

B RE International Journal of Renewable Energy Development

Journal homepage: https://ijred.undip.ac.id

Oluwashina Philips Gbenebor* o and Abimbola Patricia Idowu Popoola

Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa

Abstract. The dependence on fossil fuels for energy has culminated in its gradual depletion and this has generated the need to seek alternative source that will be environmentally friendly and sustainable. Hydrogen stands to be promising in this regard as energy carrier which has been proven to be efficient. Magnesium hydride (MgH₂) can be used in storing hydrogen because of its availability, light weight and low cost. In this review, monoatomic, alloy, intermetallic and composite forms of Ti, Ni, V, Mo, Fe, Cr, Co, Zr and Nb as additives on MgH₂ are discussed. Through ball milling, additive reacts with MgH₂ to form compounds including TiH₂, Mg₂Ni₁, Mg₂NiH₄, V₂O, VH₂, MoSe, Mg₂FeH₆, NbH and Nb₂O₅which remain stable after certain de/hydrogenation cycles. Some monoatomic transition metals remain unreacted even after de/hydrogenation cycles. These formed compounds, including stable monoatomic transition metals, impart their catalytic effects by creating diffusion channels for hydrogen de/sorption temperatures, activation energies and in turn, hastens hydrogen desorption kinetics of MgH₂. Hydrogen storage output of MgH₂/transition metal-based materials depend on additive type, ratio of MgH₂/additive, ball milling time, ball –to combining materials ratio and de/hydrogenation cycle. There is a need for more investigations to be carried out on nanostructured binary and ternary transition metal-based materials as additives to enhance the hydrogen performance of MgH₂. In addition, the already established compounds (listed above) formed after ball milling or dehydrogenation can be processed and directly doped into MgH₂.

Keywords: Dehydrogenation; Fossil fuel; Hydride; Hydrogenation; Transition metal

@ The author(s). Published by CBIORE. This is an open access article under the CC BY-SA license (http://creativecommons.org/licenses/by-sa/4.0/).
Received: 30th August 2023; Revised: 8th Oct 2023; Accepted: 26st Oct 2023; Available online: 31st Oct 2023

Introduction

Rapid growth in human productive engagements (aimed at improving standards of living) over the years have brought about urbanization. This has led to drastic population growth and placed a huge stress on energy generation and its utilization globally. The world community at large has been plagued with consequences of global warming owing to its large dependence on fossil fuels since the emergence of industrial revolution. These non-renewable resources have largely played a dominant role in energy production, maintenance and transportation. It has been reported by the United States Environmental Protection Agency (US EPA) that carbon dioxide (CO₂) maintains the highest constituent (Figure 1a) among the greenhouse gases (US EPA, 2023). This gas is often released during burning of fossil fuels such as oil, coal, natural gas (Stephen, 2005), deforestation (Van der Werf et al. 2009) and other industrial/manufacturing activities (Figure 1b). It causes global warming and other health issues through hypercapnia (Yu et al. 2013; Shigemura et al. 2017; Taghizadeh-hesary et al. 2021). The basic source of energy generation for instance, as reported by Singh et al. (2021) entails the combustion of fossil fuels which yields the release of CO₂ before (pre-combustion) or after (post-combustion) to the atmosphere. Globally, economic growth has been seen as a catalyst for greenhouse gas existence and its emission is mostly prevalent in China (Yang et al. 2020). African countries largely depend on fossil fuels for energy storage and use. In a model developed by Olubusoye and Musa, (2020), it was predicted that gradual economic growth rise in African countries will engender more greenhouse gas emissions. In South Africa for instance, Oladunni *et al.* (2022) reported that economic and population growths are the two major elements that have triggered the emission of greenhouse gas, most especially in the transport sector.

Efforts therefore are being made to produce renewable and sustainable energy that is friendly to the ecosystem. Hydrogen energy stands out as a renewable secondary energy which is clean, sustainable and can be used as an energy carrier and fuel cells. It is not like gas, coal or oil that serves as a primary energy source; hydrogen needs to be produced from another energy source (preferably from renewable sources in this case) such as biomass, wind, solar, hydro and geothermal. As the most abundant element in the universe, hydrogen is affirmed to be the ideal energy source in the 21st century that can be synthesized via water electrolysis with no pollutant released (Hou *et al.* 2021).

2. Hydrogen storage

Hydrogen is often stored as compressed gas, cryogenic liquid or in solid state. Liquid hydrogen is used as fuel for low temperature rockets and mobile applications (Al Ghafr *et al.*

Renewable Energy Development

Review Article

(0)

^{*} Corresponding author Email: philipsogbenebor@gmail.com (O.P.Gbenebor)

Fig 1.(a) Percentage constituents of greenhouse gas (US EPA, 2023) (b) Major activities that result to CO₂ emission.

2022; Jiang et al. 2023). It has been reported that cryogenic liquid hydrogen can be stored at -253 °C and 1 bar (Krishna et al. 2012); at this temperature, it maintains a density approximately 71 gL⁻¹ (Edwards, et al. 2007). In the sphere of energy and space missions, the main tools to consider in liquid hydrogen storage are materials for transportation vessels and cryogenic storage. Alloys of titanium (Madina & Azkarate, 2009), steel (Krainz, et al. 2004) and aluminum-lined composites (Aceves et al. 2000; Aceves et al. 2010) have been used for the storage and transportation of cryogenic liquid hydrogen but drawbacks have been witnessed in their impact strength, ductility and toughness at low temperatures. Design and development of highly effective low temperature materials for cryogenic liquid hydrogen storage is being advocated for (Qiu et al. 2021). A methodical insulation needs to be devised in other to maintain hydrogen in its liquid phase because of its low boiling point in this cryogenic state. Storage in the compressed gaseous form is another common method to store hydrogen. Materials such as steel (Zhang et al. 2008) and aluminum-carbon

fiber composites (Takeichi et al. 2003) have been used in designing vessels that can store and transport hydrogen compressed at high pressure. Unlike the liquid storage, compressed gas can be stored at room temperature (Zheng et al. 2012). The density of hydrogen stored in the compressed gaseous state is lower compared to that of cryogenic liquid; a lower energy per unit volume has also been affirmed to be witnessed in pressurized gas (Zhang et al. 2016). Although both storage methods allow easy accessibility of hydrogen, there are draw backs that have bedeviled its storage and transportation. Cryogenic liquid hydrogen for instance, can only be stored for a short period to avoid the risk of steady boiling (Prabhukhot et al. 2016; Edalati et al. 2018). The low specific gravity of hydrogen creates an issue for its storage in compressed form as it requires huge magnitude of energy to achieve this, though much energy is needed for the storage of hydrogen in the liquid form compared to when compressed in gaseous state (Krishna, et al. 2012). In the solid state form, hydrogen molecules combine with other materials; a little volume of material can store large

Fig. 2. Hydrogen storage methods with their volumetric and gravimetric densities (Edwards et al. 2007)

hydrogen content than the two methods earlier discussed. A solid state hydrogen storage material easily adsorbs/absorbs and desorbs hydrogen at temperatures close or equal to room temperature. Storing hydrogen in the solid-state addresses issues of safety; boil off loss, heavy vessel weights and liquefaction energy associated with pressurized and liquid hydrogen storage. The volumetric and gravimetric densities of hydrogen storage methods are presented in Figure 2.

Hydrogen can physically or chemically combine with a solid material and when needed, it is made to desorb or dissociate from the material on involvement of thermal energy or any other means such as hydrolysis as discussed by Hou *et al.* (2021). In the physical process (physisorption), molecules of hydrogen adsorb on the material surface while a chemical bond is formed when hydrogen molecules chemically react with the material (also called chemisorption as material absorbs hydrogen molecules in this case). When hydrogen adsorbs on a material, there often exists weak van der Waals interactions

between its molecules and the surface of the storage material. This implies that an appropriate material surface area will be required to achieve a remarkable hydrogen storage capacity. It is being reported that low activation energy is required to execute adsorption and desorption of hydrogen molecules in this case and this is responsible for fast ad/desorption kinetics (Prabhukhot *et al.* 2016). Materials with porous structures including activated carbon, grapheme, carbon nanotubes (CNTs), porous aromatic frame works (PAFs), metal organic frame works (MOFs) and zeolites have been used (see Table 1).

A chemical bond is formed when a material absorbs hydrogen molecules into its structure. Many metals fall into this category as they reversibly react with hydrogen to form hydrides which serve as a hydrogen storage material. The ease of hydride formation and dissociation is different among metal hydrides based on the strength of bond formed between the metal and hydrogen. For a metal hydride to be classified as suitable for hydrogen storage for energy use, it needs to possess High volumetric and gravimetric densities. Fast hydrogen release (during dissociation) at a reduced temperature and adequate pressure is also a key feature required of a metal hydride as this saves time and energy. Aluminum hydride (AlH₃) for example, is affirmed to decompose into its constituent elements rapidly at room temperature and 700 bar with enthalpy of formation ranging between -6 to 7.6 kJ/mol (Zidan, 2010). This implies that it has fast dehydrogenation kinetics which qualifies it as a good storage material. Jieng et al. (2021) highlighted the high pressure (700 bar) as an issue when considering hydrogen storage on a large scale. Another class of hydride called complex hydride contains a counter ion with a coordination complex where hydrogen is covalently bonded. Electropositive Li⁺ for instance, reacts with (BH)⁻ to form Li(BH₄). Prabhukhot et al. (2016) gave the complex hydride representation as $A_x Me_y H_z$ where elements in the first and second groups in the periodic table fit into "A" while "Me" is often occupied by aluminum or boron. Some other complex

Table1

Hydrogen adsorption capacities of some activated carbon, metal organic frame works, porous aromatic frame works and zeolites

	H_2 storage caapcity (%)	ref.
	7.88% 2 bar 77 K	(Wang <i>et al.</i> 2009)
	4.6%% 10 bar , 77 K	(Chen <i>et al.</i> 2008)
Activated carbon	2.96% at 1 bar and 77 K	(Sethia & Sayar, 2016)
	2.85% at 1 bar and 77 K	(Wrobel-Iwaniec et al. 2015)
	2.50% at 1bar and 77 K	(Liu <i>et al.</i> 2014)
	0.2% 30 bar and room temp.	(Doğan <i>et al</i> . 2020)
Carbon nanotubes	19% at 100 bar and 77 K	(Assfour <i>et al.</i> 2011)
	5.5% at 100 bar and 300 K	(Assfour <i>et al.</i> 2011)
	14.1%% at 70 bar and 77 K	(Farha <i>et al.</i> 2010)
Graphene	2.7% at room temp. And 25 bar	(Yuan et al. 2011)
-	1.47% at I bar and 77 K	(Huang et al. 2017)
Zeolite	2.07% at 0.016 bar and 77	(Dong <i>et al.</i> 2007)
	8.33% at 20 bar and 77 K	(Dong et al. 2007)
	2.6% at 1 bar and 77 K	(Yang et al. 2007)
	0.07% at 0.1 bar and 303 K	(Nishihara <i>et al.</i> 2009)
	2.2% at 0.3 bar and 303 K	(Nishihara et al. 2009)
	2.19% at 15 bar and 77 K	(Langmi <i>et al</i> . 2005)
	6.% at 50 bar and 77 K	(Lan <i>et al.</i> 2010)
Porous aromatic frame	3% at 50 bar and 150 K	(Lan <i>et al.</i> 2010)
works	2.09% at 1 bar and 77 K	(Ben <i>et al.</i> 2011)
	2.7% at 1.2 bar and 77 K	(Konstas <i>et al.</i> 2012)
Metal organic frame works	17.8% at 80 bar and 77 K	(Furukawa <i>et al.</i> 2010)
	4.5% at 20 bar and 77 K	(Nathaniel <i>et al.</i> 2003)
	4.0% at 20 bar and room temp.	(Nathaniel <i>et al.</i> 2003)
	1% at 0.8 bar and room temp.	(Rosi, <i>et al.</i> 2003)
	4.5% at 0.8 bar and 77bK	(Rosi, <i>et al.</i> 2003)
	10% at 56 bar and 77 K	(Hirscher & Panella 2007)

Fig 3. Schematic illustration of absorption and desorption of MgH₂

hydrides that have been synthesized include NaAlH₄ (Ismail *et al.* 2011; Ismail *et al.* 2012; Ud-Din *et al.* 2014), LiAlH₄ (Zhang *et al.* 2008; Chen *et al.* 2010) LiNH₂ (Luo, 2004; Chen *et al.* 2006; Barison, *et al.* 2008) and Ca(BH₄)₂ (Muthukumar *et al.* 2005). These materials are affirmed to be safe to handle and do not decompose easily to their stable constituents as witnessed for some metal hydrides. Complex hydrides also possess high hydrogen storage capacity. In summary, choice of hydride for solid hydrogen storage is dependent on many factors such as availability, ease of processing, cyclic stability, hydrogen storage capacity, low cost of production, dehydrogenation and hydrogenation kinetics.

Magnesium hydride (MgH₂) has been used as a storage material for hydrogen owing to its availability, light weight, huge storage capacity (7.6 wt.%), low cost of processing, good reversibility and high volumetric capacity (109 g H₂/L) (Shahi *et al.* 2015; hongtan *et al.* 2018). Low sorption kinetics has been recorded to be an issue with this material; Reaction of Mg with hydrogen to form MgH₂ (absorption) is exothermic and occurs between 250-370 °C (Figure 3); heat therefore needs to be supplied to the system for hydrogen desorption to occur.

To improve the hydrogen storage properties of the hydride, composites comprising combination of MgH_2 with one or more of carbonaceous materials (Ródena *et al.* 2008), intermetallics (Lu *et al.* 2018) oxides and hydrides of metals (including complex hydrides) have been used as catalysts.

3. Alloys compounds and composites of transition metals as catalysts

Numerous transition metals in their single forms, compounds and alloys have been used as catalysts to improve the hydrogen storage properties of MgH_2 . Researches have also entailed doping MgH_2 with other non-metallic materials such as grapheme, activated carbon, carbon nanotubes and metal organic frameworks to form composites. In this section, researches on the use of transition metals in the single or monometallic forms, alloys (binary, tertiary and multicomponent) and composites with non- metallic materials as catalysts are reviewed.

3.1. Titanium (Ti)

Having established that dehydrogenation of MgH₂ will occur between 300 - 350 °C (Jin *et al.* 2007a; Croston *et al.* 2010; Li *et al.* 2013), it is expected that MgH₂-based composites should release hydrogen at a lower temperature and the activation energy required for this should reduce. Additives used impart their catalytic effects by remaining stable (unreacted) or form a new stable phase (owing to a chemical reaction) when exposed to de/hydrogenation temperatures. This boosts the hydrogen storage potency of MgH₂. Lu *et al.* (2009) employed an ultra–

energy- high pressure reactive milling on MgH₂ and TiH₂ powders for 4 h at room temperature. Nanostructured combination of MgH₂ and TiH₂ were maintained after milling as no additional phase was formed. Composites remained stable after 80 cycles of dehydrogenation and hydrogenation at 300 °C. Existence of TiH₂ phase uniformly distributed in MgH₂/TiH₂ nanocomposite was reported to cause reduction in hydrogenation and dehydrogenation enthalpies. This was an additional claim to justify that asides grain size reduction, existence of well distributed stable additives will improve hydrogen storage performance of MgH₂. Twenty hours continuous milling however, culminated in the transformation of Mg and Ti to MgH_2 and TiH_2 when Shao *et al.* (2011) doped 0.1 wt.% Ti into MgH₂. Dehydrogenation of MgH₂/TiH₂ as determined by TGA/DTG curves was faster than as-milled MgH₂; the former occurred at 342 °C which was 100 °C lower than the latter (as-milled MgH₂). Unlike findings of Shao et al, (2011), Dehouch et al. (2003) earlier reported that Mg, MgO, Ti, V and Fe₂O₃ phases were formed after MgH₂ was ball milled with Ti and V. Although the milling time and temperature were not stated, it could be deduced here that the milling process engendered the dissociation of Mg from H atoms which later got oxidized to MgO on reacting with oxygen in the air. Milling condition was also sufficient to yield the formation of Fe₂O₃, which was notified as an impurity that arose from the oxidation of the steel mill balls; Ti and V remained unreacted. On cycling (de/hydrogenation cycles) at 300 °C in the presence of hydrogen-containing moisture after milling, there was an increase in hydrogen storage capacity and absorption kinetics between 500 and 1000 cycles for the composite; after the 1000th cycle, an additional phase Mg (OH)2, was formed. The moisture acting as a contaminant in the hydrogen was affirmed to have engendered structural relaxation in the composite which led to its improved absorption kinetics. On the other hand, the structural modification retarded the hydrogen desorption kinetics after cycling. The investigators attributed this low kinetics to modifications that occurred on the surface of the composites. Although information regarding the mechanism involved in this surface modification was not detailed, one may suppose that Mg (OH)₂ and Fe₂O₃ may have a role to play in this. To further elucidate on the Findings of Lu et al. (2009), Hao & Scholl, (2012) deduced the mechanism responsible for the reduction in MgH₂/TiH₂ composite's enthalpy of reaction compared to single MgH₂ by adopting the first principles density functional calculations. This was used to distinguish the interfaces that could exist between MgH₂ or Mg and TiH₂. Calculations explained that strong equiaxial surfaces could exist between the low surface energy faces of MgH₂ (or Mg) and TiH₂. These interfaces induced strain on MgH₂ and Mg which was identified to be responsible for the low dehydrogenation enthalpy. Addition of 0.05, 0.1, 0.25 and 0.5 wt.% Ti, to MgH₂ and milling for 2 h have produced Mg, MgH₂ and Ti phases

