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Abstract. Biodiesel has recently received much attention as an energy source with numerous benefits such as high degradability, negligible 

toxicity, and minimal emissions of carbon monoxide gases as well as particulates. Therefore, this research aims to compare, review, and 

summarize the conventional and advanced methods of biodiesel production. Currently, some emerging processes that were developed for 

advanced biodiesel production include microwave-assisted synthesis, ultrasonic-assisted synthesis, supercritical transesterification, and 

liquid phase plasma discharge technology. The types of feedstocks, catalysts, and operating conditions as the influential parameters in 

biodiesel synthesis are also discussed. Moreover, in the purification process, the effectiveness of purification depends on the type of 

catalyst applied in the synthesis process. This research also reviewed and compared several commonly used purification methods such as 

wet and dry washing, ion exchange and precipitation, complexation, and membrane-based separation that have shown significant results 

along with the impacts of biodiesel production on environmental and economic sectors.  
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1. Introduction 

Biodiesel has been widely promoted one of the most 

promising renewable energy sources. Basically, biodiesel is 

a blend of fatty acid and methyl esters (FAME) that can be 

used in standard diesel engines with little modification. It 

has mostly been created through the esterification of free 

fatty acids (FFAs) and/or homogenous basic or acid 

transesterification of triacylglycerols (TAGs) from diverse 

raw materials such as used cooking oils, plant, and animal 

oils (Athar and Zaidi, 2020). The TAGs conversion into 

methyl esters takes approximately one hour at ambient 

temperature and pressure conditions due to the high 

activity of conventional basic catalysts and the moderate 

operating condition of reaction (around 60–65oC) (Athar 

and Zaidi, 2020; Fayyazi et al., 2021; Syafiuddin et al., 

2020). However, the disadvantages of these procedures 

include the generation of soap, a decrease in catalytic 

effectiveness due to catalyst depletion, a rise in viscosity, 

and the development of gels.  

In the wet washing process, a large amount of water is 

required to remove the remaining catalyst and purify the 

biodiesel, leading to a substantial amount of wastewater 

that needs to be effectively handled (Fayyazi et al., 2021; 

Šalić et al., 2020; Sokač et al., 2020). This extra stage in 

the synthesis of the biodiesel process raises the total cost 

of production, which makes it uncompetitive with 
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petroleum-based diesel generation (Kumar et al., 2020; 

Noriega and Narváez, 2020). Lastly, the cost of producing 

biodiesel is approximately three times higher than that of 

petroleum. Moreover, one of the most significant 

disadvantages of homogeneous catalysts is that they 

cannot be regenerated (Hariprasath et al., 2019; Kasirajan, 

2021; Shankar et al., 2017). 

Previous research has stated that the conventional 

biodiesel production methods such as catalytic 

transesterification and esterification have achieved 

production high capacity, however, it requires high 

expenditure, especially for the purification process 

(Veljković et al., 2015). This becomes the main reason 

biodiesel has not been able to compete with diesel oil from 

petroleum products in the transportation market (Keera et 

al., 2018; Lee and Saka, 2010; Marchetti et al., 2007). 

Therefore, the need for the development of novel, clean, 

eco-friendly, and efficient processes is increasing in past 

decades to produce the standard biodiesel product with a 

shorter time and easier purification method. To solve this 

problem, numerous approaches of biodiesel production 

from the conventional to the advanced methods such as 

microwave-assisted synthesis, ultrasonic-assisted 

ultrasonic, supercritical transesterification, and plasma 

discharge were deeply reviewed, compared, and discussed. 

This research also reviews the influential parameters in 

biodiesel syntheses such as feedstocks, catalysts, and 
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operating conditions. Furthermore, several commonly 

applied purification methods were discussed and 

summarized to present a holistic understanding of 

biodiesel production. The methods presented were wet and 

dry washing, ion exchange and precipitation, 

complexation, membrane-based separation, and 

simultaneous synthesis and purification techniques along 

with their benefits and drawbacks. Similarly, the impacts 

of biodiesel production on environmental and socio-

economic aspects were also briefly analyzed. 

 

 
Fig. 1. Overview of the review’s contents. 

 

Fig. 2. The transesterification and esterification reactions in biodiesel production (Chozhavendhan et al., 2020). 
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2. Production process of biodiesel 

 In this section, the conventional and several 

advanced methods in biodiesel production are discussed, as 

shown in Fig. 1. Conventional methods from the literature 

include homogeneous and heterogeneous processes, while 

advanced methods such as microwave-assisted, ultrasonic-

assisted, plasma discharge, and supercritical processes in 

biodiesel production are reviewed and compared. 

 

2.1. Conventional method of biodiesel production 

 Algae, plant oil, food sources, lignocellulosic materials, 

and other sources can be used to produce biodiesel (Abo et 

al., 2019; Alami et al., 2021; Baskar et al., 2018; Keera et 

al., 2018; Li et al., 2012; Saputra Nursal et al., 2021). 

Moreover, biodiesel is commonly made through 

the transesterification process, which involves 

reacting oils with short-chain alcohol to form alkyl esters 

and glycerol with the use of a catalyst. The reaction can be 

occurred at a temperature of (50-70 oC), and it is usually 

heated by external thermal heater (Fayyazi et al., 2021). 

Transesterification is a three-step process that occurs in a 

sequential (Al-Saadi et al., 2020; Hariprasath et al., 2019; 

Sokač et al., 2020),  which involves the transformation of 

triglyceride in the oil to diglyceride, followed by 

monoglyceride, and glycerol in the first stage. A significant 

amount of oil to alcohol (usually 1:3) molar percentage is 

constantly operated in the system to promote the forward 

reaction and a large amount of alcohol is typically 

applied to tip the balance to the right side (product). The 

reaction flow is divided into two stages, namely biodiesel 

product (upper) and glycerol rich phase (lower) at the end 

of the transesterification procedures (Fayyazi et al., 2021). 

It was also reported that the unreacted alcohol is 

distributed in both phases (Al-Saadi et al., 2020; 

Hariprasath et al., 2019; Sokač et al., 2020). The general 

reaction mechanisms for producing biodiesel (methyl 

esters) through the transesterification and esterification 

process can be seen in Fig. 2. Further details regarding 

homogeneous and heterogeneous catalytic process in 

biodiesel synthesis can be seen in part 3.2.1 and 3.2.2, 

respectively. 

2.2. Advanced method of biodiesel production 

In conventional methods, energy in form of thermal is 

used to heat the reactants to a specific temperature to force 

the chemical reaction. Meanwhile, the activation energy is 

fulfilled using electric, sound, and electromagnetic wave 

powers in the current methods of biodiesel production. In 

this section, the current technology of biodiesel production 

is discussed. 

2.2.1. Microwave-assisted biodiesel synthesis 

In common biodiesel production, the reactors are 

designed based on conventional heat transfer, which 

transfers some amount of energy to the material’s surface 

and initiates the reaction. However, this method is 

thermodynamically inefficient and time-consuming, 

because it requires a large amount of energy and longer 

time to achieve a uniform temperature distribution 

(Lawan et al., 2020). Meanwhile, microwave technology 

can irradiate the electromagnetic energy directly to the 

molecular level for early chemical reaction (Mamo and 

Mekonnen, 2020). Research has shown that microwave 

energy transfer is faster and more efficient than 

conventional heating technology (Binnal et al., 2021; 

Mamo and Mekonnen, 2020). In the practical situation, it 

is essential to identify the dissipation factor of the material 

that is used in a microwave system because its efficiency 

of heat transfer depends on the ability of the material to 

absorb the electromagnetic energy and initiate the 

chemical reaction. Therefore, homogeneous and 

heterogeneous catalysts are still used in microwave-

assisted biodiesel synthesis to provide higher efficiency 

(Tangy et al., 2017). In the synthesis process, the 

microwave energy is directly transferred to the reactants 

and degraded into different side products. This makes it 

necessary to maintain the input power of microwave 

irradiation to achieve a good result. 

Microwave-assisted transesterification process using 

can be applied using homogeneous and heterogeneous 

catalysts. Homogeneous acid catalyst process is the best 

choice for the feedstock that containing high level of free 

fatty acid and water (Zhang et al., 2010; Zhang, 2003). 

Several homogeneous acid catalysts including sulfuric acid 

(H2SO4), hydrochloric acid (HCl), and boron trifluoride 

(BF3) were found useful for the biodiesel synthesis from 

high acid level feedstocks (Dall’Oglio et al., 2015; Zhang et 

al., 2010). Other polyacids such as H3PW12O40, 

H4SiW12O40, and Na3PW12O40 can be dissolved in alcohol, 

forming the homogeneous system (Zhang et al., 2010). The 

polyacids have strong Bronsted acidity than that of H2SO4 

and other acids with uniform acid sites. A study conducted 

by Dall’Oglio and coworkers revealed the results of 

comparative study on microwave-assisted biodiesel 

synthesis using maize oil as feedstock and applied some 

acid catalysts such as HCl, H2SO4, and CISO3H was found 

to have > 85% of conversion (Dall’Oglio et al., 2015). The 

better conversion using H2SO4 showed the better mobility 

of ions and counterions in the reaction system that 

supported by microwaves compared to the conventional 

system (Dall’Oglio et al., 2015; Zhang et al., 2010). Cheng 

and coworkers studied the comparation of microwave-

assisted biodiesel synthesis of chlorella pyrenoidosa using 

two different processes namely, (i) microwave-assisted 

transesterification followed by a conventional solvent 

extraction, and (ii) microwave-assisted extraction followed 

by a conventional transesterification (Cheng et al., 2014). 

