September 5, 2016

To: Editor, International Journal of Renewable Energy Development
From: Charles R. Standridge, Ph.D.
Re: Lake Michigan Wind Assessment: Height and Location

We are submitting for consideration for publication in the International Journal of Renewable Energy Development our paper: Lake Michigan Wind Assessment: Height and Location.

This paper describes the first wind study using floating LiDAR or a laser wind sensor on a lake or inland sea in the United States. The most significant finding of the study is that average wind speed does not increase with height. This finding implies that for wind farm planning studies wind speed must be measured at turbine hub height and not computed using the wind power law with wind speeds gathered at lower heights. In addition, the average wind speed at the mid-lake plateau is greater than nearer the shoreline. Thus, the trade-off between harvesting additional energy and the higher cost of constructing and maintaining a wind farm farther from shore must be assessed.

Sincerely,

Charles R. Standridge, Ph.D.,
Professor and Associate Dean
Seymour and Esther Padnos College of Engineering and Computing