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 Abstract: One of the most important issues in biomass biocatalytic gasification is the correct prediction of gasification products, 
with particular attention to the Topping Atmosphere Residues (TARs). In this work, performedwithin the European 7FP UNIfHY 
project, we develops and validate experimentally a model which is able of predicting the outputs,including TARs, of a steam-fluidized 
bed biomass gasifier. Pine wood was chosen as biomass feedstock: the products obtained in pyrolysis tests are the relevant model 
input. Hydrodynamics and chemical properties of the reacting system are considered: the hydrodynamic approach is based on the 
two phase theory of fluidization, meanwhile the chemical model is based on the kinetic equations for the heterogeneous and 
homogenous reactions. The derived differentials equations for the gasifier at steady state were implemented MATLAB. Solution was 
consecutively carried out using the Boubaker Polynomials Expansion Scheme by varying steam/biomass ratio (0.5-1) and operating 
temperature (750-850°C).The comparison between models and experimental results showed that the model is able of predicting gas 
mole fractions and production rate including most of the representative TARs compounds. 
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1. Introduction 
The current trend in the development of new-

generation energy systems aims to integrate renewable 
energy sources feeding ‘community-scale’ energy 
systems integrated in the national grid. Biomass 
represents a suitable choice for such an approach: it is 
available locally in sufficient quantity, it can be easily 
stored, it has a quasi-zeroCO2production/emission 
balance. Biomass absorbs CO2 from the atmosphere 
during photosynthesis, and the CO2 is then returned to 
the environment after thermal utilization. Because of 
this cycle, biomass is CO2 neutral, making it an 

advantageous fuel source and a dominant choice for 
replacement of fossil fuels as the concern of global 
warming increases. Biomass materials known as 
potential sources of energy are agricultural residues 
such as straw, bagasse, and husk and residues from 
forest-related industries such as wood chips, sawdust, 
and bark  (Werther et al., 2000;  Strehler & Stutzle,  
1987) . 

However, to foster the use of biomass in power 
generation, highly efficient and clean energy conversion 
devices must be developed and assessed, especially in 
the low-medium power range due to the low energy 
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density of this fuel (Demirbaş, 2001;  Rapagna et al. 
2000).The gasifier used in this work, is based on the 
UNIQUE concept (UNIQUE Cooperative Research 
Project, 2013), consisting in a compact gasifier 
integrating into a single reactor vessel both the 
fluidized bed steam gasification of biomass and the hot 
gas cleaning system, by means of a bundle of ceramic 
filter candles operating at high temperature in the 
gasifier freeboard. Such a configuration produces a 
syngas free of TARs and Sulphur compounds and allows 
a remarkable plant simplification and reduction of costs 
(UNIQUE Cooperative Research Project, 2013; Foscolo 
& K. Gallucci, 2008;  Heidenreich et al., 2008). 

Fluidized bed gasifiers are advantageous for 
converting biomass, particularly agricultural residues, 
into energy: good contact between gas and solid, along 
with a high degree of turbulence, improves heat and 
mass transfer characteristics, enhances the ability to 
control temperature, and increases heat storage and 
volumetric capacity (Sadaka et al., 2002). 

The activities described here are part of the 
simulations carried out in the European 7FP UNIfHY 
project. In particular the aim of this work is to develop 
and validate experimentally a model capable of 
predicting the performance of a steam blown fluidized 
bed biomass gasifier during steady state operation. This 
model will be utilized in future works for the 
simulations of a pilot scale dual fluidized bed gasifier 
(100 kWth) (Di Carlo et al., 2013) fed with different 
biomass feedstock. In this gasifier concept, the fuel is 
fed into the gasification zone and gasified with steam. 
The bed material, together with some charcoal, 
circulates to the combustion zone. This zone is fluidized 
with air and the charcoal is burned, heating the bed 
material that is circulated back to the gasifier supplying 
the thermal power needed for the gasification reactions. 
With this concept, the two reaction chambers (air 
combustion and steam gasification) are physically 
separated and it is possible to get a high-quality gas, 
with a reduced N2 content even if air (instead of pure 
oxygen) is used for the combustion. The model 
described here will be utilized to simulate the steam 
gasification zone of the dual fluidized bed gasifier. The 
input variables of the numerical program included 
steam flow rate and steam to biomass ratio.P ine wood 
was chosen as biomass feedstock in the process. Many 
studies were done on TAR conversion to obtain a 
product gas with lower content of these compounds, 
increasing the efficiency of biomass utilization, and 
power generation (Han & Kim, 2008; Anis & Zainal,  
2011).Most of the gasification models were reported for 
coal gasification and those dealing with biomass 
gasification did not include the hydrodynamic 
parameters which affect both the mass and heat 
interchange coefficients between the bubble and 
emulsion phases (Buekens & Schoeters, 1985). This 
model instead includes the hydrodynamic, transport 