It was found that in the first approach the FAME 

concentration was found to have a maximum content of 

95% by using 30 min of 500 W microwave power (Cheng et 

al., 2014). Other process conditions were 6 ml/g alcohol to 

oil ratio, 3% H2SO4, and 90 oC of temperature. It was 

concluded that microwave was useful to boost the FAME 

yields (Cheng et al., 2014). Since the microwave does not 

interrupt the bonds at molecular levels, but just helping to 

cause the electron excitation, thus, the reaction pathways 

of a microwave-assisted biodiesel synthesis follow the 

same route as the conventional process (Dehghan et al., 

2019; Huang et al., 2015). Despite acid catalysts showed 

improvements in microwave-assisted biodiesel production, 

some drawbacks were still found such as it requires higher 

alcohol to oil ratio, formation of water molecules, complex 

product separation and purification, and the spent acids in 

final product (Dehghan et al., 2019).  

 Due to many drawbacks of acid catalysts in the 

homogeneous microwave-assisted system, researchers 

gave more attention to the alkali catalysts (Nayak et al., 
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2019). The main profit of using homogeneous alkali 

catalyst in microwave-assisted biodiesel synthesis is a 

higher yield of biodiesel in a shorter time compared to the 

conventional heating method (Qu et al., 2021). This is 

promoted by the direct absorption of electromagnetic 

energy of microwave by the hydroxyl (-OH) groups, that 

subsequently break the stricture of two-tier of oil and 

alcohol, which improved the solubility of these reactants 

(Lin and Chen, 2017; Sharma et al., 2016). Numerous 

alkali group 1 materials such as KOH, NaOH, NaOCH3, 

which are dissolved in alcohol and can be applied for 

microwave-assisted biodiesel synthesis (Nayak et al., 

2019). Under bombardment of electromagnetic power from 

microwaves, due to the higher dielectric characteristics, 

alcohol quickly heated to reach the boiling point and 

provide sufficient energy to initiate the transesterification 

reaction (Rokni et al., 2022). A study performed a 

microwave-assisted biodiesel synthesis using papaya oil 

found nearly 99% biodiesel conversion (Nayak and Vyas, 

2019). This process was conducted by applying 0.95%-wt 

NaOH as catalyst, 62.3 oC of temperature, 9.5:1 alcohol to 

oil ratio, 450 W of microwave power for 3.3 min (Nayak and 

Vyas, 2019). An attempt was performed using microalgae 

as feed oil with 0.5%-wt NaOH in methanol as catalysts, 

12 ml n-hexane, constant agitation of 600 rpm, 45 oC, with 

350 W of microwave power (Chen et al., 2015). In addition, 

the main advantage of microwave-assisted biodiesel 

synthesis using the homogeneous alkali catalysts is the 

faster process compared to the acid catalysts and can be 

performed for wet biomass feedstocks such as microalgae 

by a single stage (Chen et al., 2015; Qu et al., 2021).  

Microwave-assisted biodiesel synthesis using acid and 

alkali homogeneous catalysts reported to have an 

improvement in shorter reaction time, but the 

homogeneous catalytic process suffers from problems 

regarding product separation process, treatment of acid or 

base disposals, and catalyst reactivation process (Kamel 

Ariffin and Idris, 2022; Zhang et al., 2022).  This problem 

can be solved by using heterogeneous catalysts (Dehghan 

et al., 2019). Various study on the microwave-assisted 

transesterification using heterogeneous catalysts have 

been reported (Alcañiz-Monge et al., 2018; de Aguiar et al., 

2017).  Acidic metal oxides, alkali metal oxides, cation 

exchange resins, clay supported catalysts, and carbon 

supported catalysts have been utilized for advanced 

microwave-assisted biodiesel synthesis (Alcañiz-Monge et 

al., 2018; de Aguiar et al., 2017; Guldhe et al., 2017; Nayak 

et al., 2019). The presence of catalysts can reduce the 

required microwave energy level, maintain the reaction 

equilibrium, and conduct the reaction at lower input 

energy input that provides a fast conversion rate (Nayak et 

al., 2019). The operating condition in microwave-assisted 

biodiesel synthesis depends on the feedstock properties, 

fatty acid content, reaction time, mixing speed, and 

catalyst dosage (Mamo and Mekonnen, 2020; Tangy et al., 

2017). Some of these parameters have been optimized in 

the previous research (Thirugnanasambandham et al., 

2017). Table 1 summarizes the most recent application of 

microwave in biodiesel synthesis. where it was concluded 

that microwave-assisted biodiesel production technology is 

one of the most promising new technologies with faster and 

high conversion. However, some obstacles such as high 

capital cost and complex equipment requirement 

decelerate the development of this method in the industry. 

 

2.2.2. Ultrasonic assisted biodiesel synthesis 

 Another modern technology in biodiesel 

production is ultrasonic-assisted biodiesel synthesis, 

which is carried out to homogenize the reactants and 

catalysts. The higher level of homogenization between 

reactant and catalyst can provide a better contact area to 

convert reactants into biodiesel with a higher conversion 

rate (Salamatinia et al., 2012). The use of ultrasonic 

radiations in transesterification reaction does not disturb 

the chemical equilibrium and thermodynamic conditions 

(Sajjadi et al., 2015; Stavarache et al., 2007). Similarly, it 

can also enhance the mass transfer, thereby improving the 

overall rate of kinetic (Sajjadi et al., 2015). This process 

radiates the acoustic energy that creates the cavitation 

mechanism and increases the molecular kinetic energy 

(Gogate, 2008). To apply the ultrasonication in biodiesel 

production, there is a need to understand the required 

intensity, produce the optimized cavitation, and distribute 

a uniform ultrasound condition across the mixture to 

obtain a better result. In an ultrasonic system, the 

electrical energy is converted into acoustic/ sound energy 

through piezoelectric transformers, which are emitted into 

the chemical transformation (Luo et al., 2014). Therefore, 

an optimized design is needed to minimize the energy loss 

during the conversion from electrical into sound energy. 

The physical effects of ultrasonic-assisted 

transesterification reaction have been reported by a huge 

number of investigations. Physically, the ultrasonic waves 

cause bubble cavitations close to the boundary layer 

between oil and alcohol, which generating a vast number 

of micro bubbles. The bubbles’ collapse produces 

microturbulence and disrupts the phase boundary layer. 

The speed of collapse of the bubbles can reach up to 200 

m/s, generating the immiscible mixing and starting the 

emulsification between the oil and alcohol. The mass 

transfer rate increases due to this emulsification as well as 

generating faster reaction kinetics. The use of an 

ultrasonic system in the transesterification process 

enhances the reaction efficiency and attributes to the less 

ratio of oil to alcohol (Florez Marulanda and Ortega 

Alegria, 2019). Meanwhile, one of the superiorities of the 

ultrasonic system in biodiesel production is the massive 

formation of oil and alcohol emulsion, which is carried out 

by simple mixing in the conventional method. The recent 

developments of ultrasonic-assisted biodiesel production 

are listed in Table 2. In the homogeneous catalytic process, 

the ultrasonic energy does not directly enhance the 

reaction rate; however, the ultrasonic waves intensify the 

mass transfer by providing massive emulsion of reactants 

and catalysts to achieve an 80% faster process. Moreover, 

it can also be seen that the operating temperatures to 

conduct the biodiesel synthesis using an ultrasonic system 

are relatively low compared to the conventional process 

that needs at least 60oC to initiate the reaction (Asakura 

et al., 2008). 

  It is noteworthy that, even though 

transesterification assisted with ultrasonic wave to 

synthesize biodiesel is very helpful, further studies are 

required to overcome the technical drawbacks.  
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Yasvanthrajan and coworkers conducted an ultrasonic 

assisted transesterification method to boost the process 

efficiency of biodiesel production from waste cottonseed oil 

using the immobilized lipase enzyme as the catalyst 

(Yasvanthrajan et al., 2021). This approach effectively 

decreased the time for reaction to 6 h with low amount of 

enzyme (5 %w) and relatively milder temperature 

condition (45oC). Moreover, the immobilized lipase 

remains intact during this ultrasonic assisted 

transesterification process and has a great reusability up 

to four consecutive cycles. Therefore, this emerging 

approach can be adapted to provide the more efficient 

biodiesel production process. Another study by Oliveira 

and co-workers reported that the removal of external 

heating source and mechanical agitation is beneficial for 

ultrasonic assisted transesterification process (Oliveira et 

al., 2021). 

2.2.3. Supercritical transesterification 

The supercritical transesterification process is one of 

the modern methods in biodiesel production, which is 

carried out without the presence of catalysts. This process 

allows direct transesterification of triglycerides and 

esterification of free fatty acid into biodiesel (Farobie and 

Matsumura, 2017). The supercritical process also improves 

the solubility and mass transfer properties of the reaction. 