(Pukazhselvan et al. 2020). Magnesium hydride, Ti and TiH2-x (nonstoichiometric hydride) were identified when MgH₂ /0.25 wt.% Ti composite was milled for 15 h. When composites were dehydrogenated at 315 °C and 5 bars H2 pressure after 1, 5 and 10 cycles, Ti/TiH_{2-x} was further hydrogenated to TiH₂. Titanium additive remained unreacted under 2 h (mild milling condition as defined by the researchers) milling; it was partially hydrogenated when the milling was severe (15 h) and got completed after de/hydrogenation cycles. For the strong milled composite, XPS (X-ray Photoelectron Spectroscopy) indicated that Ti existed in mixed valence states (Ti⁰, Ti²⁺, Ti³⁺, Ti⁴⁺). It was believed that Ti⁴⁺ (oxidation state of Ti in TiO₂) present in both samples (mild and strong miling) may have occurred as a result of surface oxidation on exposure to air. It was thus concluded that catalytic influence of Ti/TiH₂ would only be effective if MgH₂ would be milled long enough. Formation of TiH₂ during strong milling reduced the dehydrogenation activation energy of MgH2 to 89.4 kJ/mol from 153 kJ/mol displayed by as-received MgH2. This further justified the findings of Hao & Scholl, (2012), who suggested that when there is an equiaxial contact between Mg/MgH2 and TiH2, the latter would induce strain on Mg/MgH2 contact surface which would end up lowering its dehydrogenation enthalpy. It has also been reported by Patelli et al. (2017) and Bhatnagar et al. (2018) where TiH₂ was confirmed to improve the sorption kinetics of MgH₂ by lowering the activation energy. This was also attributed to the imposition of lattice strain on MgH2 by TiH2. Malahayati et al. (2021) observed that 1 h ball milling may not be sufficient enough to induce reaction between MgH₂ and Ti powders as no change of phase was noticed after the process. Agglomerations of combining powders with increased diameter only existed during this time. After 12 h of milling, both MgH₂ and Ti still existed but this time, in nanosized form, which was attributed to the effect of energy induced by the milling process. The Ti phase disappeared after milling for 18 h while broad peaks of MgH₂ remained. It was not mentioned in the report what happened to Ti but it could be assumed that Ti was oxidized to TiH₂ which may have also led to the broadening of MgH₂ peaks that was initially narrow. The composite (MgH₂/Ti) absorbed hydrogen at 300 °C and 10 bar while desorption happened at 350 °C and 50 mbar. Both processes took place within 7 min and from previous findings of researchers, it can be deduced that TiH₂ may be responsible for the much fast kinetics compared to additive --free MgH2. These temperatures however were

Fig 4. Hydrogen absorption capacities of Mg/Ti-based composites as a function of ball milling time (Berezovets *et al.* 2022)

outlined by the authors to be high for application purpose. Berezovets et al. (2022) observed that TiH₄ phase was formed using Ti nanopowder additive which led to the increase in hydrogen storage capacity of MgH₂ (6.7 wt.% H₂) (Figure 4). Milling Mg and TiO₂ nanopowders after 5 h, TiO₂ remained unreacted and this led to a low storage capacity of 5.7 wt.% H₂; it may be assumed here that the milling time was insufficient for TiO₂ to get reduced. As illustrated in Figure 4, both additives facilitated hydrogenation compared to pure Mg which implied that they aided the crystallization of MgH₂. More improved hydrogenation was realized on milling Mg powder with a suboxide of $Ti_4Fe_2O_x$ (x= 0.3, 0.5) in the presence of hydrogen pressure. The suboxide additives promoted hydrogen dissociation and the Ti4Fe₂O_xH_y phase formed after milling was responsible for its highest hydrogen storage capacity (6.76 wt.% H₂). Presence of Ti, Fe and O in the suboxide created diffusion pathways for hydrogen to or from Mg/MgH₂ system during de/hydrogenation,

Titania (TiO₂) has also been proven to be a good additive for MgH₂. Titania. MgH₂ and rock salt (Ti dissolved MgO) were reportedly formed when MgH2 was milled with 10 wt.% TiO₂ for 5 h (Pukazhselvan et al. 2017a). A reduced phase, Ti₂O₃ was yielded when TiO₂ was milled with 10 wt.% MgH₂ for 30 h. A single phase rock salt was formed when MgH_2 was milled with TiO_2 in ratio 2:1. The Ti/Mg/Ophase in the rock salt was confirmed to make the additive impact of TiO₂ effective on hydrogen storage properties of MgH₂. The single phase rock salt formed after milling $2MgH_2$ +TiO₂ system for 30 h had the least dehydrogenation activation energy (110.9 kJ/mol). Further works of Pukazhselvan et al. (2017b) established that TiO2 transformed as an inbuilt rock salt catalyst during dehydrogenation and its content depended on the variation of Mg/Ti. The proportion of Mg/Ti according to the researchers was assumed to cause e passivation of active rock salt. Shao et al. (2022) prepared three-dimensionally ordered macroporous (3DOM) TiO₂ via colloidal crystal template technique. After 10 h ball milling with MgH₂, the composite absorbed 4.17 wt.% H₂ at 100 °C within 1800 s and released 5.75 wt.% H_2 at 300 °C within 1000 s. Improvement in the hydrogen storage properties of MgH₂ arose from the combined effect of 3DOM structure and electronic interactions as TiO2 was reduced by MgH2 and multiple valence Ti (Ti⁰, Ti¹⁺ and Ti²⁺) were formed. These destabilized MgH₂ and weakened Mg - H bonds. In addition, TiO₂ nanoparticles were wrapped and uniformly distributed in carbon layer; this aided de/absorption of hydrogen in MgH₂. Titanium and TiO₂, each of 0.4 g and 0.2 g of nitrogen-doped graphene (XFNANO) was ball milled for 1 h to obtain TiO@N-C (Hong et al. 2023). The additive (0.1 g TiO@N-C) was mixed with 0.9 g of MgH₂ and milled for 5 h. The composite completely desorbed hydrogen at 350 °C within 4 min and its dehydrogenated form absorbed 5.1 wt.% H₂ in 4 min at 175 °C. There was a reversible reaction of Ti and TiH₂ on Mg/MgH₂ surface during de/hydrogenation which made hydrogen molecules dissociate and diffuse easily; the stability of MgH₂ was also reduced by weakening of Mg - H bonds triggered by TiO2. Nitrogen-doped graphene was covered on MgH2 surface which impeded the agglomeration of MgH₂ particles. In addition, carbon structural defects that existed in nitrogendoped grapheme acted as nucleation sites which promoted diffusion of hydrogen. These were responsible for the hydrogen storage performance of MgH₂. Multi-phase interface comprising Ti, TiO₂, Ti₂O₃ and MgH₂ has been established to provide more diffusion paths for hydrogen and more nucleation sites for Mg/MgH₂. This finding substantiates the investigations of Liu et al. (2021) who doped graphene-supported TiO₂ nanoparticles

(TiO₂@rGO) into MgH₂, Asides the fact that Mg was surrounded by the catalyst; partial reduction of Ti⁴⁺ to Ti²⁺ existed. This propelled charge transfer that advanced the de/hydrogenation kinetics of MgH2. In addition, Ren et al. (2022) recorded that multi-phase interfaces that comprised multi-valence Ti (Ti2+, Ti3+) and MgH2 existed when flower-like MgH₂/TiO₂ heterostructure synthesized from 2D TiO₂ nanosheets with oxygen vacancies. The multi-phases aided electron and hydrogen diffusion and created more nucleation sites for MgH₂/Mg. Magnesium rod, Ni sheet and Ti pellets were melted in a vacuum induction levitation furnace to process MgNi-Ti and MgTiNi ingots (Li et al. (2018). The alloy ingots were crushed and mechanically ground to 200-mesh powder. When milled, Ni2Ti and NiTi phases were observed in both alloys. New phases- Mg₂NiH₄ and TiH₂ were formed after 100 cycles of hydrogenation and dehydrogenation. These 1. phases were responsible for 5.22 and 3.23 wt.% H₂ recorded for MgNi-Ti and MgTiNi alloys, respectively. Amorphous TiMgVNi₃, produced via Induction melting of Ti, Ni and V powders, has been used as a catalyst on MgH₂ (Hu et al. 2022). After 100 h of milling, of cast TiMgVNi₃, 10 wt.% was further milled with MgH₂ for 10 h under 5 MPa H₂ pressure. Magnesium hydride and (Ti,Mg,V,Ni)H_x were formed after milling. When TiMgVNi₃composite underwent 2 cycles MgH₂/ of hydrogenation and dehydrogenation, a homogenous distribution of (Ti,V)H₂ and Mg₂NiH₄ nanoparticles formed on the surface of MgH₂; these were responsible for its fast hydrogen desorption Magnetic levitation melting has been used in preparing TiV based BCC alloy (Ti_{0.4}Cr_{0.15}Mn_{0.15}V_{0.3}) which was mechanically pulverized into particles as an additive for MgH₂ (Yu et al. 2010). Some alloy powders were water quenched while others were hydrogenated at 20 bars H₂ for 2 h at room temperature. Alpha -MgH₂, y-MgH₂ and HBCC were formed after milling. The BCC contributed to the improvement of atomic diffusivity of hydrogen as well as its ease of dissociation and recombination. Hydrogenated BCC appeared to impart the most effective followed by quenched BCC. Solid BCC (ingot) offered the least effect. El-Eskandarany et al. (2019) milled MgH2 with 10 wt.% TiMn₂ master alloy powders for 50 h under 70 bar H₂ pressure. The composite formed was further consolidated (compaction) into circular buttons of .1.2 and 8e2.0 cm diameter and thickness respectively. The consolidation enabled the TiMn₂ nanopowders got embedded in the micro/nanopores of MgH₂ grains which acted as a good hydrogen diffusion path during hydrogenation and dehydrogenation. The buttons could absorb and desorb 5.8 wt.% H2 at 225 °C within short periods of 150 s and 500 s, respectively

Titanium carbide (TiC) nanoparticles was formed on the grain boundaries of MgH₂ when both underwent cryo-milling (using N_2 to enact freezing) for 8 h followed by high energy ball milling (at room temperature) for 16 h. (Tan & Shang, 2012). The formation of the additive on the grain boundary shortened the diffusion length and weakened the Mg-H bond which lowered the desorption temperature and activation energy to 190 °C and 235 to 104kJ/mol respectively. Sandwich-like Ti₃C₂/TiO₂(A)-C was processed via facile gas-solid approach and doped into MgH2 by 10 h ball milling (Gao et al. 2020). X-Ray diffraction results showed that MgH₂, with few contents of Mg and MgO were formed after milling. From their investigation, incomplete hydrogenation or dehydrogenation of MgH₂ was suggested to have culminated in the formation of Mg while the reaction between MgH₂ and TiO₂resulted in the formation of MgO. The composite could absorb 5 wt.% H₂ at 250 °C within 1700 s (42.32 kJ/ moll) and within 800 s, 4 wt.% H₂ was desorbed at 125 °C (77.69 kJ/ mol). Multiple valence Ti compounds of Ti⁴⁺, Ti³⁺, Ti²⁺ and Ti⁰ as observed by XPS and

synergetic effects between the layered structure were reported to be the mechanism of the catalytic influence of $Ti_3C_2/TiO_2(A)$ -C. A modified wet chemical method used in fabricating sandwich-like Ni/ Ti_3C_2 catalysts, was introduced to MgH₂ to improve its hydrogen storage performance (Gao *et al.* 2021). A strong electronic interaction existed between nanoparticles of Ni and Ti3C₂. This was affirmed to be responsible for the improved hydrogen absorption feature of MgH₂. Catalytic effect of NiTi₃C₂ was influenced by the electron transfer in the multiple valences of Ti (Ti⁴⁺, Ti³⁺, Ti²⁺ and Ti⁰). Works of Gao *et al.* (2021) justify earlier works (Cui *et al.* 2013) where it was claimed that Ti3C₂ derived its catalytic influence from electron transfer in multi-valence Ti which triggered the transformation of Mg⁺² and Mg, H⁻ and H.

3.2. Nickel (Ni)

A common Ni- based intermetallic compound - Mg2Ni has been synthesized and reported over the years to be a good hydrogen storage material (Zaluski et al. 1995a; Zaluski et al. 1995b). Recently, Baroutaji et al. (2022) summarized that another Mg-Ni based compound - Mg₂NH₄ can be realized (together with Mg) when Mg₂Ni directly interacts with MgH₂. It can boost MgH₂ hydrogen storage feature when both materials interact (Lu et al. 2022). These two Mg-Ni based compounds have played important roles on MgH₂ hydrogen storage features and they can also be formed on reacting pure Ni or Ni- based compounds with MgH₂. Hanada et al. (2005) concluded that observing de/hydrogenation cycle of 2% mol Ni nanoparticle - doped MgH₂ at 200 °C, hydrogen desorption properties of the composite degraded as a result of Mg₂Ni which formed at that temperature. Here, the Ni content and/or the composite processing method (15 h ball milling under1 MPa H₂ pressure) may have been responsible for the limiting impact of Mg₂Ni. Using Ni in uncombined form could have also been responsible. It was reported by Liang et al. (2000) that milling Mg and 30 wt.% LaNi5 intermetallic mechanically for as long as 40 h would not yield chemical reaction unless when hydrogenated. At this point, the intermetallic decomposed and a composite comprising MgH₂, LaH₃ and Mg₂NiH₄ phases was formed. When MgH2 and 30 wt.% LaNi5 were ball milled prior to hydrogenation, part of MgH2 and LaNi5 decomposed to form Mg₂NiH₄ while some part was reduced by La to form stable LaH₃ and Mg. After hydrogenation, MgH₂/ LaH₃/ Mg₂NiH₄ system similar to that observed on milling Mg powder with LaNi5 was formed. Milling LaNi₅ with MgH₂ was preferable to Mg because the former facilitated ease of powder size reduction, which enhanced absorption properties of MgH_2 and not desorption. Magnesium absorption kinetics was improved by the presence of LaH₃; beyond 373 K, Mg₂Ni imparted a better catalytic effect. Hydrogen storage kinetics has been improved by doping MgH₂ with 5 wt.% SiC (Ranjbar et al. 2009a) but addition of 10 wt.% Ni further enhanced this property because it improved composite's surface area and reduced the concentrations of defects (Ranjbar et al. (2009b). In addition, hydrogen desorption reaction was influenced by bulk nucleation and 3D growth of the existing Mg nuclei; finely dispersed Ni nanoparticles increased the amount of nucleation sites.

Mao *et al.* (2010) ball milled MgH_2 with 10 wt.% NiCl₂ for 2 h. Magnesium hydride phase was observed after milling without a trace of Ni; this could be attributed to the little milling time employed or content of additive used. After hydrogenation and dehydrogenation cycles, more phases were formed which followed the suggested reaction:

$$3MgH_2 + NiCl_2 \rightarrow MgCl_2 + Mg_2Ni + 3H_2$$
(1)

Magnesium chloride and Mg₂Ni acted as catalyst on MgH₂. It was also noted that the additive removed nucleation barrier which enabled hydrogen desorption occur at a low driving force. Within 60 s, 5, 17 wt.% H₂ was absorbed at 300 °C for MgH₂/NiCl₂ composite while it took 400 s to absorb 3.51 wt.% H_2 at the same temperature for undopped ball milled MgH₂. Furthermore, dehydrogenation activation energies of 158.5 and102.6 kJ/mol were calculated for MgH₂ and MgH₂/NiCl₂ composite respectively. Nano Ni powders produced via Ni carbonyl process was ball milled with high enthalpy MgH₂ (Wronski et al. 2011) Acting as a catalyst, the powders reduced desorption temperature of the metal halide as low as 100 °C at low hydrogen partial pressure The catalyst was affirmed to provide adequate surface area with carbon and oxygen (impurities formed during the carbonyl process) coating which was also responsible for activation energy reduction for hydrogen desorption. The activation energy for desorption reduced from 167 kJ/mol (unactivated MgH₂) to 78 kJ/mol for nano Ni-catalyzed MgH₂ between 325 – 350 °C. Cui et al. (2014) also reported that formation of Mg2Ni improved the hydrogenation and dehydrogenation kinetics of Mg-Ni system. In their work, MgH₂ was ball milled with Ni nanoparticles which were uniformly dispersed and anchored on reduced graphene oxide (Ni@rGO) for 2, 5, 10 and 20 h under 1MPa H₂ pressure. A high surface area of 161.4 m²/g possessed by Ni@C nanorods mixed with MgH₂ was investigated to absorb 6.4 wt.% H₂ within 10 min and 300 °C (An et al. 2014). Here, it was suggested that Ni@C composites had the capacity to create interface with MgH₂ to form catalytic site for hydrogen diffusion. When the combination of SrTiO3 and Ni were used as additive for MgH2 (Yanya & Ismail, 2018), Mg₂Ni and Mg₂NiH₄ were formed after dehydrogenation and hydrogenation respectively. The two phases were concluded to be active in improving the hydrogen storage properties of MgH2. The phase SrTiO3 remained unreacted throughout the process but its catalytic influence was imparted in the modification of the composite's microstructure. This created an additional advantage ahead of using only SrTiO₃. Nano Ni particles were dispersed in nanoporous carbon material (CMk-3) prepared by impregnation reduction and 10 wt.% of the combination was added to MgH_2 (Chen *et al.* 2018). Under 3 MPa H₂ pressure and 150 °C, the composite MgH₂/Ni/CMk-3 absorbed 3.1 wt.% H₂ after 360 s while 5.7 wt.% H₂ was absorbed with 2400 s. At 328 K, and 3 MPa, H₂ pressure, 3.9 wt.% H₂ was absorbed. Nickel nanoparticles played an active role in lowering the decomposition enthalpy of MgH₂ by forming Mg₂Ni and Mg6Ni. Combined effect of activation and destabilization from Ni was responsible for the enhanced performance of MgH2. Ma et al. (2018) employed carbonization process to synthesize carbon supported nano-Ni (Ni@C) additive for MgH₂. Inclusion of 5 wt.% of the additive promoted MgH₂ the hydrogen storage display. After 10 cycles, average grain size of MgH₂ grew to 35.5 nm and this was reported to be responsible for its reduced storage capacity at that instant. Furthermore, Mg₂NiH₄ also appeared after 10 cycles and was suggested to have a negative impact on the composite's hydrogen performance. Increase in milling time up to 10 h has led to gradual reduction in crystallite and grain sizes of MgH₂/ nano Ni anchored on reduced graphene oxide (Ni@rGO) composite (Yao et al. (2020). On the other hand, prolong milling up to 20 h led to the welding and agglomeration of particles which made them bigger. Catalytic effect of the additive was influenced by the formation of Mg2Ni/ Mg2NiH4 phase which was formed after rehydrogenation. Milling for 5 h offered the best result as the composite could absorb 5 wt.% H₂ in 20 min at 100 °C and within 15 min, 6.1 wt.% H₂ was released at 300 °C. It was easier for Mg_2NiH_4 to release H_2 with ease.

