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Abstract. This research aimed to produce a screen-printed carbon electrode (SPCE) from an activated coconut shell carbon. As a raw material, 
coconut shell char provides renewability and is abundantly available in the market. Meanwhile, SPCE offers a simple electroanalytical electrode 
because the working, counter, and reference electrodes are in one piece. The coconut shell carbon was activated by steam at 700 oC for 1h, producing 
AC700 that was then characterized to ensure the result by following per under carbon as the main component, the phases, crystal structure, surface 
area, morphology, and elemental content. The result showed that the surface area of AC700 is 816 m2/g, and the surface structure is porous, as 
identified by SEM images. Impedance analysis followed by data fitting and conductivity calculation found a high conductivity of 8.68 x 10-2 Scm‑1. 
The produced-SPCE or SPAC700 was modified by ferrocene at various compositions of 10%; 20%; and 30% of mass. The SPAC700-Fc30 provided 
the best performance for lead analysis with a detection limit of 0.35 mM, a quantitation limit of 1.17 mM, and good reproducibility with a Repeatability 
Coefficient (RC) of 0.022. SPAC700-Fc30 showed good lead ions detection despite under 10% Cu2+ and 10% Co2+ interferences. The result confirmed 
the potential use of coconut shell char as the raw material for SPCE production.  
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1. Introduction 

Coconut shell is a solid waste that contains 93.51% 
Carbon, 6.26%, Oxygen and some minerals such as  K and Si at 
0.18% and 0.13%, respectively (Nita et al., 2021). The identified 
elements exist in some macro-molecules, including pentose at 
27.7%, cellulose at 26.6%, lignin at 29.4%, water at  8%, 
hexuronic acid anhydrous at 3.5%, a 4.2% of other volatile 
organic compounds and 0.6% ash (Rizal et al., 2020). The 
significant carbon content made the coconut shell a promising 
candidate for carbon production. Carbon powder, which 
physical or chemical methods can be activated, is essential for 
various applications, including water vapor adsorption 
(Ridassepri et al., 2020), methylene blue adsorption (Rahmawati 
et al., 2021), photoelectrodes (Imani et al., 2022), photo-
electrocatalytic (Su et al., 2020), as anode for lithium-ion 
batteries (Mopoung et al., 2021), as electrode material on 
capacitors (Kuan-Ching Lee et al., 2021) and also screen 
printing carbon electrode (Ahammad et al., 2019). The quality 
of produced activated carbon is the crucial thing for many 
applications.  

Activation is a crucial step to increase carbon 
performance. Recently, physical activation is preferable for 
environmental safety reasons. Physical activation is usually 
conducted by flowing gas such as water vapor, CO2, or N2 while 
a high temperature is applied (Rahmawati et al., 2021; Khuong 
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et al., 2021; Rezma et al., 2017). Steam or water vapor is 
preferable by following the cost and its ability to increase the 
surface area of the activated carbon (Chairunnisa et al., 2021; 
Hidayat & Sutrisno, 2016) , which can reach up to 946.5m2/g 
(Widanarto et al., 2022). Surface area is an essential parameter 
for adsorption and reaction scene on the carbon surface, 
including for electrochemical reaction, while carbon is used as 
a working electrode. 

Some carbon based-electrode for electrochemical cell and 
electroanalysis are glassy carbon electrodes (GCE) for Cd2+ and 
Pb2+ analysis (Mao et al., 2022), GCE modified with Bi-film 
organic framework and polypyrrole (BF-PPy/MOF/GCE) for 
Pb2+ analysis (Y. Liu et al., 2022), GCE modified with graphitic 
carbon nitride (g-C3N4) and tin dioxide nanoparticles (SnO2/g-
C3N4/GCE) for Cd2+ analysis (Z. Liu et al., 2023), magnetic 
activated carbon (MAC) modified with cobalt nanocomposite 
(MAC-Co-SPCE) for Bisphenol A analysis (Emambakhsh et al., 
2022), and carbon paste electrode (CPE) modified with 
ferrocene (Fc/CPE) for dopamine analysis (Widyaningrum et 
al., 2020).  