In this process, the reactants containing oil and alcohol are 

transferred into a reactor with supercritical operating 

conditions. The temperature and pressure conditions are 

above the critical point of the alcohol, with methanol 

having a critical temperature and pressure of 240oC and 

1140 psi, respectively (Deshpande et al., 2017). In this 

supercritical condition, the chemical and physical 

properties of methanol change such as density, diffusivity, 

polarity, and viscosity (Bernal et al., 2012). Previous 

research has shown that some influential parameters in 

supercritical transesterification include pressure, 

temperature, type of alcohol, reaction time, and oil to 

alcohol ratio (Deshpande et al., 2017; Farobie and 

Matsumura, 2017). According to the previous research on 

biodiesel production using supercritical 

transesterification, it was discovered that in the 

supercritical region, methanol disintegrated is a free 

monomer due to the weakening of hydrogen bonding (Lee 

and Saka, 2010). The free methanol monomer reacts with 

carbonyl groups of the triglyceride that generates 

methoxide transfer and form the methyl ester and 

diglyceride that further transform into biodiesel and 

glycerol. 

The supercritical transesterification was firstly 

studied by Lee and Saka and they found that the thermal 

decomposition of biodiesel (ester) may occur at high 

temperature condition and ambient pressure, which 

resulting in lower biodiesel quality (Lee and Saka, 2010). 

However, at high temperature and pressure condition in 

supercritical process, the transesterification reaction is 

easier to occur due to the formation of free monomer of the 

reactants. Yin and coworkers investigated a biodiesel 

synthesis using soybean oil in supercritical condition in a 

high pressurized vessel (Yin et al., 2008). They found that 

the ester conversion was 95% at 10 min of process at a 

temperature of 350 oC, whereas at 260 oC, it was only 30% 

of ester conversion after 60 min. Another study by Tsai and 

coworkers reported that waste cooking oil showed better 

efficiency compared to the refined cooking oil due to its free 

fatty acid content (Tsai et al., 2013). The ester yield was 

65% at 300 oC and 100 bar within 4 min. 

 Even though the supercritical process seems to 

generate many benefits, including, no pretreatment 

needed, catalysts free, no soap formation, wastewater free, 

and faster process. However, the high expensive 

operational cost is a significant limitation due to the 

supercritical process that requires high temperature and 

pressure (Han et al., 2005; Kusdiana and Saka, 2004; Yin 

et al., 2008). Some simulation, environmental life cycle 

assessment, and feasibility studies reported that the 

supercritical process provided high biodiesel production 

capacity, faster process, technical benefits, and 

significantly reduce wastes compared to the conventional 

process in biodiesel production (Han et al., 2005; Kusdiana 

and Saka, 2004; Lee and Saka, 2010; Yin et al., 2008b). The 

operational efficiency of supercritical technology can be 

achieved by planning an efficient heat flow plant using 

Pinch technology (Pleşu et al., 2015).  

 

2.2.4. Liquid phase plasma discharge technology 

In recent years, plasma discharge technology has 

been applied in biodiesel production. Moreover, plasma is 

the ionized gas phase that contains electrons, ions, as well 

as neutral particles (Mostaghimi and Boulos, 2015),  and 

can be obtained in two forms, namely, thermal and cold 

plasma (Takai, 2008). The thermal plasma is generated 

when at a high temperature of at least 3500oC, which is the 

equilibrium temperature between ions and electrons 

(Mostaghimi and Boulos, 2015). However, it cannot 

directly be used for reaction due to its high temperature, 

which decomposes all reactants, and makes the reaction 

uncontrollable. Currently, liquid phase plasma discharge 

(LPPD) was introduced as the controllable plasma 

technology and has been used in several applications such 

as nanomaterials, catalyst, organic compounds 

degradation, and triglyceride cracking for biodiesel 

production (Du et al., 2007; Meeprasertsagool et al., 2017). 

The energy input of LPPD can easily be adjusted for 

certain purposes. The plasma introduction in biodiesel 

production can be conducted in the non-catalytic and 

catalytic systems. 

The plasma can transform triglyceride into 

diglyceride and monoglyceride for easy ester formation 

through transesterification (Khani et al., 2015), which also 

increases the rate of reaction due to the massive 

triglyceride bond breaking (Gharibi et al., 2015). During 

the plasma discharge assisted transesterification process, 

electrons with high energy run through the electrode with 

high voltage to the other electrode in ground state and 

excite the bulk gas molecules. This gas molecules 

excitation generates the ionization of atoms and forming 

the metastable species such as the reactive radical 

molecules (Wu et al., 2020). The collisions between the 

reactive species and the metastable species with the 

reactant molecules result in the production of variety 

compounds. Specifically, during the plasma assisted 

transesterification of oil feedstock, the C-C bonds in the 

triglyceride split, with the presence of methanol as the 

oxygen donor in the reaction, the oxygen molecules replace 

the C-C double bonds, subsequently result in the saturated 
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molecules (Kongprawes et al., 2021). Istadi and coworkers 

conducted a study of plasma assisted transesterification 

process using palm oil as a feedstock. They found that 

using a plasma voltage of 10 kV, electrode distance of 1.5 

min, and a reaction time of 2 min, they achieved ester yield 

of 75.65% (Istadi et al., 2014). Similarly, another study also 

reported that plasma introduction in the 

transesterification is a promising method for efficient 

biodiesel synthesis (Almarashi et al., 2020).  

Table 3 shows the recent biodiesel production 

using plasma discharge technology. This showed that 

plasma technology provides a new approach to initiate 

biodiesel formation using a different form of energy 

compared to the conventional method. It has process 

flexibility that can be carried out in the catalytic and non-

catalytic systems. However, further researches are needed 

to determine the optimum operating conditions and 

understand the reaction mechanisms to make the method 

more controllable. As a summary for an overview of 

advanced technology in biodiesel production, the 

comparison including advantages and disadvantages of the 

discussed advanced process is summarized in Table 4.  

 

 

Table 3 

Comparison of several plasma discharge-assisted biodiesel productions. 

Feedstock Type of catalytic 

process 

Catalyst  Operating conditions Ester 

yield 

(%) 

Ref. 

Palm oil Non-catalytic - Coaxial plasma discharge, 

Voltage = 220 V, Flowrate = 

0.1318 L/min 

10.1 (Fan et al., 2018) 

Mixed oil Non-catalytic - Dielectric barrier plasma 

discharge, Voltage = 10.2 kV, 

t = 120 min, 40 oC 

65 (Nabilla et al., 2019) 

Palm oil Non-catalytic - Dielectric barrier plasma 

discharge, Voltage = 10 kV, t 

= 120 min, Ar gas 

56.25 (Nabilla et al., 2019) 

Mixed oil Non-catalytic - Dielectric barrier plasma, 

Voltage = 10 kV, t = 120 min, 

40 oC 

60.72 (Nabilla et al., 2019) 

Used oil Non-catalytic - Dielectric barrier plasma, 

Voltage = 10 kV, t = 120 min, 

50 oC 

56.25 (Zara et al., 2020) 

Used oil Non-catalytic - Dielectric barrier plasma, 

Voltage = 10 kV, t = 100 min, 

ambient condition 

70 (Zara et al., 2020) 

Soybean oil Homogeneous NaOH (0.8%) LPPD plasma, V = 1.2 kV, 

Flowrate = 2.7 mL/s 

99.5 (Wu et al., 2019b) 

Ethyl acetate Homogeneous NaOCH3 (1%) Dielectric barrier plasma, 

Voltage = 15.6 kV, t = 90 

min, ambient condition 

77 (Oliveira Palm et al., 

2022) 

Ethyl acetate Homogeneous H3PMo (1%) Dielectric barrier plasma, 

Voltage = 15.6 kV, t = 90 

min, ambient condition 

90 (Oliveira Palm et al., 

2022) 

Oleic acid Homogeneous H2SO4 (1.25%) Dielectric barrier plasma, 

Voltage = 2.2, t = 4 min, 

ambient condition 

80 (Wu et al., 2020) 

Oleic acid Homogeneous H2SO4 (1%) Dielectric barrier plasma, 

Voltage = 2.12, t = 2 min, 

ambient condition 

78 (Bashir et al., 2021) 

Waste cooking 

oil 

Homogeneous NaOH (1%) Flying jet plasma DBD, 

Voltage = 2.5 kV, t = 45 min 

95.4 (Abdul-Majeed et al., 

2016) 

Rape straw Heterogeneous Zn-Ti-Zeolite (3%) Power = 15 – 45 W 25 (Wu et al., 2019a) 

Soybean oil Heterogeneous K2O/CaO-ZnO (6%) Dielectric barrier plasma, 

Voltage = 5 kV, t = 1.25 min, 

65 oC 

77.19 (Buchori et al., 2017a) 

Soybean oil Heterogeneous Activated carbon Dielectric barrier plasma, 

Voltage = 7 kV, t = 5 min, 65 
oC 

92.3 (Buchori et al., 2017b) 

Soybean oil Heterogeneous Sulfonated ZnO Dielectric barrier plasma, 

Voltage = 7 kV, t = 1.25 min, 

65 oC 

56.91 (Buchori et al., 2017b) 

Sunflower oil Heterogeneous MgO (3%) Glow discharge plasma, 45 

min 

95 (Rahmani Vahid et 

al., 2017) 
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Table 4 

Comparison of the advanced process of biodiesel production. 