The rGO created hydrogen diffusion channels and active catalytic site, which was responsible for the lowering of dehydrogenation temperature and kinetics. Solid solution of Ni-Cu powders has created a platform for enhanced MgH₂ nucleation and de/hydrogenation by reducing the bond strength of Mg-H (Zhang et al. 2020). At 300° C, the composite could eject 5.14 wt.% H2 after 15 min while within 30 min, 4.37 wt.% H2 was absorbed at 250 °C Magnesium hydride hydrogen storage display was elevated by the formation of Mg₂Ni(Cu), which allowed hydrogen molecules to dissociate and recombine to MgH₂. Ball milling of Mg powder and MgNi₂ alloy followed by hydrogen combustion synthesis technique was devised by Fu et al. (2020) to synthesize MgH₂/MgNi₂ composite. Majority of the Mg were transformed to MgH₂ after hydrogenation while some reacted with MgNi₂ to form Mg₂NiH₄ that later transformed to Mg₂Ni during dehydrogenation. These two phases enhanced hydrogen adsorption and desorption of MgH₂ as 2.5 wt.% H_2 was absorbed at 200 °C while at 300 °C, 2.6 wt.% H₂ was released. Magnesium hydride was investigated to be capable of absorbing 5.3 wt.% H_2 at 300 $^{\circ}C$ within 5 min when doped with 2mol% nano Ni powders of approximately 90 nm via high pressure ball milling under 10 MPa H₂ pressure (Rahwanto et al. 2021). The nano Ni powders provided adequate reaction surface for MgH₂ during milling. Li et al. (2021) doped Ni/ Ni/tubular g-C₃N₄ (TCN) into Mg by milling for 5 h and under 4 MPa H₂ pressure, the milled sample was kept for 40 h to form MgH₂/Ni/TCN composite. During milling, the additive coated the Mg surface and Ni particles reacted with Mg to form a phase that comprised Mg, Ni and H. The C atom, being a good conductor of heat and electron, was considered good for the behavior of the composite when hydrogenated and dehydrogenated at 400 °C; it also prevented the growth of particles. Reversible conversion from Mg to MgH₂ and reaction between Mg₂NiH₄ and Mg₂NiH_{0.3} were realized during de/hydrogenation of the composite. The C coating on Mg and the formation of Mg-Ni-H phases (Mg₂NiH₄ and Mg₂NiH_{0.3}) improved the hydrogen storage properties of MgH₂. Tricarboxybenzene was used by Shao et al, (2021) to process Ni-MOF (N- BTC300), which was calcined at 300 °C as catalyst for MgH₂. The additive displayed uniformly dispersed and bonded metal ions which improved the hydrogenation and dehydrogenation kinetics of MgH₂. With the addition of 10 wt.% Ni-MOF, composite could release 5.14 wt.% H₂ at 300 °C. This was better than additive free MgH2 that released 0.09 wt.% H2 after 15 min at the same temperature. Good cyclic behavior of composite was attributed to the robust structure of MOF. Rods of Ni – based oxide, NiMoO4 was incorporated into MgH2 by 6 h ball milling (Huang et al. 2021). The composite still contained NiMoO₄ and MgH₂ after milling while Mg, Mo, MgO and Mg₂Ni phases were formed after complete desorption at 300 °C, which indicated that NiMoO4 reacted with MgH2 in the process according to the reaction:

 $6MgH_2 + NiMoO_4 \rightarrow Mg_2Ni + 4MgO + Mo + 6H_2$ (2)

Magnesium hydride₂ and Mg_2NiH_4 were formed after hydrogenation at 150 °C and 3.2 MPa H₂ pressure. Within 10 min, $MgH_2/NiMoO_4$ was able to desorb 6 wt.% H₂ at 300 °C and adsorb 5.5 wt.% H₂ at 150 °C after 10 min. The exceptional de/hydrogenation kinetics was ascribed to the formation of Mg_2Ni and Mo after reaction of MgH_2 with NiMoO₄ while Mo° encouraged the removal of hydrogen atoms from MgH_2 under less severe ball milling. A reversible phase evolution among Mg_2Ni,Mg_2NiH_4 and CeH_{2.73} was reported to exist after hydrogenation and dehydrogenation of ball milled Ni@CeO₂/MgH₂ composites (Yu *et al.* 2023) These phases enhanced the hydrogen storage properties of MgH_2 as they were finely dispersed in its matrix.

3.3. Vanadium (V)

Mechanically ball milling MgH2 with V for 20 h was observed to yield β MgH₂, γ MgH₂ and VH_{0.81} after hydrogenation (Liang *et* al. 1999). Hydrogen was completely desorbed after 2000 s at 800 K with MgH $_2/5$ wt.% V. The nanocomposite absorbed 2 wt.% H₂ within 1000 s at 10 MPa H₂ pressure and 302 K; at 373 K, 4 wt.% H₂ was absorbed after 100 s and at 473 K, 6.5 wt.% H₂ was absorbed in 250 s. The microstructure of composite with V inclusion improved the hydrogenation kinetics. Vanadium (5 wt.%) was added to MgH₂ powders and mechanically ballmilled for 100 h to nano scale (Rivoirard et al. 2003). At 253 K MgH₂ absorbed hydrogen slowly while that activated with V was faster. Fine grains of MgH₂ formed were also responsible for its enhanced hydrogen absorption kinetics. At 603 K the absorption kinetics was reduced because it was noticed that at that temperature, δVH_x which was formed after ball milling became unstable. They concluded that nature of combining materials would not only contribute to hydrogen absorption properties of MgH₂; particle size reduction, distribution and agglomeration would also play key roles. After mechanically milling Mg and V powders for 20 h, MgV_{0.05} was formed and this improved the hydrogen storage property of Mg (Schimmel, et al. (2005). At the onset of hydrogenation, MgH1<x<2 phase was formed and there was much hydrogen vacancies which enabled the phase have higher diffusion coefficient. This was responsible for the improved hydrogenation kinetics of the nanocomposite. Conceição et al. (2014) compared the effects of pure V, vanadium chloride (VCl₃) and vanadium carbide (VC) catalysts on the hydrogen storage properties of MgH₂. Adding 5 wt.% separately of each additive to MgH₂, VCl₃ showed the best catalytic effect in terms of hydrogen storage capacity and de/hydrogenation kinetics. It was reported that considering the same content for all additives (wt.%), the amount of V in VCl₃ was the least compared to that in VC and pure V. Vanadium carbide could enhance desorption of MgH₂ but its high stability contributed to its retarded desorption kinetics. According to Kadri et al. 2(015), catalyzed V synthesized from vanadium hydride, $VH_{\rm 2}$ could act as a hydrogen splitting agent which could hasten dissociation of hydrogen from MgH₂. Catalytic influence of bismuth vanadate (BiVO₄) on MgH₂ hydrogen

storage properties via ball milling has been investigated (Xu *et al.* 2017). At 150 °C, and 3 MPa H₂ pressure, the composite composed of MgH₂/16.7 wt.% BiVO₄ had the capacity to absorb 1.99 wt.% H₂ while additive-free MgH₂ had 0.94 wt.% H₂ absorbed under the same conditions of temperature and pressure (Figure 5a). At 400 °C, 1.1 wt.% H₂ was desorbed within 1200 s (Figure 5b). Catalytic influence of BiVO₄ was attributed to the formation of V-containing compounds (Mg₂V₂O₇ and V₂O₃) that were formed during dehydrogenation at 400 °C.

Vanadium oxide supported on cubic carbon nanoboxes (nano-V₂O₃@C) has been ball milled with MgH₂ (Wang et al. 2018). Within 10 min, MgH₂/-9 wt.% V₂O₃@C composite could release 6.0 wt.% H₂ while additive - free MgH₂ desorbed 0.4 wt.% H_2 within this time. The metallic V formed from V_2O_3 during milling and at the initial stage of heating was responsible for the fast dehydrogenation kinetics of MgH₂; it elongated Mg - H bond length and weakened its strength. Vanadium chloride was reduced to metallic V when milled with MgH2 Kumar et al. (2018). The metallic V imparted a good catalytic effect on MgH₂ hydrogenation and dehydrogenation kinetics. This was achieved by MgH₂ grain refinement and crystallite size reduction that eventually created the diffusion path for hydrogen. In the investigations of Liu et al. (2021), 7 wt.% of V nanoparticles was added to MgH2. Within 10 min, 6.5 wt.% H2 was released at 300 °C (MgH₂ could not achieve this at this time). Fully dehydrogenated composite had the potency of absorbing hydrogen at room temperature and 5.6 wt.% H₂ at 150 °C. Vanadium remained stable all through hydrogenation and dehydrogenation processes. Well dispersed Ni and vanadium trioxide nanoparticles in nanoporous carbon ((Ni-V₂O₃)@C) has been used as catalyst on MgH₂ (Lan et al. 2022). There was a partial transformation of V_2O_3 to VO during milling while MgH₂, V₂O₃, VO, and V remained unreacted during hydrogenation and dehydrogenation. In contrast, Ni reacted with Mg to form Mg₂Ni and this further reacted with hydrogen to form Mg2NiH4. The Mg2Ni/ Mg2NiH4 particles acted as hydrogen pump as it was observed to be coated on Mg/MgH₂; this aided diffusion and dissociation of hydrogen The presence of carbon (C) enhanced the catalytic effect, promoted MgH₂/Mg lattice expansion and held up their crumbling during hydrogen de/absorption, which ended improving MgH2 cyclic stability. It was concluded that m a multicomponent catalyst comprising V, VO, V₂O₃, C, and Mg₂Ni/Mg₂NiH₄ will improve the hydrogen

Fig 5. (a) Hydrogen absorption of additive-free milled MgH₂ and at MgH₂/ 16.7 wt.% BiVO₄4at 23 K.(b) Hydrogen release of MgH₂ and at MgH₂ / 16.7 wt.% BiVO₄4at 523 K (Xu *et al.* (2017).

performance of MgH₂. Two dimensional canadium carbide (V₂C) MXene has been added to MgH₂ to improve its hydrogen desorption kinetics (Lu et al. 2022). Improved cyclic stability was not only caused by the additive; low hydrogen desorption temperature (from 318 °C in MgH₂ to 198 °C in MgH₂/V₂C composite) was also enhanced. The V2C played a role of reducing Mg H bond length to hasten desorption kinetics of MgH₂. Tian et al. (2023) ball milled hydrothermally synthesized V- based catalysts (V₂O₅, FeVO₄and NiV₂O₆) with MgH₂. to improve its hydrogen storage properties. Dehydrogenation behaviour of MgH₂/ FeVO₄ displayed the best performance followed by MgH₂/V₂O₅. During this process, the Fe-V complex oxide reduced elemental Fe and V which eventually lowered Mg-H bond strength. This hastened the absorption and desorption of MgH2. It was concluded that Fe would improve the catalytic effect of V2O5 while Ni will not. Structured V- based MOFs (MOFs-V) synthesized by facile hydrothermal reaction and calcination has been doped with MgH2 via ball milling to modify its hydrogen storage properties (Lu et al. 2023). It was observed by Scanning Electron Microscope (SEM) that the MOFs composed of bullet-like V2O3. The desorption temperature of composite containing 5 wt.% MOFs was 199.8 °C which was 142 °C lower than catalyst-free MgH₂; increasing the content of MOFs to 7 and 9 wt.% further lowered the desorption temperatures to 190 and 186 °C respectively. During ball milling, MOFs-V was reduced to metallic V which created a catalytic effect. Catalytic effect of vanadium disulphide (VS2) on MgH₂ was investigated by Verma et al. (2023). The composite began to release hydrogen at 289 °C which was 87°C lower than MgH₂. Hydrogen desorption activation energy barrier required to reduce MgH₂ to Mg in the presence of VS₂ was lower (98.09 kJ/mol) compared to42 kJ/mol in catalyst-free MgH₂. Du et al. 1(997) had earlier reported that V in VS₂ could be reversibly converted from V^{4+} to V^{5+} during de/hydrogenation. The existence of V in its variable oxidation form would weaken Mg-H bond and thus trigger fast de/hydrogenation kinetics.

3.4. Molybdenum (Mo)

Jia *et al.* (2013) reported that molybdenum disulphide (MoS_2) had more effect in improving the absorption and desorption kinetics of MgH₂ than molybdenum oxide (MoO_2). During ball milling, the following reactions were investigated to have taken place as indicated from XRD patterns:

$$2MgH_2(s) + MoS_2(s) \rightarrow 2MgS(s) + Mo(s) + 2H_2(g)$$
 (3)

$$2MgH_2(s) + MoO_2(s) \rightarrow 2MgO(s) + Mo(s) + 2H_2(g)$$
(4)

Considering similar ball milling conditions, reaction (3) was observed to be faster than reaction (4). As-milled MgH₂ could absorb 90% of its hydrogen storage capacity within 72 min; MgH₂/MoO₂ could attain this within 31 min while it took 13 min for MgH₂/MoS₂ to achieve this. Formation of MgS/ Mo and MgO/Mo in each reaction was suggested to have been responsible for the absorption/desorption kinetics of MgH_{2} . Addition of 10 wt.% MoS2 to Mg particles according to Han et al. (2016) would be enough to prevent agglomeration and cold welding of particles as it acted as a dispersant and lubricant. The 2. milling process reduced crystallite size of MgH₂ to a little below 38.8 nm and this was sustained all through milling because $MoS_{2,3}$. confined its growth. The reduction in crystallite size was responsible for the reduced dehydrogenation temperature of MgH_{2.} During MgH₂ decomposition, crystal of Mg was reported to grow by three dimensions controlled by interface transformation. The researchers concluded that MoS_2 had a weak catalytic influence on the decomposition of MgH₂. Rather than use bulk MoS₂, Setijadi et al. (2016) synthesized MgH₂ nanoparticles using delaminated MoS₂ through a simple

hydrogenolysis route which involved the decomposition of din-butylmagnesium. The delaminated additive led to the formation of Mg worm-like structures that collapsed and recrystallized during hydrogen cycling. Thermodynamic features of Mg/MgH₂ reaction was strongly influenced by the additive through destabilization of the Mg-H bond.

Han et al. (2017) observed that after ball milling Mg/C (combination of magnesium and crystalline carbon) with Mo for 3 h under 1 MPa H₂ pressure, MgH₂ was formed. Molybdenum and crystalline carbon offered a synergistic effect on improving the hydrogenation kinetics of MgH₂ in the reactive ball milling process. Enhanced dehydrogenation rate of MgH₂ was attributed to the conductive capacity of Mo The use of 2% mol. MoO₃ was researched to have a positive impact on hydrogen storage performance of MgH₂ (Dan et al. 2019). During hydrogenation and dehydrogenation, MoO₃ was an active site for hydrogen absorption and desorption; the oxide was observed to also create a fast diffusion pathway for hydrogen atoms. Formation of MoO₂ occurred during hydrogenation (reduction of MnO₃ to MnO₂), which was affirmed to reduce the catalytic effect of MoO3 on the long run. Synthesized nanosheets of NiMoO4 were ball milled with MgH2 (Chen et al. 2020). After activation, MoNi and Mg₂Ni nanoparticles were formed, which created reaction surfaces and hydrogen diffusion channels. Synergic effects of MoNi on MgH₂ increased hydrogenation and dehydrogenation kinetics than the use of mono atomic Mo and Ni on MgH₂. The MoNi possessed high hydrogen absorption capacity which was able to dissociate hydrogen from MgH₂ by breaking Mg-H bonds. Magnesium hydride has been separately milled with 10 wt.% MoSe2@FeNi3 hollow nanospheres, FeNi₃, and MoSe₂ particles (Gao et al. 2020). All additives showed improved catalytic influence on the hydrogenation and dehydrogenation reactions of MgH₂ but MoSe₂@FeNi₃ offered the best performance. The combination of FeNi₃, and MoSe₂ was responsible to its excellent catalytic performance. Dehydrogenation of 10 wt.% MoSe2@FeNi3doped MgH₂ composite commenced from 194 °C; it could absorb 5.8 wt.% H₂ within 0.5 min at 150 °C. The combined additive propitiated the formation of active MgSe, Fe, Mg₂Ni and Mo species that were uniformly distributed on the surface of MgH₂. They were reported to have engendered the de/hydrogenation stability of MgH₂. Furthermore, Mg₂Ni turned MgH₂ to an effective pathway for hydrogen absorption and desorption. Molybdenum flakes have been used in improving the hydrogen storage capacity of MgH₂ (Cheng et al. 2023). Adding 7 wt.% Mo flakes to MgH₂ powder, hydrogen desorption commenced at 250 °C, which was 100° C lower than ordinary MgH₂ (350°C). The composites released 6.5 wt.% hydrogen for 20 min at 325 °C. At room temperature, the composite began to absorb hydrogen and 6 wt.% was absorbed at 250 °C within 10 min. Lamellar surfaces possessed by the flakes provided more diffusion pathways and contact surfaces which hastened diffusion of hydrogen at Mg/MgH₂ interfaces. Molybdenum remained stable during de/hydrogenation cycles and this made it impart an active catalytic effect on MgH₂.

3.5. Chromium (Cr)

Prolonged hydrogenation-dehydrogenation cycling was devised by Dehouche *et al.* (2002) to determine the thermal stability of MgH₂/0.2 mol % Cr₂O₃ naocomposite. At 350 $^{\circ}$ C, the composite possessed the best absorption kinetics after 17 cycles and it witnessed the least kinetics after 1000 cycles at 300 $^{\circ}$ C. Absorption rate of 47 kW/kg was maintained at 300 $^{\circ}$ C after 1000 cycles while desorption rate reduced to 4.5 kW/kg. During the cycling process, the crystallite size which was initially 21 nm

grew to 84 nm after 1000 cycles at the same temperature; the coarsening of the composites microstructure was responsible for the slow desorption rate. Coarsening of the microstructure was maintained up to 350 °C. Cycling effects on MgH₂ /10 wt.% Cr2O3 nanopowder composites was studied by Polanski et al. (2011). At 325 °C, the ball milled nanocomposite was put through 150 de/absorption cycles. Progressive reduction of nanocomposite's hydrogen storage capacity was witnessed after every 25 cycles; this ranged from 5.1 wt.% H₂ after the 1st cycle to 4.6 wt.% H₂ on the 150th cycle This reduction in nanocomposite's hydrogen storage capacity upon cycling was ascribed to the formation of agglomerates that arose from the sintering (as a result of long term cycling) of combining powders (MgH₂ and Cr₂O₃), reduction of Cr₂O₃ to Cr with formation of MgO and existence of Cr₂O₃ particles in Mg interface. Bimetallic Cr-V was confirmed effective for hydrogen sorption kinetics of MgH2.within room temperature and 300 °C (Zahiri et al. 2011). Within 1 h, 5 wt.% H₂ was absorbed at room temperature and 2 bar; the composite remained stable beyond 225 cycles with reduced degradation kinetics at 200 and 300 °C. The stability was attributed to positioning of nanocrystalline bimetallic Cr-V catalyst at Mg/MgH2 grain boundaries which 4. ended up coating the surface. With increasing cycling, the coating potency of Cr-V was dwindled and limited the cycling stability of MgH₂/Cr-V composite.