However, research on carbon electrodes derived from 
biomass is still limited, such as CPE from walnut shell biochar 
for simultaneous detection of heavy metal ions in water (El 
Hamdouni et al., 2022), and GCE from leaves of lettuce for black 
carbon, modified using CuCo2O4 was combined with 
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molecularly imprinted polymer (MIP/ CuCo2O4-BC/GCE) for 
tryptophan analysis (Chen et al., 2021). Screen-Printed Carbon 
Electrode (SPCE) is another form of carbon electrode that 
unifies working, counter, and reference electrode in a piece. 
The SPCE modified with Ferrocene, Fc, shows good 
performance for drug analysis by electrochemical volumetric 
method (Ren et al., 2021). Our previous research used bagasse, 
a solid waste of a sugarcane factory, for SPCE production, 
shows good performance for Cu2+ electroanalysis (Rahmawati 
et al., 2023). However, factories usually process the sugarcane 
only twice a year, allowing less sustainability of bagasse once 
mass production of SPCE is planned.  

Coconut shell char is a suitable replacement for bagasse 
due to its abundance, sustainability, and availability in the 
market because coconut is the main component for dishes and 
drinks in tropical countries. Therefore, this research used 
coconut shell char to prepare SPCE. The coconut shell carbon 
powder was also activated by steam (Rahmawati et al., 2023) 
instead of chemical activation, considering the environmental 
safety and friendly. The SPCE produced from the produced-
activated carbon was modified with ferrocene to increase its 
performance as the electrode for Pb2+ by voltametric analysis. 
Analysis of Lead, Pb2+ is important because lead is a toxic metal 
that may present in municipal water systems due to corrosion 
of lead pipes or lead solder of pipe joints (H. Nguyen et al., 
2018). Lead poisoning and environmental lead pollution can 
also be caused by the paint, automobile, and pottery industries 
(Jagirani et al., 2022). Being exposed to water and consuming 
lead-contaminated water, even at a trace levels may harm  
human health, especially for children(Q. Wang et al., 2009). This 
research aims to prepare SPCE from activated coconut shell 
carbon and examine its performance as a simple electrode for 
Pb2+ electroanalysis. 

2. Material and method 

2.1 Material preparation 

This research used coconut shell char procured from a char 
producer (Klaten, Central Java, Indonesia). The char was 
crushed into powder and was filtered at 100 mesh size. The 100-
mesh powder was washed and soaked in distilled water for 1 h 
under stirring conditions. After water decantation, the wet 

powder was dried at 60 oC for 1 h in an oven. 

2.2 Char analysis 

The result char was black-smooth powder, which then being 
analyzed by X-Ray diffraction (XRD) analyses at 0° – 80° 
(Rigaku Minifex 600 Cu/Ka) to understand its specific 
diffraction pattern, FTIR analysis (Shimadzu IR Prestige-2) at 
4000-400 cm-1 wavenumber to analyze its functional groups 
vibration, Raman Spectroscopy (Raman iHR320 HORIBA) to 
determine the structural properties at the nanometric scale. 
Meanwhile, the surface area, pore volume, and pore distribution 
were analyzed by Surface Area Analyzer (SAA) (Quantachrome 
Instruments TouchWin V1.2 Tipe NOVA Touch 4LX), through 
adsorption–desorption of N2 gas at 77 K and relative pressure. 

2.3 Char Activation and Characterization 

For the activation process, the 100-mesh carbon powder was 
subjected to firing in a furnace at 700 °C for 1 h with a heating 
rate of 5 °C/min under steam flow. The activation was 
conducted within an installed-tube furnace as described in Fig. 

1. A boiled water produced steam that flowed into the furnace 

along with the N2 gas carrier. The resulting-activated powder, 
AC700, was analytically weighted to calculate % yield by 
applying equation (1) followed by XRD, FTIR, SAA, Raman, and 
SEM/EDX (JSM-6510LA) analysis. 

