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Abstract— Parametric models are mainly based on univariate
or multivariate normality assumptions. Uniformly most
powerful (UMP) test is not available to test multivariate
normality. In such a situation, optimal test can be used. But, a
very few literature is available on the size corrected power
comparison of different multivariate normality tests. In this
paper, we propose an algorithm to compare the size corrected
powers for testing univariate or multivariate normality. The
algorithm can be applied to any existing univariate and
multivariate tests, which is the most attractive feature of the
proposed new algorithm. We also propose a Cholesky
decomposition of the variance-covariance matrix based test,
which is simpler than the existing test. Our Monte Carlo
simulation study indicates that our proposed and existing tests
perform equally in terms of power properties.

Keywords— Cholesky decomposition, UMP test, Optimal test,
Monte Carlo.

I. INTRODUCTION

Most of the parametric models are based on certain assumptions and
semi-parametric models based on relaxed assumptions. In most of the
cases, errors are assumed to be distributed as univariate or
multivariate normal. Violation of the assumption under which a
model is constructed, analysis can be distorted in determining the
confidence interval, forecast, and testing hypothesis. Therefore,
choosing the appropriate test to capture normality is the most
important concern of this paper. A very powerful transformation
called Box-Cox transformation can be used when the model violates
the assumption of normality to make the data usable for making valid
statistical decision. Uniformly most powerful (UMP) does not always
exist. In such case, we prefer to use an optimal test instead of UMP
test. To compare the power of the test, we use simulated size
corrected power. The algorithm of size corrected power for testing
multivariate normality is very limited. So in this paper, our main
objective is to develop the algorithm to calculate size corrected
powers of competitive tests, which can be used to find optimal test.

Multivariates are dependent in nature which is complicated for the
algebraic treatment but different transformation can be used to
transform dependent to independent characteristics such as spectral
decomposition,  Cholesky ~ decomposition  etc.  Cholesky
decomposition is simpler than Spectral decomposition. In this paper
we also propose Spectral type decomposition for multivariate test.
The Objective of the Study are i) to develop new test for testing
multivariate normality, ii) to develop an efficient algorithm for
calculating the size corrected power of the test which can be used to
compare the efficiency of the different test, iii) to compare the

performance of bivariate and multivariate normality testing
procedures by using different decompositions with the new algorithm.

Il. EXISTING TESTS

Different univariate and multivariate normality tests are
available. Some of them are discussed in the following
paragraph.

A. Univariate Normality Tests

Bowman and Shenton Test

Let (Xl, X2,...,Xn) be an independent observations on a one-
dimensional random variable with mean t and variance o’

where L, = E(X —,u)' and 0% = . Then skewness and
kurtosis are defined as follows:
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Skewness refers to the symmetry of distribution. For a symmetry
distribution like the normal 4/ 3, = 0. A distribution that is skewed

to the right has Jﬁl >0 while one that is skewed to the left

has\/ﬁ_l<0.

Kurtosis refers to the flatness or ‘peak ness’ of a distribution. The
normal distribution has ﬂz =3 and is used as to reference for
other distribution. A leptokurtic distribution is one that is more
peaked and heavier tails than the normal, resulting in 3, >3. A
platykurtic distribution has a flatter distribution with shorter tails
than the normal, Hence 3, < 3.

The sample counterparts are defined as
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Bowman and Shenton (1975) consider the test statistic

E? = n(\/b_l)z + n(b2 _3)2 ~ K2(2)

6 24

Jarque Bera Test

The test statistic JB of Jarque Bera is defined by

B=N[g2, (k=3
5 4
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Where the sample skewness S = ,ug/,uz is an estimator of
A A 2

/
B, =,Lt3,,u23 ? and the sample kurtosis K = 11,/ p1, an

: 2 .
estimator of 3, = u, | p," , H, and g5 are the theoretical

second and third central moments, respectively and n is the sample
size with its estimates

—an:(x — x)- j=234.

JB is asymptotically chi-squred distributed with two degree of
freedom because JB is just the two asymptotically independent
standard normal, (see Bowman and Shenton (1975). That means

H , has to be rejected at level o if JB > y°14.2.

