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Abstract. This paper presents the effectiveness of the ensemble empirical mode decomposition-long short-term memory (EEMD-LSTM) model for 
short term load prediction. The prediction performance of the proposed model is compared to that of three other models (LR, ANN, LSTM). The 
contribution of this research lay in developing a novel approach that combined the EEMD-LSTM model to enhance the capability of industrial load 
forecasting. This was a field where there had been limited proposals for improvement, as these hybrid models had primarily been developed for other 
industries such as solar power, wind power, CO2 emissions, and had not been widely applied in industrial load forecasting before. First, the raw data 
was preprocessed using the IQR method, serving as the input for all four models. Second, the processed data was then used to train the four models. 
The performance of each model was evaluated using regression-based metrics such as mean absolute error (MAE) and mean squared error (MSE) to 
assess their respective output. The effectiveness of the EEMD-LSTM model was evaluated using Seojin industrial load data in Vietnam, and the results 
showed that it outperformed other models in terms of RMSE, n-RMSE, and MAPE errors for both 1-step and 24-step forecasting. This highlighted the 
model's capability to capture intricate and nonlinear patterns in electricity load data. The study underscored the significance of selecting a suitable 
model for electricity load forecasting and concluded that the EEMD-LSTM model was a dependable and precise approach for predicting future 
electricity assets. The model's robust performance and accurate forecasts showcased its potential in assisting decision-making processes in the energy 
sector. 
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1.  Introduction 

According to data from the (World Energy Outlook 2019 – 
Analysis, n.d.), In the year 2040, wind power is anticipated to 
produce an estimated 8,300 TWh, while solar photovoltaic (PV) 
is projected to generate around 7,200 TWh, surpassing 
hydropower which is estimated to be at 6,950 TWh. 
Furthermore, it is expected that the proportion of heat derived 
from renewable sources in 2040 will rise to 30% of the total, 
equivalent to 1,200 Mtoe. One major challenge in developing 
renewable energy sources such as wind and solar power is the 
limited generation capacity for consumer loads due to the lack 
of synchronized development in infrastructure and renewable 
power plants. This complexity makes integrating renewable 
energy sources into the existing power grid more difficult and 
challenging. Furthermore, the stability and forecasting of 
consumer loads, especially industrial loads, play a crucial role in 
optimizing the operation of renewable power plants. Accurate 
information about the electricity consumption of industrial 
plants in the future allows us to adjust the electricity production 
from renewable sources to match the actual demand. This 
improves the operational efficiency of renewable power plants 
while ensuring that the generated energy is utilized efficiently 
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and cost-effectively. Therefore, the stability and forecasting of 
industrial consumer loads play a vital role in driving the 
development and integration of renewable energy sources into 
the power grid. Advanced technologies and forecasting 
methods applied in load forecasting enhance prediction 
capabilities and optimize the operation of renewable power 
plants, contributing to the creation of a sustainable and efficient 
electricity system for the future.  

According to (Chattopadhyay, 2018), Vietnam's electricity 
sector is projected to experience significant growth by 2030, 
with an average annual increase of 8.9 percent in demand and 
a planned expansion of renewable energy capacity to 20 GW, 
while coal-fired capacity is expected to quadruple and account 
for over 40 percent of national generation capacity. In the 
context of the increasing demand for electricity consumption, 
the industrial sector always accounts for a high proportion (Duc 
Luong, 2015) and has a significant impact on the entire national 
power system. Therefore, accurate short-term industrial load 
forecasting (STILF) plays a critical role in maintaining the 
stability and safety of the power system. Inaccurate forecasts 
can have severe economic and energy security implications, 
impacting businesses and people's daily lives. Conversely, 
precise STILF can help optimize electricity usage, reduce 
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production costs, and enhance generation capacity. The 
significance of load forecasting and STILF is particularly 
relevant in the context of Vietnam's economic and industrial 
development. With rapid economic growth, the country's 
industrial sector is experiencing a substantial increase in energy 
consumption. Consequently, there is a growing demand for 
accurate and comprehensive STILF to ensure the reliable and 
efficient integration of new electricity sources into the grid. 
Nonetheless, accurately predicting industrial demand in 
Vietnam presents several challenges. These challenges include 
significant regional variations in energy consumption patterns 
and the energy efficiency hurdles faced by various industries. 
Overcoming these obstacles and improving forecast accuracy 
can be achieved through the development of robust STILF 
models, leveraging advanced technologies such as data 
analytics and machine learning. By addressing these challenges 
and enhancing STILF capabilities, Vietnam can effectively 
manage its power systems, support sustainable economic 
growth, and successfully transition towards a greener and more 
reliable energy future. 