% 𝑦𝑖𝑒𝑙𝑑 =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐴𝐶700

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐ℎ𝑎𝑟
 × 100  (1) 

. 
2.4 Preparation of screen-printed carbon electrode (SPCE) 

The mixture AC700, conductive agent (acetylene black), 
and polyvinylidene fluoride, PVDF binder under a mass ratio of 
7:2:1 was dispersed in 4 mL of N-Methyl 2- Pyrrolidone, NMP 
(Huang et al., 2021), and was stirred continuously until 
homogeneous. The SPCE pattern (Figure 2 (a)) was printed on 
polyvinyl chloride (PVC) paper by Epson L210 series. The 
AC700 slurry was then applied to the SPCE pattern following 
the black area, as shown in Fig. 2(a). The SPCE was then heated 
in a vacuum oven at 50°C for 5 min to obtain good adhesion 
between the activated carbon ink and the PVC substrate 
(Rahmawati et al., 2023; Wahyuni et al., 2021). After drying, 
silver paste was painted on the reference part and half-length of 
working and counter electrode (Fig. 2 (b)) and then applied 
paraffin liquid on the surface of those three electrode parts to 
ensure that the three electrodes did not come short contact (Fig. 
2c). The results were screen-printed carbon electrode from 
AC700 or SPAC700. The SPAC700 was then modified by adding 
ferrocene solution on the working electrode part at 10, 20, and 
30 % mass to produce SPAC700-Fc10, SPAC700-Fc20, and 
SPAC700-Fc30, respectively. The electrochemical behavior of 
SPAC700 was investigated by conducting cyclic voltammetry 
(CorrTest electrochemical workstation CS50) with Pb (II) 
solution as analyte. Similar work was done for a commercial 
SPCE for control. All electrochemical measurement was 
conducted triple. 

2.5 Electrochemical test 

The SPAC700 or the SPAC700-Fc was attached to the 
electrode socket and dipped into Pb(NO3)2 solution as 
described by Fig.3. The preparation was done in an argon glove 
box (CY-VGB-1 with Ultra High Pure (UHP) Argon gas from PT. 
Samator Gas Indonesia) to prevent oxygen disturbance during 
measurement. To check the optimum ferrocene percentage, the 
SPAC700, which was modified by various 10%, 20%, and 30% 
Ferrocene, has applied to 0.2 mM Pb(NO3)2 solution and 

 

Fig.1 Scheme of the installed-tube furnace for steam activation 
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objected to CV analysis at −1.5 to 1 V vs Ag/AgCl. The 
optimum Fc content was then applied further to investigate the 
pH effect, scan rate, the presence of interferences, and to 
determine the limit detection. To analyze the pH effect, 0.2 mM 
Pb(NO3)2 solution was added with 0.01M NaOH and 0.1M HCl 
until the pH showed pH 4 for acidic conditions and pH 8 for 
alkaline conditions and subjected to CV analysis at −2.5 to 2.5 V 
Vs Ag/AgCl. Meanwhile, various scan rates of 3, 5, and 10 mV 
s-1 were applied to see the working electrode performance on 
delivering current. The interference effect was studied by 
adding 10% Cu2+ and Co2+ solution to the Pb(NO3)2 solution. 
Meanwhile, limit detection was determined by applying the 
SPAC700-Fc to various Pb solutions of 0.05; 0.2; 0.4; and 0.8 
mM. The limit of detection and quantification were determined 
by using equations (2) and (3), respectively. All the procedures 
were triple to ensure reproducibility. 

LoD = 
3 × 𝜎

𝑚
    (2) 

LoQ = 
10 × 𝜎

𝑚
    (3) 

Where m is the slope of the calibration curve plot of anodic peak 
current versus the Pb(NO3)2 concentration, and σ is the 
standard deviation of the CV responses.  

This research also carried out a repeatability test to 
determine the method’s precision value. The repeatability was 
identified by the Repeatability Coefficient (RC), as the value of 
the absolute differences between two measurements, which will 
be at a probability of 0.95 (Nicholls, 2023). It is calculated by 
multiplying the subject standard deviation (SW) or the Standard 

Error of Measurement (SEM) with 2.77 (Vaz et al., 2013) as 
shown by equation (4).  

