
Int. J. Renew. Energy Dev. 2023, 12 (6), 1104-1112 
| 1104 

https://doi.org/10.14710/ijred.2023.57902  
ISSN: 2252-4940/© 2023.The Author(s). Published by CBIORE 

 Contents list available at IJRED website 
 

International Journal of Renewable Energy Development 
 

Journal homepage: https://ijred.undip.ac.id 

 

 

Photovoltaic power prediction based on sky images and tokens-to-
token vision transformer 

Qiangsheng Daia* , Xuesong Houa , Dawei Sua , Zhiwei Cuib  

aPower Dispatching and Control Center, State Grid Jiangsu Electric Power Co. Ltd., Nanjing, China  
bPower Dispatching and Control Center, State Grid Taizhou Electric Power Co. Ltd, Taizhou, China 

Abstract. Photovoltaic (PV) power generation has high uncertainties due to the randomness and imbalance nature of solar energy and meteorological 
parameters. Hence, accurate PV power forecasts are essential in the operation of PV power plants (PVPP) for short-term dispatches and power 
generation schedules. In this paper, a new deep neural network structure based on vision transformer is proposed to combine sky images and Tokens-
To-Token（T2T） for photovoltaic power prediction. The method uses an incremental tokenization module to aggregate neighboring image patches 

into tokens, which capture the local structural information of the clouds. Then, an efficient T2T-ViT backbone network is used to extract the global 
attentional relationships of the tokens for power prediction. In order to evaluate the performance of the proposed model, the method was compared 
with several deep learning architectures such as ResNet and GoogleNet on a dataset collected by the National Renewable Energy Laboratory in 
Colorado, USA. The results of power prediction were analysed using training loss, prediction error, and linear regression, and they show that the 
proposed method achieves higher prediction accuracy and lower error compared to the existing methods, especially in short- and ultra-short-term 
prediction. The paper demonstrates the potential of applying Transformer models to computer vision tasks for renewable energy forecasting. The 
results show that the proposed method achieves higher prediction accuracy and lower error than several deep learning architectures, such as ResNet 
and GoogleNet, especially in short- and ultra-short-term prediction. 
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1. Introduction 

Renewable energy is deemed an alternative to fossil fuels 
for mitigating their detrimental environmental impact. Solar 
photovoltaic (PV) power generation has gained substantial 
attention recently due to its high reliability, low maintenance 
cost, quiet operation, and ability to generate environmentally 
friendly power. However, the variability of PV power output 
puts a serious burden on power system power regulation (Liu, 
Ren and Xu, 2021). Therefore, there is a growing need for 
accurate PV power prediction techniques, as reliable power 
prediction will contribute to efficient grid scheduling (Agoua, 
Girard, Kariniotakis, 2018).  

Power prediction refers to the prediction of power output 
for a future period of time based on historical data and other 
relevant factors (Biswas et al., 2021). In the past decades, many 
scholars have proposed many methods to forecast power, 
including the traditional Autoregressive Integrated Moving 
Average (ARIMA) (Dolara, leva and Manzolini,2015) and the 
numerical weather prediction (NWP) methods (Wu & Wu, 2020; 

Burnham, Anderson and Huyvaert, 2011). ARIMA is a 
prediction method based on Statistical model, which is a time 
series-based forecasting method that models and forecasts time 
series data (Boland, David and Lauret, 2016). The ARIMA model 
offers the advantages of simplicity, ease of use, and applicability 
to various types of time series data. Nonetheless, it has 
drawbacks including sensitivity to outliers and the requirement 
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of extensive historical data. Statistical methods, despite being 
simpler than physical methods, can yield more accurate 
forecasting results due to their utilization of historical PV data 
and optimized model parameters. However, they still exhibit 
some notable shortcomings such as the need for a consistent 
correlation between inputs and outputs, resulting in lower 
accuracy on rainy and cloudy days. A prerequisite is the 
handling of large volumes of historical data, which can pose 
challenges during the data acquisition and training process. The 
effectiveness of statistical methods relies heavily on the quality 
and granularity of the PV data. Moreover, they are unable to 
extract intricate features associated with the inputs and PV 
power. Another method is Numerical Weather Prediction 
(NWP), which utilizes a physical model to forecast future 
weather conditions and, subsequently, estimate the future 
power output (Sun and Zhang, 2017). This is achieved through 
numerical simulations of atmospheric circulation and radiative 
transfer processes. For this method, historical time-series data 
are not required but detailed geological state of the plant, 
accurate meteorological weather data, and PV battery 
specifications are used. Although the forecasting accuracy 
highly depends on the NWP results, NWP performance may be 
reduced in some cases. In addition, the correlation between the 
model and PV panel is obtained with errors, the whole model is 
complex, and the computational cost is high. The advantage of 
the NWP model is that it can take more factors into account, 
which can improve the prediction accuracy. However, it also 
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has some disadvantages, such as high computational 
complexity and the need for a large number of computational 
resources. 

