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ABSTRACT: The modeling of the wind speed distribution is of great importance for the assessment of wind energy potential and 
the performance of wind energy conversion system. In this paper, the choice of two determination methods of Weibull parameters 
shows theirs influences on the Weibull distribution performances. Because of important calm winds on the site of Ngaoundere 
airport, we characterize the wind potential using the approach of Weibull distribution with parameters which are determined by 
the modified maximum likelihood method. This approach is compared to the Weibull distribution with parameters which are 
determined by the maximum likelihood method and the hybrid distribution which is recommended for wind potential assessment 
of sites having nonzero probability of calm. Using data provided by the ASECNA Weather Service (Agency for the Safety of Air 
Navigation in Africa and Madagascar), we evaluate the goodness of fit of the various fitted distributions to the wind speed data 
using the Q – Q plots, the Pearson’s coefficient of correlation, the mean wind speed, the mean square error, the energy density and 
its relative error. It appears from the results that the accuracy of the Weibull distribution with parameters which are determined 
by the modified maximum likelihood method is higher than others. Then, this approach is used to estimate the monthly and annual 
energy productions of the site of the Ngaoundere airport. The most energy contribution is made in March with 255.7 MWh. It also 
appears from the results that a wind turbine generator installed on this particular site could not work for at least a half of the time 
because of higher frequency of calm. For this kind of sites, the modified maximum likelihood method proposed by Seguro and 
Lambert in 2000 is one of the best methods which can be used to determinate the Weibull parameters. 
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1. Introduction 

Energy is an essential ingredient of socio-economic 
development and economic growth. The need for 
implementing new and clean energy technologies 
became pressing due to the awaited rarefaction of the 
fossil resources on which our development since nearly 
two centuries was built (Omer 2008; Rahman et al. 

2014). In the interest of sustainable development, the 
implementation of renewable solutions in complement 
of other existing solutions is not any more to prove. 

 Because of pollution and greenhouse gas, the wind 
energy, which is a reliable and promising renewable 
energy, have attracted increasing attention due to their 
almost inexhaustible and nonpolluting characteristics 
(Li & Li 2005; Omer 2008). The conversion of wind 
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energy for the electrical production or pumping could 
thus help to solve a certain number of problems of the 
African populations. 

Before thinking about wind turbine installation, it is 
necessary to have minimum information on wind 
characteristics such as the observed frequency 
distributions of wind speed, the wind energy density, 
the predominant direction of wind speed, and the daily 
and seasonal variations of wind. 

The first part of this paper consists of the 
presentation of our research motivation and objectives 
and a summary description of our site of study. 
Secondly, we will make a detailed description of the 
Weibull and Hybrid wind distribution models as well as 
a presentation of the determination methods of k and C 
parameters including in particular the Maximum 
Likelihood Method and the Modified Maximum 
Likelihood Method. Then, we will evaluate the mean 
wind speed, the standard deviation and the mean 
square error using the different distributions described. 
In order to predict the provided electric energy, we 
approximate a VESTAS V82 power curve. The third part 
is a description of wind conditions data. We will present 
the obtained results and discuss them in our last part. 

1.1 Research motivation and objectives 

 The increasingly rising interest in estimating wind 
power and wind energy potential at a given site 
highlights the importance of the statistical simulation of 
wind speed observations. Research and studies on wind 
power assessment and its applications in Ngaoundere 
has not yet been carried out. The realization of this 
research may enables professionals to identify, clearly 
and precisely, areas which could be suitable for the 
establishment of future parks of wind energy for 
sustainable development. 

The wind speed distribution is of great importance 
for the wind energy potential assessment and for the 
performance of the wind energy conversion system. The 
Weibull distribution with two parameters is versatile 
and is commonly used for fitting the measured wind 
speed probability distribution (Seguro & Lambert 2000; 
Kaldellis 2008; Safari & Gasore 2010; Boudia et al. 
2013; Kazet et al. 2013). A few years ago, the preferred 
method of calculating the Weibull parameters was a 
graphical technique which entailed generating the 
cumulative wind speed distribution, plotting it on a 
special Weibull graph paper, and drawing a line of best 
fit (Takle & Brown 1978; Seguro & Lambert 2000). 
Later, this procedure was implemented by performing a 
linear regression on a computer (Jamil et al. 1995). 
Seguro and Lambert (2000), by using sample data 
which did not have null speed measurements (calm), 
demonstrated that the maximum likelihood method is a 
more suitable computer-based method for estimating 
the Weibull parameters. The Weibull distribution with 
parameters which are calculated by this method 