Advanced 

method 

Main properties Pros Cons Ref. 

Microwave-

assisted method 

• T = 40 – 100 oC 

• t = 5 - 60 min 

• Catalyst = 0.5-5% 

• Energy = 500 - 

800 W 

• Yield = 80 - 99% 

• Efficient heating 

• Uniform heat distribution 

• Faster process 

• High yield 

• Low wastes 

• Easier separation 

• Less energy lost 

• Low product quality 

• Scale up problem 

• Need high voltage 

• Not efficient with high amount of 

catalyst 

(Binnal et al., 

2021; Mamo 

and 

Mekonnen, 

2020) 

     

Ultrasonic-

assisted method 

• T = 40 – 65 oC 

• t = 10 – 240 min 

• Catalyst = 1-6% 

• Frequency = 25 – 

60 kHz 

• Energy = 1.4 

kWh/m3 

• Yield = 90 - 99% 

• Reduce reaction 

temperature 

• Improve emulsion 

formation 

• Faster process 

• Improve product yield 

• Reduce alcohol requirement 

• Low production cost 

• High electrical energy consumption 

• Difficult equipment design 

• Require high frequency 

 

(Florez 

Marulanda 

and Ortega 

Alegria, 2019; 

Stavarache et 

al., 2007) 

     

Supercritical 

transesterification 

• T = 280 - 350 oC 

• t = 20 – 30 min 

• Catalyst = 

catalyst free 

• P = 5 – 40 MPa 

• Yield = 10 - 94% 

• Catalyst free 

• No pretreatment 

• Short residence time 

• Low wastes 

• Available for all types of 

feedstocks 

• Dangerous process 

• Need high safety during process 

• High energy requirement 

• Need hi-tech equipment 

• High temperature and pressure 

• Costly process 

 

(Deshpande et 

al., 2017; Lee 

and Saka, 

2010) 

     

Plasma discharge 

technology 

• T = 20 - 50 oC 

• t = 0.02 - 2 min 

• Catalyst = 0.5 – 

3% 

• Energy = 100 – 

300 W 

• Yield = 78 - 99% 

• Less loss of energy 

• Faster reaction 

• Shortest residence time 

• Low energy of activation 

• Low catalyst dosage 

 

• Difficult to control 

• Expensive process 

• Still emerging technology 

• Complicated reactor design 

 

(Mostaghimi 

and Boulos, 

2015; Takai, 

2008) 

 

 

3. Parameters in biodiesel production 

 Several factors affecting the performance of 

biodiesel production have been previously reported. 

Meanwhile, the type of biodiesel feedstock, type of 

catalysts, and operating conditions are discussed in this 

following sections as previously described in Fig. 1. 

 

3.1. Types of feedstocks 

The initial generation of biodiesel derived from 

agricultural goods such as peanut, soybean, and canola 

have implications on food production and the environment 

for people's use. In the early 1940s, 5% of biodiesel with 

gasoline as an alternative fuel was used for vehicles. Fig. 3 

shows the classification of the biodiesel feedstock 

generations. In this first generation of biodiesel, all raw 

oily feedstocks were derived from edible agricultural 

products such as soybean, palm oil, and peanuts, due to 

their ease of handling and large availability (Kumar et al., 

2020; Noriega and Narváez, 2020). Meanwhile, the second-

generation biodiesel was generated using cellulose 

substrates such as short-rotation trees, grassland plants, 

and urban trash. Jatropha is a non-edible feedstock, which 

necessitates a large quantity of farmland and produces low 

oil (Baskar et al., 2018; Keera et al., 2018; Saputra Nursal 

et al., 2021). Based on current research, the development 

of alternative ways to lessen food farmland rivalry was 

continued until the discovery of microalgae as a reliable 

and rich biofuel feedstock recognized as the third-

generation of biodiesel. Microalgae-based biodiesel is a 

feasible third-generation option since it has no impact on 

food sources (Abo et al., 2019; Alami et al., 2021; Saputra 

Nursal et al., 2021). It can also be used for both effluent 

phytoremediation and fabrication of biodiesel and also to 

remove carbon dioxide from the air (Abo et al., 2019). 

Furthermore, algae may be cultivated on any accessible 

surface such as lands, lakes, oceans, and generate more 

triglycerides that have been identified as a possible source 

for the production of biodiesel.  

The accessibility of oil sources is a crucial 

determinant of biodiesel production's economic viability 

because it contributes approximately 80% of the overall 

cost of biodiesel (Kumar et al., 2020; Noriega and Narváez, 

2020; Hadiyanto et al 2020). Various attempts have been 

devoted to determining a low-cost feedstock that is 

available throughout the decade. Compared to standard 

fuels, FAME from algae, plant oils, and animal fats have 

been demonstrated to be a source of biodiesel synthesis due 

to enhanced combustion behavior, volatility, and viscosity. 

Fish oils and beef tallows are the most common animal fat 

sources, while vegetable oils such as rapeseed oil, castor 

berry, palm pulp, palm kernel oil, sunflower seeds, coconut 

kernel, cottonseed, peanut grain, and canola seed were 

used in the biodiesel manufacturing process (Athar and 

Zaidi, 2020; Pinzi et al., 2014; Yusuff et al., 2021). 

Microalgae can increase their biomass in 24 hours, with 

the quickest half-life of approximately 3.5 hours, which 

makes them an attractive sustainable source for biodiesel 

synthesis (Abo et al., 2019; Alami et al., 2021; Saputra 

Nursal et al., 2021). Its enormous amount and use of richer 
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nitrogen, as well as phosphorus in wastewater as an 

inexpensive source of nutrients, benefits from algae 

cultivation. Algal species have the disadvantage of being 

obligatory phototrophs, which indicated that they need 

light to survive. The amount of FFA and contaminants in 

biodiesel also affects the kind of manufacturing technique 

employed and the amount of fuel produced. Similarly, lipid 

leftovers such as waste cooking oil and non-edible beef 

tallow have recently attracted much attention from the 

biodiesel industry. However, the discovery of new 

additional options that do not interfere with food sources 

is critical. 

 

3.2. Types of catalysts 

3.2.1. Homogeneous catalysts 

Acids and alkalis are included in the homogeneous 

catalyst, where the alkalis such as sodium hydroxide 

(NaOH), sodium methoxide (NaOCH3), and potassium 

hydroxide (KOH) are usually used (Vicente et al., 2004). 

Meanwhile, in the acidic homogeneous catalyst (H2SO4), 

sulfuric acid has been commonly used 

(Wongwuttanasatian and Jookjantra, 2020). KOH behaved 

well in the transesterification reaction of Karanja oil, 

yielding methyl esters above 95% at one percent of catalyst 

dosages in an hour of reaction at 60°C with a mixing rate 

of 7 rps (Boey et al., 2011). Saponification arises due to an 

undesirable by-product in a homogeneous catalytic 

reaction mechanism, which necessitates an extra 

separation procedure to eliminate catalytic pollutants and 

increases the final operating costs. In the homogeneous 

alkali catalytic reactions, (i) the optimal temperature is 

adjacent to the boiling temperature of the alcohol 

employed, (ii) sufficient alcohol is required to facilitate 

excellent conversion, where 1:6 is regarded as the ideal 

oil/Me-OH molar ratio (Dias et al., 2008). Furthermore, 

various basic catalysts such as NaOCH3, KOCH3, NaOH, 

and KOH for methanolysis of sunflower oil were compared 

with all reactions in an agitated reaction vessel and the 

following purification stages in a decanter under the test 

condition. Methoxides are more efficient than hydroxides, 

with a yield of around 100% (Boey et al., 2011). The 

benefits of using a homogeneous catalyst for biodiesel 

synthesis include low reaction temperatures, the high 

catalytic performance of base catalysts, and conversion in 

a relatively short period. The basic type of heterogeneous 

catalysts is also substantially more active than acid 

catalysts. After the processing and treatment of 

wastewater, saponification generates a stable colloid, the 

used catalysts that cannot be regenerated, basic catalysts 

which are delicate to the concentration of water and FFA 

are the key restrictions faced by homogeneous catalysts. 

The comparison of used catalyst for biodiesel production is 

listed in Table 5. 

3.2.2. Heterogeneous catalysts 

Heterogeneous catalysts have the potential for the 

transesterification process of plant oils to make biodiesel. 