3.6. Iron (Fe)

Iron is regarded as an inexpensive and the most abundant transition metal on earth (Du *et al.* 2015). Several studies have proven that Fe can upgrade the hydrogen storage properties of MgH₂ in its pure form, as an alloy/compound and in composite with other materials. Yavari *et al.* (2005) ball milled MgH₂ with 3 wt.% iron (III) fluoride (FeF₃) nanoparticles. There was a partial transfer of fluorine (F) which formed protective intergranular MgF₂ with fine dispersed Fe nanoparticles in Mg or MgH₂ according to equation (5). The catalytic effect could have come from the Fe formed.

$$3MgH_2 + 2FeF_3 + 3MgF_2$$
 (intergranular) + $2Fe + 3H_2$ (5)

Bassetti et al. (2005) reported that when MgH₂ was ball milled with Fe particles in ball to powder ratios (BPR) of 1:1, 3:1 and 10:1, MgH₂, MgO and Mg were formed. When BPR was increased to 20:1, additional phase Mg₂FeH₆ was formed. Optimum microstructure that showed a uniform distribution of micron and submicron-sized Fe particles in the MgH₂ matrix was achieved at high milling energy (BPR of 10:1 and 20:1). Also, 10 wt.% Fe was the optimum catalyst concentration because contents lower than this led to the formation of poorly catalyzed regions; concentrations beyond this value yielded no improvement either. Ten weight percent of Fe and Iron (III) oxide (Fe₂O₃) were separately ball milled with MgH₂ for 3 h under 0.3 MPa H₂ pressure (Baum et al. 2007). Although mechanism of the improved ad/desorption properties of MgH₂ was not fully established, Fe acted as an active site for hydrogen sorption (Fe₂O₃ was also reduced to Fe). Iron (III) oxide displayed a better catalytic effect. It could be assumed here that a more reduced crystallite size offered by Fe₂O₃ may be responsible for this. Santos et al. (2014) discovered that using elemental Fe nanoparticles would give a better catalytic effect on MggH₂ hydrogen sorption performance than nanoparticles of FeNb (ferroniobium) alloy. During milling, it was observed that nanointerfaces comprising Mg (MgH₂)/Fe and Mg (MgH₂)/FeNb alloy were formed which acted as diffusion paths for hydrogen into the bulk particle. These interface according to the researchers, possessed high chemical interfacial energies. Formation of NbO₂ and Nb₂O₅ when milled with the alloy may

have been responsible for its lower sorption kinetics. The catalytic effect of as-synthesized graphene sheet templated Fe_3O_4 nanoparticles ($Fe_3O_4@GS$) on MgH₂ was examined by (Bhatnagar et al. 2016). The structure of as milled composite (MgH₂/ Fe₃O₄@GS) contained MgH₂, Fe, Fe₂O₃, MgO and Mg₁-_xFe_xO. Graphene sheet prevented the agglomeration of Fe nanoparticles (formed by reduction of Fe₃O₄), increased the surface area, durability and cycle stability (after 25 cycles of de/hydrogenation) of MgH₂. It was investigated that the layer of MgO was punctured by Mg_xFe_xO which created hydrogen diffusion pathway through its layer. In addition, electron transfer between Mg⁺ and H⁻ during de/hydrogenation was engendered by the multiple valence of Fe. Surfactant-assisted solvothermal method was used in preparing FeS2 micro-spheress which was ball milled with MgH₂ (Zhang et al. 2018). Adding 16.7 wt.% of the additive, the following reactions were confirmed to have taken place after milling:

$$2MgH_2 + FeS_2 \rightarrow 2MgS + Fe + 2H_2 \tag{6}$$

$$2MgH_2 + Fe + H_2 \rightarrow Mg_2FeH_6 \tag{7}$$

After hydrogenation at 350 °C, MgH₂ and Mg₂FeH₆ appeared as the major phases while their decomposition yielded metallic Mg and Fe after dehydrogenation at the same temperature. The composite could release 1.24 wt.% H2 at 350 °C within 1400 s while pure MgH₂ could release 0.18 wt.% H₂ under similar condition. The composite absorbed 3.71 wt.% H₂ within 1400 s at 250 °C, compared with 1.03 wt.% H2 of the as-milled pure MgH₂. Mg₂FeH₆ and MgS created diffusion pathway for H₂ diffusion. Sazelee et al. (2018) confirmed that MgO, Fe and Ba were formed after milling MgH_2 with 10 wt.% $BaFe_{12}O_{19}$ and these imparted synergic effects on hydrogen storage properties of MgH₂. Onset decomposition temperature for composite was 270 °C while as-milled MgH2 was 340 °C. At 150 °C, its absorption capacity was 4.5 wt.% H₂ after 10 min while for the additive-free MgH₂, it was 3.5 wt.% H₂. The composite could release 4.2 wt.% H₂ in 30 min while additive-free MgH₂ could do that 3.4 wt.% H₂within the same time. Iron based MOFs has been synthesized and introduced to MgH₂ by ball milling. (Ma et al. 2019). The improved hydrogen storage of the composite was ascribed to the formation of nano α -Fe particles which was uniformly distributed on de/hydrogenated Mg/MgH₂ surface. Ball milling was employed in creating homogenous dispersion of the individual catalyst: Fe, Fe_2O_3 and $Fe3O_4$ in MgH_2 powders (Gattia et al. 2019). Activation energy for decomposition as calculated by Kissinger plots showed that 10 h ball milled MgH₂/5 wt.% Fe possessed the least magnitude of 220.69 kJ/mol. Vales recorded for MgH₂/5 wt.% Fe₂O₃ and MgH₂/5 wt.% Fe₃O₄ were 231.90 and 304.45 kJ/mol respectively. Low activation energies maintained using Fe and Fe₂O₃ compared to that of uncatalyzed MgH₂ (241.46 kJ/mol) indicated that these two materials gave good catalytic effects on desorption kinetics of MgH₂. Gao et al. (2019) doped MgH₂ with 10 wt.% iron boride (FeB) by dry milling and wet milling (with cyclohexane) at room temperature. Both milling techniques improved the hydrogenation and dehydrogenation performance of MgH₂ compared to additive-free MgH₂ as the in situ formed Fe and B served as active species during the process. Wet milling yielded smaller particles than dry milling and this was responsible for its better performance. Iron nanosheets have been synthesized to act as catalystt on MgH₂ (Zhang et al. 2019). Adding 5 wt.% Fe nanosheets made the activation energy for the dehydrogenation reaction to be 40.7 kJ/mol, which was 85.2 kJ/mol lower than the catalyst- free MgH₂. Within 10 min, 6 wt.% H₂ was absorbed by the composite at 200 °C while 2.3 wt.% H₂ was taken up after 45 min at the same temperature. It was noticed that during the first

hydrogenation and dehydrogenation processes, the Fe nanosheets became ultrafine nanoparticles on MgH₂; this created more active sites in the cycles that followed. At the onset of adding Fe nanosheets, Mg-H bond was broken. Catalytic influence of nanostructured Fe₇S₈ (pyrhotite) on hydrogen sorption properties of MgH₂ was studies by Cheng et *al.* (2021). Doping the parent hydride with 16.7 wt.% Fe_7S_8 and ball milling, 4 wt.% H₂ was absorbed at 200 °C within 1800 s; undoped MgH₂ had the capacity to absorb 1.847 wt.% H₂ at the same temperature and time. Also, within 1800 s and 350 °C, 4.403 and 2.479 wt.% H₂ were released by MgH₂/Fe₇S₈ composite and MgH₂ respectively. The Fe₇S₈ catalyzed MgH₂ composite began to desorb hydrogen at a much lower temperature (147 °C) compared to as milled MgH₂ (437 °C), Improvements on the hydrogen storage performance of MgH₂ by the catalyst was credited to the formations of MgS and Fe from the reacting materials that occurred during ball milling. Synthesized Fe nanoparticles were ball milled with MgH₂ to tailor its hydrogen storage performance (Song et al. (2022). Magnesium hydride remained dominant after ball milling and hydrogenation while Mg phase was formed in the dehydrogenated phase. The existence of stable Fe in the three stages was responsible for the enhanced absorption and desorption of Mg/MgH₂ system as it acted as an active catalytic site during these processes. The composite retained 93.4% of its hydrogen capacity after the 20th cycle. At this point, grain growth in MgH₂ and Fe catalyst occurred which was responsible for capacity loss and kinetics reduction. Soni et al. (2023) reported effect of Fe nanoparticles and hollow carbon spheres composite on the hydrogen storage properties of MgH₂. During hydrogenation and dehydration cycles, the valence state of Fe was converted from +3 to +2 and this was responsible for the improved hydrogen storage properties of MgH2.

3.7. Cobalt (Co)

The modification of MgH₂ hydrogen sorption potency has been achieved by doping with combined oxides of Co and Ni (Cabo et al. 2011). Addition of 5 wt.% mesoporous NiO increased the desorption rate 7 times greater than MgH₂ with reduced sorption activation energy. Addition of nanoporous Co₃O₄ showed a minimal improvement while nanoporous NiCo2O4 imparted property that was in between MgH₂/NiO and MgH₂/ Co₃O₄. The role of CoFe₂O₄ nanoparticles on the dehydrogenation of MgH₂ was demonstrated by Shan et al. (2014). Ball milled MgH₂/ 7 mol% CoFe₂O₄ composite began to desorb hydrogen at 160 °C and this was 200 °C less than the onset desorption temperature of additive-free MgH₂. It was observed that during dehydrogenation, CoFe₂O₄ reacted with MgH₂ to form a ternary combination of Co₃Fe₇, MgO and Co; these were affirmed to catalyze the decomposition of MgH₂. Hierarchical Co@C nanoflowers have been reported to create more hydrogen diffusion channels and active catalytic sites that aided the reduction of hydrogen desorption temperature of MgH₂ (Li et al. 2017). The hierarchical Co@C nanoflowers were synthesized by employing a simple route that was based on a low temperature solid-phase reaction; it was milled with MgH₂ for 5 h under 1 MPa H₂. Onset desorption temperature of the composite (201 °C) was 99 °C lower when compared with asmilled MgH₂. Within 30 min, the composite released 5.74 wt.% H_2 within 30 min and at 300 °C , 6.08 wt.% H_2 was released in 60 min. On the other hand, as-milled MgH₂ could release 0.37 wt.% H₂ within 30 min; at 300 °C, 1.20 wt.% H₂ was released in 60 min. Gao et al. (2020) used 10 wt.% CoFeB/CNTs as an additive to improve de/hydrogenation behaviours of MgH₂. This was actualized by in situ formed stable Co₃MgC, Fe, CoFe and B which created active nucleation sites for

de/hydrogenation reactions. In addition to the formation of these phases, uniform distributions of Co, B, Fe and C in the composite contributed to its good cyclic stability. Hydrolysis of MgH_2 in the presence of 2.5 – 10 wt.% CoCl₂ to produce hydrogen was executed by Filiz (2021). It was concluded that the best performance in terms of kinetics of hydrogen generation was displayed using CoCl₂ solution with a concentration of 6.55 wt.%. Core-shell CoNi@C bimetallic nanoparticles (MOFs) were introduced to MhH₂ to improve its hydrogen storage properties (Zhao et al. 2021). During dehydrogenation, Mg₂Co and Mg₂Ni were formed as the composite desorbed 5.83 wt.% H₂ at 275 °C within 1800 s. During hydrogenation, Mg₂Co and Mg₂Ni were transformed to Mg₂CoH₅ and Mg₂NiH₄. The composite could absorb 4.83 wt.% H₂ within 1800 s at 100 °C. Hydrogen dissociation and recombination were hastened as a result of the reversible phase transitions of Mg₂Co/ Mg₂CoH₅ and Mg₂Ni/Mg₂NiH₄. Heat conduction during the thermal cycles was facilitated by the good thermal conductive feature of carbon and this hindered agglomeration of nanoparticles. Carbon also provided a confinement effect which also aided the stability of MgH₂ during de/hydrogenation cycles. Ali et al. (2022) doped MgH₂ with 10 wt.% CoTiO₃. Hydrogen was desorbed at 270 °C, which was lower than that of MgH₂ that occurred at 340 °C. Within the first 10 min, 6.4 wt.% H₂ was adsorbed. Activation energy of MgH₂ was measured to be 135 kJ/mol while on adding CoTiO₃, it reduced to 104.6 kJ/mol. In situ formation of MgTiO₃, CoMg₂, CoTi₂, and MgO formed during heating elevated the hydrogen storage performance of MgH₂. Clusters of Mg₂NiH₄/Mg₂CoH₅ interfaces were reportedly formed after mechanically milling MOF-derived bimetallic Co@NiO catalyst with MgH₂ for 6 h (Zhang et al. 2022a). The interfaces were formed on the surface of MgH₂ and they were confirmed to create low energy barrier hydrogen diffusion channels which culminated in rapid release and uptake of hydrogen. Zhang et al. (2022b) doped Co particles into MgH₂ via 2 h ball milling. Cobalt particles were uniformly distributed on the surface of MgH₂ and this created active sites and paths for hydrogen diffusion. De/hydrogenation kinetics of MgH₂ was hastened as a result of Mg₂Co/Mg₂CoH₅ phase during hydrogenation that existed change and dehydrogenation. When 10 wt. % CoMoO₄/rGO nanosheets was milled with MgH₂ for 4 h (Zhang *et al.* (2022c), these three components - Mo, Co7Mo6 and MgO were formed. They had a synergic catalytic effect on improving the hydrogen storage capacity of MgH₂. The composite began to release hydrogen at 204 °C, while as-milled MgH₂ commenced desorption at 330 °C. The combined catalytic effect of the generated components was also responsible for accelerated hydrogen diffusion.

3.8. Zirconium (Zr)

Hydrogen storage features of MgH₂ separately catalyzed with 7 wt.% ZrF₄ and NbF₅ after series of cyclic loading were researched by Malka et al. (2011). At 325 °C, MgH₂/ZrF₄ maintained 5 wt.% H₂ after 30 cycles while MgH₂/NbF₅ could hold 4.5 wt.% H_2 ; thus implied that the former composite possessed a better hydrogen sorption stability at this temperature. Existence of stable ZrF₄ nanoparticles in the structure of MgH₂ was found responsible for a better hydrogen storage capacity. Reduction in the stability of MgH₂/ZrF₄ however was attributed to the gradual grain size increase by virtue of extended number of cycling. At this point, it was reported that more stable MgH₂/Mg phases were formed and contributed to formation of large grain sizes. Shahi et al. (2015) introduced ZrFe₂ and its hydride (ZrFe₂H_x) to investigate hydrogenation features of MgH_2 by producing $MgH_2/ZrFe_2$ and MgH₂/ ZrFe₂H_x nanocomposites after milling. Intermetallic $ZrFe_2$ was converted to fine powders of $ZrFe_2H_x$ via hydrogenation; it was noted to be a more useful catalyst as it was more homogenously distributed after milling. Desorption temperatures for as received MgH₂, MgH₂/ZrFe₂ and MgH₂ /ZrFe₂H_x were 410, 368 and 290 °C respectively. At 280 °C and 2MPa H₂ pressure, ball-milled MgH₂ could absorb 4.5 wt.% H₂ after 1 h while MgH_2 / $ZrFe_2$ and MgH_2 / $ZrFe_2H_x$ nanocomposites could absorb 4.6 and 5.2 wt.% H₂ respectively under the same condition.; it was further confirmed that MgH₂/ $ZrFe_2H_x$ absorbed 4.7 wt.% H₂ within the first 20 min. The catalyst hydride was also found to be responsible for a reduced activation energy (61.4 kJ/mol) because it facilitated easy dissociation of hydrogen molecules to atoms and transferred it to it to Mg/ZFe2H_x. Kumar et al. (2027) reported that when ZrCl₄ was used as a catalyst in improving on hydrogen sorption kinetics of MgH₂ via milling, metallic Zr or ZnCl₃ was formed. Either phase according to the researchers modified the surface of MgH₂ which was responsible for its hydrogenation and dehydrogenation kinetics. Activation energies of 40 and 92 kJ/mol were recorded for MgH₂/ZnCl₄ hydrogenation and dehydrogenation respectively while 70 kJ/mol (hydrogenation) and 150kJ/mol (dehydrogenation) were 0bserved for catalystfree MgH₂. Refined grains possessed by catalyzed MgH₂ (via the use of ZnCl₄) was also noted to be responsible its improved hydrogenation and dehydrogenation kinetics. The refinement of grains occurred during ball milling and dehydrogenation. The product ZH_x/MgO nanoparticles were confirmed to be formed after ball milling of MgH₂ and ZrO₂ for 20 h (Pukazhselvan et al. 2022). This phase was known to be responsible for the improvement of MgH₂ sorption kinetics and stability.