RC = 2.77×SW     (4) 

3. Result and discussion 

3.1 Characterization of the prepared-Carbon 

The activation of coconut shell char yielded 32.6 % of the initial 
weight. Degradation of cellulose, hemicellulose, lignin, and 
unstable components in coconut shells allowed the weight loss 
(Wang et al., 2013). During activation, cellulose, and 
hemicellulose decomposition occur, increasing carbon’s 
porosity, enhancing the oxidizing agent’s diffusion into particles, 
and oxidizing lignin within the char (Zhou et al., 2018).   

The XRD pattern of char (Fig.4) shows a broad peak 
centered at 2θ = 24° corresponds to the (002) and 44° 
corresponds to the (100) crystal plane (Bakti et al., 2018). Broad 
peaks confirm amorphous structures composed of randomly 
oriented aromatic graphene-like sheets (JCPDS#41-1487) 
(Siddiqui et al., 2022). Meanwhile, the XRD pattern of AC700 
shows new peaks at 30°, 34°, and 35°, which are identified as 
chaoite or white carbon I, a carbon allotrope (Gustian et al., 
2015). Those new peaks indicate the presence of graphitic phase 
compliance with JCPDS#22-1069 (Martínez et al., 2021; 
Nguyen et al., 2019). It shows that steam activation changes 
some amorphous to graphitic phases. Steam is able to remove 
disordered carbon within the solid carbon network, creating a 
more ordered network, new pores, and opening of clogged ones 

 

Fig.2 The Scheme of SPCE pattern (a), SPCE with the applied-Ag paste (b), SPCE with the applied-paraffin oil 

 

 

Fig 3. The SPCE socket (a) and the assembled-socket with the analyte solution chamber (b) 
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(Mopoung & Dejang, 2021), which will increase the surface area 
of the carbon. 

FTIR analysis found that char shows some peaks, as shown 
by Fig. 5, at 3292-3572 cm-1 belonging to O–H stretching, 
indicating a hydroxyl group within cellulose molecules (Rampe 
et al., 2011). A peak at 2854-2924 cm-1 represents the C-H 
stretching, whether from hemicellulose, cellulose, and lignin 
(Rampe et al., 2021). A peak at 2373-2285 cm-1 belongs to N–H 
bending (Das et al., 2015), and at around 2076-2175 and 1440-

1611 cm-1 belong to C=C stretching in aromatic rings (Lazim 
and Hadibarata, 2015). Meanwhile, a peak at 1744 cm-1 refers to 
C=O stretching, indicates ketone, carboxylic acid, and 
aldehydes functional groups from cellulose, hemicellulose, and 
lignin (Hassan et al., 2021). A 1054–1115 cm-1 peak indicates C–
O stretching of glucoside bonds from lignin (Tu et al., 2021). A 
small peak at 806–876 cm−1 refers to Si–O stretching and 
bending, indicating the presence of silica in the coconut shell, 
and a small peak at 428-670 cm−1 belongs to C–H bending (out 
of plane), which indicates the presence of hydrocarbon 
compounds (Hakim and Sedyadi, 2020). FTIR analysis to AC700 
showed that the activation caused to a lower peak intensity of 
O–H, C=O, C=C aromatic, C–O, C–H, and Si–O vibration, as 
shown by Fig. 5. It implies that the activation broke down the 
lignin and cellulose structure (Hakim and Sedyadi, 2020). The 
disappearance of the C=O peak after activation indicates the 
thermal decomposition of aldehyde and ketone. 

Raman analysis found that the char and AC700 provide G 
and D-band in the range of 1597 to 1604 cm−1 and 1346 to 1333 
cm−1, respectively. Both peaks correspond to amorphous 
carbon (Shrestha et al., 2019). Meanwhile, the D band refers to 
disorder and structure defects with sp3-hybridized carbons. On 
the other hand, the G band corresponds to C=C stretching in 
graphitic carbons with sp2 hybridized carbon systems, and the 
ID/IG ratio indicates the amorphous degree (Mopoung and 
Dejang, 2021). The ID/IG ratio of char is 0.84, a bit higher than 
AC700, i.e., 0.83, confirming more defects present within AC700 

 

Fig 4. XRD spectra of Char and AC700 

 

 

Fig 5. FTIR spectra of Char and AC700 

 

 

Fig 6. Raman spectra of Char and AC700 

 

 
Fig 7. The optical image of AC700 powder (a), The SEM image of AC700 (b) 
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(Lian et al., 2018). Breaking electroneutrality of the sp2 carbon 
lattice by structural defect formation effectively introducing 
active sites on the carbon network surface(Wu et al., 2021) 
improves  electrocatalytic and electronic properties. 