Compared to traditional prediction methods, currently 
popular methods such as machine learning methods and deep 
learning methods have become widely used in various fields 
(Smith, 2018; Bochie et al., 2021). These methods employ 
iterative training algorithms, allowing for the achievement of 
superior results using fewer computational resources (Rizk & 
Awad, 2019). Additionally, they possess the capability to 
process intricate data types and models, leading to greater 
precision in predicting outcomes (Petropoulos et al., 2022). The 
Artificial Neural Network (ANN) is a type of machine learning 
method that consists of interconnected neurons or units. Each 
neuron receives inputs and outputs signals, generating an 
output by calculating a weighted sum of these inputs (Ragmani 
et al., 2020). Given historical data containing internal and 
external variables, artificial neural networks (ANN) can be 
trained through supervised learning to predict future irradiance 
(Voyant et al., 2014). SVM was used to achieve high accuracy by 
obtaining cloud covering position and cloudiness index (Peng et 
al., 2015). When forecast lead time exceeds 1 hour, the machine 
learning techniques perform superior to their counterparts, and 
the disparity is more pronounced under cloudy conditions 
(Lauret et al., 2015). However, machine learning methods are 
very sensitive to the temporal distance and the fineness of 
received input (Graditi, Ferlito and Adinolfi, 2016). Using ANNs 
to model linear trends may produce mixed results, therefore, 
blindly applying ANNs to any type of data is not advisable 
(Taskaya-Temizel & Casey, 2005).  

Sun et al. first developed a convolutional neural networks 
(CNN) algorithm in 2018 that predicts the concurrent power 
output of solar panels solely from given sky images (Nie & 
Zamzam, 2021). Based on this model, Sun et al. proposed an 
architecture that predicts the photovoltaic output 15 minutes 
later by obtaining sky images from the past 15 minutes and the 
photovoltaic panel output from the same time period (Zhang, 
Wang and Liu, 2020), achieving a prediction rate of 16%. Zhang 
et al. compared three different deep learning architectures 
(Zhang et al., 2018), including Multilayer Perceptron (MLP), 
CNN, and Long Short-Term Memory (LSTM) for predicting 
future photovoltaic power output one minute in advance. They 
found that the LSTM model had an advantage in capturing the 
temporal dependencies in the data, achieving a prediction rate 
of 21%. 

In reference (Ajith & Martínez-Ramón, 2021), a 
combination of depth-wise separable convolution and LSTM 
was used to predict multi-step solar irradiance from multi-
channel images (Wang et al., 2019). However, this approach 
required more data and did not fully utilize historical data. In 
reference (Qu, Qian and Pei, 2021), ALSTM (AM-based LSTM) 
was used to extract long and short-term memory for hourly 
forecasting, achieving higher accuracy. However, since the 
extraction of spatiotemporal features was done separately, the 
extracted features may be distorted during the sequence 
processing, weakening the intrinsic correlation within local 
features. Reference (Trigo-González et al., 2023) analyzed ultra-
short-term photovoltaic power generation using data measured 
in Kyoto, Japan. Three convolutional neural network models 
were compared: Multilayer Perceptron. Convolutional Neural 
Network, and Long Short-Term Memory, with historical 
photovoltaic power values and sky images as inputs (Limouni & 
Yaagoubi, 2022). The authors considered the LSTM-based 
model to be superior to all other methods at that time (Tyass & 
Khalili, 2023; Nhat & Huu, 2023). However, the use of a single 
nonlinear regression can easily fall into local optima and has 
certain limitations. 