3.9. Niobium (Nb)

A metastable NbH was formed by the hydrogenation and dehydrogenation of Mg from a 20 h ball milled MgH₂/5 wt.% Nb composite (Huot et al. 2003). The formation of NbH decreased the energy barrier for MgH₂ dehydrogenation. Effects of cyclic heating on milled MgH₂/2mol% Nb₂O₅ was carried out by Friedrichs et al. (2006). After hydrogen had desorbed from MgH₂, Nb₂O₅ was reduced to Nb; dissociated Mg reacted with oxygen from the additive (Nb₂O₅) to form MgO and MgNb₂O_{3.67}. These three components prevented MgH₂ grain growth during heating and thus improved its hydrogen sorption kinetics. Jin et al. (2007b) ball milled MgH2 with 1 mol. % of niobium (V) fluoride (NbF5) for 15 min. The additive was reported to have melted during the milling period and a liquidsolid reaction between the two combining materials led to the formation of fin-like NbH layers along nanocrystalline MgH₂ grain boundaries. The grain growth of nanocrystalline MgH₂ was subdued by the NbH layers and this sustained the additive's catalytic effect up to 10 de/hydrogenation cycles. Role of F in MgF₂ product (during dehydrogenation reaction) or Mg-H-F solid solution in the de/hydrogenation kinetics of MgH₂, according to the researchers, needed further investigations. Niobium (V) fluoride was confirmed by Luo et al. (2008) to have a profound influence on the de/hydrogenation kinetics and storage capacity of MgH₂. The composite which was processed by milling MgH₂ together with 2 mol % NbF₅ for 5 h could absorb 56 wt.% H₂ in in 60 min and within the same period, it could desorb 5 wt.% H₂. Results from XRD and XPS proved that Nb species with varying valence states between 0 and +5 was responsible for the improved kinetic performance of the composite. Further investigations on the active species and influence of F- in the de/hydrogenation reactions were recommended. Porcu et al. (2008) employed transmission electron microscopy (TEM) - based techniques to identify the structure and reaction between MgH₂ and Nb₂O₅. The TEM analysis showed that during milling, Nb₂O₅ broke into fragments and were embedded within MgH₂. The smallest fragments stuck to the MgH₂ grains and got embedded within the grain boundaries. This happened after the grains were welded into larger particles. Heating the two compounds yielded reduction of Nb₂O₅ to Nb₂O and MgO was formed. Inter diffusion of MgO and Nb₂O₅ yielded formation of the mixed oxide- MgNb₂O_{3.67}. Bi- metallic Nb-V film catalyst added to MgH₂ was recorded to enhance cycling stability, even beyond 500 its de/hydrogenation cycles without causing sorption kinetics distortions (Tan et al. 2012). To achieve this, investigators claimed that the surface catalyst distribution and its stability determined the cyclic stability of MgH₂. Ball milling was employed in doping nanosized amorphous NbHx nanoparticles into MgH₂ (Zhang et al. (2015). The composite absorbed 4 wt.% H₂ at 100 °C while at a higher temperature (300 °C), it absorbed 3.3 wt.% H₂. It was reported that the nanosized amorphous NbH_x acted as charge transfer between Mg^{2+} and H⁻, which played a major role in the improved hydrogen storage performance of MgH₂. Hydrogen storage of MgH₂/Nb₂O₅ composite was investigated by Pukazhselvan et al. (2016). Two different milling media- zirconia and steel, were used and the system was processed by mechanochemically reacting the combining compounds for 30 h. The product was characterized with Nb - dissolved MgO, which provided a catalytic effect on the hydrogen storage properties of MgH₂. Influence of high energy ball milling (HEBM) with isothermal catalytic synergic behaviour of 10 wt.% Nb2O5 and TiF3 on dehydrogenation of MgH₂ was investigated by Zhang et al. (2016). Dehydrogenation temperature of MgH₂/TiF₃ was 341 °C, which was 76 °C lower than as-received MgH₂; addition of Nb₂O₅ to MgH₂ resulted in hydrogen being released at a reduced temperature of 336 °C. A combination of these two catalysts to MgH₂ culminated in 310 °C desorption temperature. The non-isothermal synergetic catalytic effect of TiF₃ and Nb₂O₅ was attributed to electronic exchange reactions with hydrogen molecules, which improved the recombination of hydrogen atoms during dehydrogenation. A two-dimensional Nb₄C₃T_x (Mxene) synthesized via chemical exfoliation has been introduced to MgH₂ (Liu et al. 2019). Adding 5 wt.% of the additive to the matrix demonstrated good adsorption kinetics. Multilayer structure with OH- terminations and F terminations were generated on the surface of the additive. NbHx was formed after ball milling and de/hydrogenation cycles. The NbHx was found to be evenly dispersed in the matrix. Onset temperature for ball milled MgH₂ was approximately 297 °C while that of the composite was recorded as 151 °C. Within 800 °C, the composite releases H₂ completely within 800 s. Yahya et al. (2018) ball milled 1-20 wt.% K_2NbF_7 with MgH₂ powders. The composite comprising MgH₂/5 wt.% K₂NbF₇ was the most effective as it lowered the dehydrogenation temperature of MgH₂ to 225 °C. This composite absorbed 5.1 wt.% H2 after 43 s at 320 °C while asmilled could absorb this quantity within 76 s at the same temperature. At lower temperature, the composite absorbed 4.7 wt.% H₂ after 30 min while as-milled MgH₂ could absorb 0.7 wt.% at the same time. The active species that led to the improvement of MgH₂ hydrogen storage properties were KH and Nb that were formed during the process. Hollow spherical o-Nb2O5 made of 50 nm wall thickness and mossy surfaces was synthesized and ball milled with MgH₂ for 24 h to improve its hydrogen storage properties (Zhang et al. 2020). The composite (MgH₂/7 wt.% o- Nb₂O₅) desorbed 6.4 wt.% H₂ at 195 °C; at room temperature, the dehydrogenated composite began to reabsorb hydrogen, and 5.7 wt.% H2 was achieved at 150 °C. It was reported that high valence Nb⁺⁵ state of Nb₂O₅ was gradually lowered to Nb+4 and Nb+2 and finally Nb0 during

Fig 6. Simple possible reactions involving MgH_2 with transition metals/transition metal-based compounds, M= Transition metal; X = one of H, O, C, S or elements in group VII on the periodic table, N.B. Equation could be complex if M is a transition metal – based alloy or if additives are more than one.

milling followed by first dehydrogenation cycle. It was concluded that the in situ formed low-valence Nb acted as de facto catalytic species which lowered the kinetic barriers of MgH₂ hydrogen sorption. This culminated in its decreased dehydrogenation/hydrogenation temperatures Nanoparticles of V₄Nb₁₈O₅₅ have been synthesized to aid the catalytic effect of Nb₂O₅ on MgH₂ hydrogen storage properties (Meng et al. 2022). Desorption temperature of MgH₂ was reduced to 225 °C; synergistic effect between both V5+ and Nb5+ improved hydrogen desorption properties of MgH₂. When MgH₂ was doped with 5 wt.% Nb nanocatalyst (prepared via surfactant assisted ball milling technique), stable NbH was formed; this acted as active catalytic unit diminished the energy obstacle and boost MgH₂ kinetics (Nyahuma et al. 2022). The composite began to release hydrogen at 186.7 °C, while additive- free s MgH₂ stated hydrogen release at 347 °C. Niobium (V) oxide nanoparticles grafted on MOF (Nb2O5@MOF) has been synthesized and doped into MgH₂ (Zhang et al. (2023), A slight loss in composite's hydrogen storage capacity was attributed to the formations of MgO and NbO emanating from the reactions between MgH₂ and Nb₂O₅. However, there was a synergetic effect between Nb₂O₅ and MOF which enhanced hydrogen drift between Mg/MgH₂ boundaries; it also prevented Mg/MgH₂ from agglomeration and growth. Ultrafine and steadily dispersed NbC (niobium carbide) nanoparticles enclosed by carbon substrate (NbC/C) was produced via carbon thermal shock method and ball milled with MgH₂ (Jia et al. 2023). Particles of MgH₂ were refined by NbC while the substrate (carbon) destabilized Mg-H bond. In addition, multi valence electron transfer existed between positively charged Nb ions and NbH_x (formed in situ). In addition, the electron transfer also occurred between Mg and H atoms which influenced Mg/MgH2 reversible transformation. These were the outcomes of the catalytic influence of NbC/C.

4. Summary and Conclusion

Researches involving the use of Ti, Ni, V, Mo, Fe, Cr, Co, Zr and Nb in their monoatomic forms, alloys (with transition or other metals), intermetallics and composites to better MgH₂ hydrogen storage features have been reviewed. These transition metalbased additives are often doped in MgH₂ via ball milling in the presence or absence of hydrogen. Depending on the milling time and other conditions considered, reaction often occurs during milling which culminates in the formation of new phase(s) (see Figure 6); in situations where combining materials remain unchanged after milling, transformation occurs during de/hydrogenation which engenders the existence of new phase(s). Asides causing uniform distribution of additives throughout MgH₂ matrix, mechanical milling has also been proven to create suitable surface area that acts as catalyst sites. In addition to the prevalence of some monoatomic transition metal after hydrogenation-dehydrogenation cycles, phases such as TiH₂, Mg₂Ni, Mg₂NiH₄, V₂O, VH₂, MoSe, Mg₂FeH₆, NbH and Nb2O5 have imparted catalytic effects through creation of diffusion channels for hydrogen by weakening Mg – H bond strength. This reduces hydrogen de/sorption temperatures, remove energy barrier for de/hydrogenation (which results to activation energy reduction) and in turn, hastens MgH₂ hydrogen absorption and desorption kinetics. Grain growth of MgH₂ can also be prevented by the catalysts during heating to improve its hydrogen storage capacity. Transition metals such as Ti, Fe and Nb can exist in multiple valence states and they often aid charge transfer between Mg⁺ and H⁻ to positively influence hydrogen sorption kinetics. It is also observed that the hydrogen storage operation of MgH₂/transition metal -based materials will depend on the kind of additive used (including formulations), MgH₂/additive mixing ratio, ball milling time, ball-to-combining materials ratio and de/hydrogenation cycle

(including temperature and holding time involved). There is need for more investigations to be carried out on nanostructured binary and ternary transition metal – based materials (alloys, intermetallics and or their combinations) as additives to amplify the hydrogen storage properties of MgH₂. In addition, the already established compounds (TiH₂, Mg₂Ni, Mg₂NiH₄, V₂O, VH₂, MoSe, Mg₂FeH₆, NbH, and Nb₂O₅) formed after ball milling or de/hydrogenation can be processed and directly doped into MgH₂.

References

- Aceves, S.M., Frias, J.M., & Villazana, G. (2000). Analytical and Experimental Evaluation of Insulated Pressure Vessels for Cryogenic Hydrogen Storage. *International Journal of Hydrogen Energy*, 25(11), 1075-1085; https://doi.org/10.1016/S0360-3199(00)00016-1
- Aceves, S.M., Loza, F.E., Orozco, E.L., Ross, T.O., Weisberg, A.H., Brunner, T.C., & Kircher, O. (2010). High-density Automotive Hydrogen Storage with Cryogenic Capable Pressure Vessels. *International Journal of Hydrogen Energy*, 35(3), 1219-1226; https://doi.org/10.1016/j.ijhydene.2009.11.069
- Al Ghafri, S.Z.S., Swanger, A., Jusko, V., Siahvashi, A., Perez, F., Johns, M.L., & May, E.F. (2022). Modelling of Liquid Hydrogen Boil-Off. *Energies*, 15(3), 1-16; https://doi.org/10.3390/en15031149
- Ali, N.A., Yahya, M.S., Sazelee, N., Din, M.F.M., & Ismail, M. (2022). Influence of Nanosized CoTiO3 Synthesized via a Solid-State Method on the Hydrogen Storage Behavior of MgH2. *Nanomaterials*, 12(7), 1-18; https://doi.org/10.3390/nano12173043
- An, C., Liu, G., Li, L., Wang, Y., Chen, C.C., Wang, Y., Jiao, L., & Yuan, H. (2014). In Situ Synthesized One-Dimensional Porous Ni@C Nanorods as Catalysts for Hydrogen Storage Properties of MgH2. *Nanoscale*, 6, 3223–3230; 10.1039/C3NR05607D
- Assfour, B., Leoni, S., Seifert, G., & Baburin, I.A. (2011). Packings of Carbon Nanotubes – New Materials for Hydrogen Storage. *Advanced Materials*, 23, 1237–1241; https://doi.org/10.1002/adma.201003669
- Barison, S., Agresti, F., Russo, S.L., Maddalena, A., Palade, P., Principi, G., & Torzo, G. (2008). A Study of the LiNH₂–MgH₂ System for Solid State Hydrogen Storage. *Journal of Alloys and Compounds*, 459(1–2), 343-347; https://doi.org/10.1016/j.jallcom.2007.04.278
- Baroutaji, A., Arjunan, A., Ramadan, A., Alaswad, A., Achour, H., Abdelkareem, M.A., & Olabi, A.G. (2022). Nanocrystalline Mg₂Ni for Hydrogen Storage. *Encyclopedia of Smart Materials*, 2, 366-370; https://doi.org/10.1016/B978-0-12-815732-9.00061-9
- Bassetti, A., Bonetti, E., Pasquini, L., Montone, A., Grbovic, J., & Antisari, M.V. (2005). Hydrogen Desorption from Ball Milled MgH₂ Catalyzed with Fe. *The European Physical Journal B*, 43, 19-27; https://doi.org/10.1140/epjb/e2005-00023-9
- Baum L., Meyer, L., & Ze'lis, M. (22007). Hydrogen Storage Properties of the Mg/Fe System. *Physica B*, 389,189–192; https://doi.org/10.1016/j.physb.2006.07.054
- Ben, T., Pei, C., Zhang, D., Xu, J., Deng, F., Jing, X., & Qiu, S. (2011). Gas Storage in Porous Aromatic Frameworks (PAFs). *Energy & Environmental Science*, 4, 3991–3999; https://doi.org/10.1039/C1EE01222C
- Berezovets, V.V., Denys, R.V., Zavaliy, I.Y., & Kosarchyn, Y.V. (2022).Effect of Ti-Based Nanosized Additives on the Hydrogen Storage Properties of MgH2. *International Journal of Hydrogen Energy*, 47(11), 7289-7298; https://doi.org/10.1016/j.ijhydene.2021.03.019
- Bhatnagar, A., Johnson, J.K., Shaz, M.A., & Srivastava, O.N. (2018). TiH2 as a Dynamic Additive for Improving the De/Rehydrogenation Properties of MgH2: A Combined Experimental and Theoretical Mechanistic Investigation. *The Journal of Physical Chemistry C*, *122*(37), 21248–21261; https://doi.org/10.1021/acs.jpcc.8b07640
- Bhatnagar, A., Pandey, S.K., Vishwakarma, A.K., Singh, S., Shukla, W., Soni, P.K., Shaz, M.A., & Srivastava, O.N. (2016).
 Fe₃O₄@Graphene as a Superior Catalyst for Hydrogen De/Absorption from/in MgH₂/Mg. *Journal of Materials Chemistry* A, 4, 14761–14772; https://doi.org/10.1039/c6ta05998h

- Cabo, M., Garroni, S., Pellicer, E., Milanese, C., Girella, A., Marini, A., Rossinyol, E., Suriñach, S., & Baró, M.D. (2011). Hydrogen Sorption Performance of MgH₂ Doped with Mesoporous Nickeland Cobalt-Based Oxides. *International Journal of Hydrogen Energy*, 36(9), 5400-5410; https://doi.org/10.1016/j.ijhydene.2011.02.038
- Chen, F., Liang, J., Zhao, J., Tao, Z., & Chen, J. (2008). Biomass Waste-Derived Microporous Carbons with Controlled Texture and Enhanced Hydrogen Uptake. *Chemistry of Materials*, 20(5), 1889– 1895; https://doi.org/10.1021/cm702816x
- Chen, G., Zhang, Y., Chen, J., Zhu, Y., & Li, L. (2018). Enhancing Hydrogen Storage Performances of MgH₂ by Ni Nano-Particles Over Mesoporous Carbon CMK-3. *Nanotechnology*, 29, 1-11; https://doi.org/10.1088/1361-6528/aabcf3
- Chen, M., Pu, Y., Li, Z., Huang, G., Liu, X., Lu, Y., Tang, W., Xu, L., Liu, S., Yu, R., & Shui1, J. (2020). Synergy between Metallic Components of MoNi Alloy for Catalyzing Highly Efficient Hydrogen Storage of MgH₂. *Nano Research*, 1-7; https://doi.org/10.1007/s12274-020-2808-7
- Chen, R., Wang, X., Xu, L., Chen, L., Li, S., & Chen, C. (2010).An Investigation on the Reaction Mechanism of LiAlH₄– MgH₂ Hydrogen Storage System. *Materials Chemistry and Physics*, *124*(1), 83-87; https://doi.org/10.1016/j.matchemphys.2010.05.07
- Chen, Y., Wu, C.Z., Wang, P., & Cheng, H.M. (2006). Structure and Hydrogen Storage Property of Ball-Milled LiNH₂/MgH₂ Mixture. *International Journal of Hydrogen Energy*, 31(9), 1236-1240; https://doi.org/10.1016/j.ijhydene.2005.09.001
- Cheng, C., Zhang, H., Song, M., Wu, F., & Zhang, L. (2023). Research Regarding Molybdenum Flakes' Improvement on the Hydrogen Storage Efficiency of MgH₂. *Metals*, 13, 1-11; https://doi.org/10.3390/met13030631
- Cheng, Y., Bi, J., & Zhang, W. (2021). The Hydrogen Storage Properties of MgH₂–Fe₇S₈ Composites. *Materials Advances*, 2, 736-742; 10.1039/d0ma00818d
- Croston, D.L., Grant, D.M., & Walker, G.S. (2010). The Catalytic Effect of Titanium Oxide Based Additives on the Dehydrogenation and Hydrogenation of Milled MgH₂. *Journal of Alloys and Compounds*, *492*(1–2), 251-258; https://doi.org/10.1016/j.jallcom.2009.10.19
- Cui, J., Liu, J., Wang, J., Ouyang, L., Sun, D., Zhu, M. & Yao, X. (2014). Mg–TM (TM: Ti, Nb, V, Co, Mo or Ni) Core–Shell Like Nanostructures: Synthesis, Hydrogen Storage Performance and Catalytic Mechanism. *Journal of Materials Chemistry A*, *2*, 9645– 9655; https://doi.org/10.1039/C4TA00221K
- Cui, J., Wang,, H., Liu, J., Ouyang, L., Zhang, Q., Sun, D., Yao, X., & Zhu, M. (2013). Remarkable Enhancement in Dehydrogenation of MgH₂ by a Nano-Coating of Multi-Valence Ti-Based Catalysts. *Journal of Materials Chemistry A*, *1*, 5603–5611; https://doi.org/10.1039/C3TA01332D
- Da- Conceição, M.O.T., Brum, M.C., & Dos Santos, D.S. (2014). The Effect of V, VCl₃ and VC Catalysts on the MgH₂ Hydrogen Sorption Properties. *Journal of Alloys and Compounds, 586*, S101– S104; https://doi.org/10.1016/j.jallcom.2012.12.131
- Dan, L., Hu, L., Wang, H., & Zhu, M. (2019). Excellent Catalysis of MoO₃ on the Hydrogen Sorption of MgH₂. International Journal of Hydrogen Energy, 44(55), 29249-29254; https://doi.org/10.1016/j.ijhydene.2019.01.285
- Dehouche, Z., Goyette, J., Bose, T.K., & Schulz, R. (2003). Moisture Effect on Hydrogen Storage Properties of Nanostructured MgH₂– V–Ti Composite. *International Journal of Hydrogen Energy*, 28,(9), 983-988; https://doi.org/10.1016/S0360-3199(02)00196-9
- Dehouche, Z., Klassen, T., Oelerich, W., Goyette, J., Bose, T.K., & Schulz, R. (2002). Cycling and Thermal Stability of Nanostructured MgH₂–Cr₂O₃ Composite for Hydrogen Storage. *Journal of Alloys* and Compounds, 347(12), 319-323; https://doi.org/10.1016/S0925-8388(02)00784-3
- Doğan, M., Sabaz, P., Bicil, B., Kizilduman, B.K.K., & Turhan, Y. (2020). Activated Carbon Synthesis from Tangerine Peel and its Use in Hydrogen Storage. *Journal of the Energy Institute*, 95(6), 2176-2185; https://doi.org/10.1016/j.joei.2020.05.011
- Dong, J., Wang, X., Xu, H., Zhao, Q., & Li, J. (2007). Hydrogen Storage in Several Microporous Zeolites. International Journal of Hydrogen Energy, 32, 4998 – 5004; https://doi.org/10.1016/j.ijhydene.2007.08.009