showed some deficiencies for sample data of sites 
having calm (Salami et al. 2013). The use of Hybrid 
distribution has also been noted many times: Takle and 
Brown (1978), Salami et al. (2013). For sites having 
nonzero probability of calm, these authors pointed out 
the fact that the Weibull distribution is not suitable for 
the modeling of the wind speed distributions and for 
the wind potential assessment. They recommend the 
use of the hybrid distribution for these cases. 

Today, there are several ways to estimate k and C 
parameters. Some of the most used are the maximum 
likelihood method, the least square method and the 
standard deviation method (Ramírez & Carta 2005; 
Sathyajith 2006; Safari & Gasore 2010; Morales et al. 
2012). The processes of the calculation of k and C 
parameters being different, disparities in the results 
could thus influence the accuracy of a distribution in the 
modeling of the wind speed frequency histogram.  

Time-series wind data collected at the Ngaoundere 
meteorological station show that the calm is very 
important. In this work, our purpose is to show that the 
Weibull distribution can also be used for sites having 
nonzero probability of calm, in the condition that the 
Weibull parameters determination method is well 
selected. Using data collected at a site of Ngaoundere, 
we evaluate the observable wind speed distribution and 
the wind energy density that we model by using the 
Weibull distribution and the hybrid distribution 
approaches. Finally, we provide an estimate of the 
electric output energy which could be produced on this 
site. 

1.2 Brief description of the site 

Ngaoundere is the capital of the Adamawa Region 
of Cameroon. It lies at the northern end of the railway to 
Yaounde (capital of Cameroon) and is also home to an 
airport. Ngaoundere is the most important town of the 
region and is the highest habitable zone of the country 
with an elevation of 1104 m (ASECNA 2012). The 
ASECNA weather service (Agency for the Safety of Air 
Navigation in Africa and Madagascar) is located at the 
airport and the geographic longitude – latitude 
coordinates of the wind data collection mast are 13° 33’ 
46.26’’ E and 7° 21’ 24.37’’ N. 

2. Materials and Methods 

2.1 Weibull wind distribution (WWD) model 

The probability density function f(v) indicates the 
fraction of time (or probability) for which the wind is at 
a given speed v. It is given by equation (1). 
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where:    

 k is the Weibull shape parameter,  
 C is the scale parameter (m/s),  
 v is the wind speed (m/s),  
 f(v) is the probability density function. 

 
The cumulative distribution function F(v) gives us 

the fraction of time (or probability) that the wind speed 
is equal or lower than v. It is the integral of the 
probability density function. Thus, 
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2.1.1 Determination of Weibull parameters 

a) The Maximum Likelihood Method 
By using this method, the shape factor k and the 

scale factor C are estimated solving the following two 
equations (Salami et al. 2013; Boudia et al. 2013): 
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where:    

 vi is the wind speed in time step i,  
 n is the number of nonzero wind speed data 

points. 
 

Equation (3) is solved using an iterative procedure. 
In this work, this is performed using a Fortran 90 code 
and the initial guess used is k = 2 (Seguro & Lambert 
2000). After which, equation (4) is solved explicitly. 

 

b) The Modified Maximum Likelihood Method 
According to Seguro and Lambert (2000), this 

method most be used when data wind speed are 
available in the frequency distribution format. The 
Weibull parameters are estimated using equation (5) 
and (6). 
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where:    

 vi is the wind speed central to bin i,  
 n is the number of bins, 
 f(vi) is the frequency with which the wind 

speed fall within bin i,  
 F(v ≥ 0) is the probability that the wind speed 

equals or exceeds zero. 
 

In this work, equation (5) is also solved using an 
iterative procedure with a Fortran 90 code. The initial 
guess is also k = 2. After which, equation (6) is solved 
explicitly. 