and thermodynamic properties in the fluidized bed, 
composed of olivine sand. The hydrodynamic model is 
based on the two phase theory of fluidization where the 
fluidized bed consists of two regions, bubbles and 
emulsion, interacting with each other through 
interchange and diffusion of gas species simulated by a 
mass transfer coefficient. The properties of the fluidized 
bed, like bubble gas ascending velocity and bubble 
diameter along the reactor axis were calculated using 
typical correlations of the two phase theory of 
fluidization. The chemical model is based on the kinetic 
equations for the heterogeneous and homogenous 
reactions introduced in mass and heat balance equation. 
The gasifier model utilizes as input the results of the 
pyrolysis experimental tests carried out at the same 
temperature; biomass thermal decomposition 
(pyrolysis) is the first step of the thermochemical 
conversion process, and it influences strongly the final 
gas composition as well as TARs production resulting 
from the following gasification reactions. This model is 
based on a previous work of Di Carlo et al. (2013). In 
that work an enriched air gasifier was simulated and 
thus also the combustion reactions with oxygen were 
considered, differently to the model developed here that 
is used to simulate gasification only with steam. 

Devi et al.( 2005) used naphthalene component as 
the tar model and the catalytic activity of olivine is there 
investigated via steam-reforming. During dry reforming 
reaction with CO2, naphthalene conversion of about 
80% is observed. Jess (1996) uses naphthalene, toluene 
and benzene as aromatic hydrocarbons. The kinetics of 
the thermal conversion in the presence of hydrogen and 
steam were studied. The experiments were performed 
in a tubular flow reactor at a total pressure of 160 kPa, 
temperatures of 700–1400 °C, residence times of 0.3–2 
s and different gas-phase concentrations of hydrogen, 
steam and the aromatics. Swierczynski et al. 
(2001,2008)use toluene as model component of tar. A 
model study in laboratory scale fixed bed reactor of 
toluene steam-reforming is performed, the toluene 
conversion obtained with Ni/olivine at 560 °C is the 
same as with olivine at 850 °C. 

Fiaschiet & Michelini (2001) developed a 
mathematical model of biomass gasification kinetics in 
bubbling fluidized bed.  It was one-dimensional, and 
considers two phases, a bubble and a dense phase. In 
addition to the reaction kinetics in the dense phase, 
mass transfer between the two phases and a 
quantitative estimation of local bubble and particle 
properties were included in the model.A comparison 
with experimental data from the literature was done, 
and showed a largely satisfactory agreement. 

Nikooet & Mahinpey (2008) developed a model for 
biomass gasification in an atmospheric fluidized bed 
gasifier using the ASPEN PLUS simulator. This model 
addresses hydrodynamic and reaction kinetic 
parameters and different sets of operating conditions 
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for a pine gasifier have been used to validate the model. 
Through this analysis they demonstrated that 
temperature increases the production of hydrogen and 
enhances carbon conversion efficiency, while carbon 
monoxide and methane show decreasing trends with 
increasing temperature; increasing steam-to-biomass 
ratio increases hydrogen and carbon monoxide 
production and decreases carbon dioxide and carbon 
conversion efficiency. 

