11.26 10.96 11.54 11 11.3 10-12 9.3 
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Besides density, relative density, which is the density of the 
component compared to the density of water, is also an 
important parameter of the fuel to compute flow and viscosity 
characteristics, convert mass to volume, and assess the 
homogeneity of biodiesel tanks. 

2.3. Calorific value or lower heating value 

Calorific value (CV) or lower heating value (LHV) is a 
measure of the amount of heat generated from the full 
combustion of a hydrocarbon not accounting for the heat 
contained in combustion products if not returned to pre-
combustion temperature. CV is the real energy content and is 
also an important parameter for estimating the design 
parameters of the combustion process (Giakoumis and 
Sarakatsanis, 2018; Kumar et al., 2013). The CV of diesel is 
approximately 12% higher on a weight basis when compared to 
biodiesel, which also means diesel fuel has higher energy 
content than biodiesel. However, biodiesel has a slightly higher 
density than diesel, so the CV of diesel is only about 8% higher 
than biodiesel on a volume basis (Ozcanli et al., 2013). 

2.4. Cetane number  

The cetane number (CN) shows the ability of the fuel to auto-
ignite quickly after being injected. The higher the cetane 
number, the shorter the time between the start of fuel injection 
into the combustion chamber and the ignition process. The 
higher the cetane number, the better the ignition quality of the 
fuel (Karmakar et al., 2010; Lapuerta et al., 2008). This is one of 
the extremely important indicators in choosing the right fuel for 
the engine. In the table, it can be seen that the cetane number 
of diesel is slightly lower than that of biodiesel. The advantages 
of having a higher cetane number in biodiesel are manifold. 
These include shorter ignition delay, lower NOx emissions, and 
a decreased incidence of knocking during the combustion 
process (Godiganur et al., 2010; Kumar and Kumar, 2010; Reyes 
and Sepúlveda, 2006). 

2.5. Flash point, Cloud point, and Pour point 

The temperature at which a fuel will catch fire when exposed 
to a flame or a spark is known as its flash point. Flashpoint varies 
inversely with the fuel’s volatility. The flash point is a significant 
property that pertains to the combustibility characteristics of 
liquids (Mejía et al., 2013). The flash point values of methyl 
esters derived from vegetable oil are considerably lower 
compared to the flash point values of the original vegetable oils. 
Moreover, as the quantity of residual alcohol increases, the flash 
point of these methyl esters decreases (Černoch et al., 2010). It 
can be seen in the flash point of biodiesel that is much higher 
than that of diesel, which will make it safer to handle, store, and 
transport fuel. 

The cloud point is the temperature at which wax crystals 
first become visible when the fuel is cooled, whereas the pour 
point of a liquid is the temperature below which the liquid loses 
its flow characteristics. It is defined as the minimum 
temperature at which the oil can pour down from a beaker 
(Lopes et al., 2008). These indicators are very important 
especially when the engine has to work at low temperatures. 
Unsuitable cloud point and pour point fuels can cause the fuel 
to solidify and clog the vehicle's fuel system and filters, directly 
affect engine performance, and cause long-term engine 
damage. 

2.6. Oxygen content 

One of the biggest differences between biodiesel and diesel 
fuel is the oxygen content (Coşofreţ et al., 2016). While the 
oxygen content of diesel is very low or even absent, biodiesel is 
an oxygen-rich fuel. Oxygen content in biodiesel is about 10 to 
12% weight depending on the type of biodiesel. The oxygen 
content in biodiesel will help fuel burn cleaner and significantly 
reduce the number of unburned hydrocarbons (UHC). 

2.7. Stability of oxidation 

The stability of oxidation in fuels refers to their resistance 
to oxidative reactions, which can lead to the formation of 
harmful by products, degradation of the fuel quality, and 
potential engine performance issues. The stability of oxidation 
is particularly important for hydrocarbon-based fuels like 
gasoline and diesel. The oxidative stability of biodiesel fuel is 
influenced by the number of bis-allylic sites present in 
unsaturated biodiesel compounds. Factors such as the 
biodiesel's age, the composition of fatty acid methyl esters, and 
storage conditions contribute to biodiesel's oxidation stability 
(Rajamohan et al., 2022). Due to its molecular structure, 
biodiesel fuels are more susceptible to oxidative degradation 
compared to fossil diesel fuels. ASTM D6751 and EN-14214 are 
two standards for evaluating the oxidation stability of fuels. 
While the minimum requirement for oxidation stability at 110°C 
with ASTM D6751 standard is 3 hours, the EN-14214 standard 
is stricter when it comes to the requirement that the fuel 
maintains 6 hours under similar conditions. Nevertheless, 
biodiesel in its pure form, derived from various feedstocks, 
typically fails to meet this requirement (Sakthivel et al., 2018). 
Therefore, some additives are often added to biodiesel to 
enhance its stability of oxidation. 