Meanwhile, heterogeneous catalysts without homogeneous 

catalysts can be regenerated, renewed, and employed in 

continuous operations (Ganesan et al., 2021; Helmi et al., 

2021; Jayakumar et al., 2021). Since their employment in 

the transesterification process substantially simplify and 

optimizes the post-treatment of the products, there seems 

to be a recent surge in the invention of acidic or basic solid 

heterogeneous catalysts for FAME generation (Jayakumar 

et al., 2021; Xie and Wang, 2020). Generally, 

heterogeneously catalyzed biodiesel manufacturing 

techniques have fewer processing steps, post-treatment 

stages, and do not entail neutralization. The kind of 

catalyst (acid or base), the catalyst quantity, the flow 

reaction time, the extent of stirring and mixing, the 

oil/alcohol percentage, and the quality of the feed affect 

heterogeneous catalysis (Deeba et al., 2020; Helmi et al., 

2021; Xie and Wang, 2020). The detailed advantages and 

disadvantages of heterogeneous catalysts to homogeneous 

catalysts can be seen in Table 6. 

 Furthermore, the use of a solid catalyst can lead 

to faster and less expensive separation procedures, 

minimum wastewater discharge, lower production and 

energy expenditures (Rezania et al., 2022; Siddiquee et al., 

2011). Solid catalysts can be carried out in the packed bed 

reactors as the catalyst bed that simultaneously perform 

catalytic reaction and separation. Therefore, the extra 

physical separation processes and their related operational 

expenses can be eliminated. Heterogeneous catalysts are 

also less harsh and are used in fixed-bed reactors, leading 

to a safer, better cost-effective, and eco-friendly process. 

Their advantage is that they consume less energy during 

the transesterification process (Awogbemi et al., 2021; 

Jayakumar et al., 2021; Rezania et al., 2022; Siddiquee et 

al., 2011). In this process, 10 tons of sodium hydroxide are 

needed to make 1,000 tons of biodiesel, while the 

heterogeneous requires only 0.7 tons of magnesium oxide 

solid catalysts to make 12,500 tons of biodiesel (Jayed et 

al., 2009). Although the heterogeneous process has shown 

a more effective catalyst to biodiesel product, there are still 

some challenges, which includes slow reactions, partial 

conversions, short lifespan, and expensive prices (de 

Oliveira and Coelho, 2017; Eguchi et al., 2015; Krishnan et 

al., 2021). Therefore, the homogeneous process is widely 

selected for biodiesel synthesis in the current industrial 

processes. The major drawback of a heterogeneous 

catalyst, which is its slower reaction rate compared to 

homogeneous catalysis can be solved by increasing the 

methanol-to-oil proportion, temperature, and pressure of 

the process (Alagumalai et al., 2021; Hamza et al., 2021; 

Krishnan et al., 2021; Zailan et al., 2021). These 

treatments have been reported to attribute to the faster 

rate and higher biodiesel yield using the heterogeneous 

catalytic process (Awogbemi et al., 2021; R. Ganesan et al., 

2021; Hamza et al., 2021; Jayakumar et al., 2021; 

Krishnan et al., 2021; Patiño et al., 2021). To protect 

combustion damage to the engine, several pollutants such 

as unreacted FFAs, TAGs, glycerol, soaps, catalyst, mono- 

and diglyceride, water, and other impurities need to be 

separated from unrefined biodiesel by post-production 

purification stages, such as adsorption, filtration, ion-

exchange, and other methods (Catarino et al., 2020; Gomes 

et al., 2015; Hajra et al., 2015; Li et al., 2012; Wang et al., 

2021).  

Inorganic-synthesized catalysts such as calcium 

oxide (CaO), silicon dioxide (SiO2), zircon oxide (ZrO2), iron 

oxide (Fe2O3), and others are usually used due to their low 

cost, accessibility, safety, robustness, and ease of 

regeneration (Hadiyanto et al 2016). Meanwhile, 

current studies have focused on low-cost, environmentally 

friendly, and incredibly efficient heterogeneous-base 
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catalysts, where calcium oxide-based from waste or 

natural sources has shown the most potential (Baskar et 

al., 2018; Jayakumar et al., 2021; S. Silviana et al., 2021b; 

Xie and Wang, 2020). Calcium-compounding shells, 

limestone, and lime mud have been proven to have 

superior catalytic characteristics, which make them 

appropriate for biodiesel generation (Ajala et al., 2020). 

Furthermore, they make the reaction more cost-effective, 

ecologically beneficial, and also reduce waste. This occurs 

because they needed a relatively small amount of catalyst 

for the biodiesel synthesis, which generates smaller liquid 

waste compared to the homogeneous catalyst process. 

Strong acid such as sulfuric acid that simultaneously 

facilitates both transesterification and 

esterification processes are particularly important for 

biodiesel synthesis from low-cost raw stocks with high FFA 

concentration (Binnal and Nirguna Babu, 2019). 

Therefore, the invention of the novel, more powerful, and 

less expensive solid catalysts is expected to reduce the 

overall cost of producing biodiesel from the various oily 

feedstock. A better catalyst activity can also be 

accomplished through porous materials support, which 

increases TAG and FFA transport to reactive acid/basic 

sites and improves the rate of the reaction. In addition, 

environmentally friendly innovations such as membrane 

reactors, ultrasounds, and microwaves can also be used to 

solve operational issues such as excessive power 

consumption, long response times, and poor 

catalytic performance, which increases the costs of 

production. 

 
Table 5 

Biodiesel production using several types of feedstocks, catalysts, and stoichiometric ratio of methanol and oil. 

Type of catalyst Feed oil Catalyst 

addition 

(%wt) 

Oil to 

methanol 

ratio 

Ester 

yield 

(%) 

Ref. 

Homogeneous catalysts      

Sodium hydroxide (NaOH) Sunflower oil 1.00 1:6 97.0 (Vicente et al., 2004) 

Sodium methoxide (NaOCH3) Sunflower oil 1.00 1:6 99.0 (Vicente et al., 2004) 

Potassium hydroxide (KOH) Sunflower oil 1.00 1:6 91.7 (Vicente et al., 2004) 

Potassium methoxide (KOCH3) Sunflower oil 1.00 1:6 98.0 (Vicente et al., 2004) 

Sulfuric acid (H2SO4) Oleic acid 1.25 1:3 80 (Wu et al., 2020) 

Sulfuric acid (H2SO4) Oleic acid 1.00 1:3 78 (Bashir et al., 2021) 

Barium hydroxide (Ba(OH)2) Microalgae 3.00 1:6 90.8 (Sarve et al., 2016) 

Chloro-sulfonic acid (ClSO3H) Maize oil 3.00 1:6 93.1 (Dall’Oglio et al., 2015) 

      

Heterogeneous catalysts      

Calcium oxide (CaO) Sunflower oil 1.00 1:12 91.0 (Boey et al., 2011) 

Potassium fluoride (KF) Tallow seed 4.00 1:6 96.8 (Jayakumar et al., 2021) 

Potassium nitrate (KNO3) Rape oil 1.00 1:12 98.0 (Jayakumar et al., 2021) 

Titanium oxide (TiO2) Canola oil 6.00 1:30 100 (Jayakumar et al., 2021) 

Magnesium oxide (MgO) Mutton fat 4.00 1:22 98.0 (Foroutan et al., 2020) 

Aluminum oxide (Al2O3) Palm oil 5.97 1:12 98 (Boey et al., 2011) 

Zinc oxide (ZnO) Used cooking oil 1.30 1:14 90 (Yusuff et al., 2021) 

CeO2/Li/SBA-15 Cotton seed oil 10 1:40 98 (Malhotra and Ali, 2018) 

Cu impregnated TiO2 Palm oil 2 1:20 90.93 (De and Boxi, 2020) 

NaAlO2/Al2O3 Palm oil 10.89 1:21 97.65 (Zhang et al., 2020) 

Ca/APB-700 Waste cooking oil 5 1:30 93.4 (Wang et al., 2019) 

LiFe5O8-LiFeO2 Soybean oil 8 1:36 96.5 (Dai et al., 2018) 

      

Enzymes      

Lipase from Rhizopus oryzae Soybean oil 1.00 1:3 85.0 (Adewale et al., 2017) 

Lipase from Aspergillus niger Canola oil 1.00 1:3 69.0 (Andrade et al., 2019) 

Lipase/APTES-magnetite Rapeseed oil 20 1:6 89.4 (Gojun et al., 2021) 

Thermomyces lanuginosus/ 

magnetite/ Au NPs 

Waste tomato oil 20 1:6 98.5 (Sarno and Iuliano, 2019) 

Novozyme 435 Fish oil 50 1:35 82.9 (Marín-Suárez et al., 2019) 

Palatase Soybean oil 10 1:3 71 (Pedro et al., 2020) 

Immobilized CLEAs of Km 12 

lipase 

Waste cooking oil 0.3 1:3 71 (Badoei-dalfard et al., 2019) 

NS 40116 lipase Chicken fat 0.3 1:4.5 77 (da Silva et al., 2018) 

NS 40116 lipase Soybean oil 3 1:6 96 (Mibielli et al., 2020) 

Rhizopus oryzae lipase Palm oil 1.5 1:3 91.3 (Muanruksa and 

Kaewkannetra, 2020) 

Lipase immobilized Fe3O4-poly 

(GMA-co-MAA) 

Soybean oil 1.5 1:4 92.8 (Xie and Huang, 2020) 

      

Nano-catalysts      

Nano-CaO Soybean oil 1.00 1:7 96.0 (Foroutan et al., 2020) 

Nano-MgO Soybean oil 3.00 2:3 99.0 (Foroutan et al., 2020) 

Nano-KF Canola oil 3.00 1:15 82.1 (Jayakumar et al., 2021) 

Ni doped ZnO nanocomposite Castor oil 1.40 1:12 91 (Baskar et al., 2018) 

Diatomite CaO@MgO Waste cooking oil 6 1:15 96.47 (Rabie et al., 2019) 

Nano sized waste animal bone Honge oil 7 1:12 96 (Chingakham et al., 2019) 
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Table 6 

Comparison of biodiesel production using conventional homogeneous and heterogeneous catalytic process. 