AC700 is a black powder, as shown in Fig. 7a, with a porous 
surface morphology (Fig 7b). The pores’ shape and size are 
various, and the pores are mainly clean, confirming the 
decomposition of organic matter that blocks the pores during 
activation (Mopoung and Dejang, 2021).  

EDX analysis shows that AC700 mainly contains 49.6% of 
carbon, and some minor content of oxygen, nitrogen, 
potassium, sulphur, sodium, and silicate at 32.42%, 10.68%, 
2.48%, 1.29%, 0.79%, and 0.84%, respectively. The composition 

is similar to  previous research on activated carbon prepared 
from Acacia mangium wood (Danish et al., 2020).  

Adsorption/desorption isotherms show that AC700 follows 
type I (Fig. 8), indicating microporous materials with narrow 
pore size (< 2nm). Fig.8 also demonstrates that AC700 has an 
H4 type of hysteresis loop, which describes a multilayer 
characteristic at a relative pressure above 0.4 P/Po. The H4 
hysteresis loop is usually provided by porous material consisting 
of narrow pore channels from microporous carbon (Zhou et al., 
2018). BET calculation informs a total pore volume increase 
after activation, as listed in Table 1. It rises from 6.52×10-5 L/g 
to 4.99×10-4 L/g for char and AC700, respectively. Table 1 
shows that char has a pore size of 1.60543 nm, which is more 
significant than AC700, i.e., 1.22354 nm (Table 1). However, the 
total pore volume of char is 80.66 % smaller than AC700 (Table 
1). It indicates that activation has successfully cleaned the pores 
and allowed them to adsorb more N2 gas during analysis, 
increasing surface area after activation. The surface area of 
AC700, which is activated by steam, is even higher than another 
method used for carbon, i.e., 516 m2/g (Sujiono et al., 2022). The 
isotherm curve (Fig. 8) also shows that char with all organic 
content inside the pores seems to hardly bind the N2 molecules, 
which makes it hard to be desorbed or requires more 
equilibrium time to result in complete desorption and provides 
a closed-isotherm curve. 

 

3.2 Electrochemical performance of SPCE 

Impedance measurement of AC700/Cu foil was done to 
understand its electrical properties. The Nyquist plot in Fig. 9(a) 
describes impedance data along with its R-L network model 
applied for data fitting. Fitting resulted in resistance, R of 11.41 
Ohm, equal to 8.68×10-2 Scm-1 conductivity, indicating good 
charge transfer kinetics (Ambaye et al., 2022). 

 

Fig 8. The isotherm profile of Char and AC700 

 

Table 1  

Specific surface area and pore volume of Char and AC700 

Materials 
Surface Area Multi point BET 

(m2/g) 
Total pores volume 

(L/g) 
The Average of Pore Radius 

(nm) 

Char 81.2 6.52×10-5 1.60543 

AC700 816.3 4.99×10-4 1.22354 

 

Table 2 

The onset anodic potential (Ea), the onset cathodic potential (Ec), and the current peaks (ipa and ipc) provided by the various carbon electrode 
under scan rate of 10 mV s−1 within potential range of −1.5 to 1 V versus Ag/AgCl reference 

The Electrode Ea (V) 
ipa 

(μA) 
Ec 
(V) 

ipc 
(μA) 