3. Effects of biodiesel on combustion, performance, and 
emissions characteristics of the engine 

With the above properties, the direct use of biodiesel on the 
engine is feasible, but its effects on the engine need to be 
comprehensively evaluated. Therefore, a lot of research has 
been done recently to study different aspects of engines using 
biodiesel as well as improve both its performance and emission 
characteristics. This section will present a comprehensive 
perspective on the above problem. Limits and opportunities of 
potential biodiesel fuel sources will also be mentioned and 
discussed. 

3.1. Effects of biodiesel on combustion characteristics 

To better understand the effect of biodiesel on the engine, it 
is necessary to analyze the combustion process. The most 
important parameters in combustion analysis are ignition delay 
(ID), heat release rate (HRR), and pressure rise rate (PRR) which 
are commonly calculated and measured. Table 2 shows the 
newest finding on engine combustion characteristics as well as 
performance. All the data is collected when the engine is 
operating at 100% load if the engine load is not specified. The 
trends of increasing or decreasing the above parameters when 
compared with diesel-only engines can be predicted in theory 
based on the physicochemical properties of biodiesel (Sharma 
et al., 2022). 

The parameters of the engine are most closely related to 
each other, and changing one parameter will affect all the other 
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parameters (Tuan Hoang et al., 2021). Although it is possible to 
predict the trend of the parameters, it is still necessary to 

perform specific simulations or experiments to accurately 
determine the effect of the fuel on the engine because any small 
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change can have a bigger impact in the long run, not to mention 
that most internal combustion engines degrade in efficiency and 
fail very quickly at the end of their life. 

Ignition delay (ID) is the period between the start of fuel 
injection and the start of combustion (SOC) and is usually shown 
by the crank angle (oCA) (Saravanan et al., 2014). During this 
time, the fuel is atomized and mixed with air, and then the heat 
generated by compression raises the temperature and pressure 
of the fuel-air mixture until it reaches its ignition point 
(Aldhaidhawi et al., 2017; Pham and Cao, 2023). Once this 
temperature is reached, the fuel starts to burn rapidly, releasing 
energy to drive the engine. Biodiesel helps to reduce ID and this 
trend becomes more obvious as the proportion of biodiesel in 
fuel increases (Allen et al., 2013). This is explained by two main 
reasons: the oxygen content and the cetane number of the fuel. 
Biodiesel becomes more combustible due to the increased 
presence of oxygen in the fuel mixture, which also assists in 
breaking down larger fatty acids in biodiesel into smaller 
molecules, resulting in the production of a greater number of 
volatile substances (Singh et al., 2021). In addition, the cetane 
number is often inversely related to the ignition delay time and 
the cetane number of biodiesel is usually higher than that of 
diesel (Bittle et al., 2010). Therefore, it is not surprising that 
many studies in Table 2 have shown that increasing the ratio of 
biodiesel in the fuel will decrease the ignition delay. This is an 
advantage of biodiesel since with a shorter ID, the fuel will have 
more time to burn, leading to more complete combustion within 
the engine cylinder (Agarwal et al., 2013; Bednarski et al., 2019). 
This makes it possible for the engine to take advantage of more 
of the potential energy generated from the fuel and thus also 

reduce the power loss represented by the exhaust gases, such 
as smoke, particulate matter, or unburnt hydrocarbon. 
However, a very short ignition delay may cause a knock or 
excessive pressure rise, leading to engine damage. Therefore, 
understanding the properties of different types of diesel engines 
will help manufacturers recommend suitable biodiesel or its 
ratio in the mixture of fuel.  

Heat release rate (HRR) has an extremely close relationship 
with ignition delay. The HRR of a diesel engine is a measure of 
the amount of heat energy released by the combustion process 
in the engine cylinder over time (Kaya and Kökkülünk, 2020). 
The ignition delay affects the heat release rate because it 
determines the timing and duration of the combustion process. 
Given the lower calorific value (CV) of biodiesel but a shorter 
ignition delay (ID), it is not difficult to see that the heat release 
rate of an engine using either biodiesel fuel or a biodiesel-diesel 
fuel mixture will be significantly reduced compared to engines 
using only diesel. Besides, the fact that biodiesel has a higher 
kinematic viscosity and density than diesel is also another 
important factor that reduces the HRR of the engine 
(Shahabuddin et al., 2013). It is easy to see that a higher HRR 
will help the engine produce better fuel energy, and biodiesel 
makes the HRR of the engine lower, which significantly affects 
engine performance. Pressure rise rate (PRR) is another 
important factor to control the performance and durability of the 
engine (Wei et al., 2018). Although the pressure rise rate of the 
engine at a low load increases more rapidly when using 
biodiesel, a similar trend does not occur at a high load. 
Temperature and pressure are two interrelated quantities that 
exhibit a direct proportionality. Additionally, diesel fuel 