In the field of STILF forecasting (Jurado et al., 2023; Walser 
& Sauer, 2021; Zhu et al., 2023), researchers have developed 
various models over the years, which can be categorized into 
two groups: causal forecasting models that require the 
identification of influencing factors, and time series-based 
forecasting models that solely rely on historical data (D. Wang 
et al., 2021; C. Zhang et al., 2022). Causal models, such as panel 
cointegration and support vector regression, attempt to analyze 
the electricity load by considering specific factors like electricity 
prices, exchange rates, and meteorological conditions. 
However, due to the complexity of determining these factors, 
time series-based approaches have gained popularity for their 
simplicity and practicality. These approaches include traditional 
statistical methods, artificial intelligence models, and hybrid 
models, which have been widely utilized in electricity load 
forecasting.  

These methods can be broadly categorized into statistical 
methods, machine learning (ML) models, deep learning (DL) 
models, and hybrid models. Statistical methods, such as Auto 
Regressive (AR), Auto-Regressive Moving Average (ARMA), 
and Auto-Regression Integrated Moving Average (ARIMA) 
models, have been extensively used in STLF. For instance, (J.-
F. Chen et al., 1995)  proposed an adaptive ARMA model that 
overcomes the limitations of the traditional Box-Jenkins 
approach by incorporating an adaptive mechanism to update 
forecasts based on forecast errors. Experimental results 
demonstrated the superior accuracy of the adaptive algorithm, 
particularly for 24-hour load forecasting, underscoring the 
significance of adaptability in enhancing forecasting 
performance. However, statistical methods have certain 
drawbacks, including the assumption of historical data patterns 
persisting into the future, the need for a substantial amount of 
historical data, difficulty in predicting abrupt and unforeseen 
changes, sensitivity to outliers, and the quality of input data. 
Furthermore, statistical models may not perform optimally with 
non-linear input data, such as industrial loads. In such cases, 
machine learning-based forecasting methods or deep learning 
models can be employed to handle non-linear data and improve 
the accuracy of the forecasts. 

Machine learning (ML) and deep learning (DL) models have 
demonstrated their potential in accurately predicting load 
demand. In recent years, researchers have introduced various 
algorithms such as artificial neural network (ANNs) (Satish et al., 
2004), (Carolin Mabel & Fernandez, 2008), random forest (RF) 
(Lahouar & Ben Hadj Slama, 2015), support vector regression 
(SVR) (Hong, 2009), (Fan et al., 2008), (Y. Chen et al., 2017), 
convolutional neural networks (CNNs) (Imani, 2021), 

(Cannizzaro et al., 2021), (Mustaqeem et al., 2022), (Feng et al., 
2022) recurrent neural networks (RNNs) (Aseeri, 2023; Shi et al., 
2018), (Haider et al., 2022), long short-term memory (LSTM) 
(Muzaffar & Afshari, 2019), (Pooniwala & Sutar, 2021), (Haider 
et al., 2022), (Azizi et al., 2023), (Bui et al., 2022) and gated 
recurrent unit (GRU) (Li et al., 2022), (Liu et al., 2021), (Ma et al., 
2022) models for short-term load forecasting. These models 
have shown improved forecasting results compared to 
traditional algorithms. For instance, (Fan et al., 2008) achieved 
superior accuracy and efficiency in next-day electricity load 
prediction using the SVR model. (Lahouar & Ben Hadj Slama, 
2015) developed a short-term load prediction model using 
random forest, incorporating expert feature selection and an 
online learning process, resulting in high forecasting accuracy 
for the next 24 hours with an average error rate below 2.3%.  
(Satish et al., 2004) proposed a comprehensive ANN approach 
considering the impact of temperature on load forecasting. (Shi 
et al., 2018) introduced a novel pooling-based deep RNN to 
address the issue of overfitting by enhancing data diversity and 
volume. (Imani, 2021) introduced a load forecasting method, 
NRE, based on CNN, which surpasses other models by 
employing load cubes and load-temperature cubes to capture 
nonlinear load characteristics and load-temperature features, 
resulting in superior performance across different time periods 
and datasets. In (Muzaffar & Afshari, 2019), the proposed LSTM 
network outperformed traditional methods and offers improved 
accuracy in load forecasting by effectively capturing 
seasonalities and trends, with potential for further improvement 
when provided with data spanning more than one year.  (Li et 
al., 2022) proposed a GRU model with adaptive temporal 
dependence that surpassed benchmark methods in multi-
horizon load forecasting, achieving improved prediction 
accuracy (0.22-3.9% MAPE improvement on average), 
incorporating periodic and nonlinear characteristics, and 
demonstrating generalization and stability across diverse 
datasets. Overall, the application of these models can 
significantly improve load forecasting accuracy and enable 
better power system planning and operation. However, they 
also have some disadvantages. One of the main drawbacks of 
them is that they require a large amount of data to train and 
validate their models, which may not be available or accessible 
in some domains. Another drawback is that they may suffer 
from overfitting or underfitting, which means that they either 
memorize the training data too well or fail to capture the 
underlying patterns of the data. Moreover, ML and DL models 
are often complex and opaque, making it hard to interpret and 
explain their results and decisions. These disadvantages may 
limit the applicability and reliability of ML and DL models in 
some scenarios. Therefore, a hybrid model may be a better 
alternative.  