 

2.1.2 Mean speed, standard deviation and Energy density 

a) Mean speed 
The mean wind speed of a regime, following the 

Weibull distribution, is given by equation (7) 
(Sathyajith 2006; Kaldellis 2008): 









 



k
CdvvvfVm

1
1)(

0

   (7) 

Here, Γ( ) is the gamma function. 

 

b) Standard deviation 
The standard deviation shows how much variation 

or dispersion from the average exists. A low standard 
deviation indicates that the data points tend to be very 
close to the mean. A high standard deviation indicates 
that the data points are spread out over a large range of 
values. Following the Weibull distribution, the standard 
deviation of the wind speed is calculated by equation 
(8). 
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c) Energy density 
The total energy, contributed by all possible speeds 

in the wind regime, available for unit rotor area and 
time may be expressed as (Sathyajith 2006; Sathyajith & 
Geeta 2011): 
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Hence, 
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ρ = 1.03 kg/m3 is the mean air density at the airport of 
Ngaoundere (ASECNA 2012). 

 
d) Relative error and mean square error 

 
The relative error expresses the variation, as a 

percentage, between the predicted value and the 
awaited value. The relative error (RE) on the mean 
energy density is calculated by the equation (11): 
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where:    
 EDD is the energy density obtained from data,  
 EDP is the energy density predicted,  
 RE is the relative error (%).  

 
The mean square error (MSE) is one of many ways 

to quantify the difference between values implied by an 
estimator and the true values of the quantity being 
estimated. MSE here is calculated by the equation (12). 
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Here:    
 vi is the actual wind speed,  
 pi his predicted value.  

 

2.1.3 Electric output energy 
 
The question of primary interest in wind power 

applications is of course: What power production can be 
expected from a given wind turbine at a given site? To 
answer this, it is necessary to know the power curve of 
the wind turbine as well as the probability density 
function of the wind speed at hub height. The power 
production by a wind turbine varies with the wind that 
strikes the rotor. It is common practice to use the wind 
speed at hub height as a reference for the power 
response of the wind turbine. The power produced as 
function of the wind speed at hub height is 
conventionally called the power curve. The Fig. 1 below 
shows the power curve of Vestas V82 wind turbine 
generator (Vestas Technology documentation 2005). 

When the wind speed is less than the cut-in wind 
speed, the turbine will not be able to produce power. 
When the wind speed exceeds the cut-in speed, the 
power output increases with increasing wind speed to a 
maximum value, the rated power; thereafter the output 
is almost constant. At wind speeds higher than the cut- 

 

 
Fig. 1 Power curve of Vestas V82 wind turbine generator 

 
out wind speed the wind turbine is stopped to prevent 
structural failures. The product of the power curve and 
the probability density function of the wind speed gives 
the power density curve, the integral of which is the 
mean power production PEL (Bataineh and Dalalah, 
2013): 
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Actual power curves are rather smooth and can be 

well approximated by a piece-wise linear function with 
a few nodes (Pi, vi) (Troen & Petersen 1989). It is 
possible to carry out an approximation which consists 
of assuming that the variation between two nodes of the 
power-wind speed curve is linear (Troen & Petersen 
1989; Carta et al. 2008). Then, given two points ‘‘i” and 
“i + 1” of the power curve, power as a function of speed 
can be written as Equation (14). 
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Hence, the annual energy production is: 
 

HELEL NPE *     (15) 

 

NH is the time period of data collection (in hours). 

2.2 Hybrid wind distribution (HWD) 

For data sets having high probability of calm and a 
low value of scale parameter C, the Weibull function is 
not likely to provide a good fit to the data (Takle & 
Brown 1978). The problem of properly including calm 
periods into the distribution is reduced by defining a 
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hybrid density function (Takle & Brown 1978; Salami et 
al. 2013). Hence, 
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Fo is the probability of observing zero wind speed. 
Parameters values k and C are determined by solving 
equation (3) and (4). 

The corresponding cumulative distribution function 
is defined by (Takle & Brown 1978), 
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The mean speed, standard deviation and energy 

density of this distribution are then respectively, 
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3. Wind condition data 

Measured wind speed data are commonly available 
in time-series format, in which each data point 
represents an average wind speed over some time 
period. In some instances, wind speed data may instead 
be available in frequency distribution format. 