>
S5 |-

Also, Fisher’s Cumulant Test, Shapiro-Wilk test, Kolmogorov-
Smirnov Test, Kuiper test, Cramer-von Mises test, Geary’s test,
Modified EDF test, D’Agostino tests can be used for testing
univariate normality.

B. Multivariate Normality Tests

Unfortunately, in practice, testing for multivariate normality is more
difficult than univariate normality and relatively few formal methods
are available in this context. The most commonly used multivariate
normality test is marginal decomposition based Multivariate
Omnibus Test which is discussed below.

Let X'=(X,,..., X, ) be a px nmatrix of N observations on
a P -dimensional vector with sample mean and covariance
)z=nfl(Xl+...+Xn) and S=n*XX  where
X'=(X, = X,..., X, = X).

Create a matrix with reciprocals of the standard deviation on the
diagonal:

V =diag(S;*.....5,°),

And form the correlation matrix C =V SV . Define the P x N matrix
of transformed observations:

R'=HAY’HVX/,
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with A=diag (4,...
C on the diagonal. The columns of H are the corresponding
eigenvectors, such that HH =1, and A=H'CH. Using the

population values for C and V, a multivariate normal can thus be

transformed into independent standard normal; using sample values

this is only approximately so. Using each of the transformed vector

N — vectors of observations, we may compute univariate skewness

and kurtosis, defining
( 210+

5= (r ). B

[p — vector of ones, the test statistic:

A ) , the matrix with the eigen values of

pr) and | as a

nBllB1+n(BZ_3|)’(B 3') (Zp)
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2, =(2y....2,,) ZZ':(zm,...zzp).

where and

C. Spectral and Cholesky decomposition based Normality
Tests

Along with available multivariate normality tests, Cholesky
decomposition and Spectral decomposition based multivariate
normality tests are considered here as well. Moreover, Cholesky
decomposition has computer built in function for easier use and is
much simpler than Spectral decomposition. We propose to use
Cholesky decomposition instead of Spectral decomposition to test
multivariate normality.

I11. PROPOSED ALGORITHM OF DETERMINING SIZE CORRECTED
POWER

Power calculation for normality test considered by many authors and

in most of the cases their suggested approach is based on the

percentage of rejection which does not provide size corrected power.

To calculate size corrected power of multivariate normality test, we

propose the following algorithm:

1. Suppose X, X, ..., Xp is a random sample from a p-

variate multivariate normal population.
2. Sort each variable X(il)’X(iZ), ...,X(in) where

(i=12,..., p) inascending order of magnitude.

3. Multiply the upper K 9% of data; say 5%, 10% by a positive

constantC >1.
4.  Calculate the power on the basis of the hypothesis. The
hypothesis can be stated as

H, :¢ =1 (i.e., the distribution is normal) against
H, : ¢ >1 (i.e, the distribution is non-normal).

Usually powers of normal distribution is calculated on the basis of
the contamination of location or scale parameter whether by
increasing or decreasing the parameter value but these
contaminations cannot make data non-normal. That’s why we are
considering the characteristics of normal distribution, which are
skewness and kurtosis. By contaminating the upper and lower
percentages of data, say 10%, 20% or more, we are making them
highly skewed or asymmetric by multiplying with a increasing

constant K where K=1,2,3,...when K =1 then it will calculate

the power of null hypothesis as the value of K will increase it will
go far from the null which expresses the departure from normality.
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IV.SIMULATION STUDY AND RESULTS

Algorithm on which this study based is enumerated below. The null
hypothesis is as follows:

H, :Observatimsarenormally distributed

H, :Observatimsarenotnormally distributed

To evaluate whether size or level of test achieves advertised ¢ ,
generate data under normality assumption and calculate proportion of
rejections of Ho . To calculate power, we follow the 4 steps
proposed above.

A. Power Comparison among Different Univariate Normality
Tests

This section compares powers of different univariate normality tests

discussed above. In this regard, we generate data for different sample

sizes under null hypothesis and carry out 10,000 repetitions to

calculate size corrected powers of normality tests with contamination.

Table 1: Powers of Different Univariate Normality Tests with
contamination for sample size n = 50 and 100 with 10000

repetitions.