- Du, H., Liu, G., Da, Z., & Min, E. (1999). Synthesis, Characterization and Catalytic Properties of VS-2. *Studies in Surface Science and Catalysis*, 105, 741-746; https://doi.org/10.1016/S0167-2991(97)80624-6
- Du, X., Ding, Y., Song, F., Ma, B., Zhao, J., & Song, J. (2015). Efficient Photocatalytic Water Oxidation Catalyzed by Polyoxometalate [Fe₁₁(H₂O)₁₄(OH)₂(W₃O₁₀)₂- (α-SbW₉O₃₃)₆]²⁷- Based on Abundant Metals. *Chemical Communications Journal*, *51*, 13925-13928; 10.1039/c5cc04551g
- Edalati, K., Uehiro, R., Ikeda, Y., Li, H.W., Emami, H., Filinchuk, Y., Arita , M., Sauvage, X., Tanaka, I., Akiba, E., & Horita, Z. (2018). Design and Synthesis of a Magnesium Alloy for Room Temperature Hydrogen Storage. *Acta Materiala*, *149*, 88-96; https://doi.org/10.1016/j.actamat.2018.02.033
- Edwards, P.P., Kuznetsov, V.I., & David, W.T.F. (2007). Hydrogen Energy. *Philosophical Transactions of the Royal Society A*, 365, 1043– 1056; https://doi.org/10.1098/rsta.2006.1965
- El-Eskandarany, M.S., Al-Ajmi, F., Banyan, M., & Al-Duweesh, A. (2019). Synergetic Effect of Reactive Ball Milling and Cold Pressing on Enhancing the Hydrogen Storage Behavior of Nanocomposite MgH₂/10 wt% TiMn₂ binary system. *International Journal of Hydrogen Energy*, 44(48), 6428-26443; https://doi.org/10.1016/j.ijhydene.2019.08.093
- Farha, O.K., Yazaydin , A.O., Eryazici, I., Malliakas, C.D., Hauser, B.G., Kanatzidis, M.G., Nguyen, S.T., Snurr, R.Q., & Hupp, J.T. (2010). De Novo Synthesis of a Metal–Organic Framework Material Featuring Ultrahigh Surface Area and Gas Storage Capacities. *Nature Chemistry*, 2, 944-948; https://doi.org/10.1038/nchem.834
- Filiz, B.C. (2021). Investigation of the Reaction Mechanism of the Hydrolysis of MgH₂ in CoCl₂ Solutions under Various Kinetic Conditions. *Reaction Kinetics, Mechanisms and Catalysis,* 132, 93-109; https://doi.org/10.1007/s11144-020-01923-4
- Friedrichs, O., Zinsou, F.A., Fernández, J.R.A., Sánchez-López, J.C., Justo, A., Klassen, T., Bormann, R., & Fernández, A. (2006). MgH₂ with Nb₂O₅ as Additive, for Hydrogen Storage: Chemical, Structural and Kinetic Behavior with Heating. *Acta Materialia*, *54*(1), 105-110; https://doi.org/10.1016/j.actamat.2005.08.024
- Fu, Y., Ding, Z., Ren, S., Li, X., Zhou, S., Zhang, L., Wang, W., Wu, L., Li, Y., & Han, S. (2020). Effect of In-Situ Formed Mg₂Ni/Mg₂NiH₄ Compounds on Hydrogen Storage Performance of MgH₂. *International Journal of Hydrogen Energy*, 45(52), 28154-28162; https://doi.org/10.1016/j.ijhydene.2020.03.089
- Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O., Snurr, R.Q., Keeffe, M.O., Kim, J., & Yaghi, O.M. (2010). Ultrahigh Porosity in Metal-Organic Frameworks. *Science*, 329, 424–428; 10.1126/science.1192160
- Gao, H., Liu, Y., Zhu, Y., Zhanhg, J., & Li, L. (2020). Catalytic Effect of Sandwich-Like Ti₃C₂/TiO₂(A)-C on Hydrogen Storage Performance of MgH₂. Nanotechnology, 31, 1-11; https://doi.org/10.1088/1361-6528/ab5979
- Gao, H., Shi, R., Zhu, J., Liu, Y., Shao, Y., Zhu, Y., Zhang, J., Li, L., & Hu, X. (2021). Interface Effect in Sandwich Like Ni/Ti₃C₂ Catalysts on Hydrogen Storage Performance of MgH₂. *Applied Surface Science*, 564, 1-8; https://doi.org/10.1016/j.apsusc.2021.150302
- Gao, S., Wang, H., Wang, X., Liu, H., He, T., Wang, Y., Wu, C., Li, S., & Yan, M. (2020). MoSe₂ Hollow Nanospheres Decorated with FeNi₃ Nanoparticles for Enhancing the Hydrogen Storage Properties of MgH₂. *Journal of Alloys and Compounds, 830*, 1-12; https://doi.org/10.1016/j.jallcom.2020.154631
- Gao, S., Wang, X., Liu, H., He, T., Wang, Y., Li, S., & Yan, M. (2019). Effects of Nano-Composites (FeB, FeB/CNTs) on Hydrogen Storage Properties of MgH₂, *Journal of Power Sources*, 438, 227006; https://doi.org/10.1016/j.jpowsour.2019.227006
- Gao, S., Wang, X., Liu, H., He, T., Wang, Y., Li, S., & Yan, M. (2020). CNTs decorated with CoFeB as a Dopant to Remarkably Improve the Dehydrogenation/Rehydrogenation Performance and Cyclic Stability of MgH₂. *International Journal of Hydrogen Energy*, 45(53), 28964-28973; https://doi.org/10.1016/j.ijhydene.2020.07.148
- Gattia, D.M., Jangir, M., & Jain, I.P. (2019). Study on Nanostructured MgH₂ with Fe and its Oxides for Hydrogen Storage Applications. *Journal of Alloys and Compounds, 801*,188-191; https://doi.org/10.1016/j.jallcom.2019.06.067
- Han, Z., Zhou, S., Chen, H., Nu, H., & Wang, N. (2017). Enhancement of the Hydrogen Storage Properties of Mg/C Nanocomposites Prepared by Reactive Milling with Molybdenum. *Journal of Wuhan*

University of Technology-Materials Science Edition, 299-304; 10.1007/s11595-017-1596-8

- Han, Z., Zhou, S., Wang, N., Zhang, Q., Zhang, T., & Ran, W. (2016). Crystal Structure and Hydrogen Storage Behaviors of Mg/MoS₂ Composites from Ball Milling. Journal of Wuhan University of Technology-Materials Science Edition, 773-778; 10.1007/s11595-016-1444-2
- Hanada, N., Ichikawa, T., & Fujii, H. (2005). Catalytic Effect of Ni nano-Particle and Nb Oxide on H-Desorption Properties in MgH₂ Prepared by Ball Milling. *Journal of Alloys and Compounds*, 404–406, 716-719; https://doi.org/10.1016/j.jallcom.2004.12.166
- Hao, S., & Sholl, D.S. (2012). Effect of TiH₂ Induced Strain on Thermodynamics of Hydrogen Release from MgH₂. The Journal of Physical Chemistry C, 116, 2045-2050; dx.doi.org/10.1021/jp210573a
- Hirscher, M. & Panella, B. (2007). Hydrogen Storage in Metal–Organic Frameworks. Scripta Materialia, 56, 809-812; https://doi.org/10.1016/j.scriptamat.2007.01.005
- Hong, F., Fu, H., Shi, W., Zhao, R., Li, R., Fan, Y., Liu, Z., Ding, S., Liu, H., Zhou, W., Guo, J., & Lan, Z. (2023). Application of Nitrogen-Doped Graphene-Supported Titanium Monoxide as a Highly Active Catalytic Precursor to Improve the Hydrogen Storage Properties of MgH₂. Journal of Alloys and Compounds, 960, 1-10; https://doi.org/10.1016/j.jallcom.2023.170727
- Hou, Q., Yang, X., & Zhang, J.(2021). Review on Hydrogen Storage Performance of MgH₂; Development and Trends. *Chemistry Europe*, 1589-1606; https://doi.org/10.1002/slct.202004476
- Hu, C., Zheng, Z., Si, T., & Zhang, Q. (2022). Enhanced Hydrogen Desorption Kinetics and Cycle Durability of Amorphous TiMgVNi₃-doped MgH₂. *International Journal of Hydrogen Energy*, 7(6,), 3918-3926; https://doi.org/10.1016/j.ijhydene.2021.11.010
- Huang, T., Huang, X., Hu, C., Wang, J., Liu, H., Ma, Z., Zou, J., & Ding, W. (2021). Enhancing Hydrogen Storage Properties of MgH₂ through Addition of Ni/CoMoO₄ Nanorods. *Materialstoday Energy*, 19, 1-11; https://doi.org/10.1016/j.mtener.2020.100613
- Huang, Z., Xia, K., Zheng, L., Han, B., Gao, Q., Wang, H., Li, Z., & Zhou, Z. (2017). Facile and Scalable Synthesis of Hierarchically Porous Graphene Architecture for Hydrogen Storage and High-Rate Supercapacitors. *Journal of Materials Science: Materials in Electronics*, 28, 17675-17681; https://doi.org/10.1007/s10854-017-7705-9
- Huot, J., Pelletier, J.F., Lurio, L.B., Sutton, M., & Schulz, R. (2003). Investigation of Dehydrogenation Mechanism of MgH₂–Nb Nanocomposites. *Journal of Alloys and Compounds*, *348*(1-2), 319-324; https://doi.org/10.1016/S0925-8388(02)00839-3
- Ismail, M., Zhao, Y., Xuebin, Y., & Dou, S.X. (2012). Improved Hydrogen Storage Performance of MgH₂ NaAlH₄ Composite by Addition of TiF₃. *International Journal of Hydrogen Energy*, 37(10), 8395-8401; https://doi.org/10.1016/j.ijhydene.2012.02.117
- Ismail, M., Zhao, Y., Xuebin, Y., Mao, J.F., & Dou, S.F. (2011). The Hydrogen Storage Properties and Reaction Mechanism of the MgH₂-NaAlH₄ Composite System. *International Journal of Hydrogen Energy*, 36(15), 9045-9050; https://doi.org/10.1016/j.ijhydene.2011.04.132
- Jia, Y., Han, S., Zhang, W., Zhao, X., Sun, P., Liu, Y., Shi, H., & Wang, J. (2013). Hydrogen Absorption and Desorption Kinetics of MgH₂ Catalyzed by MoS₂ and MoO₂. *International Journal of Hydrogen Energy*, 38(5), 2352-2356; https://doi.org/10.1016/j.ijhydene.2012.12.018
- Jia, Y., Wang, X., Hu, L., Xiao, X., Zhang, S., He, J., Qi, J., Lv, L., Xu, F., Sun, L., & Chen, L. (2023). Carbon Composite Support Improving Catalytic Effect of NbC Manoparticles on the Low-Temperature Hydrogen Storage Performance of MgH₂. Journal of Materials Science & Technology, 150, 65-74; https://doi.org/10.1016/j.jmst.2022.11.044
- Jiang, W., Wang, H., & Zhu, M. (2021). AlH₃ as a Hydrogen Storage Material: Recent Advances, Prospects and Challenges. *Rare Metals*, 40, 3337–3356; https://doi.org/10.1007/s12598-021-01769-2
- Jiang, Y., Yu, Y., Wang, Z., Zhang, S., & Cao, J. (2023), CFD Simulation of Heat Transfer and Phase Change Characteristics of the Cryogenic Liquid Hydrogen Tank under Microgravity Conditions. *International, Journal of Hydrogen Energy*, 48(19), 7026-7037; https://doi.org/10.1016/j.ijhydene.2022.04.006

- Jin, S.A., Shim, J.H., Ahn, J.P., Cho, Y.W., & Yi, K.W. (2007b). Improvement in Hydrogen Sorption Kinetics of MgH₂ with Nb Hydride Catalyst. *Acta Materialia*, 55(15), 5073-5079; https://doi.org/10.1016/j.actamat.2007.05.029
- Jin, S.A., Shim, J.H., Cho, Y.W., & Yi, K.W. (2007a). Dehydrogenation and Hydrogenation Characteristics of MgH₂ with Transition Metal Fluorides. *Journal of Power Sources*, 172 (2), 25,859-862; https://doi.org/10.1016/j.jpowsour.2007.04.090
- Kadri, A., Jia, Y., Chen, Z., & Yao, X. (2015). Catalytically Enhanced Hydrogen Sorption in Mg-MgH₂ by Coupling Vanadium-Based Catalyst and Carbon Nanotubes. *Materials*, 8, 3491-3507; https://doi.org/10.3390/ma8063491
- Konstas, K., Taylor, J.W., Thornton, A.W., Doherty, C.M., Lim, W.X., Bastow, T.J., Kennedy, D.F., Wood, C.D., Cox, B.J., Hill, J.M., Hill, A.J., & Hill, M.R. (2012). Lithiated Porous Aromatic Frameworks with Exceptional Gas Storage Capacity. *Angewandte Chemie International Edition*, 51, 6639 –6642; https://doi.org/10.1002/ange.201201381
- Krainz, G., Bartlok, G., Bodner, P., Casapicola, P., Doeller, C., Hofmeister, F., Neubacher, E., & Zieger, A. (2004), Development of Automotive Liquid Hydrogen Storage Systems. Advances in Cryogenic Engineering. *Transactions of the Cryogenic Engineering Conference-CEC*, 49, 35-40; https://doi.org/10.1063/1.1774664
- Krishna, R., Titus, E., Salimian, M., Okhay, O., Rajendran, S., Rajkumar, A., Sousa, J.M.G., Ferreira, A.L.C., Gil, J.C., & Gracio, J. (2012). Hydrogen Storage for Energy Application. *INTECH*, 243-266; https://doi.org/10.5772/51238
- Kumar, S., Jain, A., Yamaguchi, S., Miyaoka, H., Ichikawa, T., Mukherjee, A., Dey, G.K., & Kojima, Y. (2017). Surface Modification of MgH₂ by ZrCl₄ to Tailor the Reversible Hydrogen Storage Performance. *International Journal of Hydrogen Energy*, 42(9), 6152-6159; https://doi.org/10.1016/j.ijhydene.2017.01.193
- Kumar, S., Singh, P.K., Rao, G.v.S.N., Kojima, Y., & Kain, V. (2018). Synergic Effect of Vanadium Trichloride on the Reversible Hydrogen Storage Performance of the Mg-MgH₂ System. *International Journal of Hydrogen Energy*, 43(32), 15330-15337; https://doi.org/10.1016/j.ijhydene.2018.06.063
- Lan, J., Cao, D., Wang, D., Ben, T., & Zhu, G.(2010). High-Capacity Hydrogen Storage in Porous Aromatic Frameworks with Diamond-Like Structure. *Physical Chemistry Letters*, 1, 978–981; https://doi.org/10.1021/jz900475b
- Lan, Z., Wen, X., Zeng, L., Luo, Z., Liang, H., Shi, W., Hong, F., Liu, H., Ning, H., Zhou, W., & Guo, J. (2022). In Situ Incorporation of Highly Dispersed Nickel and Vanadium Trioxide Nanoparticles in Nanoporous Carbon for the Hydrogen Storage Performance Enhancement of Magnesium Hydride. *Chemical Engineering Journal*, 446(3), 1-12; https://doi.org/10.1016/j.cej.2022.137261
- Langmi, H.W., Book, D., Walton, A., Johnson, S.R., Al-Mamouri, M.M., Speight, J.D., Edwards, P.P., Harris, I.R., & Anderson, P.A. (2005). Hydrogen Storage in Ion - Exchanged Zeolites. *Journal of Alloys* and *Compounds*, 404–406, 637–642; https://doi.org/10.1016/j.jallcom.2004.12.193
- Li, L., Jiang, G., Tian, H., & Wang, Y. (2017). Effect of the Hierarchical Co@C Nanoflowers on the Hydrogen Storage Properties of MgH₂. *International Journal of Hydrogen Energy*, 42(47), 28464-28472; https://doi.org/10.1016/j.ijhydene.2017.09.160
- Li, P., Wan, Q., Li, Z., Zhai, F., Li, Y., Cui, L., Qu, X., & Qu, A.A. (2013). MgH₂ Dehydrogenation Properties Improved by MnFe₂O₄ Nanoparticles. *Journal of Power Sources*, 239, 201-206; https://doi.org/10.1016/j.jpowsour.2013.03.096
- Li, X., Fu, Y., Xue, Y., Cong, L., Yu, H., Zhang, L. Li, Y., & Han, S. (2021). Effect of Ni/tubular g-C₃N₄ on Hydrogen Storage Properties of MgH₂. *International Energy of Hydrogen Energy*, 46, 33186 - 33196; https://doi.org/10.1016/j.ijhydene.2021.07.166
- Li, Y., Hu, F., Luo, L., Xu, J., Zhao, Z., Zhang, Y., & Zhao, D. (2018). Hydrogen Storage of Casting MgTiNi Alloys. *Catalysis Today*, 318, 103-106; https://doi.org/10.1016/j.cattod.2017.10.046
- Liang, G., Huo, J., Boily, S., Neste, A.V., & Schulz, R. (1999). Hydrogen Storage Properties of the Mechanically Milled MgH -V₂ Nanocomposite. *Journal of Alloys and Compounds*, 291, 295–299; https://doi.org/10.1016/S0925-8388(99)00268-6
- Liang, G., Huot, J., Boily, S., Neste, V., & Schulz, R. (2000). Hydrogen Storage in Mechanically Milled Mg–LaNi $_5$ and MgH $_2$ –LaNi $_5$