The ground-based cloud prediction method analyses cloud 
information collected by ground-based all-sky imagers in order 
to assess the effect of clouds on solar radiation and to predict 
PV power (Sun et al., 2014). This method is conducive to 
improving the accuracy of PV power prediction, especially in 
short- and ultrashort-term prediction, and has obvious 
advantages (Jaouhari, Zaz and Masmoudi, 2015;  Lu, Wang and 
Li, 2021). However, the ground-based cloud mapping prediction 
method has limitations in temporal information utilization and 
is weak for migration between PV systems (Wei et al., 2021). In 
the area of sequential data modelling, the transformer model 
with self-attention mechanism (Ma, 2022) is currently one of the 
most used neural network architectures in the field of Natural 
Language Processing (NLP), and was initially proposed for 
machine translation applications (Bi, Zhu and Meng, 2021). The 
revolution that the transformer architecture promoted in the 
NLP field motivated the development of new approaches based 
on the transformers in other areas such as computer vision and 
time series. For instance, in the computer vision area, (Liu, 
2023) developed a Multiscale Vision Transformers (MViT) for 
video and image recognition, by connecting the seminal idea of 
multiscale feature hierarchies with transformer models. It 
efficiently captures information from the global context and is 
able to process all positions in the input sequence 
simultaneously (Xiao, Zhang and Ni, 2022). As a result, it can 
reduce computational time complexity and increase the speed 
of model training and inference (Fukushima & Ishikawa, 2022). 
However, there are a large number of parameters in the 
Transformer model, which requires a large amount of 
computational resources and storage space for training and 
inference (Nascimento et al.,2023; Fan H et al.,2021). In addition, 
VIT refers to Vision Transformer, a visual recognition model 
based on the Transformer architecture. It does this by splitting 
an image into a series of small squares (called patches) and then 
using the Transformer to process these patches, ultimately 
outputting a classification result for the entire image (Xiong et 
al., 2020). Compared with traditional Convolutional Neural 
Networks (CNNs), the VIT model does not use convolutional 
and pooling layers, instead it is based entirely on the 
Transformer architecture for image classification. The VIT 
model automatically learns the relationship between each patch 
and is able to capture information inside the image over long 
distances, which makes the VIT a powerful performer in 
computer vision tasks. Although the VIT reduces the 
computational cost by encoding image data into vector 
representations, the VIT relies heavily on large-scale datasets 
for model training, which requires significant computational 
resources. 

In this paper, a new deep neural network structure based 
on vision transformer (VIT) is proposed to combine sky images 
and Tokens-To-Token (T2T) for the above problems, which can 
gradually segment image tokenization into tokens with an 
efficient backbone. The T2T module is used to model the local 
structural information of an image while reducing the token 
length, and an efficient T2T-ViT backbone network is used to 
extract the global attentional relationships of the tokens from 
the T2T module. 

2.   Methodology 

2.1 Data collection 

This paper collected data from the Renewable Energy 
Climatology of NREL (National Renewable Energy Laboratory) 
in Golden, Colorado, USA. The dataset provides a 
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comprehensive range of meteorological data, including wind 
speed and temperature. The measurement of cloud coverage 
was conducted by the NREL using a Solar Light 501A UVA 
radiometer, which recorded readings at 10-minute intervals. 
The radiometer measures wavelengths ranging from 315 nm in 
W/m², while maintaining a temperature of 25℃ during data 

collection. Additionally, an EKO All Sky Imager (ASI-16) was 
used to capture all sky images and compute cloud cover. This 
includes: a snapshot of the current sky conditions, updated 
every 60 seconds; total sky images and "cloud analyzed" images 
with corresponding cloud cover values every 10 minutes; 
percentages of thick and thin cloud cover every 10 minutes. 
Furthermore, the NREL utilized an EKO MS-300LR Sky Scanner 
to map luminance and irradiance at 15-minute intervals. The 
solar position or intensity was calculated based on the time and 
location using the Solar Position Calculators provided by the 
Measurement and Instrumentation Data Center (MIDC).Figure 
1 provides examples of the data and illustrates the dynamic 
nature of the cloud diagrams. 