 

3.1 Measurements 

Data used in this paper was obtained at 
meteorological airport station of Ngaoundere. Data 
were recorded every day by 30 minutes interval 
(Average over 10 minutes around the time of measure) 
at the standard height of 10 m above the ground. 

3.2 Vertical extrapolation 

The estimation of the wind resource at the hub 
height of a wind turbine is one of the primary goals of 
the site assessment. Because the measurement heights 
of meteorological towers are typically significantly 
lower than turbine hub height, a mathematical model is 
generally needed to extrapolate the measured wind 

resource at the lower measurement height to the hub 
height of the turbine. In this work, we used the 
Hellmann exponential law defined by equation (21), 
which is one of the most commonly used models 
(Lackner et al. 2010; Đurišić & Mikulović 2012; 
Bataineh & Dalalah 2013). 
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where:    

 α is the wind shear coefficient, dependent 
mainly on the terrain roughness and 
atmospheric stability,  

 HR is the reference height (m),   
 H is the height desired (m),  
 VR is the wind speed at the reference height 

(m/s),  
 V is the wind speed at the height desired (m/s).  

 
For our site, α = 0.3365 (ASECNA 2012). 

3.3 Data processing 

To succeed in it, we used usual equations below: 
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- Standard deviation 
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- Energy density 
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3.3 Picture of the site 
 
 

 
 

Fig. 2 Mast of the wind data collection of the Ngaoundere Airport 

4. Result and Discussion 

By using the Ngaoundere wind data, the Weibull 
wind distribution model is applied to two different 
cases: 

- k and C parameters are determined by the 
modified maximum likelihood method 
(MoMaLiMe) (Seguro & Lambert 2000). 

- k and C parameters are determined by the 
maximum likelihood method (MaLiMe) (Seguro 
& Lambert 2000; Boudia et al. 2013). 

To evaluate the accuracy of our approach, the model 
is investigated and compared to the hybrid wind 
distribution model (Takle & Brown 1978; Salami et al. 
2013). 

4.1 Wind potential 

Two cases of the Weibull distribution and the hybrid 
distribution are fitted to the observed wind speed 
frequency histogram. Fig. 3 shows the wind speed 
probability density function estimated by different 
methods and models. The solid line represents the 
Weibull distribution in which parameters are calculated 
by the MoMaLiMe. The dash dot line represents the 
Weibull distribution in which parameters are calculated 
by the MaLiMe. Finally, the long dash line represents the 
hybrid density function. It is observed in Fig. 3 that the 
curve of the Weibull probability density function which 
use MoMaLiMe match better the histogram. 

Fig. 4 shows the wind speed cumulative distribution 
functions. The goodness of fit of the various fitted 
distributions to the wind speed data is evaluated using 
the Quantile – Quantile plots, the Pearson’s coefficient 
of correlation R associated with the Probability Density 
Function (PDF) plots, the mean speed with its related 
standard deviation and MSE, the energy density and its 
relative error. 

 
 

Fig. 3 Wind speed probability density functions 

 
 

 
 

Fig. 4 Wind speed cumulative distribution functions 

 

 
 

Fig. 5 Quantile–Quantile plot of the Weibull and hybrid distributions 
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4.1.1 Quantile – Quantile (Q–Q) plot 
In statistics, a Q–Q plot is a probability plot, which is 

a graphical method for comparing two probability 
distributions by plotting their quantiles against each 
other (Gibbons & Chakraborti 2003). From the 
observed statistical set, one calculates some sample 
quantiles xi. If the statistical set fit well the chosen 
theoretical distribution, one should have sample 
quantiles xi equal to quantiles xi* related to the 
theoretical model. Then, one represent points Mi(xi*, xi) 
with theoretical quantiles on x-axis and sample 
quantiles on y-axis. If the chosen theoretical 
distribution is pertinent, fitted points must follow the 
line y = x (Zhang et al. 2013). Theoretical quantiles are 
calculated by the equation (25). 

 

)(1*
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where:    

 pi is the probability related to the sample 
quantile xi,  

 F -1 is the reciprocal function of the cumulative 
density function.  

 
It is observed that the MoMaLiMe follows the line y = 

x more closely than other distributions, as one can see it 
in Fig. 5. 
 