SPCE Poten − 0.27 0.00050 0.045 − 0.00075 

SPAC700 − 0.27 0.00075 0.140 −0.00110 

SPAC700-Fc10  − 0.24 0.00001 0.005 − 0.00025 

SPAC700-Fc20 − 0.23 0.00025 0.067 − 0.00035 

SPAC700-Fc30 − 0.40 0.00100 0.140 − 0.00125 
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In the investigation of SPAC700 for electrochemical 
analysis, a cyclic voltammetry test was conducted on lead (II) 
solution. The result is compared with a commercial SPCE, 
SPCE-com (Table 2). Both electrodes provide a reversible curve, 
as described in Fig. 9(b). A 10 % and 20 % ferrocene addition 
also resulted in a reversible curve, but the current intensity is 
below the SPCE-com. The current density is even lower than 
SPAC700 without Fc. Molecular interaction between Fc with 
carbon substrate is feeble without oxidation number change. 
The interaction may cause the Fc molecules to intercalate into 
carbon network as it occurs with Fc addition to highly oriented 
pyrolytic graphite (Kumar et al., 2023). For amorphous carbon, 
intercalation may reduce the surface area, allowing lower the 
current conduction of the carbon. This is because the Fc units 
significantly change the excited-state dynamics of the 
substrate(Yuan et al., 2018). However, at the right amount, the 
Fc intercalation produces carbon defect that increases 
electronic conduction. This research found that 30% addition 
can increase current density. However, further research is 
needed to understand the optimum quantity of Fc to support the 
carbon substrate. The current density became higher when 30% 
Ferrocene was added to SPAC700. The oxidation starts at −0. 4 
V versus Ag/AgCl, and reduces back at 0.13 vs. Ag/AgCl, 
indicating Pb ions reduction. Still the oxidation potential does 
not match with Pb oxidation, which should be around -0.071 vs 
Ag/AgCl (0.126 V vs SHE) (Millazo et al., 1978). It is caused by 

a tiny amount of Pb(II) available. Meanwhile, ferrocene redox 
potential is approximated at around 0.527 0.018 V vs. Ag/Ag+ 
in acetonitrile reference (Lewandowski et al., 2009). 

Considering high current density increases at 30% Fc, this 
research used SPAC700-Fc30 for further performance tests. It is 
recognized that ferrocene cooperates with the carbon substrate 
to form a more extensive conjugated system, which accelerates 
the electron transfer between the lead metal and the carbon 
electrode and increases the detection sensitivity (Beitollahi et 
al., 2020). SEM/EDX analysis found that the Fc attached to the 
carbon film diffuse well without any different aggregate 
detected (Fig.10). However, EDX analysis found the Fe 
presence at 5.17 weight% among the other minor contents of 
oxygen, nitrogen, potassium, sulphur, sodium, and silicate. The 
main content is carbon with 58.49 %weight, which is higher than 
the C content within AC700, i.e., 49.6 %weight; because of the 
Fc presence, Fe(C5H5)2 indeed increased the C content 

Voltammogram response of leads oxidation revealed 
that anodic peak current increases as the concentration was 
changed from 0.05 to 0.2 mM Pb(NO3)2 solutions (Fig. 11(a)), 
reaching a maximum at 0.2 mM and then decreased. The results 
show that the maximum binding of these lead ions on the 
electrode surface occurs at 0.2 mM. The equivalent calibration 
plot, shown in Fig. 11 (b), as well as the anodic peak current 
expressed in the linear Eq. (5) with regression coefficient (R2) = 

 

(a)                                                                       (b) 
Fig 9. Nyquist plots of AC700 (a), and Cyclic Voltammogram of SPAC700, SPAC700-Fc10, SPAC700-Fc20, SPAC700-Fc30, and SPCE-com in 

0.03 mM Pb(NO3)2 solution within -1.5 V to 1 V vs Ag/AgCl, scan rate of 10 mVs-1(b) 

 

 
Fig. 10 SEM images of the SPAC700 (a,b) and the SPAC700-Fc30 (c,d) at different magnifications, along with the EDX result of SPAC700-

Fc30 
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0.922. The measurement was conducted twice with average 
anodic peak of (0.2750.030) mAcm-2 for 0.2 mM. 

ipa (μA) = 0.2508 (mM) + 0.3677 (R2 = 0.922)   (5) 