 
Fig. 3. The different between cylinder gas pressure and heat release rate with the crank angle of diesel fuel and different biodiesels 
(Ramalingam and Mahalakshmi, 2020; Seraç et al., 2020; Silitonga et al., 2017; Zarrinkolah and Hosseini, 2022)(a) soybean-based biodiesel (b) 
Moringa oleifera biodiesel (c) Jatropha curcas biodiesel (d) sunflower methyl ester biodiesel 
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generally possesses greater energy density than biodiesel 
(Bergthorson and Thomson, 2015; Elkelawy et al., 2019). 
Therefore, under heavier loads, engines running on biodiesel 
tend to experience a slower increase in pressure rate and 
consequently, the peak pressure is also lower compared to 
when using diesel fuel (Tamilselvan et al., 2017). Figure 3 shows 
the difference between cylinder gas pressure and heat release 
rate with the crank angle of diesel fuel and different biodiesels 
(Ramalingam and Mahalakshmi, 2020; Seraç et al., 2020; 
Silitonga et al., 2017; Zarrinkolah and Hosseini, 2022). The 
difference is not too large to require serious modifications to the 
engine, however, to avoid affecting the power experience that 
people are used to with diesel engines, many measures are still 
proposed by researchers which will be clarified in the next 
section. 

 
3.2. Effects of biodiesel on engine performance 

With the effects on the engine characteristics recorded 
above, biodiesel surely has effects on engine performance. 
Common parameters used to evaluate engine performance 
include Brake-specific fuel consumption (BSFC), brake thermal 
efficiency (BTE), and exhaust gas temperature (EGT). While 
brake-specific fuel consumption (BSFC) and brake thermal 
efficiency (BTE) are intended to help comprehensively evaluate 
the engine's ability to generate power as well as fuel 
consumption, exhaust gas temperature (EGT) provide valuable 
information about the combustion efficiency, the state of the 
engine components, and the overall health of the engine 
(Sivaramakrishnan and Ravikumar, 2014). Monitoring and 
controlling these parameters is crucial to prevent damage to the 
engine and its components. It also helps optimize the 
performance, efficiency, and durability of the engine while also 
ensuring compliance with emission regulations. 

BSFC is a measure of the fuel efficiency of an engine. It is 
defined as the amount of fuel consumed per unit of power 
produced by the engine and it also expresses the proportion of 

fuel mass used by the engine relative to the amount of braking 
power it generates. BSFC of engines using biodiesel will 
increase significantly. This is explained by BSFC having a close 
relationship with the viscosity, density, and especially the 
calorific value of the fuel (A.V.S.L et al., 2021). Usually, the lower 
the calorific value, the higher the BSFC will be. Meanwhile, 
higher viscosity and density of fuel can also increase the BSFC 
because they can increase the friction between the fuel and the 
engine components, resulting in more energy losses due to 
friction. This, in turn, can cause the engine to work harder and 
consume more fuel to produce the same amount of power 
output, leading to a higher BSFC value. Additionally, higher 
viscosity and density can also cause the fuel to atomize less 
effectively, leading to incomplete combustion and further 
increasing fuel consumption and BSFC (Kathirvelu et al., 2017; 
Temizer et al., 2020). However, if biodiesel is used as a fuel 
blend with diesel fuel in small proportions, typically less than 
20% of the fuel density, the BSFC is recorded to be insignificant 
(Canakci and Van Gerpen, 2003; Pullagura et al., 2023) In theory, 
changing the compress ratio appropriately will improve the 
BSFC for all fuels, however, the efficiency when changing the 
compress ratio on biodiesel engines is noted to be much better 
than diesel engines (Suresh et al., 2018). With high compression 
ratios, biodiesel is reported to have lower volatility and higher 
kinematic viscosity, which directly improves engine 
performance. Figure 4a compares the fuel consumption of some 
biodiesel with diesel. Some exceptions like Argemone biodiesel 
or home oil-based biodiesel have significantly improved BSFC. 
These fuel sources are said to be extremely potent, and more 
research is needed to understand this phenomenon. In general, 
although the BSFC of the engine depends a lot on many different 
parameters such as engine type, engine operating conditions, 
fuel injection pressure (FIP), the fuel injection method, and so 
on, biodiesel will always tend to increase BSFC under the same 
operating conditions if compared with diesel.  

Meanwhile, brake thermal efficiency (BTE) is a measure of 
the efficiency of an engine in converting the energy contained 