In recent years, hybrid models that integrate data 
decomposition and machine learning (ML) methods have 
gained popularity due to their ability to utilize the strengths of 
each technique to enhance performance. Energy forecasting 
often uses decomposition-ensemble hybrid methods, which 
take advantage of the effectiveness of decomposition methods 
in handling time-series data. A typical decomposition ensemble 
method involves breaking down the time series into subseries 
that are smoother, more regular, and easily recognizable, 
predicting each subseries separately, and then combining the 
predictions. To reduce data complexity and reveal data 
features, decomposition methods are employed in 
decomposition-ensemble methods. Empirical mode 
decomposition (EMD) (Jiang et al., 2021), (Mounir et al., 2023), 
(Monjoly et al., 2017), (L. Zhang et al., 2021) variational mode 
decomposition (VMD) (Q. Zhang et al., 2022), (Sivakumar et al., 
2023), (Ali et al., 2021), (Gao et al., 2023), (Wu et al., 2023) 
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wavelet decomposition (WT) (Aasim et al., 2021; Vijay et al., 
2022), (Ahn & Hur, 2023), (Bento et al., 2019) singular spectrum 
analysis (SSA) (Afshar & Bigdeli, 2011), (Wei et al., 2022), 
(Adedeji et al., 2019), Seasonal and Trend decomposition using 
Loess (STL) (Trull et al., 2022), (Nguyen et al., 2021), (Ribeiro et 
al., 2023) and ensemble empirical mode decomposition (EEMD) 
(Nguyen et al., 2021),(Nguyen & Phan, 2022),(Ding et al., 2022). 
For example, in (Mounir et al., 2023), the proposed EMD-Bi-
LSTM approach for short-term electrical load forecasting 
demonstrated high precision with an MAPE of 0.28% and RMSE 
of 0.31, contributing to improved accuracy and efficiency in 
energy management systems and smart grid development. (Q. 
Zhang et al., 2022) proposed a load forecasting method that 
combined VMD and Stacking model fusion, demonstrating 
improved accuracy compared to XGBoost, VMD-XGBoost, and 
KNN methods by decomposing the load series into distinct 
intrinsic mode functions (IMF) and utilizing ensemble learning 
to fuse predictions from multiple basic models. The hybrid 
model proposed by (Aasim et al., 2021), RWT-SVM, integrated 
WT and SVM features to leverage historical time-series data of 
electrical load, leading to enhanced forecasting accuracy as 
evidenced by comparisons with other models and diverse 
datasets. (Trull et al., 2022) developed the MSTL-DIMS method, 
a modification of the STL decomposition, which overcomes the 
limitations of single seasonality and calendar effect by 
incorporating multiple seasonalities and discrete-interval 
moving seasonalities, leading to enhanced accuracy in short-
term load forecasting for electricity systems. (Nguyen et al., 
2021) introduced a hybrid model that combined Ensemble 
Empirical Mode Decomposition (EEMD) and Bi-LSTM, 
achieving excellent load forecasting performance with a MAPE 
slightly above 2% when treating the entire year as a single time 
series, surpassing traditional models in the power industry. 
These above studies have highlighted the effectiveness of 
combining forecasting models with decomposition methods as 
a superior approach to electric load forecasting compared to 
using a single forecasting model. However, this method has not 
been widely applied to STILF, particularly in Vietnam, where 
data collection and processing pose significant challenges. 
Therefore, in this research, we proposed a combined approach 
of data decomposition using EEMD method and the LSTM 
forecasting model to forecast the industrial load of Seojin Vina 
installed in Bac Ninh, Vietnam. 

The main contributions of this paper were in proposing a 
hybrid Short-Term Industrial Load Forecasting (STILF) method 
that combined the LSTM network with the EEMD data 
decomposition technique, leading to enhanced forecasting 
accuracy. This novel approach involved decomposing the 
original load data into random frequency components using the 
EEMD method and then dividing it into training and testing sets. 
The LSTM model was then utilized to forecast the load based 
on these sets, and the predicted values of the components were 
aggregated to generate the final forecast result. The successful 
application of the proposed method in industrial load 
forecasting in Vietnam was particularly noteworthy, considering 
the challenges and limitations in data collection that were 
prevalent in the region. By incorporating the EEMD and LSTM 
techniques into the forecasting process, the study overcame 
some of the difficulties related to data availability at the local 
level. This demonstration of feasibility and potential for 
industrial load forecasting, especially in scenarios with limited 
and incomplete data, underscored the practicality of the 
proposed method. Furthermore, this research significantly 
contributed to the field of industrial load forecasting and 
management by introducing an effective and novel approach. 
Given the critical importance of accurate load forecasting in 
ensuring the reliable and efficient operation of electrical 