Composites. Journal of Alloys and Compounds, 297, 261-265; https://doi.org/10.1016/S0925-8388(99)00592-7

- Liu, G., Wang, L., Hu, Y., Sun, C., Leng, H., Li, Q., & Wu, C. (2021). Enhanced Catalytic Effect of TiO₂@rGO Synthesized by One-Pot Ethylene Glycol-Assisted Solvothermal Method for MgH₂. *Journal* of Alloy and Compounds, 881, 1-10; https://doi.org/10.1016/j.jallcom.2021.160644
- Liu, H., Lu, C., Wang, X., Xu, Li., Huang,, X., Wang,, X. & Ning, H. (2021). Combinations of V₂C and Ti₃C₂ MXenes for Boosting the Hydrogen Storage Performances of MgH₂. ACS Applied Materials & Interfaces, 13235–13247; https://doi.org/10.1021/acsami.0c23150
- Liu, H., Sun, P., Bowman Jr., R.C., Fang, Z.Z., Liu, Y., & Zhou, C. (2020). Effects of Air Exposure on Hydrogen Storage Properties of Catalyzed Magnesium Hydride. *Journal of Power Sources*, 454, 1-10; https://doi.org/10.1016/j.jpowsour.2020.227936
- Liu, X., Zhang, C., Geng, Z., & Cai, M. (2014). High-Pressure Hydrogen Storage and Optimizing Fabrication of Corncob-Derived Activated Carbon. *Microporous and Mesoporous Materials*, 194, 60-65; https://doi.org/10.1016/j.micromeso.2014.04.005
- Liu, Y., Gao, H., Zhu, Y., Li, S., Zhang, J., & Li, L. (2019). Excellent catalytic Activity of a Two-Dimensional Nb₄C₃T_x (MXene) on Hydrogen Storage of MgH₂. *Applied Surface Science*, 493, 431-440; https://doi.org/10.1016/j.apsusc.2019.07.037
- Lu, C., Liu, H., Xu, L., Luo, H., He, S., Duan, X., Huang, X., Wang, X., Lan, Z., & Guo, J. (2022). Two-Dimensional Vanadium Carbide for Simultaneously Tailoring the Hydrogen Sorption Thermodynamics and Kinetics of Magnesium Hydride. Journal of Magnesium and Alloys, 10(4),1051-1065; https://doi.org/10.1016/j.jma.2021.03.030
- Lu, J., Cho, Y.J., Fang, Z.Z., Sohn, H.Y., & Ro¨nnebro, E. (2009). Hydrogen Storage Properties of Nanosized MgH₂-0.1TiH₂ Prepared by Ultrahigh-Energy-High-Pressure Milling. *Journal of the American Chemical Society*, *131*, 15843–15852; https://doi.org/10.1021/ja906340u
- Lu, X., Zhang, L., Zheng, J., & Yu, X. (2022). Construction of Carbon Eovered Mg₂NiH₄ Nanocrystalline for Hydrogen Storage. *Journal* of Alloys and Compounds, 905, 1-11; https://doi.org/10.1016/j.jallcom.2022.164169
- Lu, Y., Wang, H., Liu, J., Liuzhang, O., & Zhu, M. (2018). Destabilizing the Dehydriding Thermodynamics of MgH₂ by Reversible Intermetallics Formation in Mg–Ag–Zn Ternary Alloys. *Journal of Power Sources*, 396 (31); 796-802; https://doi.org/10.1016/j.jpowsour.2018.06.060
- Lu, Z., He, J., Song, M., Zhang, Y., Wu, F., Zheng, J., Zhang, L., & Chen, L. (2023). Bullet like Vanadium-Based MOFs as a Highly Active Catalyst for Promoting the Hydrogen Storage Property in MgH₂. International Journal of Minerals, Metallurgy and Material, 30(1), 44-53; https://doi.org/10.1007/s12613-021-2372-5
- Luo, W. (2004). (LiNH₂–MgH₂): A Viable Hydrogen Storage System. Journal of Alloys and Compounds, 381(1–2), 284-287; https://doi.org/10.1016/j.jallcom.2004.03.119
- Luo, Y., Wang, P., Ma, L.P., & Cheng, H.M. (2008). Hydrogen Sorption Kinetics of MgH₂ Catalyzed with NbF₅. Journal of Alloys and Compounds, 453(1-2), 138-142; https://doi.org/10.1016/j.jallcom.2006.11.113
- Ma, Z., Zhang, J., Zhu, Y., Lin, H., Lin, Y., Zhang, Y., Zhu, D., & Li, L. (2018). Facile Synthesis of Carbon Supported Nano-Ni Particles with Superior Catalytic Effect on Hydrogen Storage Kinetics of MgH₂. ACS Applied Energy Materials, 1, 1158-1165; https://doi.org/10.1021/acsaem.7b00266
- Ma, Z., Zou, J., Khan, D., Zhu, W., Hu, C., Zeng, X., & Ding, W. (2019). Preparation and Hydrogen Storage Properties of MgH₂-Trimesic Acid-TM MOF (TM=Co, Fe) Composites. *Journal of Materials Science & Technology*, 35(10), 2132-2143; https://doi.org/10.1016/j.jmst.2019.05.04
- Madina, V., & Azkarate, T. (2009), Compatibility of Materials with Hydrogen. Particular Case: Hydrogen Embrittlement of Titanium Alloys. *International Journal of Hydrogen Energy*, 34(14), 976-5980; https://doi.org/10.1016/j.ijhydene.2009.01.058
- Malahayati, Nurmalita, Ismail, Machmud, M.N., & Jalil, Z. (2021). Sorption Behavior of MgH₂-Ti for Hydrogen Storage Material Prepared by High Pressure Milling. *Journal of Physics: Conference Series*, 1882, 1-5; 10.1088/1742-6596/1882/1/012005

- Malka, I.E., Bystrzycki, J., Plocinski, T., & Czujko, T. (2011). Microstructure and Hydrogen Storage Capacity of Magnesium Hydride with Zirconium and Niobium Fluoride Additives after Cyclic Loading. *Journal of Alloys and Compounds*, 509, S616-S620; https://doi.org/10.1016/j.jallcom.2010.10.122
- Mao, J., Guo, Z., Yu, X., Liu, H., Wu, Z., & Ni, J. (2010). Enhanced Hydrogen Sorption Properties of Ni and Co-Catalyzed MgH₂. *International Journal of Hydrogen Energy*, 35(10), 4569-4575; https://doi.org/10.1016/j.ijhydene.2010.02.107
- Meng, Y., Ju, S., Chen, W., Chen, X., Xia, G., Sun, D., & Yu, X. (2022). Design of Bifunctional Nb/V Interfaces for Improving Reversible Hydrogen Storage Performance of MgH₂. *Small Structures*, *3*, 1-10; 10.1002/sstr.202200119
- Muthukumar P., Prakash, M.M., & Murthy, S.S. (2005). Experiments on a Metal Hydride Based Hydrogen Storage Device. *International Journal of Hydrogen Energy*, *30*, 1569-1581; https://doi.org/10.1016/j.ijhydene.2004.12.007
- Nathaniel, L.R., Juergen, E., Mohamed, E., David, T.V.O., Keeffe, M., Kim, J., & Yaghi, O.M. (2003). Hydrogen Storage in Microporous Metal–Organic Frameworks. *Science*, 300, 1127–1129; 10.1126/science.1083440
- Nishihara, H., Hou, P.X., Li, L.X., Ito, M., Uchiyama, M., Kaburagi, T., Ikura, A., Katamura, J., Kawarada, T., Mizuuchi, K., & Kyotani, T. (2009). High-pressure Hydrogen Storage in Zeolite-Templated Carbon. *The Journal of Physical Chemistry C*, *113*, 3189–3196; https://doi.org/10.1021/jp808890x
- Nyahuma, F.M., Zhang, L., Song, M., Lu, X., Xiao, B., Zheng, J., & Wu, F. (2022). Significantly Improved Hydrogen Storage Behaviors in MgH₂ wit h Nb Nanocatalyst. International *Journal of Minerals, Metallurgy* and Materials, 29(9), 1789-1797; https://doi.org/10.1007/s12613-021-2303-5
- Oladunni, O.J., Mpofu, K., & Olanrewaju, O.A. (2022). Greenhouse Gas Emissions and its Driving Forces in the Transport Sector of South Africa. *Energy Reports*, 8, 2052-2061; https://doi.org/10.1016/j.egyr.2022.01.123
- Olubusoye, O.E., & Musa, D. (2020). Carbon Emissions and Economic Growth in Africa: Are they Related? Cogent Economics & Science, 8, 1-21; https://doi.org/10.1080/23322039.2020.1850400
- Patelli, N., Calizz, M., Migliori, A., Morandi, V., & Pasquini, L. (2017). Hydrogen Desorption Below 150 °C in MgH₂–TiH₂ Composite Nanoparticles: Equilibrium and Kinetic Properties. *The Journal of Physical Chemistry C*, *121*, 11166–11177; https://doi.org/10.1021/acs.jpcc.7b03169
- Polanski, M., Bystrzycki, J., Varin, R.A., Plocinski, T., & Pisarek, M. (2011). The Effect of Chromium (III) Oxide (Cr₂O₃) Nanopowder on the Microstructure and Cyclic Hydrogen Storage Behavior of Magnesium Hydride (MgH₂). Journal of Alloys and Compounds, 509(5), 2386-2391; https://doi.org/10.1016/j.jallcom.2010.11.026
- Porcu, M., Long, A.K.P., & Sykes, J.M. (2008). TEM Studies of Nb₂O₅ Catalyst in Ball-Milled MgH₂ for Hydrogen Storage. *Journal* of Alloys and Compounds, 453(1-2), 341-346; https://doi.org/10.1016/j.jallcom.2006.11.147
- Prabhukhot, P.R. Wagh, M.M., & Gangal, A.C. (2016). A Review on Solid State Hydrogen Storage Material. *Advances in Energy and Power*, *4*(2), 11–22; https://doi.org/10.13189/aep.2016.040202
- Pukazhselvan, D., Irurueta ,G.O., Pérez, J., Singh, B., Bdikin, I., Singh, M.J.K., & Fagg, D. P. (2016). Crystal Structure, Phase Stoichiometry and Chemical Environment of Mg_xNb_yO_{x+y} Nanoparticles and their Impact on Hydrogen storage in MgH₂. *International Journal of Hydrogen Energy*, *41*(27), 11709-11715; https://doi.org/10.1016/j.ijhydene.2016.04.029
- Pukazhselvan, D., Nasani, N., Correia, P., Argibay, E.C., rurueta, G.O., Stroppa, D.G., & Fagg, D.B. (2017a). Evolution of Reduced Ti Containing Phase(s) in MgH₂/TiO₂ System and its Effect on the Hydrogen Storage Behavior of MgH₂. *Journal of Power Sources, 362*, 174-183; https://doi.org/10.1016/j.jpowsour.2017.07.032
- Pukazhselvan, D., Nasani, N., Sandhya, K.S., Singh, B., Bdikin, I., Koga, N., & Fagg, D.P. (2017b). Role of Chemical Interaction between MgH₂ and TiO₂ Additive on the Hydrogen Storage Behavior of MgH₂. *Applied Surface Science*, 420, 740-745; https://doi.org/10.1016/j.apsusc.2017.05.182
- Pukazhselvan, D., Sandhya, K.S., Ramasamy, D., Shaula, A., & Fagg, D.P. (2020). Transformation of Metallic Ti to TiH_2 Phase in the Ti/MgH_2 Composite and Its Influence on the Hydrogen Storage

 Behavior
 of
 MgH2.
 ChemPhysChem,
 21,
 1-8;

 https://doi.org/10.1002/cphc.202000031

 1-8;

- Pukazhselvan, D., Silva, D.A.R., Sandhya, K.S., Fateixa, S.F., Shaula, A., Nogueira, H., Bdikin, I., & Fagg, D.P. (2022). Interaction of Zirconia with Magnesium Hydride and its Influence on the Hydrogen Storage Behavior of Magnesium Hydride. *International Journal of Hydrogen Energy*, 47(51), 21760-21771; https://doi.org/10.1016/j.ijhydene.2022.04.290
- Qiu, Y., Yang, H., Tong, L., & Wang, L. (2021). Research Progress for Cryogenic Materials for Storage and Transportation of Liquid Hydrogen. *Metals*, *11*(1101), 1-13; https://doi.org/10.3390/met11071101
- Rahwanto, A., Ismail, I., Nurmalita, N., Mustanir,, & Jalil1, Z. (2021). Nanoscale Ni as a Catalyst in MgH₂ for Hydrogen Storage Material. *Journal of Physics: Conference Series*, 1882, 1-5; doi:10.1088/1742-6596/1882/1/012010
- Ranjbar, A., Guo, Z.P., Yu, X.B., Attard, D., Calka, A., & Liu, H.K. (2009b). Effects of SiC Nanoparticles with and without Ni on the Hydrogen Storage Properties of MgH₂. *International Journal of Hydrogen Energy*, 34(17), 7263-7268; https://doi.org/10.1016/j.ijhydene.2009.07.005
- Ranjbar, A., Guo, Z.P., Yu, X.B., Wexler, D., Calka, A., Kim, C.J., & Liu, H.K. (2009a). Hydrogen Storage Properties of MgH₂–SiC Composites. *Materials Chemistry and Physics*, 114(1), 168-172;

Materials Chemistry and Physics, 114(1), 168-172; https://doi.org/10.1016/j.matchemphys.2008.09.001

- Ren, L., Zhu, W., Li, Y., Lin, X., Xu, H., Sun, F., Lu, C., & Zou, J. (2022). Oxygen Vacancy-Rich 2D TiO₂ Nanosheets: A Bridge Toward High Stability and Rapid Hydrogen Storage Kinetics of Nano-Confined MgH₂. *Nano-Micro Letters*, *14*(114), 1-16; https://doi.org/10.1007/s40820-022-00891-9
- Rivoirard, S., De Rango, P., Fruchart, D., Charbonnier, J., & Vempaire, D. (2003). Catalytic Effect of Additives on the Hydrogen Absorption Properties of Nano-Crystalline MgH₂(X) Composites. *Journal of Alloys and Compounds 356–357*, 622–625; https://doi.org/10.1016/S0925-8388(03)00145-2
- Ródena, N.A.L., Guo, Z.X., Zinsou, K.F.A. Amorós, D.C., & Solano, A.L. (2008). Effects of Different Carbon Materials on MgH₂ Decomposition, *Carbon*, 46(1), 126-137; https://doi.org/10.1016/j.carbon.2007.10.033
- Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., Keeffe, M.O., & Yaghi, O.M. (2003). Hydrogen Storage in Microporous Metal-Organic Frameworks. *Science*, 300, 1127- 1129; https://doi.org/10.1126/science.1083440
- Santos, S.F., Ishikawa, T.T., Botta, W.J., & Huot, J. (2014). MgH₂ + FeNb Nanocomposites for Hydrogen Storage. *Materials Chemistry and Physics*, 147(3), 557-562; https://doi.org/10.1016/j.matchemphys.2014.05.031
- Sazelee, N.A., Idris, N.H., Din, M.F.D., Mustafa, N.S., Ali, N.A., Yahya, M.S., Yap, F.A.H., Sulaiman, N.I.N., & Israel, M. (2018). Synthesis of BaFe12O19 by Solid State Method and its Effect on Hydrogen Storage Properties of MgH2. *International Journal of Hydrogen Energy*, 43(45), 20853-20860; https://doi.org/10.1016/j.ijhydene.2018.09.125
- Schimmel, H.G., Huot, H., Chapon, L.C., Tichelaa, F.D., & Mulder, F.M. (2005). Hydrogen Cycling of Niobium and Vanadium Catalyzed Nanostructured Magnesium. *Journal of the American Chemical Society*, 127, 14348-14354; https://doi.org/10.1021/ja051508a
- Sethia, G., & Sayar, A. (2016). Activated Carbon with Optimum Pore Size Distribution for Hydrogen Storage. *Carbon*, 99, 289 – 294; https://doi.org/10.1016/j.carbon.2015.12.032
- Setijadi, E.J., Li, X., Masters, A.F., Maschmeyer, T., & Zinsou, K.F.A. (2016).Delaminated MoS₂ as a Structural and Functional Modifier for MgH₂ Better Hydrogen Desorption Kinetics through Induced Worm-Like Morphologies. *International Journal of Hydrogen Energy*, 41(5), 3551-3560; https://doi.org/10.1016/j.ijhydene.2015.12.161
- Shahi, R.R., Bhatanagar, A., Pandey, S.K., Shukla, V., Yadav, T.P., Shaz, M.A., & Srivastava, O.N. (2015). MgH₂-ZrFe₂H_x Nanocomposites for Improved Hydrogen Storage Characteristics of MgH₂. *International Journal of Hydrogen Energy*, 40(35), 11506-11513; https://doi.org/10.1016/j.ijhydene.2015.03.162
- Shan, J., Li, P., Wan, Q., Zhai, F., Zhang, J., Li, Z., Liu, Z., Volinsky, A.A., & Qu, X. (2014). Significantly improved dehydrogenation of Ball-Milled MgH₂ Doped with CoFe₂O₄ Nanoparticles. *Journal of Power*