Likewise, the LoD and LoQ of the SPAC700-Fc30 electrode 
towards detection of lead ions were calculated using Eq. (2) and 
(3), respectively, with a slope of linear regression (Fig 10(b)). 
The LoD and LoQ of SPAC700-Fc30 are 0.35 and 1.17 mM, 
respectively. The SPAC700-FC30 performance is compared 
with other published electrodes, as in Table 3. The SPAC700-
Fc30 attributed a lower LOD (0.35 mM) than the others, such 
as tetra-tert-butyl phthalocyanine (PcH2-tBu)/carbon (C):  
PcH2-tBu/C for acetic acid detection in a buffered condition 
with LOD of 7.76 mM (Ndiaye et al., 2016). Screen-printed 
electrode (SPE) with silver ink for determination of chloride ions 
in serum and sweat with LOD of 1 mM (Cinti et al., 2018). In 

accordance to lead ions detection, research with a three 
separated electrodes system with Bismuth oxide- diphenyl 
thiocarbazone modified Carbon Paste Electrode (Bi-Di-CPE) 
found a lower LoD of 0.15 gL-1 through a differential pulse 
voltammetry method (Yang et al., 2020). A Differential pulse 
voltammetry is advantageous for a deficient analyte 
concentration; however because of a double layer capacitance 
subtraction in DPV measurement, the analysis may not be 
sensitive to higher concentration ( mM scales) in terms of 
Ampere per molar of the analytes (Bhavik A. Patel, 2020). 
Meanwhile, research on a screen-printed electrode (SPE) 
informs a preparation from a commercial carbon ink modified 
with 1,2 Dihydroxybenzene (Cathecol). In lead analysis by 
chronopotentiometry, the lead ions are reduced first for several 
time to cathode, and then stripped back at constant current. 
The research used three-electrode system of working (the 

 
Fig 11. (a) Cyclic Voltammogram of SPAC700-Fc30 in Pb(NO3)2 solutions concentration : 0.05, 0.2, 0.4, and 0.8 mM; (b) Graph of the current 

response versus concentration 

 

y = -0.2508x + 0.3677

R² = 0.922
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Fig 12. Cyclic Voltammogram of SPAC700-Fc30 in Pb(NO3)2 solutions at various pH of 4.0, 6.0, and 8.0 (a), and Cyclic Voltammogram 
(inserted) and plot of current density (I) versus scanning time of Pb(NO3)2 solutions with SPAC700-FC30 at various scan rate of 3, 5, and 10 
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prepared-SPE), carbon counter electrode, and Ag/AgCl 
reference electrode to analyze the sample(Parat et al., 2023).  

The stripping method provides better performance for very low 
concentration, but has disadvantage for a higher analyte 
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concentration because the analysis depends on time to deposit 
the analyte at the very first time before stripped back to ions. In 
addition, two previous researches used three-electrode system 
that needed more specific electrochemical chamber, a specific 
pre-treatment, and were less-portable.  This research offers a 
single piece consisting of three electrodes, and this research 
used biomass to prepare the carbon as raw material. Other 
comparative works are also listed in Table 3. 

Due to the analyte solution being water-base, water 
molecules may undergo a redox reaction, allowing pH change. 
Therefore, it is essential to investigate the pH effect on the 
analysis performance. This research applied a pH range of 
4.0−8.0 by considering acid to base condition. The result is 
depicted in Figure 12(a), which shows an increasing current 
density from pH 4 to 6, and then the current decreased at pH 8. 
The results show that a reaction between ferrocene and lead 
ions occurred. The dissolution peak current is higher at pH 4 
because of the existence of H+ increased conductivity of the 
electrolyte. Meanwhile, when the condition turned to basic at 
pH 8, a slight shifting starting potential occurred due to Pb2+ 
hydrolysis (Zhang et al., 2023).  