systems, the combination of EEMD data decomposition and 
LSTM network offered promising prospects for improving 
forecasting accuracy. The findings of this study could serve as 
valuable guidance for future research and practical applications 
in the domain of industrial load forecasting, enabling more 
efficient planning and management of energy resources. The 
remaining part of the study consisted of the following: Section 2 
presented the relevant techniques and the proposed forecasting 
framework. Section 3 detailed the experiments and analysis 
conducted. Finally, in Section 4, conclusions and suggestions for 
future research were provided. 

2.  Methodology 

The proposed model in the study aimed to enhance the 
accuracy of load forecasting by integrating two techniques and 
developing a data decomposition technique with a deep 
learning model. The method consisted of two main 
components: decomposition and forecasting. Firstly, the initial 
data is collected by receiving signals from measuring devices, 
then forwarded to the data management system and pushed to 
the server. The measuring devices perform data sampling 
approximately every minute, however, the time for sending data 
to the server is not synchronized and may not be fixed. 
Therefore, the data needed to be time-synchronized, and a 
sampling frequency of once per hour was selected. This hourly 
sampled data was treated as the raw input for the model before 
undergoing preprocessing and forecasting steps. Then the data 
needed to be pre-processed then was decomposed into random 
frequency components using the EEMD method, which 
separated a signal into intrinsic mode functions (IMFs) based on 
the local characteristic timescale of the data. The details of pre-
processing and the decomposition technique were presented in 
Section A and B, respectively. After the decomposition process, 
the data was split into training and testing sets, and the LSTM 
model was utilized for prediction. LSTM is a type of recurrent 
neural network that is well-suited for modeling time series data 
because of its ability to maintain a memory of past inputs. The 
details of the LSTM model were described in Section C. The 
LSTM model was trained on the decomposed data to predict 
the IMFs' values for the testing dataset. Finally, the predicted 
values of the IMFs were combined to generate the final forecast 
result. The model's structure was presented in Figure.1. 

2.1  Dataset pre-processing 

The raw unstructured dataset is transformed into a structured 
one. This step involves several important tasks to prepare the 
data for accurate electrical load forecasting. Firstly, the data is 
cleansed by handling any missing or irrelevant data and then 
data was removed outliers by using IQR method. IQR, or 

 

Figure 1. The structure of the proposed model 
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Interquartile Range, is a commonly used method for detecting 
outliers in data. Outliers are values that deviate significantly 
from the overall pattern of the data. There are various methods 
for identifying outliers, such as Z-score, density-based 
clustering, and isolation-forest. However, IQR is a popular 
univariate method that uses the median to locate different data 
points. The choice of statistical measures, such as median, 
mean, or mode, depends on the type of variability and presence 
of outliers. If there is less variability and no outliers, mean and 
standard deviation are preferred, but if there is much variability 
and outliers, median and IQR are preferred. The IQR method 
involves dividing the data into quartiles, namely Q1, Q2, and 
Q3, which represent the first, second, and third quartiles, 
respectively. These quartiles divide the data into four 
approximately equal-sized quarters. The IQR itself is calculated 
as the difference between Q3 and Q1. To further identify 
potential outliers, lower and upper bounds can be established 
using the (1), (2), (3): 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1     (1) 

𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝑄1 − 1.5 ∗ 𝐼𝑄𝑅   (2) 

𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅   (3) 

Outliers are data points that fall below the lower bound or 
exceed the upper bound, indicating values that significantly 
deviate from the overall pattern of the dataset. It is important to 
note that the choice of statistical measures, such as median, 
mean, or mode, depends on the data's variability and the 
presence of outliers. In cases with higher variability and the 
existence of outliers, using the median and IQR is preferable to 
the mean and standard deviation. 

After cleansing, the raw dataset is divided into two subsets: 
training and testing. To ensure the impact of all relevant input 
features, regardless of their actual range, the dataset is 
transformed using min-max scaling within a specified range or 
through normalization. This step not only enhances the runtime 
efficiency but also helps to improve the accuracy of the 
forecasting results. 