 
Fig. 4. Comparison of engine performance using biodiesel and diesel; (a) difference of BSFC (b) difference of BTE 
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in the fuel into useful work. It is defined as the ratio of the 
engine's brake power output to the energy content of the fuel 
consumption by the engine. The poor vaporization 
characteristics of biodiesel make the engine tend to use a lot of 
energy to produce useful work, which causes the BTE of the 
biodiesel engine to be significantly reduced at low engine speed 
and load ranges (Karthikeyan et al., 2020). However, at higher 
engine loads and speeds, where the vaporization of the fuel is 
also smoother, the oxygen content in the component helps the 
fuel to burn more cleanly, reducing the loss of useful power 
(Jindal et al., 2010). Both the BSFC and BTE of the engine are 
significantly affected by the difficulty of vaporization of 
biodiesel, especially in the low load ranges of the engine 
(Agarwal et al., 2017). Researchers have proposed an extremely 
effective method to solve the above problem is adding an 
amount of alcohol to the fuel. The amount of alcohol with the 
characteristic of having low viscosity and density will reduce the 
overall viscosity and density of the fuel (Veza et al., 2022), 
making it easier for vaporization to occur, thereby improving 
the efficiency of the engine (Duraisamy et al., 2021; Padhee and 
Raheman, 2015; Truong et al., 2021). Blends of biodiesel with 
ethanol or methanol have been reported to significantly 
improve BTE over diesel fuel regardless of operating conditions, 
in which biodiesel alone shows weakness (EL-Seesy et al., 2021; 
Venu and Madhavan, 2017). However, the ratio between 
biodiesel and alcohol content needs to be studied and 
calculated carefully because an excessive alcohol ratio will 
cause a cooling effect due to the high latent heat of the 
vaporization of alcohol (Erdiwansyah et al., 2019; Yilmaz et al., 
2016). This will in turn reduce the BTE. It can be seen that the 
relationship between the physicochemical properties of the fuel 
and the BTE of the engine is not quite linear and it is necessary 
to find the optimal points to help the engine operate more 
smoothly. Figure 4b shows the comparison between the brake 
thermal efficiency of some biodiesel with diesel fuel (Riyadi et 
al., 2023). Diesel engines have a continuous development 
history to exploit and make the most of the energy produced 
from diesel fuel. When changing diesel with biodiesel, 
regardless of the change in their composition and chemical 
properties as mentioned above immediately affect the 
performance of the engine, both negative and positive effects 
(Nagarajan et al., 2022). However, the negative effects are more 
obvious. Data in Table 2 shows recent research on the effect of 
biodiesel on engine performance and emission characteristics. 
Most biodiesel reduces engine performance, as shown by 
increasing BSFC and decreasing BTE (Dubey et al., 2022; More 
et al., 2020; Perumal and Ilangkumaran, 2018). The use of 
biodiesel as the main fuel without any improvement in fuel or 
engine characteristics has been proven both theoretically and 
experimentally to reduce the performance of the engine 
significantly. However, when using biodiesel fuel as a second 
fuel source to mix with diesel fuel, the engine has minimized its 
power loss. Many studies have shown that the 20% biodiesel 
blending ratio (B20) is the optimal fuel ratio for the engine when 
the changes in BTE and BSFC are insignificant (Canakci and 
Van Gerpen, 2003; Jindal et al., 2010; Lue et al., 2001).  

Exhaust gas temperature (EGT) is another parameter that 
also needs to be paid attention to when analyzing the 
combustion of an engine. During low engine loads, the exhaust 
gas temperature (EGT) tends to be lower due to reduced fuel 
consumption and subsequent lower heat production. 
Conversely, at high engine loads, the EGT typically rises as a 
result of increased fuel combustion and the generation of 
greater heat (Mehta et al., 2010; Uyumaz et al., 2014). Heat is 
also a type of energy produced by combustion, so a higher 
exhaust gas temperature also means that combustion produces 

more energy. However, this is wasted energy that is not useful 
for engine operating processes. The cause of higher exhaust gas 
temperature can also come from incomplete combustion 
leading to a significant amount of unburned particles in the 
exhaust gas. Besides, too high exhaust gas temperature will put 
pressure on machine parts such as the pistons, valves, and 
exhaust system, reducing their durability and causing damage if 
continued for a long time. Usually, the EGT of a diesel engine 
can range from 300°C to 700°C or even higher, depending on 
the operating conditions and characteristics of the fuel. 
However, the recognition of the trend of the EGT trend of 
biodiesel engines is not unanimous. Some studies recorded a 
decrease in EGT (Ghazali et al., 2015; Kegl, 2011; Shrivastava et 
al., 2019) while others noted an increase in EGT (Abed et al., 
2018; Kerihuel et al., 2005). However, the trend of increasing 
EGT is more recognized by many studies. In the case of a 
decrease in EGT, the phenomenon is explained that biodiesel 
has a higher oxygen content and a lower carbon-to-hydrogen 
ratio than diesel fuel as well as its lower heating value (LHV), 
which can lead to more complete combustion and less 
unburned fuel in the exhaust gases (Al-lwayzy and Yusaf, 2017; 
Haşimoğlu et al., 2008; Yilmaz et al., 2014). Conversely, the 
higher viscosity of methyl esters, leading to inadequate fuel 
atomization and vaporization, can account for the delayed 
combustion of injected fuel. This delayed burning process 
elucidates the rise in exhaust gas temperature (EGT) in the 
engine (Yilmaz et al., 2014; Yilmaz and Atmanli, 2017). 

3.3. Effects of biodiesel on emissions characteristics 

In the opposite direction, unlike creating negative effects 
on engine performance, biodiesel has always been known as a 
fuel source to help reduce emissions. Biodiesel is an oxygenated 
fuel with a more complete combustion process, leading to 
significantly improved emission parameters (Elkelawy et al., 
2021). Table 3 shows recent research about the effects of 
biodiesel on emission characteristics and compounds.  