Sadaka et al. (2002) developed a two-phase biomass 
air-steam gasification model[8] that was then validated 
[20]using the experimental results obtained from a dual 
distributor fluidized bed reactor. The reactor was 
operated on wheat straw at various fluidization 
velocities, steam flow rates and biomass to steam ratios. 
They obtained a good agreement between the model 
predictions and experimental data under all operating 
conditions studied. The model predicted the 
temperatures of the bubble, emulsion and solid phases, 
the mole fractions of methane, hydrogen, carbon 
monoxide, carbon dioxide and nitrogen, and the HHV of 
the product gas with great accuracy (R2=0.88–0.98). 
The correlation coefficient (R2) for the gas yield was 
somewhat lower (0.75), which could be attributed to 
the assumption that the gases behaved ideally. 

The analysis is based on a gasifier model that was 
developed by some of the authors in an earlier work [9] 
where only Naphthalene was chosen as TAR 
representative. In this work, TAR was divided in 4 main 
classes:Benzene, Toluene (1-ring), Phenol, Naphthalene 
(2-rings), aiming at improving the accuracy of the 
model. 

2. Materials and Methods 

2.1 gasification model 

De-volatilization is a very complicated process and 
the distribution of products is particularly sensitive to 
the heat rate and the residence time in the reactor. The 
products of pyrolysis are composed of gas compounds 
CO2, CO, H2O, H2, and CH4, light and heavy hydrocarbons 
(TAR) and char. In fluidized bed gasifiers, the pyrolysis 
reactions can be considered as instantaneous (Nikoo & 
Mahinpey,2008). Then de-volatilization time was 
assumed negligible. In order to get realistic values for 
the input pyrolysis products and to validate the steam 
gasification model, experimental tests on a bench scale 
fluidized bed reactor were carried out. 

The proposed gasification model was based on the 
following reactions, solved simultaneously: 

 
C+H2O→CO+H2   (R1) 
C+CO2→2CO   (R2) 
C+2H2→CH4   (R3) 
CH4+H2O↔CO+3H2   (R4) 
CO+H2O↔CO2+H2   (R5) 
C6H6+6H2O↔6CO+9H2  (R6) 

C10H8+10H2O↔10CO+14H2  (R7) 
C7H8+7H2O↔7CO+11H2  (R8) 
C6H5OH+5H2O↔6CO+8H2  (R9) 
 
Kunii & Levenspiel (1990) proposed an improved 

fluidized bed reactor model for various fluidization 
conditions (Fig. 1).The hydrodynamic model is based on 
the two phase theory of  fluidization where the fluidized 
bed consists of two regions, bubbles and emulsion, 
interacting with each other through one interchange 
mass transfer coefficient of gas, kbe. 

 
 
 

 
Figure 1: Kunii and Levenspiel fluidized bed reactor model 

 
The model assumes plug flow for gas in emulsion 

and in bubble phase as well as complete mixing for 
solids in the emulsion phase. The combined 
hydrodynamic and chemical model was developed by Di 
Carlo et al.(2013)   in earlier works. 

Several assumptions are employed. The wake and 
cloud region is neglected. In the emulsion phase, gas 
ascends at the minimum fluidization velocity, umf. 
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The bubble diameter is calculated by Davidson 

model at each bed height. 
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The volume fraction of bubble in the bed is δ and 

that of emulsion is (1- δ). 
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For gas exchange between bubbles and emulsion 

the following transfer coefficient is considered: 
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As a result, the transport equations solved at 

steady state are: 
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Where j indicates the reaction (1…13), i are the 

chemical species and νij is the stoichiometric coefficient 
of species i in reaction j, negative for reagents and 
positive for products.  

Finally ideal gas law was used to calculate the gas 
concentration: 

 


RT

p
Ctot

 
 
In order to complete the model, the kinetic 

expressions for the reaction rates are required. Owing 

to the small char particles diameter, extra and intra 
particle diffusion resistances were neglected.  

For reaction R1 and R2 (gasification of char with 
steam and CO2) the expressions deducted by Barrio et 
al. (2001) and Barrio & Husted (2001) were used. 
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The kinetic data, shown in Table 1, were deduced 

from the work of Konttinen et al.(2003). 
 