2.2  Ensemble Emperical Mode Decompostion (EEMD) 

EMD is a data processing technique that can handle non-linear 
and non-stationary time series by decomposing them into a 
finite number of oscillatory modes called intrinsic mode 
functions (IMFs). IMFs have specific properties such as the 
same or one more zero-crossing than extrema and a zero mean 
around the local average. EMD iteratively shifts the signal to 
obtain a set of IMFs and a residual. However, EMD suffers from 
mode-mixing, where one IMF may contain signals of different 
scales, or one signal may appear in different IMFs. To overcome 
this issue, EEMD enhances EMD by adding white noise to the 
signal and performing EMD on multiple noisy versions of the 
signal. It then averages the results to obtain the final IMFs. 
EEMD creates a uniform background in the time-frequency 
space, which assigns the signals to their proper scales. The steps 
of EEMD involve adding white noise, decomposing the signal 
into IMFs, repeating the process with different noise 
realizations, and finally, averaging the obtained IMFs to obtain 
the final IMFs.  

Step 1: Input the original signal 𝑥0(𝑡) 
Step 2: Given the amplitude of the white noise ε and the 
number of realizations 𝐼, and initialize the number of 
realizations 𝑖 = 1; 
Step 3: Generate the white noise 𝑛𝑖(𝑡) and reconstruct the 
signal using Eq 4. 

𝑥𝑖 = 𝑥𝑖−1(𝑡) + 𝑛𝑖(𝑡)    (4) 

Step 4: Decompose 𝑥𝑖(𝑡) into n IMFs 𝑐𝑗,𝑖(𝑡)  (j = 1, 2, …, n) 

and one residue 𝑟𝑖(𝑡) using EMD 
Step 5: If the maximum number of realizations is achieved, 
go to Step 6; otherwise, 𝑖  =  𝑖 + 1 and return to Step 3. 
Step 6: Calculate the final IMFs using Eq… 

𝑐𝑗(𝑡)=∑ 𝑐𝑗,𝑖(𝑡)𝐼
𝑖=1     (5) 

The original signal can be decomposed into n IMFs and one 
residue: 
𝑥0(𝑡)=∑ 𝑐𝑗(𝑡)𝑛

𝑗=1 + 𝑟(𝑡)    (6) 

Where is the jth IMF and is the residue which can be 
calculated using (6).   

2.3  Long short-term memory network (LSTM) 

LSTM is a type of Recurrent Neural Network (RNN) that 
overcomes the limitations of short-term memory and difficult 
training. It is well-suited for tasks such as time series 
classification and prediction and has numerous applications in 
natural language processing. Each LSTM unit includes a cell 
state, which is responsible for memory, and is denoted as 𝑐𝑡  at 
time 𝑡. The LSTM unit receives the current input 𝑥𝑡, the 
previous hidden state ℎ𝑡−1, and the cell state 𝑐𝑡−1 through three 
gates: the input gate 𝑖𝑡, forget gate 𝑓𝑡, and output gate 𝑜𝑡. The 
gates perform internal calculations to determine whether to 
activate or deactivate the cell state based on the input 
information. The input gate applies a nonlinear function to the 
input signal and adds it to the cell state, multiplied by the forget 
gate. This creates a new cell state 𝑐𝑡, which produces the output 
ℎ𝑡 by applying a nonlinear function and multiplying it by the 
output gate. The equations for each variable are provided. 

𝑖𝑡 = 𝜎. (𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)     (7) 

𝑓𝑡 = 𝜎. (𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)     (8) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 +𝑖𝑡 ∗ �̃�𝑡    (9) 
𝑜𝑡= 𝜎. (𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)    (10) 
ℎ𝑡 = 𝑜𝑡 . tanh (𝐶𝑡)     (11) 

In the equations, the weight matrices for each layer are labeled 
as Wi, Wf, Wo, Wc. The hidden layer states are represented as 
ℎ𝑡−1 and ℎ𝑡, while the cell states at time t-1 and t are 
represented by 𝐶𝑡−1 and 𝐶𝑡. The biases of each gate are 𝑏𝑓, 𝑏𝑖 

and 𝑏𝑜, and the output bias is 𝑏𝑦. The sigmoid function and the 

hyperbolic tangent function are denoted by σ(...) and tanh(...), 
respectively. The process of LSTM is visualized in Figure. 2. 

2.4  Evaluation criteria 

To assess the performance of a forecasting system, various 
evaluation criteria are used to determine its effectiveness. This 
paper focuses on point forecasting criteria, which are used to 
evaluate the accuracy of individual predictions. The criteria 
used in this study include the root mean squared error (RMSE), 

 

Figure 2. The architecture of LSTM model 
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which measures the average difference between predicted and 
actual values, the mean absolute percentage error (MAPE), 
which calculates the average percentage difference between 
predicted and actual values, and the normalized root mean 
squared error (n-RMSE), which provides a normalized measure 
of the RMSE. These criteria serve as benchmarks for evaluating 
the forecasting system's accuracy and reliability. The formula 
off these criteria was shown in (12), (13), (14) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∗ ∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑)

2
      (12) 

n-𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

max(𝑦𝑡𝑟𝑢𝑒)−min(𝑦𝑡𝑟𝑢𝑒)
∗ 100%      (13) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑡𝑟𝑢𝑒−𝑦𝑝𝑟𝑒𝑑

𝑦𝑡𝑟𝑢𝑒
|𝑛

𝑖=1         (14) 

 
When  𝑦𝑡𝑟𝑢𝑒 is the true values, 𝑦𝑝𝑟𝑒𝑑 is the forecasting values, n  

is the number of sample data. 