All the data is collected when the engine is operating at 
100% load if the engine load is not specified. Most studies show 
that the use of biodiesel significantly reduces UHC and CO 
(Ahmad and Saini, 2022; Joy et al., 2018; Vellaiyan and 
Partheeban, 2018). The unburnt hydrocarbons (UHC) as the 
name suggests are the result of incomplete combustion of the 
fuel in the engine. The term "UHC" refers to all varieties of 
hydrocarbon compounds produced by an engine, but which 
cannot be assessed separately. As a result, depending on their 
makeup, they are categorized and referred to as UHC emissions 
comparable to C1, C3, or C6. When the air-fuel ratio is either 
too rich or too low for auto-ignition, UHC emissions take place 
and the combination cannot sustain a flame or ignite 
automatically (Mofijur et al., 2016). The fact that biodiesel has a 
significantly higher oxygen content than diesel fuel, and the 
cetane number of biodiesel is also slightly higher than diesel 
fuel; thus biodiesel could help the combustion process be more 
complete. This directly reduces the amount of UHC formed 
(Abed et al., 2019; E et al., 2017). Interestingly, mixing a small 
amount of alcohol as mentioned above to improve engine 
performance also reduces the amount of UHC. This makes the 
solution of mixing alcohols of particular attention to researchers.  
A similar problem occurs with CO emissions because CO is the 
result of fuel combustion under bad conditions such as a lack of 
oxygen or improper air-to-fuel ratio (Kim et al., 2018). Therefore, 
the presence of oxygen in the composition of biodiesel also 
helps to reduce CO formation significantly by creating 
conditions for CO emissions to be able to convert into CO2, 
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leading to a significant reduction in CO emissions (Abed et al., 
2018). However, one major difference between UHC and CO is 

that mixing a small amount of alcohol can significantly increase 
the amount of CO. Specifically, the amount of CO was reported 
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to have increased by 39.95%, 38.83%, and 12.6% for propanol, 
butanol, and pentanol, respectively (Uyumaz, 2018; Zhang et al., 
2022). Figures 5a and Figure 5b show a comparison of the UHC 
and CO emissions of engines using biodiesel with diesel fuel and 
the similarity in their trends is shown clearly when most 
biodiesel will reduce UHC and CO emissions except in some 
special cases.  

On the contrary, the availability of oxygen in the biodiesel 
composition will increase NOx emissions, which is a typical 
trade-off relationship in most combustion fuel studies 
(Duraisamy et al., 2021; Manigandan et al., 2020). Nitrogen 
oxides (NOx) are the most hazardous pollutants generated by 
engines and are dependent on factors such as the combustion 
temperature and the length of time it is exposed to a high-

temperature environment (above 1400oC), the chemical 
composition of the fuel, and the availability of oxygen in these 
high-temperature areas (Appavu et al., 2021). The cause of NOx 
emissions when using biodiesel increases can be explained by 
the earlier combustion of the fuel in the combustion chamber 
along with the improved combustion process in both quality and 
speed, causing the 87 in the combustion chamber to rise, 
thereby enhancing the formation of NOx (Chen et al., 2018; 
Mirhashemi and Sadrnia, 2020). In the combustion chamber 
equipped with electronic injectors, unsaturated biodiesel with 
higher iodine value is also the main cause of the increase in NOx 
emissions (Mofijur et al., 2019). The same phenomenon does not 
occur with the engine with a common rail direct injection 
system. All the above signs indicate that the increase in NOx 
emissions of the engine is bound by many causes, however, 
their relationship has not been interesting and clarified by many 
studies (Rathinam et al., 2018; Varatharajan and Cheralathan, 
2012; Zare et al., 2021). Not many studies have documented a 
reduction in NOx emissions as shown in Table 3 and in those 
cases, it is explained that the lower heating value of biodiesel 
compared to diesel fuel and lower ID, which forces hot gases to 
stay in the combustion chamber at high temperature to generate 
less NOx. Figure 5c compares the NOx emission of different 
biodiesel to diesel fuel. In addition, the alcohols once again 
show a suitable fit and have a very important role in turning 
biodiesel into a more user-friendly fuel as the addition of longer 
chain alcohols will reduce NOx emissions by approximately 
27.44%, 19.27%, and 15.05% for pentanol, butanol and propanol 
compared with a 50% biodiesel blend (Uyumaz, 2018). 