4.1.2 Correlation coefficient of Pearson 
The coefficient of correlation is a measure of the 

agreement between an estimated distribution and the 
recorded data (Zhang et al. 2013). The coefficient of 
correlation R between the paired PDF data values is 
evaluated by the following equation (26), 
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where:    
 xi are the observed data values,  
 yi the predicted data values.   

 
The closer the value of R is to one, the more the fitted 
distribution agrees with the observed data. Table 1 
shows the comparison of the coefficient of correlation 
for different models. It is observed that the Weibull 
model with MoMaLiMe has the largest R value. This 
observation illustrates the strong potential of this 
approach to provide accurate representations of wind 
distribution. Regarding the probability density function, 
the accuracy of fit to the wind speed data of the Weibull 
distribution using MoMaLiMe is higher than others and 
this is confirmed by the calculated correlation 
coefficient. 

 
Table 1  
Correlation coefficient of Pearson   

Distribution 
model 

Weibull Hybrid 

MoMaLiMe MaLiMe  
R 0.908101857 0.781738520 0.781743824 

 

4.1.3 Mean speed, Standard deviation and MSE 
We applied the previously presented equations to 

the calculation of the mean speed, the standard 
deviation and the MSE for each month. The results are 
presented in table 2. 

It is seen that values of the mean speed obtained by 
the MoMaLiMe are more closer to those obtained from 
data than others approaches. Furthermore, most MSE 
values calculated by the MoMaLiMe are closer to those 
of data than others MSE values (table 2). 

4.2 Energy density estimation 

4.2.1 The height is 10 m 
For each month of the collection period, the energy 

density is calculated and the Results are presented in 
table 3. Here, the observation is the same as previously. 
The values of the mean energy density calculated by 
MoMaLiMe are closer to those obtained from data than 
those calculated from MaLiMe and hybrid. 

4.2.2 Relative error on energy density estimated 
For a better appreciation of the accuracy of 

MoMaLiMe, we evaluated the relative errors on the 
energy density calculated from different models used. 
Fig. 6 shows the estimated relative errors of hybrid 
distribution and Weibull distribution with its two cases 
(MoMaLiMe, MaLiMe). Observation shows that Weibull 
distribution with parameters which are calculated by 
the MoMaLiMe performs better than others, the energy 
density estimations. 
 

 
 

Fig. 6 Relative error on the estimated energy density at 10 m of height 



Citation: Mouangue, R.M., Kazet, M.Y., Kuitche, A. & Ndjaka, J.M. (2014) Influence of the Determination Methods of K and C Parameters on the Ability of Weibull 
Distribution to Suitably Estimate Wind Potential and Electric Energy. Int. Journal of Renewable Energy Development, 3(2), 145-154 doi: 10.14710/ijred.3.2.145-154  

P a g e  | 152 

 

© IJRED – ISSN: 2252-4940, 15 July 2014, All rights reserved 

Table 2  
Monthly results of mean speed, standard deviation and MSE calculated from different approaches and models   

  
 
Table 3  
Monthly results of energy density and Weibull parameters calculated from different approaches and models  

  
  

Months Data Weibull  Hybrid  

    MoMaLiMe MaLiMe    

    σ MSE Vm σ MSE Vm σ MSE VmH σ MSE 

May-11 1.7880 1.3845 0.2130 1.7955 1.3730 0.2094 2.0292 1.3410 0.1998 1.1849 1.4321 0.2563 

Jun-11 1.4379 1.2108 0.1832 1.4490 1.1499 0.1652 1.8844 1.1898 0.1769 0.8892 1.2461 0.1941 

July-11 1.4419 1.1851 0.1755 1.4528 1.1205 0.1569 1.6405 1.1308 0.1598 0.8282 1.1482 0.1648 

Aug-11 1.6909 1.3071 0.2135 1.6991 1.2865 0.2068 1.8870 1.2614 0.2273 1.0791 1.3348 0.2227 

Sept-11 1.4060 1.1912 0.1773 1.4169 1.1194 0.1566 1.6571 1.1821 0.1746 0.7820 1.1594 0.1680 

Oct-11 1.2920 1.1093 0.1538 1.3055 1.0291 0.1323 1.6033 1.1067 0.1531 0.6862 1.0741 0.1442 