Table 1: 
Pre-exponential and activation energy values 

 
 
Reaction R3 was neglected because of its very slow 

rate at low operating pressure. 
Gas phase reactions (R4, R5) were simulated using 

the expressions adopted by Wang & Kinoshita (1993) 
(R4 and R5 are expressed in mol/m3s) 
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For the heterogeneous catalytic reactions taking 

place on olivine particles, the kinetic expression 
obtained by Simell et al.  (1999)  was used for benzene 
(R6), while for the reactions R7-R9 the results in (Devi,  
2005)  were used to extrapolate first order kinetic 
expressions (reactions are expressed in (mol/kgcat.h)). 
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 k01 k02 k03 EA1 EA2 EA3 

 (s-1bar-1) (s-1bar-1) (s-1bar-1) (J/mol) (J/mol) (J/mol) 

R1 6.49E+07 95.3 1.64E+09 204000 54315 243000 

R2 1.64E+07 4.59E+02 8.83E+07 1.88E+05 8.83E+04 2.25E+05 
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2.2 Gasification model 

High-temperature biomass pyrolysis is the first step 
of the thermo-chemical process taking place in a 
fluidized bed gasifier; it influences strongly the final 
produced gas composition as well as TAR (heavy 
organics) production. In the model, biomass de-
volatilization time was considered negligible, and in 
order to get realistic values for the pyrolysis products, 
experimental tests on a bench scale fluidized bed 
reactor were carried out at temperature close to those 
adopted for the simulations (750-800 °C). The results of 
the pyrolysis tests were integrated in the model as input 
data. In order to consider TAR evolution in the gaseous 
stream during the gasification process different 
representative compounds were chosen: Benzene, 
Toluene (1-ring), Phenol, Naphthalene (2-rings).The 
bench scale rig used in this work is schematized in Fig.2. 

 

 
 

Figure 2. Experimental rig for pyrolysis and gasification tests 

 
 

As shown in Fig. 2, the test rig consists of the 
following parts: 

 
 Feeding systems for nitrogen, water (including 

steam generation), and air/oxygen. 
 A fluidized bed reactor (80 mm ID) enclosed in 

a cylindrical electric furnace to maintain it at 
the desired temperature level. The bed consists 
of 350 μm olivine particles.  

 A biomass feeding system at the top of the 
reactor that enables wood particles to be 
instantaneously dropped into the hot bed. 

 A heated ceramic filter installed at the exit of 
the reactor for particulate removal. 

 Gas cooling baths at ambient temperature and 
at –20 °C, respectively, to sample TARs in 2-
propanol filled impingement bottles. TAR is 
then analysed by Agilent GC-MS 5975C.  

 A gas cumulative flow meter.  
 A gas chromatography analysers Varian micro 

GC to analyse the gas composition.  
 Mass Flow Controller (MFC) allow to adjust the 

input flow-rates at the desired value 
As mentioned above, pine wood was chosen as 

biomass feedstock, the elemental analysis is reported in 
Table 2, together with average particle size and density. 

 
 
Table 2 
Biomass Analysis 

Type 
Black Pine 
wood 

Status Raw 
Moisture (wt %) 11 
Ash (wt %) 0.5 
Carbon (wt %) 49,1 
Hydrogen (wt %) 6.36 
Oxygen (wt %) 44.3 
Particle size (mm) 1-2 
Particle Density (kg/m3) 510 

  
 
Nitrogen was used as the fluidizing medium during 
pyrolysis tests. The composition of the produced gas 
was continuously monitored in terms of H2, CO, CO2 and 
CH4. The mass flow of biomass was set equal to 170 g/h. 
Tests were carried out at 750 °C. The time-averaged 
results are reported in Table 3: 

 
Table 3 
Average gas composition obtained from pyrolysis tests 

Gas yield (Nm3/kgbio(as received) 0.81 
Composition (%vol)  
      H2 32 
      CO 34 
      CH4 19 
      CO2 14 

 
 
After pyrolysis, the feeding gas was switched to air to 

burn the residual char, allowing to evaluate CO and CO2 
produced in this process, measuring exit gas 
composition and flow. It was so possible to estimate 
that the carbon (char) produced during pyrolysis tests 
was equal to 0.18 (gchar/gbio(ar)).  