Type of 

production 

Pros Cons 

Homogeneous  • Mild operating condition 

• The mixture of FFA and water has little effect on 

acid catalysts 

• Hydroxides are ineffective compared to methoxides 

• Catalysts that are alkali are substantially more 

active than those that are acidic 

• Both esterification and transesterification can use 

the same acid catalyst 

• After-reaction separation issues with wastewater 

treatment 

• Acid catalysts are corrosive and have a sluggish 

reaction rate 

• The existence of FFA and water makes basic 

catalysts sensitive 

• The used catalyst cannot be regenerated 

• Needing more operating cost than heterogeneous 

process 

 

Heterogeneous  • Product separation is easier, selectivity is better, and 

catalyst life is longer 

• Eco friendly, noncorrosive, reusable, and less 

problematic in terms of disposal 

• The existence of FFA and water has little effect on 

acid catalysts 

• Relatively low-cost compared to homogeneous 

process 

• Possibly used in continuous process using fixed-bed 

reactors 

 

• The multi-phase reaction system has mass transfer 

restrictions 

• In comparison to conventional homogeneous base 

catalysts, it is apparently less effective 

• Acid catalysts are more expensive than basic 

catalysts 

• The raw oil with low water and FFA content are 

required for basic catalysts 

• Temperature and pressure, as well as a high 

alcohol-to-oil molar ratio, may be necessary 

• The catalyst is possibly leached out during process. 

 

 

 

 

 

Fig. 3. Classification of biodiesel feedstock generations. 

 

 

A transesterification method with base catalyst is 

used when an oil feed contains high water, FFA, and 

contaminants, such as used cooking oils. Extra 

consideration must be given to the production planning 

and catalyst selection especially more favorable on that 

condition with high contents of water, FFA, and 

contaminants (Deeba et al., 2020; Siddiquee et al., 2011). 

However, the design process needed an extremely high 

temperature, longer time of reaction, and equipped in 

corrosion resistance vessel. To overcome these challenges, 

a pre-esterification must be carried out using an acidic 

catalyst to convert FFAs into esters, followed by 

transesterification with a basic catalyst to also 

synthesize TGAs. Since both processes are reversible, a 

large amount of alcohol is frequently used to drive the 

process to the synthesis of methyl ester. Meanwhile, 

biodiesel synthesis is carried out in a single step through a 

bi-functional catalyst that can perform the processes 

simultaneously (Al-Saadi et al., 2020). Table 6 shows the 

advantage and disadvantage of homogeneous and 

heterogeneous biodiesel synthesis method relative to each 

other. 

 

3.2.3. Enzyme-based catalysts 

Lipases are currently the most used enzyme in 

biodiesel synthesis, grouped into the hydrolases process, 

which is an enzymatic process that hydrolyzes the 

Biodiesel feedstock 

generation

2nd generation

(Non-edible oil)

1st generation

(Edible oil)

4th generation

(Advanced genetic modified 

oil)

3rd generation

(Microalgae and waste oil)
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molecules of triglyceride into fatty acids and glycerol. The 

lipase enzyme can be obtained from numerous sources 

such as bacteria, plants, fungi, and animals. Recently, the 

lipase enzyme from microbes (bacteria and fungi) is 

commonly used as biodiesel catalysts (Adewale et al., 2017; 

Andrade et al., 2019; Chang et al., 2021). Some advantages 

of enzyme-based catalysts in biodiesel synthesis include an 

environmentally friendly type of catalysts that are derived 

from microbes and can carry out the transesterification 

reaction in the high level of free fatty acids and water. 

Moreover, the enzymatic catalysis reacts in the mild 

ambient condition that caused a lower energy requirement, 

which shows the sustainability of this process for biodiesel 

production (Marín-Suárez et al., 2019). Immobilized lipase 

differs from pure lipase because it can be easily recovered 

from the reaction medium, allowing for repeated usage. 

The efficiency of the enzymatic process is great, and the 

enzyme can be possibly immovable upon the solid matrix, 

which includes the amount of biodiesel that is retrieved 

(Marín-Suárez et al., 2019). There are several reaction 

pathways of the biodiesel synthesis using enzyme 

catalysts. The active sites on the enzymes attributing the 

positive or negative charge initiate the reaction by 

accepting or releasing protons via the Bi-model mechanism 

based on the enzyme types (Pedro et al., 2020). The lipase 

enzyme plays as the proton acceptor of hydroxyls (OH-), 

while on the amine group-based enzymes, they release 

protons (Pedro et al., 2020; Sarno and Iuliano, 2019). 

The main drawback in the use of enzymatic catalysts 

is the high cost of extraction from the sources which 

usually appears in low yield. Therefore, research was 

carried out on the integration of enzymes with several 

nanomaterials to increase the catalyst activity and the 

yield of biodiesel. This includes the use of the amino-coated 

iron oxide (Fe3O4) material, which was crosslinked with 

the Km12 lipase enzyme (Sarno and Iuliano, 2019). It was 

discovered that when stored for 24 days at a temperature 

of 4 oC, it gave a 60% higher initial enzymatic activity 

compared to the pristine enzyme. The current works of 

enzymatic catalyst utilization in biodiesel production with 

their findings are summarized in Table 5. By carefully 

examining the data in Table 5, this indicated that 

enzymatic catalysts averagely gave lower biodiesel yield 

compared to homogeneous and heterogeneous catalysts. 

Furthermore, the results showed that different types of 

enzymes, feedstocks, and oil to alcohol ratios gave different 

yields of biodiesel. Therefore, selecting an appropriate 

enzyme and operating parameter is essential to achieve a 

desirable yield of biodiesel. 

 

3.2.4. Nano-catalysts 

The heterogeneous catalysts have a different phase 

from the reactants in biodiesel production, which can be 

attributed to the acidic and alkali properties based on the 

chemical composition (Athar and Zaidi, 2020; Jayakumar 

et al., 2021; Kumar et al., 2010). Their use considerably 

reduces the number of separation treatments compared to 

the homogeneous ones. However, lower conversion carried 

out by the common heterogeneous catalysts initiated the 

scientists and engineers to develop higher efficient catalyst 

by synthesizing in form of nanoparticles. The 

heterogeneous catalysts that appeared as nanomaterials 

are commonly named the nano-catalyst (Naveenkumar 

and Baskar, 2020). Meanwhile, research has been carried 

out on the influence of nano-catalyst on triglycerides 

transesterification to FAMEs (Ashok et al., 2018; 

Dehghani and Haghighi, 2020; Foroutan et al., 2020; Liu 

et al., 2020), as the result can be seen in Table 5.  The 

transesterification process of soybean oil production is 

improved using MgO as a catalyst (Rahmani Vahid et al., 

2017). This process uses ferromagnetic ZnO nanocomposite 

as a solid catalyst for generating biodiesel from castor oil 

as a feedstock (Baskar et al., 2018). Research on X-ray 

diffraction (XRD) showed that the nanoparticles were in a 

single phase. However, after six cycles of soybean oil and 

four cycles of poultry fat, biodiesel made from soybean oil 

using CaO nanoparticles under ambient temperature 

exhibited a poor speed of the reaction and needed six to 24 

hours to achieve a high yield (Foroutan et al., 2020).  The 

use of nanomaterial is costly, but it produces more than 

90% of biodiesel conversion. Nanomaterials can provide 

larger active site for catalytic reaction compared to the 

conventional heterogeneous catalysts.  

 

3.3. Operating condition 

3.3.1. Temperature 

One of the most critical elements that affect the 

output of biodiesel synthesis is the process temperature. 

This is because an increase in temperature and a decrease 

in oil viscosity produced a faster response speed. However, 

increasing the temperature above the optimal level 

reduces biodiesel yield caused by the higher temperature, 

which accelerates triglyceride soap formation. To minimize 

the alcohol loss, the operating temperature must be lower 

than the alcohol's boiling temperature. Generally, the 

optimal temperature for biodiesel synthesis is between 50 

and 60℃ based on the oil quality and the catalyst (Al-Saadi 

et al., 2020; Deeba et al., 2020; Krishnan et al., 2021). 

 

3.3.2. Alcohol and oil ratio 

Alcohol and oil commonly have a 3:1 stoichiometric 

ratio, however, excessive use of alcohol is harmful to the 

advanced transesterification reaction (Sawangkeaw et al., 

2011). The most widely known alcohols used in the 

transesterification process are methanol and ethanol. In a 

2.5-hour reaction period at 65°C with a 10:1 methanol/oil 

stoichiometric ratio and 450 rpm of stirring, approximately 

80% biodiesel production was achieved from soybean oil 

with 0.1 percent NaOCH3. It was also stated that waste 

cooking oil converted to FAME in 69 hours at a 

temperature of 65℃ and a stoichiometric ratio of 1:3 oil to 

methanol (Marchetti et al., 2007; Sawangkeaw et al., 

2011). 