3.  Result and discussions 

3.1  Data description 

 
To verify the effectiveness of the proposed method, we used a 
load dataset from Seojin Industrial - an investment corporation 
in the field of manufacturing of wireless communication 
equipment, both domestically and internationally, and 
electronic components for Samsung Corporation in Vietnam 
with 2 transformers SUB1 and SUB2. Specifically, the SUB1 and 
SUB2 data sequences are divided with a data measurement time 
interval of 60 minutes, starting from July 30th, 2021 to February 
10th, 2023. The raw dataset of two transformer was shown in 
Figure. 3. 

In the context of load data, which is a type of nonlinear data, 
it is evident that the presence of linear trends in the raw dataset 
indicates abnormal or missing data in the time series. To ensure 
the reliability of the data for prediction models, it becomes 
crucial to eliminate such anomalies. The procedure for handling 
missing data in this particular scenario is categorized into two 
cases. In the first case, where data is missing within a single day, 
the author employs a loop to identify the two nearest time points 
surrounding the missing value. Subsequently, an Imputation 
algorithm is applied to calculate the average value of these 
adjacent data points, which is then used to replace the missing 
value. This process is iteratively carried out for the remaining 
hours. For the second case, which involves missing data 
spanning multiple consecutive days, the author treats these 
missing values as NaN (not a number) and removes them from 
the dataset to ensure data integrity and accuracy. Figure. 4 
showed the pre-processed dataset. 

3.2  Extracting signal components with the EEMD 

This section presented the outcomes of the EEMD process 
applied to the electric load data. The decomposition results 
were discussed in terms of their components and their 
relevance to the analysis of the load data. Then, to validate it, a 
signal reconstruction was performed to determine the error 
between this signal and the original signal. 

In the case of Seojin power data, EEMD decomposed it into 
11 IMF components and a residual component, which 
represented the different scales at which influencing variables 
impacted the power load sequence, from high to low frequency 
in the SUB1 and SUB2 datasets. The residual component 
showed the long-term changing tendency of the load data 
sequence. 

By de composing the time series into its constituent IMFs, 
EEMD provided a way to analyze the signal at different time 
scales and extract meaningful information about the underlying 

 

(a) 

 

(b) 

Figure 4. Processed data with IQR method.  (a) SUB1; (b) SUB2 

 

 

(a) 

 

(b) 

Figure 3. The raw dataset (a) SUB1; (b) SUB2 
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processes that affected the power load. Each IMF captured a 
different frequency band of the signal, and together they 
provided a comprehensive representation of the signal's 
temporal and spectral characteristics. Moreover, the 
decomposed IMFs were often more stable than the original 
power load sequence, making them useful for forecasting and 
modeling applications. Figure. 5 and Figure. 6 illustrated the 
decomposition results and highlighted the contribution of each  
IMF component to the overall signal of SUB1 and SUB2, 
respectively. 
 

3.3  Forescasting results and discussions 

To highlight the performance of the proposed model, 
representative models from statistical, machine learning, and 
deep learning domains, namely LR (Linear Regression), 
ANN(Artificial Neural Network), and LSTM (Long Short-Term 
Memory), were employed. These models were utilized to 
benchmark and compare the performance of the proposed 
model. In this study, the forecasting was divided into two types: 
1-step forecasting and 24-steps ahead forecasting for both SUB1 
and SUB2 datasets. Both datasets were split into training and 
testing sets with a ratio of 70/30 and served as inputs for the 
forecasting models. The results were depicted in Figure. 7 and 
Figure. 8, showing the visualization of a random day from the 
test set. 

The similarity between both SUB1 and SUB2 objects was 
evident from the 1-step forecasting results. The proposed model 
was able to capture patterns and improve upon the single 

models, as it closely followed the actual values even during 
sudden changes. The LSTM and ANN models showed  
comparable performance, with a slight edge for the LSTM 
model. The LR model, however, performed poorly, especially 
during abrupt changes where its forecasts deviated significantly 
from the actual values. This was consistent with the theory that 
LR was not suitable for nonlinear and highly fluctuating data, su 
ch as the power load data used in this study. 