2.2 Data preprocessing 

In this study, data preprocessing is considered a critical 
phase for photovoltaic power forecasting, primarily aimed at 
ensuring the quality and continuity of the data required for the 
model. This paper employed cloud-based image transformation 
and linear interpolation methods. Initially, cloud image data was 
obtained in graphical format and subsequently subjected to 
enhancement, denoising, and computational filtering, 
enhancing the quality and consistency of the images. 
Subsequently, visual techniques were employed to extract 
relevant features from these cloud images, including cloud 
coverage percentage, cloud types, and cloud movement 
direction, all of which served as inputs to the model. 
Furthermore, by temporally aligning the extracted cloud image 
features with solar power generation data, this paper 
established a connection between meteorological information 
and electricity data. Additionally, to address missing data in 
solar radiation data, this paper adopted a linear interpolation 
method, estimating missing values by utilizing known data from 
neighboring time points. The significance of carefully managing 
the steps in handling missing data is emphasized in this paper 
to effectively mitigate noise and missing values in the dataset, 
consequently improving the accuracy and reliability of the T2T-
vit model. 

2.3 Transformer 

Transformer is a model that relies on a self-attention 
mechanism to map the global dependencies between inputs and 
outputs. Figure 2 illustrates the general Transformer structure. 
This model usually consists of a multi-head self-attention layer 
(MSA) and an MLP block, with LNs applied before each layer of 
self-attention, MLP block, and residual connections. Among 
them, the attention mechanism is the most central part . The 
attention mechanism is used as an alternative to the traditional 
Recurrent Neural Network (RNN) structure to capture the 
dependencies between different locations in the input sequence. 
The attention mechanism achieves better modelling capabilities 
and parallel computation by introducing a multi-head attention 
mechanism in the encoder and decoder. In the encoder, the 
attention mechanism helps the model to focus on a specific 
input word and weight it according to other words. In this way, 
each word gets a weighted representation of the surrounding 
context, enabling the model to better understand long-distance 
dependencies in a sentence. In the decoder, by introducing a 
self-attention mechanism, the model can associate generated 
parts of the target sequence with different parts of the input 
sequence. This enables the model to dynamically adjust the 
probability distribution of the output words according to the 
context and improve the generation accuracy.Recently the 
Transformer model has been applied to various vision tasks, 
image classification, target detection, image enhancement, 
image generation, video processing and so on. Among them 
vision Transformer (VIT) is the first Transformer model that can 
be directly applied to image classification by segmenting each 
image into 14×14 or 16×16 blocks (also known as tokens) of 
fixed length. Then after modelling with Transformer, the VIT 
applies the Transformer layer to model the global relationships 
between these tokens for classification. Although the VIT shows 
that the Transformer architecture is promising for visual tasks, 
it does not perform as well as similarly sized CNN models when 
training from scratch starting on a medium-sized dataset. Also 
the VIT relies heavily on large-scale datasets such as ImageNet-

 

Fig 1. Cloud map data 

 

 
Fig 2. Transformer structure 
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21k and JFT-300M for model training, which requires significant 
computational resources.   

The multi-head attention and scaled dot-product attention 
respectively use tree vectors: Queryvector (Q), a Key vector (K), 
and a Value vector (V). Transformersuse a ‘‘Scaled Dot-Product 
Attention’’ to obtain the context vector andcalculate the 
attention as: 

Attention(Q, K, V) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄.𝐾𝑇

√𝑑𝑘
) . 𝑉   (1) 

where Q =𝑊 
𝑄𝑥, K = 𝑊 

𝐾𝑥, V = 𝑊 
𝑉𝑥 on input x = {𝑥1

  ,…, 𝑥𝑛
 }. 

𝑊 
𝑄 , 𝑊 

𝐾 and  𝑊 
𝑉 are weight matrices to generate Q, K and V 

via linear transformations on x. The head denotes the attention 
output result of each head, i.e., the weighted output result 
obtained after the calculation of the attention mechanism. Multi-
head Attention is a module for attention mechanisms which 
allows the model to jointly attend to information from different 
representation subspaces in parallel, that is: 

MultiHead(q, k, v) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . . , ℎ𝑒𝑎𝑑𝑛). 𝑊𝑂  (2) 

where: 

headi = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞. 𝑊𝑖
𝑄

, 𝑘. 𝑊𝑖
𝐾 , 𝑣. 𝑊𝑖

𝑉)                 (3) 

2.4 Tokens-to-token vision transformer 

In order to overcome the limitations of simple tokenization 
and inefficient backbone of the VIT, the T2T-ViT is proposed, 
which can gradually segment image tokenization into tokens 
with efficient backbone. The T2T module is used to model the 
local structural information of the image while reducing the 
token length, and efficient T2T-ViT backbone network is used 
to extract the global attentional relations of the tokens from the 
T2T module. 