It is undeniable that biodiesel will increase NOx emissions, 
the overall emissions are still significantly reduced, and 
biodiesel is still widely considered by researchers as a much 
cleaner energy source than diesel fuel. Therefore, instead of 
completely using biodiesel in an internal combustion engine, 
using biodiesel as a secondary fuel source to blend to help 
overcome the inherent weaknesses of diesel while still being 
able to partly avoid depending on them is a much more potential 
approach. Although it is difficult to find a type of biodiesel that, 
after blending with diesel oil, can improve all aspects of engine 
performance as well as reduce all types of emissions, there are 
three important issues to be aware of when using this method: 
(i) engine performance should not necessarily be improved, but 
should focus on reducing emissions, (ii) biodiesel improvement 
studies are still being carried out and biodiesel applications will 
be more and more perfect in the future and (iii) fuel blending 
will help reduce consumption as well as ensure energy security 
for many countries. Of course, the higher the efficiency of the 
engine, the better, however, the internal combustion engine has 
been in common use for a long time and the efficiency of the 
internal combustion engine has thus been widely accepted. As 
long as the fuels used do not reduce engine performance or do 
not significantly reduce it, it is acceptable. In other words, the 
priority when researching fuel blends should be to help reduce 
emissions rather than improve engine performance. With this 
approach, the disadvantages of diesel oil cannot be completely 
overcome but will be improved and also easier to use. 
Furthermore, finding a fuel source that can be mixed with diesel 
will greatly reduce the need for diesel. This has not been able to 
completely solve the burning problems of diesel fuel, but it will 
help countries lacking oil reserves reduce pressure on energy 
and also give humanity more time to find a solution to the 
problem. Besides, this method is considered one of the 
extremely simple, economical, and proactive methods to solve 
fuel and emissions problems in the short term. The 
physicochemical properties of diesel and biodiesel can vary 
significantly, and these differences can impact their 

 

 

 

 

Fig. 2.Comparison of emission from the engine using biodiesel 
and diesel; (a) difference of HC emission (b) difference of CO 
emission (c) difference of NOx emission 
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performance and compatibility when used as blended fuel. 
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However, by carefully adjusting the fuel mix ratio, it is possible 
to resolve these differences and achieve a desirable balance 
between the properties of the two fuels and help the engine 
operate smoothly with high efficiency. 

In the efforts to help overcome the remaining weaknesses 
of biodiesel, researchers have applied many different 
technologies and have achieved remarkable achievements in 
recent years. One of the recent approaches of researchers is to 
use nanoparticles additives (Hoang, 2021b; Kandasamy and 
Sundararaj, 2018; Pradeep and Senthilkumar, 2021; 
Rameshbabu and Senthilkumar, 2021; Sathish et al., 2023). 
Applications of nanoparticles are diverse such as nano metal-
based particles such as cerium oxide (Kumar et al., 2019; 
Shaisundaram et al., 2021), titan oxide (Nanthagopal et al., 2017; 
Sunil et al., 2021), zinc oxide (Javed et al., 2016; Vali et al., 2022), 
copper oxide (Kalaimurugan et al., 2019; Rozina et al., 2022), 
carbon-based nanoparticles (Murugesan et al., 2022), nanofluids 
(Kannan et al., 2011; Khalife et al., 2017; Shaafi et al., 2015). 
Nanoparticles can be used as additives in diesel and biodiesel 
to increase surface area to volume ratio as well as increase 
catalytic activity in nano-size metal oxides and metals (Hoang 
et al., 2022b). Nano additives directly improve engine 
combustion by improving heat transfer, catalytic activity, and 
air fuel mixing rate (Karthikeyan et al., 2017; Tomar and Kumar, 
2020). Table 4 shows the comparison between with and without 
nano-additives on engine performance and emission 
characteristics. The data shows that using nano additives or 
nanofluid significantly reduces emissions such as HC, CO, and 
smoke, especially in some research, the results show that 
nanotechnology can even reduce NOx emissions, which solves 
the trade-off problem of emissions in the combustion process of 
the engine. Regarding the engine performance, many studies 
also show an improvement in BSFC and BTE of engines 
powered by nanoparticles-included fuels although it does not 
completely solve the problem. Besides, because nanoparticles 
are used as a catalyst in the combustion process, their shelf life 
and performance will be maintained for a long time if there are 
no problems such as poisoning or thermal degradation, leading 
to deactivation.  This will make the cost of applying nano 
additives not too high, but the effect is extremely stable. 
However, studies aimed at comprehensively assessing the 
potential of this method are very limited. Therefore, it is 
necessary to have a comprehensive assessment of the use of 
nanoparticles for blending with biodiesel.  

4. Challenges and opportunities 

With the ever-increasing energy demand and political instability 
directly affecting the supply stability of fossil fuels, the 

development and utilization of biodiesel becomes more relevant 
than ever (Coşofreţ et al., 2016). The diversity in production 
inputs, coupled with the fact that it has been shown to 
significantly reduce greenhouse gas emissions, which has been 
a sore point in recent years, creates extremely favorable 
conditions for biodiesel to compete with fossil fuel sources. 
Unlike traditional fossil fuels, biodiesel can be produced 
domestically, reducing the need for foreign oil imports. This can 
also help to stimulate local economies by creating jobs in the 
production and distribution of biodiesel. 

Another opportunity for biodiesel is its potential to reduce 
greenhouse gas emissions. Biodiesel is considered a low-carbon 
fuel, meaning that it produces fewer greenhouse gas emissions 
than traditional fossil fuels (Semwal et al., 2022). This can help 
countries and companies meet their emissions reduction targets 
and contribute to global efforts to combat climate change 
(Babatunde et al., 2022). Additionally, biodiesel can be used in a 
wide range of applications, including transportation, heating, 
and electricity generation. This versatility makes biodiesel a 
flexible and adaptable fuel source that can meet a variety of 
energy needs. However, like any new technology or industry, 
biodiesel faces both challenges and opportunities. 