The proposed model demonstrated superior performance 
in terms of accuracy compared to the comparative models in 
both the SUB1 and SUB2 datasets when forecasting the next 24 
steps. Although the forecast results of the proposed model were 
relatively close to the actual data, they did not achieve the same 
level of accuracy as the 1-step forecast. Both the ANN, LSTM, 
and LR models had significant errors compared to the 1-step 
forecast. The ANN and LSTM models were capable of capturing 
rapid changes in the data; however, their accuracy remained 
high. On the other hand, the LR model could only predict the 
trend of data changes without capturing its abrupt fluctuations. 
To provide further clarity on the forecasting results, Table 1 
presented the error metrics of the various models. 

In the analysis of forecast errors for SUB1, the proposed 
model outperformed the LR, ANN, and LSTM models in terms 
of accuracy when forecasting the next 24 steps. The 1-step 
forecasts demonstrated that the proposed model achieved the 
lowest values of RMSE, n-RMSE, and MAPE, significantly lower 
than the compared models. Among the 1-step forecast models, 
the LR model exhibited the highest RMSE (48.52 kW), n-RMSE 
(6.79%), and MAPE (8.61%). The ANN and LSTM models 

 

Figure 5. The result of EEMD method for SUB1 
 

Figure 6. The result of EEMD method for SUB2 
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showed slightly better performance with lower values of RMSE, 
n-RMSE, and MAPE. Similar trends were observed for the 24-
steps forecasts in SUB1. The EEMD-LSTM model showed 
superior performance with the lowest RMSE (39.26 kW), n-
RMSE (5.49%), and MAPE (7.63%) compared to the LR, ANN, 
and LSTM models. The LR model exhibited the highest RMSE 
(152.35 kW), n-RMSE (21.31%), and MAPE (29.44%), indicating 
its poorer accuracy in longer-term forecasts. Although the ANN 
and LSTM models achieved lower values of RMSE, n-RMSE, 
and MAPE compared to the LR model, they still fell short of the 
performance of the EEMD-LSTM model. 

Turning to SUB2, the 1-step forecasts highlighted the 
superior performance of the proposed model, which achieved 
the lowest values of RMSE (0.82 kW), n-RMSE (0.46%), and 
MAPE (1.44%). The LR, ANN, and LSTM models showed 
slightly higher values of RMSE, n-RMSE, and MAPE, with the 
LR model exhibiting the highest errors among the three models. 
In the 24-steps forecasts for SUB2, the EEMD-LSTM model 
once again demonstrated the best performance, achieving the 
lowest RMSE (7.6 kW), n-RMSE (4.25%), and MAPE (6.8%). The 
LR model exhibited the highest values of RMSE (29.08 kW), n-
RMSE (16.26%), and MAPE (21.83%) compared to the ANN and 
LSTM models, indicating its inferior accuracy in longer-term 

predictions. Although the ANN and LSTM models showed 
better performance with lower values of RMSE, n-RMSE, and 
MAPE compared to the LR model, the EEMD-LSTM model 
consistently outperformed them. This further confirmed the 
superiority of combining the strengths of the data separation 
method and the LSTM deep learning model compared to single 
models. 

In ref (Song et al., 2021), the authors proposed a CNN-
LSTM model that yielded the best forecasting results when 
applied to 4 heat exchange stations, with error indices of RMSE, 
CVRMSE, MAE, and MAPE being 0.026, 0.050, 0.011, and 3.6%, 
respectively, for station No.1, and similar conclusions were 
drawn for the other 3 stations. According to (Y. Wang et al., 
2021), the authors forecasted using the combined SVMD-
XGBoost model for two industrial entities, China and Ireland, 
and obtained forecasting results with MAPE of 3.63% and 
4.96%, respectively. In the study (Chiu et al., 2023), the authors 
proposed a combined CNN-GRU model for forecasting building 
load. The forecasting results showed that the proposed model 
outperformed other models, achieving the lowest mean 
absolute percentage error (MAPE) of 1.5071%, specifically for 
household 3. From the above cited results, the proposed model 
in this paper yields better performance with the lowest MAPE 

 

(a) 

 

(b) 

Figure 8. Forecasting results for 24-steps ahead in one day random. 
(a) SUB1; (b) SUB2 

 

(a) 

 

(b) 

Figure 7. Forecasting results for 1-step ahead in one day random. (a) 
SUB1; (b) SUB2 
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error of only 1.3%. Some notable findings of the proposed model 
in this study are as follows: 
- The application of power generation data to industrial areas 

is divided into two transformer substations, SUB1 and SUB2. 
This is an area that has not received much attention, with 
many missing data points. 

- A novel idea for the time series model was proposed, by 
decomposing and reconstructing the pre-processed 
industrial load data. Multiple component series were 
obtained, and they were predicted using the LSTM neural 
network. The prediction results of these component series 
were aggregated to obtain the final prediction. 