2.4.1 Tokens-to-token module 

Instead of simple tokenization in VIT, the T2T-ViT 
employs an incremental tokenization module to aggregate 
neighbouring tokens into a single token (called Tokens-to-
Token), which models the local structural information of the 
surrounding tokens and reduces the iterative token length. 
Specifically, in each T2T step, the token output from the 
Transformer layer is reconstructed as an image, then split into 
overlapping tokens, and finally aggregated into surrounding 
tokens via flatten. Thus, the local structures from the 
surrounding patches are embedded into the tokens of the next 
Transformer layer, and the local structures are aggregated into 

tokens by iterating T2T, and the length of the tokens can be 
reduced by the aggregation process. 

2.4.2 T2T-Vit backbone 

Since many channels in the trunk of vanilla the VIT are 
ineffective, there is a need to find an efficient Transformer trunk  
to reduce redundancy and improve feature richness. Therefore, 
different architectural designs for the VIT are explored to 
improve the efficiency of the backbone and enhance the 
richness of the learnt features, drawing on some of the designs 
of CNNs. By investigating five architectural designs from CNN 
to VIT: dense connectivity as in DenseNet; deep-narrow and  
shallow-wide structures as in Wide ResNet; channel attention as 
in Squeeze-Excitement (SE) network; more splitting heads in the 
multi-head attention layer as in ResNeXt; and Ghost operation 
as in Ghost Net, it is found that the use of deep-narrow structure 
that simply reduces the channel dimensions can reduce the 
channel redundancy in the VIT, and increasing layer depth 
improves feature richness in the VIT, with a reduction in model 
size and MACs, but with improved performance. In addition the 
channel attention of the SE block also improves the VIT, but not 
as effectively as the deep and narrow structure. Based on these 
findings, a deep-narrow structure is used for the T2T-VIT 
backbone. Specifically, it has a smaller number of channels and 
hidden dimensions d, but more layers b. For the last layer of 
fixed-length Token from the T2T block, a class Token is 
attached to it and then a sinusoidal positional embedding (PE) 
is added to perform the same classification as the VIT. 

2.5 Experimental design and evaluation criteria 

In this study, the collected Sky images data and Solar 
radiation data are used as raw data for data preprocessing and 
then divided into training set, testing set and validation set for 
model training. The effectiveness of the proposed prediction 
model is assessed by comparing its performance with well-

 
Fig 3. T2T-ViT transformer 

 

 

Fig 4. Predictive framework 
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established and mature deep neural network (DNN) structures 
like ResNet and GoogleNet. The accuracy of the model 
predictions was assessed using three error evaluation criteria: 
mean absolute error (MAE), mean square error (MSE), and 
coefficient of determination (R2). Subsequently, we visualize the 
prediction curves. The smaller the difference between the 
predicted and measured values, the better the model's 
prediction results. 

In order to evaluate the forecasting model performance 
and improve the training process, this paper cites several error 
evaluation criteria. The MSE measures the predictive accuracy 
of a model by calculating the difference between the predicted 
and true values. Specifically, the MSE is the average value 
obtained by adding the squared differences of each data point. 
In addition, the mean square error (MSE) gradient decreases as 
the error decreases, which promotes function convergence. The 
function can rapidly achieve its minimum value when the 
learning rate remains constant. However, when outliers exist 
within the sample, MSE assigns a higher weight to these outliers,  
making the metric highly sensitive and significantly influenced 
by their presence. The MAE measures the average absolute 
error between the predicted value and the true value. The 
smaller the value of MAE, the better the model performance. 
This is because a smaller MAE value means that the model 
predicts less error. The input value exhibits a stable gradient 
regardless of its magnitude, ensuring that it does not result in 
the gradient explosion issue. Therefore, it possesses a fairly 
robust solution. While the MAE curve maintains continuity, it 
lacks differentiability at x = 0. Additionally, the MAE gradient 
remains uniform in the majority of cases, leading to significant 
gradients for even minor loss values. This characteristic 
hampers function convergence and impedes model learning. 
The R-square (R2) represents the portion of the variation in the 
dependent variable that can be explained by the model. It 
usually takes a value in the range of 0 to 1. The closer it is to 1, 
the better the model's ability to explain the data. And the 
predicted values built by the model fit the actual observations 
better. It is important to note that R2 does not tell us whether 
the model is statistically significant or not, but is merely an 
indicator that explains the goodness of fit of the model. 
 