 

3.3.3. Agitation 

Since the mixing of the oil feed and catalyst 

combination promotes the process, agitation speed is 

significant in the synthesis of FAME (Demirbas, 2010; 

Elgarhi et al., 2020).  For illustration, the mixing 

intensities of 200-800 rpm were selected for 1 hour, while 

other variables remain unchanged and the final product 

conversion rate was greater at 400 rpm (Demirbas, 2010). 

Moreover, soap production happens at greater mixing 

speeds, while byproduct creation occurs at slower agitation 
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speeds due to the transesterification reaction's reversible 

character. 

 

4. Biodiesel purification method 

The purification treatment aims to separate the 

generated soap, glycerol, water, unreacted alcohol, and 

catalysts from biodiesel products. The generated esters 

should be free of those impurities to fulfill the standard 

product of biodiesel. Moreover, the different production 

processes of biodiesel caused a variation in the product 

specification, as shown in Table 5. Based on the 

mechanisms, the purification techniques that have been 

used since last decades for biodiesel until now can be 

grouped into wet washing, dry washing, ion exchange and 

precipitation, complexation, membrane-based separation, 

adsorption, as well as simultaneous synthesis and 

purification. 

 

4.1. Wet washing method 

The wet washing method is operated using pure or 

acidified water (Díaz-Ballote et al., 2020; Mendow et al., 

2012; Shirazi et al., 2013).  Before the process, water is 

used at ambient temperature or as heated as possible, and 

the extra alcohol is occasionally removed by distillation. 

The use of acidified water was reported to be more effective 

than pure water (Iglesias et al., 2014). Meanwhile, several 

dilute acids that are commonly used include phosphoric 

acid, hydrochloric acid, and sulfuric acid. Although the 

process needs a lower amount of acidified water than pure 

water to treat the same amount of unrefined biodiesel, the 

use of acidified water can acidify the biodiesel product. In 

industry, this problem is usually addressed by adding the 

pure water wash at the end of the acidified water washing 

to remove the spent acid content in the biodiesel product 

(Gomes et al., 2015). Currently, the ionic liquid compounds 

have been used in the wet washing process such as 

organometallic substances, which were added into the 

wash water to improve the efficiency and effectiveness 

(Veljković et al., 2015). The benefits of the wet washing 

method include a very convenient and straightforward 

approach for biodiesel refining, extremely useful 

separation of glycerol and alcohol, as well as the ability for 

using aqueous acids (Veljković et al., 2015). Table 7 shows 

some reported works regarding the wet washing process. 

However, some drawbacks still appear such as the need for 

a large amount of water, product drying to separate the 

detectable water content, increase in the consumption of 

energy, greater surface area for washing unit, and 

generating a large amount of wastewater that contain 

hazardous substances, which is difficult to be treated. 

 

4.2. Dry washing method 

Dry-cleaning was created to replace biodiesel 

purification with no-water purifying processes that are 

more eco-friendly, where chemicals such as adsorbents and 

acidic polymers are used to remove contaminants from 

unrefined biodiesel (Catarino et al., 2020; Gomes et al., 

2015). After mixing for 20 minutes at 55oC, the unrefined 

biodiesel was treated with 2% magnesol and the adsorbent 

was recovered by filtering (Zhu et al., 2006). However, to 

increase the separation efficiency, the refined biodiesel 

from dry washing process is sometimes washed with pure 

water in a stirred tank unit (Ilmi et al., 2017). The biodiesel 

phase is separated from the mixture by decantation and 

centrifugation.  

Another type of adsorbent that has been applied in 

biodiesel purification was silica derived from geothermal 

solid waste, which is one of the potential silica sources 

(Silviana et al., 2021). Previous research reported that the 

silica adsorbent has an optimum glycerol adsorption 

capacity of 10.06 mg/g (Silviana et al., 2021a). The benefits 

of dry washing include no threat of water, continuous 

process, a reduction in overall process time, and 

wastewater. However, the drawbacks include adsorbent 

that do not eliminate alcohol, the requirement for 

additional apparatus, and slightly higher operating 

expenses. 

 

4.3. Ion-exchange and precipitation 

Precipitating agents are used to separate Ca2+ ions 

from raw biodiesel in this technique. If a precipitation 

chemical, like oxalic and citric acid are introduced to 

calcium-containing unrefined biodiesel, an insoluble 

substance forms in the mixture (Musiał et al., 2011; Vieira 

et al., 2017). Another study showed that washing the crude 

biodiesel in a mixture of sodium carbonate (Na2CO3) and 

methanol at boiling temperature. Calcium soap have a 

more non-polar property, which being less soluble in water 

and more soluble in biodiesel, thus increases the difficulty 

in separation. After exchanging calcium ions by sodium 

ions, the generated sodium soaps can be easier to remove 

using wet or dry method (Musiał et al., 2011; Vieira et al., 

2017). This process was carried out to exchange the 

calcium ions from the crude biodiesel with the sodium ions 

from sodium carbonate to form the water-insoluble calcium 

carbonate, with reaction as follows (Veljković et al., 2015): 

2

( ) 2 3( ) 3( ) ( )2aq aq s aqCa Na CO CaCO Na+ ++ → +  

Methanol is used to prevent ester hydrolysis and as a 

reagent in the transesterification process. The formed 

calcium carbonate has water-insoluble properties that are 

easily separated while the remaining sodium ions can be 

removed using wet or dry washing methods. 

Further development in ion exchange and 

precipitation method has been carried out as a 

pretreatment process, followed by subsequent acid resin, 

ceramic membrane, and wet washing (Hajra et al., 2015; 

Li et al., 2012). At the beginning of the process, the crude 

biodiesel was treated using methanol containing sodium 

carbonate and was mixed under a constantly stirred vessel 

at 60oC for 5h at a speed of 1,200 rpm. The calcium ions 

were exchanged by sodium ions to generate the calcium 

carbonate. The calcium carbonate and unreacted sodium 

carbonate were separated using conventional filtration, 

while methanol was separated with gravitational settling 

treatment. Moreover, centrifugation or filtration can be 

used to remove the deposited component from pure 

biodiesel. The microfiltration membrane and wet washing 

method (pore size 0.1 µm) were also used to remove the 

sodium ions and the results are compared (Li et al., 2012). 

Overall, the pretreatment and membrane filtration or wet 

washing methods were efficient in sodium and calcium 

removals from crude biodiesel.  
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This showed that the benefits of the ion exchange 

method include a good output of pure biodiesel, a lower 

volume of water, and easy filtering of the residue. The 

drawbacks include the dependence of the effective 

precipitation on operational parameters; therefore, 

additional investigations are necessary to improve the 

precipitation settings. 

 

4.4. Complexation 

Complexation is a method for biodiesel purification, 

causing the incorporation of chemical groups, atoms, or 

ions to form a larger molecule. This method is currently 

used to separate Ca2+ ions using 

ethylenediaminetetraacetic acid (EDTA) as the initiator to 

form the complexation with a molar ratio of 1:1 of EDTA to 

calcium ions. When the EDTA solution is added to the raw 

biodiesel product, the reaction takes place in a stirring 

condition and complex substances between EDTA and Ca2+ 

are formed (Zhu et al., 2006). The Ca-EDTA residue can be 

removed from the mixture through centrifugation, where 

supernatant is biodiesel and the residue is the Ca-EDTA 

(Zhu et al., 2006). Decalcification can achieve 84% of 

efficiency with 92% yield in biodiesel. Some benefits of 

using this method include a high amount of calcium ions 

that can be separated from the raw biodiesel and soluble 

in water. However, the disadvantages include the difficult 

preparation of EDTA and are not fully eco-friendly. 

4.5. Membrane-based separation 

Membrane filtration is a well-known modern 

technology that is usually applied in water science, protein 

separation, and purification purposes. The technology is 

commercially used in aqueous mixture separations, 

however, the purification of the non-aqueous mixture by 

the membrane is currently thriving. The membrane can be 

in form of organic, inorganic, or a combination of both. 

Since they are thermally and chemically stable, the former 

type especially for the inorganic ceramic membrane has 

been applied in a cross-flow system to separate 

triglycerides from FAMEs mixture (Shirazi et al., 2013; 

Sokač et al., 2020; Bansod et al., 2021; Goswami and 

Pugazhenthi, 2021). The pore diameter for the oil emulsion 

was set to be about 40 microns. Ultrafiltration and tubular 

ceramic membrane are the most efficient for biodiesel 

purification that attributed the environmentally friendly 

technology compared to the other type of membranes. 

Several benefits of the membrane-based technology in 

biodiesel purification include high rejection of unreacted 

alcohol and generated soap, simple and easy to operate, 

low energy consumption, easy to control and scale-up, and 

eco-friendly. However, some of its drawbacks include the 

membrane that needs to be cleaned up periodically and 

flux reduction gradually over time. The collective 

information regarding previous studies results about 

biodiesel purification can be seen in Table 8. 