Sources, *268*, 778-786; https://doi.org/10.1016/j.jpowsour.2014.06.116

- Shao, H., Felderhoff, M., & Schüth, F. (2011). Hydrogen Storage Properties of Nanostructured MgH₂/TiH₂ Composite Prepared by Ball Milling Under High Hydrogen Pressure. *International Journal* of Hydrogen Energy, 36(17), 10828-10833; https://doi.org/10.1016/j.ijhydene.2011.05.180
- Shao, H., Huang, Y., Guo, H., Liu, Y., Guo, Y., & Wang, Y. (2021). Thermally Stable Ni MOF Catalyzed MgH₂ for Hydrogen Storage. *International Journal of Hydrogen Energy*, 46(76), 37977-37985; https://doi.org/10.1016/j.ijhydene.2021.09.045
- Shao, Y., Gao, H., Tang, Q., Liu, Y., Liu, J., Zhu, Y., Zhang, J., Li, L., Hu, X., & Ba, Z. (2022). Ultra-fine TiO₂ Nanoparticles Supported on Three-Dimensionally Ordered Nacroporous Structure for Improving the Hydrogen Storage Performance of MgH₂. *Applied Surface Science*, *585*, 1-10; https://doi.org/10.1016/j.apsusc.2022.152561
- Shigemura, M., Lecuona, E., & Sznajder, J.I. (2017). Effects of Hypercapnia on the Lung. *The Journal of Physiology*, 595(8), 2431– 2437; https://doi.org/10.1113/JP273781
- Singh, G., Bahadur, R., Lee, M., Kim, I.Y., Ruban, A.M., Davidraj, J.M., Semit, D., Karakoti, A., Al Muhtaseb, A.H., & Al Vinu, A. (2021). Nanoporous Activated Biocarbons with High Surface Areas from Alligator Weed and their Excellent Performance for CO₂ Capture at both Low and High Pressures. *Chemical Engineering Journal*, 406, 1-11; https://doi.org/10.1016/j.cej.2020.126787
- Song, M., Zhang, L., Yao, Z., Zheng,, J., Shang,, D., Chen, L. & Li, H. (2022). Unraveling the Degradation Mechanism for the Hydrogen Storage Property of Fe Nanocatalyst-Modified MgH₂. *Inorganic Chemistry Frontiers*, 9, 3874–3884; https://doi.org/10.1039/d2qi00863g
- Soni, P.K., Bhatnagar, A., & Shaz, M.A. (2023). Enhanced Hydrogen Properties of MgH₂ by Fe Nanoparticles Loaded Hollow Carbon Spheres. *International Journal of Hydrogen Energy*, 48(47), 17970-17982; https://doi.org/10.1016/j.ijhydene.2023.01.278
- Stephen, F.L. (2005), Fossil Fuels in the 21st Century, Ambio, 34(8), 621– 627; https://www.jstor.org/stable/4315666
- Taghizadeh-hesary, F., Rasoulinezhad, E., Yoshino, N., Chang, Y., Taghizadeh-hesary, F., & Morgan, P. (2021). The Energy– Pollution–Health Nexus: A Panel Data Analysis of Low- and Middle-Income Asian Countries. *The Singapore Economic Review*, 66(2), 435-455; https://doi.org/10.1142/S0217590820430043
- Takeichi, N., Senoh, H., Yokota, T., Tsuruta, H., Tsuruta, H., Hamada, K., Takeshita, H.T., Tanaka, H., Kiyobayashi, T., Takano, T., & Kuriyama, N.(2003). Hybrid Hydrogen Storage Vessel, a Novel High-Pressure Hydrogen Storage Vessel Combined with Hydrogen Storage Material. *International Journal of Hydrogen Energy*, 2(10), 1121-1129; https://doi.org/10.1016/S0360-3199(02)00216-1
- Tian, G., Wu, F., Zhang, H., Wei, J., Zhao, H., & Zhang, L. (2023). Boosting the Hydrogen Storage Performance of MgH₂ by Vanadium Based Complex Oxides. Journal of Physics and Chemistry of Solids, 174, 1-9; https://doi.org/10.1016/j.jpcs.2022.111187
- Tan, M., & Shang, C. (2012). Effect of TiC and Mo₂C on Hydrogen Desorption of Mechanically Milled MgH₂. Journal of Chemical Science and Technology, 1(2), 54-59.
- Tan, X.H., Zahiri, B., Holt, C.M.B., Kubis, A., & Mitlin, D. (2010). A TEM Based Study of the Microstructure During Room Temperature and Low Temperature Hydrogen Storage Cycling in MgH₂ Promoted by Nb–V. Acta Materialia, 60(16), 5646-5661; https://doi.org/10.1016/j.actamat.2012.06.009
- Thongtan, P., Dansirima, P., Thiangviriya, S., Thaweelap, N., Plerdsranoy, P., & Utke, R. (2018). Reversible Hydrogen Sorption and Kinetics of Hydrogen Storage Tank Based on MgH₂ modified by TiF₄ and Activated carbon. *International Journal of Hydrogen*, 22, 12260-12270; https://doi.org/10.1016/j.ijhydene.2018.04.171
- Ud-Din, R., Xuanhui, Q., Zahid, G.H., Asghar, Z., Shahzad, M., Iqbal, M., & Ahmad, E. (2014). Improved Hydrogen Storage Performances of MgH₂–NaAlH₄ System Catalyzed by TiO₂ Nanoparticles. *Journal of Alloys and Compounds*, 604(15), 317-324; https://doi.org/10.1016/j.jallcom.2014.03.150
- United States Environmental Protection Agency. https://www.epa.gov/ghgemissions/overview-greenhouse-gases (Cited May 20, 2023).

- Van der Werf, G.R., Morton, D.C., DeFries, R.S., Olivier, J.G., Kasibhatla, P.S., Jacson, R.B., Collatz, G.J., & Randerson, J.T. (2009) CO₂ Emissions from Forest Loss, *Nature Gesceince*, 2, 737-738; https://doi.org/10.1038/ngeo671
- Verma, S.K., Shaz, M.A., & Yadav, T.P. (2023). Enhanced Hydrogen Absorption and Desorption Properties of MgH₂ with Graphene and Vanadium Disulfide. *International Journal of Hydrogen Energy*, 48(56), 21383-21394;

https://doi.org/10.1016/j.ijhydene.2021.12.269

- Wang, A., Ren,, Z., Jian, N., Gao, M., Hu, J., Du, F., Pan, H., & Liu, Y. (2018). Vanadium Oxide nanoparticles Supported on Cubic Carbon Nanoboxes as Highly Active Catalyst Precursors for Hydrogen Storage in MgH₂. *Journal of Materials Chemistry A*, *6*, 16177–16185; https://doi.org/10.1039/C8TA05437A
- Wang, H., Geo, Q., & Hu, J. (2009). High Hydrogen Storage Capacity of Porous Carbons Prepared by using Activated Carbon, *Journal of* the American Chemical Society, 131, 7016–7022; https://doi.org/10.1021/ja8083225
- Wrobel-Iwaniec, I., Diez, N., & Gryglewicz, G. (2015), Chitosan-Based Highly Activated Carbons for Hydrogen Storage. International Journal of Hydrogen Energy, 40(17), 5788-5796; https://doi.org/10.1016/j.ijhydene.2015.03.034
- Wronski, Z.S., Carpenter, G.J.C., Czujko, T., & Varin, R.A. (2011). A New Nanonickel Catalyst for Hydrogen Storage in Solid-State Magnesium Hydrides. *International Journal of Hydrogen Energy*, 36(1), 1159-1166; https://doi.org/10.1016/j.ijhydene.2010.06.089
- Xu, G., Shen, N., Chen, L., Chen, Y., & Zhang, W. (2017). Effect of BiVO₄ Additive on the Hydrogen Storage Properties of MgH₂. *Materials Research Bulletin, 89*, 197-203; https://doi.org/10.1016/j.materresbull.2017.01.036
- Yang, J., Cai, W., Ma, M., Li, L., Liu, C., Ma, X., Li, L., & Chen, X. (2020). Driving Forces for China's CO₂ Emissions from Energy Consumption Based on Kanya-LMDI Methods. *Science of The Total Environment*, 711, 1-15; https://doi.org/10.1016/j.scitotenv.2019.134569
- Yang, Z., Xia, Y., & Mokaya, Y. (2007). Enhanced Hydrogen Storage Capacity of High Surface Area Zeolite-Like Carbon Materials. *Journal American Chemical Society*, 129, 1673-1679; https://doi.org/10.1021/ja067149g
- Yanya, M.S., & Ismail, M. (2018). Synergistic Catalytic Effect of SrTiO₃ and Ni on the Hydrogen Storage Properties of MgH₂. International Journal of Hydrogen Energy, 43(12), 6244-6255; https://doi.org/10.1016/j.ijhydene.2018.02.028
- Yahya, M.S., Sulaiman, N.N., Mustafa, N.S., Yap, F.A.H., & Ismail, M. (2018). Improvement of Hydrogen Storage Properties in MgH₂ Catalysed by K₂NbF₇. *International Journal of Hydrogen Energy*, 43(31), 14532-14540; https://doi.org/10.1016/j.ijhydene.2018.05.157
- Yao, G., Jiang, Y., Liu, Y., Wu, C., Chao, K.C., Lyu, C., & Li, Q. (2020). Catalytic Effect of Ni@rGO on the Hydrogen Storage Properties of MgH₂. Journal of Magnesium and Alloys, 8, 461-471; https://doi.org/10.1016/j.jma.2019.06.006
- Yavari, A.R., LeMoulec, A., De- Castro, F.R., Deledda, S., Friedrichs, O., Botta, W.J., Vaughan, V.G., Klassen, T., Fernandez, A., & Kvick, A. (2005). Improvement in H-Sorption Kinetics of MgH₂ Powders by Using Fe Nanoparticles Generated by Reactive FeF₃ Addition. Scripta Materialia, 52(8), 719-724. https://doi.org/10.1016/j.scriptamat.2004.12.020
- Yu, T.C., Lin, C.C., Chen, C.C., Lee, W.L., Lee, R.G., Tseng, G.H., & Liu, S.P.(2013). Wireless Sensor Networks for Indoor Air Quality Monitoring. *Medical Engineering & Physics*, 35(2), 231-235; https://doi.org/10.1016/j.medengphy.2011.10.011
- Yu, X., Yang, Z.X., Liu, H.K., Grant, D.M., & Walker, G.S. (2010). The Effect of a Ti-V-based BCC Alloy as a Catalyst on the Hydrogen Storage Properties of MgH₂. *International Journal of Hydrogen Energy*, 35(12), 6338-6344; https://doi.org/10.1016/j.ijhydene.2010.03.089
- Yu, Z., Zhang, W., Zhang, Y., Fu, Y., Cheng, Y., Guo, S., Li, Y. & Han, S. (2023). Remarkable Kinetics of Novel Ni@CeO₂–MgH₂ Hydrogen Storage Composite. *International Journal of Hydrogen Energy*, 47(83), 35352-35364; https://doi.org/10.1016/j.ijhydene.2022.08.121
- Yuan, W., Li, B., & Li, L. (2011). A Green Synthetic Approach to Graphene Nanosheets for Hydrogen Adsorption. *Applied Surface*

Science, 257, 10183-10187; https://doi.org/10.1016/j.apsusc.2011.07.015

- Zahiri,, B., Danaie, M., Tan, X., Amirkhiz, B.S., Botton, C.A., & Mitlin, D. (2011). Stable Hydrogen Storage Cycling in Magnesium Hydride, in the Range of Room Temperature to 300 °C, Achieved Using a New Bimetallic Cr-V Nanoscale Catalyst. *The Journal of Physical Chemistry C*, *116*, 3188–3199; https://.doi.org/10.1021/jp211254k
- Zaluski, L., Zaluska, A., & Olsen, J.O.S. (1995a). Hydrogen Absorption in Manocrystalline Mg₂Ni Formed by Mechanical Alloying. *Journal* of Alloys and Compounds, 217(2), 245-249; https://doi.org/10.1016/0925-8388(94)01348-9
- Zaluski, L., Zaluska, A., Tessier, P., Olsen, J.O.S., & Schulz, R. (1995b). Catalytic Effect of Pd on Hydrogen Absorption in Mechanically Alloyed Mg₂Ni, LaNi₅ and FeTi. *Journal of Alloys and Compounds*, *217*(2), 295-300; https://doi.org/10.1016/0925-8388(94)01358-6
- Zhang, F., Zhao, P., Niu, M., & Maddy, J. (2016). The Survey of Key Technologies in Hydrogen Energy Storage. International Journal of Hydrogen Energy, 41(33), 14535–14552; https://doi.org/10.1016/j.ijhydene.2016.05.293
- Zhang, J., He, L., Yao, Y., Zhou, X.J., Yu, L.P., & Zhou, D.W. (2020). Catalytic Effect and Mechanism of NiCu Solid Solutions on Hydrogen Storage Properties of MgH₂. *Renewable Energy*, 154, 1229-1239; https://doi.org/10.1016/j.renene.2020.03.089
- Zhang, J., Hou, Q., Guo, X., & Yang, X. (2022c). Achieve High-Efficiency Hydrogen Storage of MgH₂ Catalyzed by Nanosheets CoMoO₄ and rGO. Journal of Alloys and Compounds, 911, 1-13; https://doi.org/10.1016/j.jallcom.2022.165153
- Zhang, J., Li, L., Chen, R., Xu, P., & Kai, F. (2008). High Pressure Steel Storage Vessels Used in Hydrogen Refueling Station, Journal of Pressure Vessel Technology, 130, 1-3; https://doi.org/10.1115/1.2826453
- Zheng, J., Liu, X., Xu, P., Liu, P., Zhao, Y., & Yang, J. (2012). Development of High Pressure Gaseous Hydrogen Storage Technologies. *International Journal of Hydrogen Energy*, 37(1), 1048–1057; https://doi.org/10.1016/j.ijhydene.2011.02.125
- Zhang, L., Ji, L., Yao, Z., Yan, N., Sun, Z., Yang, X., Zhu, X., Hu, S. & Chen, L. (2019). Facile synthesized Fe Nanosheets as Superior Active Catalyst for Hydrogen Storage in MgH₂. *International Journal of Hydrogen Energy*, 44(39), 21955-21964; https://doi.org/10.1016/j.ijhydene.2019.06.065
- Zhang, L., Nyahuma, F.M., Zhang, H., Cheng, C., Zheng, J., Wu, F., & Chen, L. (2023). Metal Organic Framework Supported Niobium Pentoxide Nanoparticles with Exceptional Catalytic Effect on

Hydrogen Storage Behavior of MgH₂. *Green Energy & Environment*, 88(2), 589-600; https://doi.org/10.1016/j.gee.2021.09.004

- Zhang, L., Xia, X., Xu, C., Zheng, J., Fan, X., Shao, J., Li, S., Ge, H., Wang, Q., & Chen, L. (2015). Remarkably Improved Hydrogen Storage Performance of MgH₂ Catalyzed by Multivalence NbH_x Nanoparticles. The *Journal of Physical Chemistry C*, *119*, 8554–8562; https://doi.org/10.1021/acs.jpcc.5b01532
- Zhang, L., Yu, H., Lu, Z., Zhao, C., Zheng, J., Wei, T., Wu, F., & Xiao, B. (2022b). The Effect of Different Co Phase Structure (FCC/HCP) on the Catalytic Action towards the Hydrogen Storage Performance of MgH₂. *Chinese Journal of Chemical Engineering*, 43, 343-352; https://doi.org/10.1016/j.cjche.2021.10.016
- Zhang, T., Hou, X., Hu, R., Kou, H., & Li, J. (2016). Non-isothermal Synergetic Catalytic Effect of TiF₃ and Nb₂O₅ on Dehydrogenation High-Energy Ball Milled MgH₂. *Materials Chemistry and Physics*, 183, 65-75; https://doi.org/10.1016/j.matchemphys.2016.08.002
- Zhang, W., Xu, G., Cheng, Y., Chen, L., Huo, Q., & Liu, S. (2018). Improved Hydrogen Storage Properties of MgH₂ by the Addition of FeS₂ Micro-spheres. *Dalton Transactions*, 47, 5217–5225; https://doi.org/10.1039/c7dt04665k
- Zhang, X., Wang, K., Zhang, X., Hu, J., Gao, M., Pan1, H., & Liu, Y. (2020). Synthesis Process and Catalytic Activity of Nb₂O₅ Hollow Spheres for Reversible Hydrogen Storage of MgH₂. International Journal of Energy Research, 3129-3141; https://doi.org/10.1002/er.6006
- Zhang, Y., Tian, Q.F., Liu, S.S., & Sun, L.X. (2008). The Destabilization Mechanism and De/re-hydrogenation Kinetics of MgH₂– LiAlH₄ Hydrogen Storage System. *Journal of Power Sources*, 185(2), 1514-1518; https://doi.org/10.1016/j.jpowsour.2008.09.054
- Zhang, Y., Zheng, J., Lu, Z., Song, M., He, J., Wu, F., & Zhang, L. (2022a). Boosting the Hydrogen Storage Performance of Magnesium Hydride with Metal Organic Framework-Derived Cobalt@Nickel Oxide Bimetallic Catalyst. Chinese Journal of Chemical Engineering, 52, 161-171; https://doi.org/10.1016/j.cjche.2022.06.026
- Zhao, Y., Zhu, Y., Liu, J., Ma, Z., Zhang, J., Liu, Y., Li, Y., & Li, L. (2021). Enhancing Hydrogen Storage Properties of MgH₂ by Core-Shell CoNi@C. Journal of Alloys and Compounds, 862, 1-8; https://doi.org/10.1016/j.jallcom.2020.158004
- Zidan, R. (2010). Aluminum Hydride (Alane). Handbook of Hydrogen Storage: New Materials for Future Energy Storage. Wiley-VCH Verlag GmbH & Co. KgaA Chapter 9, 249-277.

© 2023. The Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA) International License (http://creativecommons.org/licenses/by-sa/4.0/)