MSE = ∑  𝑛
𝑖=1

(𝑦𝑖−�̂�𝑖)2

𝑛
   (4) 

 

MAE =
∑  𝑛

𝑖=1 ∣𝑦𝑖−�̂�𝑖∣

𝑛
    (5) 

 

𝑅2 = 1 −
∑(𝑦𝑖−�̂�𝑖)2

∑(𝑦𝑖−�̄�𝑖)2   (6) 

where i indicates the index of the sample data, ranging from 1 
to n. n indicatins the total number of samples in the data set. yᵢ 
denotes the true value (or observed value) of the i-th sample. ŷᵢ 
denotes the i-th sample of the predicted value, i.e., the model's 
estimate of the true value. 

3.   Experiments and analysis of results 

3.1 Mode structure and hyper-reference configuration 

The experiments were conducted using an NVIDIA 4090Ti 
GPU with the PyTorch deep learning framework on a server. 
The initial learning rate was set to 0.0001 and gradually 
decreased to 0.00006 using the learning rate decay method. The 
initial learning rate is based on extensive experimentation and 
adjustments, and the learning rate attenuation method is utilized 
to facilitate model  convergence towards the optimal solution 

 

Fig 5. R2 of training 
 

 
Fig 6. Loss of training 

 
Fig 7. R2 of validation 

 

 
Fig 8. Loss of validation 
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during training. To mitigate gradient saturation, we employed 
the Adam optimizer instead of the traditional SGD optimizer. 
The Adam optimizer balances the gradient direction and 
learning rate step size by integrating the properties of AdaGrad 
and R  MSProp. Additionally, we parameterized the comparison 
model to enable a comparative evaluation against the T2T-Vit 
model. 

3.2 Comparison of experimental results 

3.2.1 training and validation progress comparison 

The Fig 6 and Fig 8 illustrates the dynamic loss of the three 
models during training and validation. As the training period 
increases, the loss decreases, indicating an improvement in the 
prediction accuracy of the models. Furthermore, the figure 
illustrates that the training loss of all three models exhibits a 
general declining trend, albeit with fluctuations. This 

phenomenon arises because the direction of gradient descent 
du ring each iteration of neural network training does not 
necessarily lead to the optimal solution as a whole. 
Consequently, the loss may not always decrease compared to 
the previous iteration. But, both on the training dataset and the 
validation dataset, the T2T-Vit model's loss converges faster 
than the Goodlenet model and the Resnet model, and the final  
loss values are smaller than the other models. Meanwhile, the 
comparison of the trends of the R2 curves in Fig 5 and Fig 7. also 
shows the same results. This intuitively proves the advantages 
of our proposed model. 

The Table 1 gives their respective error values, from which 
it can be seen that the Loss value of T2T-Vit is 11.632 is much s  
maller than 42.041 and 24.676, which proves that the error of 
T2T-Vit is smaller than the other two models. In addition, 
comparing the MAE value and R2 value of the three models can 
also prove the accuracy of T2T-Vit prediction. 
 

3.2.2 Comparison of Forecast Results Presentation 

To observe the prediction performance intuitively, we 
conducted tests on four consecutive days of data. The 
corresponding prediction performances are illustrated in 
Figures 9, 10, and 11, while the error of prediction is depicted in 
Figure 12. Specifically, the cloud image data selected for 
analysis spans from July 6th, 2021, to July 9th, 2021, 
encompassing diverse meteorological conditions. It is evident 

Table 1 
Predicted performance 

 
Model 

Error evaluation 

Loss MAE R2 

Googlenet 24.676 124.168 0.784 

Resnet 42.041 157.045 0.633 

T2T-ViT 11.632 74.594 0.915 

 