One of the primary challenges of biodiesel is its cost, while 
the production of biodiesel has become more efficient and cost-
effective in recent years, it is still more expensive than 
traditional fossil fuels (Maroušek et al., 2023a; Meira et al., 2015). 
This is partly due to the higher cost of feedstocks, such as 
soybean oil, which is used to produce biodiesel. Additionally, 
the cost of production equipment, infrastructure, and 
transportation can also be higher than traditional fossil fuel 
production (Kumar et al., 2021). However, according to many 
researchers, the cost of raw materials, especially biomass 
feedstock, accounts for most of the financial structure 
(Apostolakou et al., 2009). Therefore, finding cheap fuel will 
greatly improve profits. To solve the above problem, the use of 
biomass sources to convert into biodiesel must be considered 
carefully. One potential approach not only to reducing the cost 
of biodiesel production but also improving other environmental 
issues is by utilizing biomass sources derived from by-products 
and waste products from production and living activities (Baldia 
et al., 2023; Sung et al., 2021; Vani et al., 2022). However, they 
are still in the early stages of development and are not yet 
widely available or cost-effective. 

Secondly, biodiesel can hurt engine performance in cold 
weather conditions (Rochelle and Najafi, 2019). This makes the 
use of biodiesel at certain times of the year or in some countries 
with cold climates extremely unsuitable. Biodiesel has a higher 
cloud point and pours point than petroleum diesel, which means 
that it solidifies at a higher temperature, making it challenging 

 
Fig. 3. Comparison between diesel and biodiesel in different start temperatures (Zare et al., 2017) 
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to use in low-temperature conditions (Sani et al., 2018; Su et al., 
2021). This can result in engine starting problems and fuel filter 
clogging, which can affect engine performance and reliability 
(Nursyairah et al., 2022). Many studies have been done to 
evaluate the performance of biodiesel engines at low 
temperatures and most of the results show difficulty in cold-start 
the engine (Hadi et al., 2023; Yubaidah, 2023). Besides, biodiesel 
that has solidified or thickened due to cold weather may not 
properly atomize and mix with air in the combustion chamber, 
resulting in incomplete combustion and reduced engine 
performance (Chaichan et al., 2020; Clenci et al., 2016; Jiaqiang 
et al., 2019). Figure 6 compares the advantages and 
disadvantages of biodiesel and diesel in cold-start and hot-start 
(Zare et al., 2017). It can be seen that the use of biodiesel at low 
temperatures completely loses the natural advantages of this 
fuel. This is a research direction that needs to receive a lot of 
attention to make it possible to use biodiesel in different weather 
and temperature conditions. 

Besides improving engine performance and reducing 
emissions, another problem for the long-term and widespread 
use of biodiesel that needs to be analyzed and evaluated is the 
possibility of engine damage (Dharma et al., 2023). Engine 
performance and emission index are parameters that only show 
the immediate suitability of biodiesel. In case the use of 
biodiesel causes the engine to degrade quickly, biodiesel is very 
unlikely to be considered a sustainable alternative fuel source. 
One of the criteria to evaluate the suitability of the fuel, in the 
long run, is the degree of deposit formation of the fuel when 
used in the engine (Zhang et al., 2020). Some studies have 
shown that biodiesel has poor atomization and low evaporation, 
which leads to larger fuel droplets as well as the heterogeneity 
of the fuel mixture, which directly increases the possibility of 
deposit formation (Liaquat et al., 2014). However, the three most 
important causes of scale formation are thought to be 
temperature, nozzle geometry, and fuel composition (Leedham 
et al., 2004). Birgel et al. (Birgel et al., 2011) experimented with 
the deposit formation on the injector using different fuels, and 
the results were shown in Figure 7. It can be seen clearly with 
the naked eye that biodiesel significantly increases the amount 
of deposit formation on the injector (Hoang and Le, 2019). This 
is still a challenge with efforts to bring biodiesel into widespread 
use. Many researchers propose several solutions to try to limit 
the formation of deposits. Mulyono et al. (Mulyono et al., 2018) 
used the hydrotreating method and got some positive results. 
The results show that the formation and growth of scale are 
slower in hydrotreated vegetable oil than in biodiesel. Besides, 
the above phenomenon can be partly solved by improving the 
parameters of biodiesel. Biodiesel has high viscosity, while fuel 
with high viscosity requires a longer ignition delay because the 

fuel droplets take longer to vaporize, which makes scale 
formation more likely to occur (Emiroğlu, 2019). Although there 
are many theoretical studies explaining the cause for the 
formation of biodiesel scale, the solutions to solve this 
phenomenon are still very limited. This also could be a potential 
direction for biodiesel fuel researchers 