Table 4 shows the produced TARs and their mass 
fractions, divided in 4 subgroups (Benzene, 1-ring, 2-
rings, Oxygenated). 
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Table 4 
Analysis of tar obtained from pyrolysis tests 

 
TAR yield 108 g/Nm3 
Tar /bio(dry ash free) 0.09 (g/g) 
Composition (weight fractions)  

Benzene 0.44 
Toluene+Styrene+Xylene (1-ring) 0.20 
Naphthalene+Indene (2-rings) 0.21 
Phenol (oxygenated) 0.07 

 
 
3.   Model validation 
3.1 Validation via ordinary differential equations (ODE) 
analysis and MATLAB calculation 

The derived ordinary differential 
equations(ODE) for the gasifier model at steady state 
were implemented and solved with MATLAB. 
Simulations of thegasifier were carried out varying 
steam to biomass ratio ( ) and operative temperature 

from 0.5 to 1 and from 750 to 850 °C, respectively. In 
order to validate the model, experimental gasification 
tests were carried out at identical operative conditions, 
with the same test rig utilized for pyrolysis tests (Fig. 2), 
using steam instead of nitrogen as fluidization gas.  

Fig. 3 shows, the gas composition and the gas 
product yields at different steam to biomass ratios, with 
a gasification temperature of 850 °C obtained by the 
model and compared with experimental results. 
The comparison between the model and experimental 
results shows that model is fairly capable of predicting 
gas composition and production rate: in particular, the 
numerical and experimental results showed slight 
discrepancies lower than 2 % for the gas composition 
and lower than 4 % for gas product yields.  
Figure 4 shows the gas composition and the total TAR 
concentration varying the gasification temperature in 
between 750 and 850°C maintaining the steam to 
biomass ratio equal to 0.7. 

Also in this case, simulation and experimental 
results are in good agreement. The discrepancies is 
always lower than 2 % for CO2, CH4. H2. CO shows a 
bigger discrepancy at 750 °C, but the difference is 
always lower than 5%. Figure 4 b) shows the 
comparison of simulated and experimental total TAR 
concentrations. Also for the TAR, the mayor difference 
between simulated and experimental data is always at 
low temperature, but, in this case, it is bigger. Indeed, at 
750 °C the model shows a significant overestimation of 
25 %.  

Figure 5 below shows the comparison between 
simulated and experimental single TAR concentrations 
(Benzene, Toluene (1-ring), Naphthalene (2-rings), 
Phenol), obtained varying the temperature from 750 to 
850°C, with steam to biomass ratio at 0.7. 

 
 

 

 
Figure 3. Gas composition (a) and gas product yield (b) at different 
S/B with T= 850 °C, obtained by simulation (line), and compared with 
experimental results (dots). 

 
 

 

 
Figure 4. Gas composition (a) and total TAR concentration (b) at 
different T with S/B=0.7,obtained by simulation (line), and compared 
with experimental results (dots) 
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It was found  also that Benzene, the lowest molecular 
weight TAR, is always the mayor TAR compound. It 
accounts for about 57% of all TAR compounds in all the 
conditions. 1-ring TAR accounts for about 25%, 
meanwhile 2-ring for about 17%, and Phenol for about 
1%. Moreover it confirms that the mayor weight TARs 
are the ones that more decrease their concentrations at 
higher temperatures. Moreover the differences between 
simulated and experimental data are always below 
20%, except for Benzene at 750°C, where the model 
overestimates the value of about 40% and at 850°C, 
where the model underestimates with discrepancies of 
about 30%.  