This research also investigated a various scan rate of 3, 
5, 10 mV s−1, the results are shown in Fig. 12(b). The current 
response increases proportionally as the scan rate increases, 
indicating a good working electrode response to deliver current 
(Herawati et al., 2017) and referring to a diffusion-controlled 
mechanism for reaction (Safaei et al., 2019) at the surface of 
SPAC700-Fc30. Scan rate of 3 mVs-1 was too low to produce a 
high current density. Meanwhile, 10 mVs-1 was too fast to 
provide a well-defined anodic and cathodic peak. A 5 mVs-1 
scan rate seems to be the right speed to run the analysis. The 
potential peaks, Epa and Epc, are relatively constant, 
confirming a stable performance of SPAC700-Fc30 under a 
slightly different scan rate. 

Interference test in lead ions analysis with SPAC700-
Fc30 was done by adding 10% (v/v) of 0.2 mM Cu2+ and Co2+ 
solution into the analyte lead solution. Fig. 13 shows 
voltammograms, that has similar onset potential for anodic part 
of -0.13 V vs Ag/AgCl. However, the onset cathodic potential 
shift to 0.22 V from the initial 0.13 V vs Ag/AgCl by the 
presence of 10% Cu2+ solution. It indicates that the presence of 
10% Co2+ did not disturb the measurement, however, the 
presence of higher Cu2+ concentration will matter, even though 

 

 
Fig 13. Cyclic voltammogram of 0.2 mM of Pb(NO3)2 solution with SPAC700-Fc30 under 10% volume of interference (green and blue 
curve) and without interference (red curve). The interference is 0.2 mM of CuCl2 (a) and 0.2 mM of CoCl2.6H2O (b). Plot of E versus log 
I is inserted confirming onset potential 

 

 



K.R. Heliani et al  Int. J. Renew. Energy Dev 2024, 13(1), 19-30 

| 28 

 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

it still defines similar anodic pattern. The interference test was 
run twice to ensure similar result with the average anodic peak 
of (0.0370.0022) mAcm-2 for Cu2+ interference, and the 
average anodic peak of (0.0390.0002) mAcm-2 for Co2+ 
interference. Theoretically, Cu2+ will be reduced at 0.09 V vs 
Ag/AgCl, meanwhile Co2+ at -0.54 vs Ag/AgCl(Prakash et al., 
2014), but those two peaks are not available within the CV 
curves (Fig.13). It is also confirmed by E(V) versus log I plot as 
inserted in Fig. 13, which shows a similar reduction–oxidation 
potential, Eo. It indicates that SPAC700-Fc30 provides selective 
lead ion determination. However, further studies on the type 
and quantity of interference are essential since some water 
contaminants can change the anodic peak, as was found by 
previous research in hydrazine and hydroxylamine 
determination (Antherjanam and Saraswathyamma, 2022). 

A reproducibility study is essential for a mass 
production plan. This research tested three pieces of SPAC700-
Fc30 analyte 0.2 mM Pb solution under 5 mVs-1. The result is 
depicted in Fig. 14. The voltammograms are identical, with Ia 
of 0.25±0.008 mA cm-2 and Ic of 0.34±0.09 mA cm-2 at the 
similar onset potential. The repeatability coefficient RC is 0.081, 
which is <<1, indicating good repeatability (Nicholls, 2023). 
The three times measurement also falls within 99% probability.  

4. Conclusion 

This research found that steam activation successfully activates 
the carbon produced from coconut shell char. The activation 
increased carbon’s surface area and pore volume of the carbon, 
removing C=O vibration, indicating the thermal decomposition 
of the aldehyde and ketone group in the coconut shell. The 
activated carbon AC700 provides a high electrical conductivity 
of 8.68x10-2 S cm-1, showing good electrode material potential. 
It is proven by the performance of the prepared SPCE from the 
AC700 (SPAC700) compared with the commercial SPCE. 
Furthermore, adding of 30% ferrocene to the working electrode, 
WE, part producing SPAC700-Fc30, even increases the 
electrochemical performance as the analytical electrode for lead 
ions detection, proven by the significant increase of current 
density (Ipa and Ipc). The SPAC700-Fc30 exhibited a linear 
range of 0.05 mM–0.8 mM with LoD of 0.35 mM and a LoQ 1.17 
mM. Additionally, the SPAC700-Fc30 demonstrated excellent 

repeatability and consistent results under the presence of 10% 
interference and provides good stability towards the 
electrochemical sensing of lead ions. 
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