Another aspect that needs to be considered in the long 
term is the engine corrosion of biodiesel. The corrosive 
potential of biodiesel is rated as much higher than that of diesel 
because of its high oxygen content (Fazal et al., 2012; Hoang et 
al., 2020). In addition, the biodiesel production process can 
generate impurities such as free fatty acids, glycerol, and metal 
catalyst residues. If not handled properly, these impurities can 
participate in reactions that corrode metals. Fazal et al. (Fazal et 
al., 2010) observed corrosion rate of palm oil biodiesel with 
copper, and aluminium is 0.586 and 0.202 mils per year (mpy) 
while for diesel, the corrosion rate is only 0.3 mpy and 0.15 mpy 
respectively. In another study, Saravana Kannan Thangavelu et. 
al also reported a higher corrosion rate when blending biodiesel 
into diesel. Specifically, B20D75E5 (20% biodiesel, 75% diesel, 
and 5% ethanol) and B20D70E10 (20% biodiesel, 70% diesel, 
and 10% ethanol) have a corrosion rate of 0.1572 and 0.1817 
mpy respectively while diesel has a corrosion rate of only 0.1572 
and 0.1817 mpy, respectively. 0.0523 mpy (Thangavelu et al., 
2016). This is a significant increase when just mixing 20% 
biodiesel into the fuel, but it increases the corrosion rate by 
more than 3 times. This is considered a serious problem 
because it not only reduces engine performance but also causes 
engine damage, directly increases warranty and repair costs, or 
even raises a big question mark to safety concerns. These are 
all major obstacles to the widespread dissemination of biodiesel 
and require research to come up with optimal solutions. 

With its enormous potential but still underappreciated 
today by businesses and citizens, the role of government in 
promoting and supporting this fuel is more widespread is 
indispensable. Policies for biodiesel around the world vary 
widely, depending on factors such as government priorities, 
energy security goals, and environmental concerns (Austin et al., 
2022). Some countries have implemented ambitious targets for 
biodiesel production and use, while others have been slower to 
adopt this renewable fuel source. In Europe, Renewable Energy 
Directive has set a target of 14% renewable energy in 
transportation by 2030, which includes the use of biodiesel 
(Long et al., 2021). Many European countries have implemented 
mandatory biodiesel blending policies, with blending ratios 
ranging from 7% to 20% (Chong et al., 2021). For example, in 
Germany, diesel fuel must contain a minimum of 7% biodiesel, 
while in France the mandatory blend is 8.5%. In the United 
States, the federal government has implemented a Renewable 

 

Fig. 4. The optical investigation for deposit formation level evaluation on injectors (a) new nozzle, (b) diesel fuel, (c) BD30, (d) BD100 (Birgel et 
al., 2011) 
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Fuel Standard program, which requires a certain volume of 
renewable fuel to be blended into gasoline and diesel fuel. 
Biodiesel is included as a renewable fuel under the RFS, and the 
program has helped to promote the growth of the domestic 
biodiesel industry. In addition, some states, such as California, 
have implemented low-carbon fuel standards that incentivize 
the use of biodiesel and other low-carbon fuels. In South 
America, Brazil is a leading producer and user of biodiesel, with 
a mandatory blending policy that requires all diesel fuel to 
contain at least 13% biodiesel (de Souza et al., 2022). Argentina 
and Colombia have also implemented mandatory blending 
policies, with blending ratios of 10% and 8%, respectively 
(Canabarro et al., 2023). In Asia, several countries have 
implemented biodiesel policies to promote renewable energy 
and reduce dependence on imported fossil fuels. For example, 
Indonesia has set a target of 30% renewable energy in 
transportation by 2025, with biodiesel playing a key role in 
achieving this goal (Kharina et al., 2016). Malaysia has also 
implemented a biodiesel blending policy, with a mandatory 
blend of 10% (Zulqarnain et al., 2020). Overall, biodiesel policies 
around the world are evolving as governments seek to promote 
sustainable energy sources and reduce their reliance on fossil 
fuels. While the specifics of these policies vary widely, they all 
aim to promote the growth of the biodiesel industry and reduce 
greenhouse gas emissions from transportation. 

5. Conclusions 

The study presents the important properties of biodiesel 
and updates the latest research to improve engine performance 
and reduce emissions when using biodiesel. It can be seen that, 
with its physicochemical properties, biodiesel improves the 
engine's emission indicators significantly, however, operational 
issues such as performance or durability of the engine have 
become a problem that scientists are trying to resolve. 
Completely independent use of biodiesel without engine 
modifications is theoretically possible but is a huge minus point 
for both engine performance and operating costs. The use of 
biodiesel as a fuel mixed with diesel fuel will be more reasonable 
at present. Besides, to fully realize the opportunities of biodiesel, 
several steps need to be taken. One of the most important is to 
continue to invest in research and development to improve the 
efficiency and cost-effectiveness of biodiesel production. This 
includes developing new feedstocks and production methods, 
as well as improving the efficiency of existing production 
processes. In addition, social policies such as tax incentives, 
subsidies, and mandates that require a certain percentage of 
transportation fuel to be made from renewable sources are also 
necessary to support the commercialization of biodiesel. This 
also will help to educate the public and raise awareness about 
the benefits of biodiesel. Success in utilizing the fullest potential 
of biodiesel will relieve pressure on energy issues in many 
countries, setting the stage for sustainable development. 
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