3.2 Validation via the Boubaker Polynomials expansion 
Scheme BPES  

3.2.a Fundamentals to the Boubaker Polynomials 
Expansion Scheme (BPES) 

The Boubaker Polynomials Expansion Scheme BPES 
(Ghanouchi et al., 2008; Awojoyogbe & Boubaker, 2009; 
Labiadh & Boubaker, 2007; Slama et al.,  2008, 2009;  
Tabatabaei et al., 2009; Fridjine & Amlouk, 2009; 
Belhadj et al., 2009a; 2009b, Barry & Hennessy, 2010; 
Yildirim et al., 2010; Kumar, 2010; Milgram, 2011; 
Rahmanov, 2011; Benhaliliba et al.,2011) is a resolution 
protocol which has been successfully carried out no 
several applied-physics and mathematics problems. The 
BPES protocol ensures the validity of the related 
boundary conditions regardless main equation features. 
The BPES is mainly based on Boubaker polynomials 
first derivatives properties: 
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Several solution have been proposed through the BPES 
in many fields such as numerical analysis, theoretical 
physics, mathematical algorithms, heat transfer,  
homodynamic, material characterization, fuzzy systems 
modeling and  biology. 

3.2.b Application of the Boubaker Polynomials Expansion 
Scheme (BPES) 

In order to assess the validity of the actual model 
along with experimental results, simulations of the 
gasifier were carried out using the Boubaker 
Polynomials Expansion Scheme and by varying steam to 
biomass ratio and operative temperature from 0.5 to 1 
and from 750 to 850 °C, respectively. The following 
assumptions are introduced to develop its mathematical 
model: 

 Steam to biomass  S/B lie between min =0.5 

and max =1.0  

 Compounds are accurately defined through 
molecular mass. 

 Heat losses are neglected (adiabatic process). 
 Ambient  air is composed of 78.2% N2, 20.7% 

O2, 0.03% CO2, and 1.0% H2O in mole.  

 Steam to biomass T  lie between minT =750° 

and maxT =850°    

For normalization purposes, each experimental value of 

the variable 
iM (here H values of  

i or 
iT )which 

varies inside the range ],[ maxmin MM , is normalized as 

following. 















minmax

min~

MM

MM
M i

i
     

Consecutively, for each component, indexed as j , 

concentration in the gas 
4..0jj is defined as a 

function of   andT .   
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where kB4 are the 4k-order  Boubaker polynomials, kr

are  
kB4

minimal positive roots, 0N  is a prefixed 

integer and 
4..1,..1

..1,, 0



jHi

Nkjik  are unknown pondering 

real coefficients.  

The main advantage of this formulation is the 
evidence of verifying the boundary conditions, in 
advance to problem resolution thanks to the properties 
of the Boubaker polynomials (Awojoyogbe & Boubaker, 
2009; Labiadh & Boubaker, 2007; Barry & Hennessy, 
2010; Yildirim et al., 2010; Kumar, 2010; Milgram, 
2011; Rahmanov, 2011), besides proposing 
differentiable and piecewise continuous solutions 
(Ghanouchi et al., 2008; Awojoyogbe & Boubaker, 2009; 
Benhaliliba et al.,2011).  

The Boubaker Polynomials Expansion Scheme 
BPES is a resolution protocol which has been 
successfully applied to several applied-physics and 
mathematics problems. Several solutions have been 
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proposed through the BPES in many fields such as 
numerical analysis, theoretical physics, mathematical 
algorithms, heat transfer, homodynamic, material 
characterization, fuzzy systems modelling and biology .   
The BPES protocol ensures the validity of the related 
boundary conditions regardless of main equation 
features. In fact, thanks to Boubaker polynomials first 
derivatives properties boundary conditions are 
inherently verified. 
 

 
 

 

Figure 5. BPES solution plots in the )~,
~

( T plane < (a) Benzene  (b) 

Phenol in g/Nm3> 

 
By taking into account the given expressions, 

boundary conditions become redundant since  already 
verified by the proposed expansion and optimality of 
protocol-dependent efficiency . The BPES solution is 
obtained through six steps: 

 Setting an arbitrary value of 0N . 

 Calculation model values of the concentrations 

4..0jj in the gas using experimental values 
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 Computing the optimal set 
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ˆ
Nkjikjik 

 

which minimizes the quadratic error between 
the experimental values and those calculated 
through the formula: 
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 Incrementing the value of 0N . 