Nov-11 1.4709 1.3214 0.2182 1.4794 1.2633 0.1995 2.0048 1.4039 0.2464 0.8259 1.3365 0.2232 

Dec-11 1.5239 1.3264 0.2199 1.5327 1.2868 0.2069 1.9201 1.3557 0.2297 0.8352 1.3063 0.2133 

Janv-12 1.5760 1.4072 0.2475 1.5846 1.3565 0.2300 1.9812 1.4577 0.2656 0.8893 1.3874 0.2406 

Feb-12 1.7949 1.5303 0.2927 1.8027 1.5159 0.2872 2.1619 1.5638 0.3056 1.1220 1.5612 0.3046 

Mar-12 1.7869 1.5246 0.2905 1.7929 1.5323 0.2935 2.2623 1.5883 0.3153 1.1039 1.5845 0.3138 

Apr-12 1.6369 1.2908 0.2082 1.6460 1.2677 0.2008 1.9567 1.2409 0.2009 1.0643 1.3370 0.2234 

             

Global             

1 year 1.5689 1.3305 0.2212 1.5781 1.2840 0.2061 1.9114 1.3298 0.2211 0.9365 1.3343 0.2225 

 

Months Data Weibull  Hybrid  

  MoMaLiMe MaLiMe     

   D k C ED k C ED k C FO ED 

May-11 9.4387 1.320 1.950 9.9149 1.544 2.255 11.1553 1.544 2.255 0.416 6.5165 

June-11 5.8483 1.269 1.561 5.5937 1.623 2.104 8.3416 1.623 2.104 0.528 3.9361 

July-11 5.7643 1.308 1.575 5.3375 1.475 1.813 6.3043 1.475 1.813 0.495 3.1834 

Aug-11 7.9364 1.334 1.849 8.2493 1.525 2.094 9.1331 1.525 2.094 0.428 5.2239 

Sept-11 5.6059 1.275 1.528 5.1851 1.421 1.822 6.8828 1.421 1.822 0.528 3.2502 

Oct-11 4.4782 1.276 1.406 4.0318 1.473 1.772 5.8992 1.473 1.772 0.572 2.5256 

Nov-11 6.7628 1.175 1.564 6.9129 1.450 2.211 11.8120 1.450 2.211 0.588 4.8686 

Dec-11 7.0494 1.196 1.628 7.4172 1.437 2.115 10.5215 1.437 2.115 0.565 4.5807 

Janv-12 8.2415 1.172 1.674 8.5389 1.375 2.167 12.4148 1.375 2.167 0.551 5.5742 

Feb-12 11.0278 1.194 1.914 12.1094 1.400 2.372 15.6543 1.400 2.372 0.481 8.1321 

Mar-12 10.6132 1.174 1.895 12.3265 1.446 2.494 17.0455 1.446 2.494 0.512 8.3222 

Apr-12 7.4298 1.310 1.785 7.7419 1.615 2.184 9.3991 1.615 2.184 0.456 5.1142 

            

Global            

1 year 7.5026 1.236 1.690 7.5932 1.460 2.110 10.1252 1.460 2.110 0.510 4.9657 
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Table 4  
Monthly wind characteristics calculated using Weibull distribution 
with MoMaLiMe 

Monthly 
period 

Weibull parameter  
(MoMaLiMe) 

Mean 
speed 

Energy 
density 

k 
- 

C 
(m/s) 

   
(m/s) 

ED  
(W/m2) 

May-11 1.60 4.00 3.58 58.93 

Jun-11 1.44 3.10 2.82 33.19 

Jul-11 1.33 3.10 2.89 39.34 

Aug-11 1.62 3.80 3.38 49.52 

Sept-11 1.35 3.20 2.92 41.83 

Oct-11 1.21 2.90 2.75 40.80 

Nov-11 1.28 4.50 4.15 130.49 

Dec-11 1.37 4.80 4.43 135.97 

Jan-12 1.36 4.70 4.30 129.76 

Fev-12 1.31 5.20 4.84 188.01 

Mar-12 1.40 5.80 5.28 225.55 

Apr-12 1.54 3.60 3.26 45.84 

 

4.2.3 Extrapolation at 120 m 
By applying equation (21) on the set of measured 

data taken at the measurement height, one obtains 
these synthetic sets of data at the desired height of 120 
m (Table 4). 