 

4.6. Simultaneous synthesis and purification of biodiesel 

Research has shown that the simultaneous synthesis 

of biodiesel formation and purification enhances the 

overall manufacturing process. Such coupled 

mechanism has been studied so far (Gojun et al., 2021; 

Song et al., 2021). It can possibly overcome several 

drawbacks of current purification methods for biodiesel as 

shown in Table 8. During the ester formation, they 

introduced ion exchange preceded by precipitation. It has 

also developed a bench-scale biodiesel synthesis and 

purification simultaneously using a reactor equipped with 

packed anion- and cation-exchange resins at a 

temperature of 50oC. The cation-resin was firstly 

introduced to the reactor to accelerate the esterification of 

FFA, while the anion-resin was loaded after that for 

transesterification of TAG and also as the adsorbent for the 

purification treatment of the generated biodiesel. 

Subsequently, the biodiesel was generated at a flowrate of 

0.23 l/h having a TAG content lower than the standard 

(Veljković et al., 2015). The glycerol, water, alcohol, and 

unreacted FFA as well as TAG were adsorbed onto the 

anion exchange resin. Therefore, this process is called 

simultaneous biodiesel formation and purification because 

they take place at the same time. Several advantages of 

this method include shorter time for the processing of the 

oily feedstock to biodiesel, does not require additional 

equipment, and is relatively cheaper than the conventional 

method. However, it has some drawbacks such as the 

resins needed to be regenerated periodically and properly 

designed to adsorb various types of impurities with 

different chemical properties.  

 

5. Impacts of biodiesel 

In previous years, a substantial body of knowledge 

about the socioeconomic and environmental implications of 

biodiesel has been accumulated. The petroleum-based fuel 

reserve will be drained in the next few years 

approximately at 2030 due to the rapid increase of people's 

needs, which will generate the greatest issue of the 21st 

century (Edwan Kardena, 2015). Based on the 

Organization of Petroleum Exporting Countries (OPEC), 

global fuel oil consumption is forecast to reach 

approximately 100 million barrels a day by 2040, with 5.0 

million barrels of diesel fuel consumption a day. 

Furthermore, the unpredictable petroleum-based fuel 

prices are jeopardizing energy supplies and degrading the 

payment balance by increasing the cost of imported 

energy. This has led to a resurgence of curiosity in the 

manufacturing and use of energies derived from organic 

waste and plantations. Therefore, biodiesel is an 

environmentally sustainable fuel source and energy with 

several potentials that can be used as an alternative source 

identical to petroleum. The use of biodiesel instead of coal 

and petroleum has the potential to provide several 

advantages. This is because biodiesel can be generated 

locally, reducing the demand for petroleum importation, 

lowering the cost, and ensuring the country's economic 

stability. The negative effects of supply interruptions can 

be minimized when biodiesel demand and use to minimize 

the application of petroleum fuels. Moreover, biodiesel 

manufacturing provides countries without oil reserves 

energy sovereignty. The financial effects of biofuel are not 

restricted to the biodiesel industry and agriculture because 

of the interdependencies across producing areas that 

influenced the national economy (Anwar, 2021; 

Naveenkumar and Baskar, 2020)
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Table 8  

Comparison of the commonly used methods for biodiesel purification 

Purification 

technique 

Sample work Pros Cons 

Water (wet) 

washing 

• Feedstock: curcas oil 

• Purification: wet 

washing 

• Ester yield: 98% 

• Ref: (Shirazi et al., 

2013) 

• Efficient removals of alcohol and glycerol 

• Simple and straight forward process 

• Can be used to efficiently separate 

biodiesel from catalysts such as ZnO, 

SiO2, ZrO2, and SrO 

• Require high volume of water 

for washing 

• Long time needed for the 

process 

• Require further drying for the 

product after washing 

• Large amount of wastewater is 

generated during the washing 

process 

• Non-eco-friendly method 

Dry washing 

(Ion-exchange 

and 

adsorption) 

• Feedstock: Waste 

cooking oil 

• Purification: ion-

exchange 

• Ester yield: 95.8% 

• Ref: (Hajra et al., 2015) 

• Relatively faster process 

• Needing smaller space for the process 

• Less amount of waste is generated 

• Might be run in continuous system 

• The purifying agents i.e., resins, 

adsorbents, zeolites, etc., can be 

regenerated and reused 

• Eco-friendly method 

• Might be increase the acidity of 

biodiesel due to the used of high 

acidity adsorbents or resins 

• Not efficient in decalcification 

• Can be reduce the acylglycerol 

from the product 

• Cannot completely remove 

methanol or glycerol in one 

stage of process 

EDTA 

complexation 

• Feedstock: curcas oil 

• Purification: 

complexation 

• Ester yield: 98% 

• Ref: (Zhu et al., 2006) 

• Calcium removal ability is remarkable 

• Ca-EDTA complexes is water soluble 

• The Ca-EDTA complexes can be removed 

using centrifugation 

• Needing further wet washing 

and drying 

• The complexation agent i.e., 

EDTA has a high toxicity 

• A very time requiring process 

• Generate wastewater similarly 

to the wet washing method 

Precipitation • Feedstock: curcas oil 

• Purification: citric acid 

precipitation 

• Ester yield: 98% 

• Ref: (Vieira et al., 

2017) 

• Citric acid can be utilized to precipitate 

the calcium ions in the crude biodiesel 

(yield >95%) 

• High product yield 

• The residue/precipitate can be simply 

separate using a conventional filtration 

• The precipitate Ca-citrate can be 

regenerate back into citric acid by the 

addition of strong acid 

• The purified biodiesel has a 

higher value of viscosity, 

making it unfitted the biodiesel 

standard 

• Require long time with 

maintained operating 

temperature, pressure, and 

agitation. 

• Priorly, the calcium content in 

the crude biodiesel should be 

measured 

• Additional purification is 

required to remove soap, 

alcohol, and glycerol 

Membrane 

filtration 

• Feedstock: Waste 

cooking oil 

• Purification: 

membrane filtration 

• Ester yield: 5.6% 

• Ref: (Bansod et al., 

2021) 

• Simple and flexible in operation 

• Require low energy 

• High product flux and selectivity 

• Can be engineered for the special uses 

• Relatively easier to separate higher size 

such as, soap and glycerol. 

• Ease to scale-up 

• Less effective in ion removal 

• The membrane should be 

periodically checked, cleaned, or 

changed 

• Gradual flux reduction over 

time due to natural fouling on 

the membrane 

The use of biodiesel is also considered environmentally 

beneficial since the greenhouse gasses emission is 

remarkably reduced. In the process of biodiesel formation, 

the use of heterogeneous catalysts is environmentally safer 

than the homogeneous catalyst process due to the 

minimized generated waste. The purification step in the 

heterogeneous catalyst process is easier to conduct, 

however, the process still generated some wastes 

(Alagumalai et al., 2021; de Mello et al., 2017; Jayed et al., 

2009). This includes wastes from the product separation 

such as used catalyst and adsorbent, fouled membranes 

during the application, and complexation product of Ca-

EDTA. The second type of waste is from the reactivation of 

regeneration of catalyst or ion-exchange resins such as 

solvents, used alcohol, and wastewater. Therefore, there is 

a need to develop the stability of catalyst properties 

through its use over several consecutive cycles and the 

handling catalyst. This approach is useful for minimizing 

the generated wastes upon the application of the 

heterogeneous method in biodiesel production, which will 

create more environmental benefits. 

 

 

6. Conclusion 

Emerging processes have been developed in recent 

years fo such as microwave-assisted, ultrasonic-assisted, 

supercritical transesterification, and liquid plasma 

discharged-assisted biodiesel synthesis processes. These 

methods were reported to have a variety number of 

conversion yields from 75 to 99%, especially the 

supercritical transesterification that is carried out in a 

catalyst-free process. However, the main problem to use 
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these advanced processes is the high operating cost and a 

higher risk compared to the conventional process. 

Furthermore, the types of catalysts play an essential part 

in biodiesel synthesis because catalysts with different 

sources, phases, chemicals, and sizes have been applied to 

achieve better biodiesel quality and yield. Homogeneous 

and heterogeneous catalysts can achieve at least 80% to 

95% biodiesel conversion. Nano-catalysts are the 

nanoparticle form of heterogeneous catalyst that showed a 

better catalytic performance due to their large active 

surface area. The enzymatic catalysts are eco-friendly with 

a variety of conversions from 70 to 99%. Moreover, the 

effectiveness of the separation process in biodiesel 

purification depends on the type of catalyst applied in the 

synthesis process. In certain cases, a simple wet washing 

can lead to the biodiesel product meeting the specification 

standard. Some efforts using several dry methods such as 

adsorption, cation- and anion-exchange resins, 

precipitation, complexation, and membrane-based 

separation have shown a great performance in calcium 

ions removal. However, some drawbacks of those methods 

include the complex process from upstream until 

downstream that needed to be simplified. Therefore, 

further research on this topic is necessary, especially on 

the reusability of the catalysts and purifying agents. This 

development will not only contribute to the intensification 

of biodiesel production and purification but also maximize 

the economic impact and minimize the environmental 

hazard of biodiesel. 
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