 Testing convergence 
 Setting final values of the unknown parameters 

0..1,,,,
ˆ

Nkjikjik 
   

  
Figure 5 shows partial results for concentration in the 
gas of representative components: Benzene and Phenol. 
The obtained plots confirm the experimentally obtained 
efficiency range as well as recorded distribution (§2). 
They are also in good agreement with the records of  
Ruoppolo et al.,  (2012), Mastellone et al. (2012),  
Kobayashi et al.,  (2009 ) and Arena et al., ( 2011). 
 
4. Conclusion 

A hydrodynamic and kinetic model capable of 
predicting steady state product gas composition of a 
steam blown fluidized bed biomass gasifier, including 
four different representative TARs compounds has been 
developed and validated at different temperatures and 
steam to biomass ratios.  

The comparison between the simulated and 
experimental data shows that the model predicts gas 
composition and product yields with a very good 
accuracy. In particular, the difference between 
simulated and experimental data is lower than 2 % for 
the gas composition and lowers than 5 % for gas 
product yields. Regarding the TAR concentrations, the 
results confirms that Benzene, the lowest molecular 
weight compound, is the greater TAR compound 
representative, showing that it amounts for about 60% 
of the total TAR compounds concentrations. The model 
and experimental results confirm that the heavier TARs 
are reformed at high temperature more than the lighter 
TARs. In detail, the experimental results show that 
Benzene concentration increases from about 50% at 
750°C to about 70% at 850 °C; meanwhile the model, 
even if maintain a difference, in the total TARs 
concentration, with the experimental data below 20% 
at medium-high temperatures, great overestimates at 
750°C and underestimates at 850°C the Benzene 
concentration. 
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LIST OF NOTATION 

Latin Letters 
A the cross-sectional surface area of the bed (m2) 
Ar Archimedes number 
Cbi Concentr. of specie i in bubble phase (mol∙m-3) 
Cei Concentration of specie i in emulsion phase 

(mol∙m-3) 
db bubble diameter (m) 
dp particle diameter (m) 
Dr Reactor diameter (m) 
g gravity acceleration (m∙s-2) 
H Height of expanded bed(m) 
k Arrhenius of reactions 
kbe gas interchange coefficient between bubble and 

emulsion phases (m∙s-1) 
LHV  Low Heating Value of the incoming biomass dry 

and ash free (see Table 2) (kJ∙kg-1) 
mc mass of char in the bed (kg) 
  

  ̇  inlet mass flow rate of char(from pyrol.) (kg∙s-1) 
moliv mass of olivine in the bed (kg) 
Nor Number of orifices per unit area of distributor 

plate (m-2) 
p pressure (N∙m-2) 
PMc Molecular weight of char 
Q Volumetric flowrate of gas (m3∙s-1) 
Rbj Rate of reaction j in bubble phase b (R4,R5 

R11,R12,R13)(mol∙m-3∙s-1) 
   

 
 Rate of reaction j in emulsion phase e for the gas 

phase g (R4,R5 R11,R12,R13)  (mol∙m-3∙s-1) 
   

  Rate of char gasification (R1-R2) in emulsion 

phase e with char c (s-1) 
   

     Rate of tar reaction (R6..R9) in emulsion phase e 

catalyzed by olivine oliv(mol∙kg-1
cat·h-1) 

T Temperature (K) 
Vbed Volume of reactor bed (m3)  
ub velocity of bubble (m s-1) 
umf minimum fluidization velocity (m s-1) 
 
Greek Letters 
 
δ Volume fraction of bubble in the bed 
εc volume fraction of char c in the solid phase of the 

bed (char+olivine) 
εmf volume fraction of gas at minumum fluidization 
εoliv volume fraction of olivine oliv in the solid phase 

of the bed (char+olivine) 
ρc density of char (kg∙m-3) 
ρg density of gas phase (kg∙m-3) 
ρoliv density of olivine (kg∙m-3) 
μg viscosity of gas phase (kg∙m-1∙s-1) 
νij stochiometric coefficient of species i in reaction j 
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