 
Fig 9. Predicted results of Googlenet 

 
Fig 10. Predicted results of Resnet 

 

 
Fig 11. Predicted results of T2T-ViT 

 



Q.Dai et al  Int. J. Renew. Energy Dev 2023, 12(6), 1104-1112 

| 1110 

 

ISSN: 2252-4940/© 2023. The Author(s). Published by CBIORE 

that the proposed T2T-Vit model achieves higher prediction 
accuracy. However, it is worth noting that all models exhibit 
relatively more accurate predictions under low irradiance 
conditions. This phenomenon arises due to the inherent 
limitations of ground-based cloud images in accurately 
sampling cloud layers during periods of reduced solar light. 
Nevertheless, considering the limited power generation 
capacity and the resulting negligible fluctuations of photovoltaic 
equipment, this limitation can be deemed inconsequential. 

Figure 13 shows the regression plots for three models, 
demonstrating the degree of fit between the data and the 
regression line. It is evident that, in comparison to the other two 
models, only a small number of data points in the T2T-Vit model 
exhibit minor deviations from the regression line, while the 
remaining data points are evenly dispersed on both sides of the 
regression line. Further demonstrating the superior prediction 
effect of the proposed model. 

3.2.3 Advantages and disadvantages analysis of Forecast Results 
Presentation 

The utilization of multiple Inception modules in GoogLeNet 
introduces elevated computational complexity, which in turn 
hinders efficient model computation. Furthermore, it is 
susceptible to issues such as gradient vanishing or explosion 
during training. Another drawback arises from the adoption of 
multi-scale convolutional kernels and pooling operations in 
GoogLeNet, as this may lead to redundant extraction of certain 
features across various convolutional levels, while disregarding 
other features. 

ResNet employs a deeper network structure that involves 
multiple residual blocks, thereby yielding high computational 
complexity. Additionally, the method in which the residual 
blocks are connected in ResNet results in a greater number of 
model parameters. Consequently, increased memory is 

required to store these parameters, while more computational 
resources are necessary for training and inference. 
Furthermore, the existence of shortcut connections in residual 
blocks may lead to limited utilisation of certain feature levels, 
reducing the network's capacity to effectively reuse its 
underlying features. 

In contrast, the T2T-ViT approach employed in this study 
proficiently captures the global spatial relationship and 
contextual information within an input image via the self-
attention mechanism. This confers a notable advantage to T2T-
ViT when addressing visually intensive tasks involving long-
range dependencies and global awareness, such as target 
detection and image segmentation. Additionally, T2T-ViT 
incorporates a multi-scale input and feature fusion strategy, 
enabling effective handling of input images of varying sizes. 
Moreover, the Transformer structure of T2T-ViT appears 
relatively simple, with each attention head capable of providing 
interpretable feature representations. Furthermore, this study 
integrates sky images into the framework. By combining sky 
images with other image data, a more comprehensive 
understanding and interpretation of elements such as objects, 
actions, and backgrounds within the images can be achieved. 
Simultaneously, weather elements like clouds, light, and color 
present in the sky image contribute additional features to this 
model. These features enhance the image representation by 
encompassing more visual cues, ultimately bolstering 
prediction performance. 

4.Conclusion 

This paper presents a novel approach for predicting 
photovoltaic power using sky images and Tokens-To-Token 
Vision Transformer (T2T-ViT). The approach employs an 
incremental tokenization module to combine adjacent image 
patches into tokens, which capture the local structural 

 
Fig 12. Comparison of model prediction error 

 

 

 
Fig 13. Comparison of model linear regression 

 



Q.Dai et al  Int. J. Renew. Energy Dev 2023, 12(6), 1104-1112 

| 1111 

 

ISSN: 2252-4940/© 2023. The Author(s). Published by CBIORE 

information of the clouds. Subsequently, an efficient T2T-ViT 
backbone network is utilized to extract the global attentional 
relationships among the tokens for power prediction. To 
evaluate the effectiveness of the proposed method, a dataset 
from the National Renewable Energy Laboratory in Colorado, 
USA is employed for comparison with various deep learning 
architectures, including ResNet and GoogleNet. The 
experimental results demonstrate that the proposed method 
achieves higher prediction accuracy and lower error compared 
to existing methods, particularly in short- and ultra-short-term 
predictions. 
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