4.3 Electric output energy 

The monthly and annual energy productions are 
calculated using equation (15). The time period of the 
data collection is one year that is to say 8784 hours. The 
power curve of the wind turbine generator used is that 
of Vestas V82 (Fig. 1) which has the following 
characteristics: cut-in wind speed (3 m/s), cut-out wind 
speed (20 m/s) and a rated power of 1650 kW.  

 

 
Fig. 7 The monthly Electric output energy calculated using the 
Weibull distribution and the wind power curve of Vestas V82 wind 
turbine generator 
 

Table 5  
Global wind characteristics calculated using Weibull distribution with 
MoMaLiMe 

Period 
of 12 

months 

Weibull parameter  
(MoMaLiMe) 

Mean 
speed 

Energy 
density 

Output 
energy 

k 
- 

C 
(m/s) 

   
(m/s) 

ED  
(W/m2) 

EEL   
(MWh) 

05/2011 
to 

04/2012 

 
1.26 

 
4.00 

 
3.75 

 
95.85 

 
1332.5 

 
Fig. 7 shows the monthly energy outputs for the 

airport site. The most energy contribution is made in 
March with 255.7 MWh, while the least energy 
contribution is observed to be 41.1 MWh in June. While 
using the synthetic set of data from 120 m of height, we 
obtained some global wind characteristics. Table 5 
presents the Weibull parameters, the mean speed, the 
energy density and the annual energy production for 
the whole data used. 

From the whole of the results, It is observed that 
quantiles calculated from the Weibull distribution in 
which parameters are determined by the MoMaLiMe 
follows the line y = x more closely than other 
distributions. Furthermore, values of the mean speed 
and energy density calculated from the same 
distribution are very close to those obtained from data. 
This is not the case of the MaLiMe and the hybrid 
distribution. Low values of MSE and relative error 
obtained by using MoMaLiMe suggests that the 
proposed approach could be more usefull for the wind 
energy assessment of our site than the Weibull 
distribution in which parameters are determined by 
MaLiMe or than the Hybrid distribution. 

For the particular site of Ngaoundere airport, it 
could be concluded that the wind turbine generator 
doesn’t works for at least a half of the time because of 
higher frequency of calm. Analysis of the observed wind 
speed distribution for this specific site proves that fact. 

According to whether one uses the MoMaLiMe or 
the MaLiMe, It thus appears in an obvious way that the 
determination method of Weibull parameters has an 
influence on the relevance of this distribution. 

The calculation principle of k and C parameters by 
using MaLiMe rely on a speed logarithmic calculation. 
However, 23 % of the velocity measurements of the site 
are null and of this fact are not taken into account 
during the calculation of the parameters what has 
certainly an influence on the awaited result. 

5. Conclusion  

Our study was to estimate and characterize the 
observed wind potential and to provide the electric 
output energy of the site of Ngaoundere by using the 
Weibull distribution in which parameters are 
determined by the modified maximum likelihood 
method because of the calm wind observed. The 
maximum likelihood method and the hybrid 
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distribution were also used to compare them to our 
approach. 

Taking the results obtained into account, one can 
retain at the end of this study the following: 

 The maximum likelihood method, which is one 
of the most used determination method of the 
Weibull parameters, gives results which are not 
very satisfactory taking data into consideration. 
That could be due to the important rate of calm 
observed in measurements of the site. 

 Although the hybrid distribution was proposed 
by Salami et al. (2013) as the best model that fits 
the frequency histogram of wind speed and 
which estimate with precision the amounts of 
the wind energy, it seems to be not quite 
satisfactory in the case of the site of Ngaoundere. 

 The determination methods of Weibull 
parameters affect the accuracy of this 
distribution to model the wind potential of a 
site. 

The modified maximum likelihood method 
proposed by Seguro and Lambert in 2000 which is 
recommended for use with wind data in frequency 
distribution format, is one of the best methods which 
can be used to determinate Weibull parameters for sites 
which have important frequency of calm. By using this 
method, the Weibull distribution appear to be fine for 
the modeling of the wind potential and for the wind 
energy assessment, particularly for sites having 
nonzero probability of calm.  
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