- The load data was decomposed using the EEMD method, 
resulting in seven IMF component series for both SUB1 and 
SUB2. These component series were then predicted using 
the LSTM neural network, and their prediction results were 
summed to obtain the final prediction. 

- The prediction accuracies of LR, single-prediction ANN, 
LSTM, and EEMD-LSTM were analyzed. Comparing 
modern time series models with the classical LR method, 
modern methods showed an improvement of approximately 
10-30% over LR, while the proposed model achieved an 
impressive 780% improvement over LR. 

In addition to the outstanding advancements mentioned earlier, 
the proposed method also had some limitations: 
- One of the main limitations was the increased training time 

due to the complexity of the method. If applied in real-time 
scenarios, the data decomposition and forecasting process 
would have required significant computation time, making 
it challenging to meet the demands of very short-term 
forecasting where quick responses were needed. 

- Another crucial aspect to consider was the need for careful 
hyperparameter optimization to achieve optimal results. As 
shown in this report, all hyperparameters were manually 
selected based on trial-and-error, without employing 
sophisticated optimization algorithms. Introducing such 

optimization algorithms could potentially have increased the 
model's complexity and training time even further. 

4.  Conclusion 

In this study, an innovative approach called EEMD-LSTM was 
introduced for the purpose of predicting Seojin load using the 
SUB1 and SUB2 datasets. A meticulous and systematic data pre-
processing procedure was conducted to adequately prepare the 
data for the subsequent utilization of the proposed model, as 
well as comparative models such as LR, ANN, and LSTM. The 
outcomes obtained from the comprehensive analysis 
undeniably validated the remarkable superiority exhibited by 
the EEMD-LSTM method, as it consistently demonstrated the 
most favourable results in terms of minimized error rates in both 
1-step and 24-steps forecasting. Specifically, with respect to 1-
step forecasting, the EEMD-LSTM method showcased 
exceptional performance with remarkably low MAPE and n-
RMSE errors, amounting to approximately 1% and 1.4% 
respectively. Similarly, in the context of 24-steps forecasting, the 
EEMD-LSTM method impressively maintained its superiority, 
attaining MAPE and n-RMSE errors that hovered around the 5% 
and 7% mark, respectively. These error rates distinctly 
outperformed those exhibited by alternative models. 
Consequently, this noteworthy finding successfully 
substantiated the efficacy of incorporating data decomposition 
techniques into the forecasting process. In addition to its 
potential in forecasting industrial load, the EEMD-LSTM model 
holds broader applicability to various renewable energy sources 
such as solar, wind, and other renewables worldwide. 
Emphasizing the potential impact of these research findings in 
optimizing and enhancing the performance of renewable energy 
systems, we believe that the EEMD-LSTM method can make 
significant contributions to the global energy industry. 
However, it is important to acknowledge that, similar to any 
other research methodology, the EEMD-LSTM method did 

Table 1.  

The error metrics of forecasting models 

 RMSE (kW) n-RMSE (%) MAPE (%) 

SUB1 

1-step 

LR 48.52 6.79 8.61 

ANN 37.56 5.25 6.93 

LSTM 37.07 5.18 6.51 

EEMD-LSTM 6.92 0.97 1.3 

24-steps 

LR 152.35 21.31 29.44 

ANN 92.71 12.97 15.78 

LSTM 91.13 12.75 15.38 

EEMD-LSTM 39.26 5.49 7.63 

SUB2 

1-step 

LR 6.81 3.81 11.34 

ANN 6.25 3.49 10.29 

LSTM 6.16 3.44 10.42 

EEMD-LSTM 0.82 0.46 1.44 

24-steps 

LR 29.08 16.26 21.83 

ANN 18.6 10.4 17.12 

LSTM 18.58 10.39 16.68 

EEMD-LSTM 7.6 4.25 6.8 

 



N.N.V. Nhat  et al  Int. J. Renew. Energy Dev 2023, 12(5), 881-890 
|889 

 

ISSN: 2252-4940/© 2023. The Author(s). Published by CBIORE 

possess certain inherent limitations. Factors such as increased 
training time due to the method's inherent complexity, potential 
challenges associated with real-time data application, and the 
necessity for meticulous hyperparameter optimization to 
achieve optimal results were worth considering. To address 
these limitations, future research could have explored strategies 
to reduce the computational burden, such as optimizing the data 
decomposition process and employing more efficient 
algorithms for hyperparameter tuning. Additionally, 
investigating the use of parallel processing or distributed 
computing techniques might have helped expedite the training 
time of the proposed method, enabling its application in real-
time forecasting scenarios. Overall, despite these limitations, 
the proposed method remained a promising approach in 
industrial load forecasting and offered valuable insights for 
further advancements in the field. 
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