Sample Powrers of Univariate Nonmality Test S aruple Powers of Univanate Normality Test

See¥ EBY  JB  FIY DS, DR SzeN RS JB FY DS, Di
000 0050 000 000 009 0050 000 0050 0030 0050
00M 0060 0055 008 0051 004 00% 0069 0112 0065
002 0082 006 015 0048 0lz 012 010l 0197 00%
D12l 0lzl 0077 02 004 019 01% 0141 0327 0072
01% 017 00% 03% 0041 09 02% 022 0469 0065
02% 023 0115 0431 003 0421 0420 029 0603 0087
037 0327 0147 059 003 0.5% 05% 03% 0728 005
045 0415 0175 06% 005 0613 067 0471 084 0471
0506 0505 01% 071 0% 078 0B 053 0887 0563
06M 0604 027 0805 02 0863 0863 065 0938 0555
0E® 0619 0284 0865 0284 0816 0915 078 0963 0738
079 075%% 03 0805 033 0853 095 0815 0982 0815

0 g ome o03m 08w o03m 1™ owms 09l o@e  0se  0m6s
087 037 0435 09% 0425 0% 0987 0916 09% 0916
0F 0% 0461 057 048l 03 095 0% 0998 0341
OS2 0932 05 098 05 087 0997 098 0999 0968
095l 0951 05% 098 05% 0%E 09% 098 1 098
086 0967 059 089 05 0me 0w 0% 1 099
09T 0977 06F 09% 067 1 1 om 1 0%z
09 0986 06% 0997 06M 1 1 0®m 1 097
0% 08 072 08| 072 1 1 ome 1 0998
09% 099 075 09% 075 1 1 o®me 1 0999
097 097 0B 1 078 1 1 0% 1 099
087 0897 081 1 083 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

BS = Bowman-Shenton, JB = Jarque-Bera, FIS = Fisher’s
Cumulant, D.S, = D’Agostino Skewness, D.Ku = D’Agostino

Kurtosis.

B. Power calculation for Multivariate Normal data
This section compares powers of the multivariate normal data using
different decompositions with upper and lower contamination of a
certain percentage say 10%, 20% or more with their power curves.
From the above power curves, we observed that the powers of the
Cholesky decomposition, Spectral decomposition and Doornik
Hansen’s Marginal Decomposition are same in all of the cases. Since
the powers of the multivariate normality tests with all the
decompositions are almost close, so we recommend to use cholesky
decomposition than the others established decomposed based testing
methods because of it’s computational convenience and flexibility.
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Fig.1: Empirical Powers of multivariate normal data with lower
contamination Using Different decompositions for sample
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Fig.2: Empirical Powers of multivariate normal data with lower
contamination Using Different decompositions for sample
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Fig.3: Empirical Powers of multivariate normal data with upper

contamination
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Fig.4: Empirical Powers of multivariate normal data with upper
contamination Using Different decompositions for sample
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Table 2: Lower Contaminated Powers of Multivariate Normality
Test Using Different Decompositions or Transformations for Sample
Size n = 50,100,200 and 300 with 10000 repetitions.

Poarers af Blultvariate Morma lity Test Using D ifferent

Sample Transformations
Size, z §D MD
0.05000 005000 0.05000
0.05850 005610 0.05320
007380 007470 007160
0.10180 010330 0.09750
0 0,990 059910 0.99940
0.99960 099990 0.99990
099980 0199990 099930
1 05990 1
1 1 1
005000 005000 005000
0.08020 006430 0.06020
0.09540 010030 0.09540
016890 016570 016690
Leg 0.9933) 099570 0.99780
0.99780 059950 0.99970
0.99970 099920 1
099980 0199990 1
1 1 1
0.05000 005000 0.05000
0.07200 007350 0.07430
0.15280 016130 016150
032190 033160 073300
20 0.99560 099520 0.99640
0.9997) 099920 0.99960
0.99950 05990 0.99950
1 1 1
1 1 1
0.050m0 005000 0.05000
0.08760 005440 0.15000
022950 022970 0.32000
300 0.94390 094010 0.96000
0.95100 059200 1
0.99900 099390 1
1 1 1

ch means Cholesky Decomposition, $I' means Spectral
Decomposition, MID* means Doornik Hansen’s Marginal
Decomposition.

V. CONCLUSIONS

We propose a general algorithm for calculating size-corrected
powers of testing univariate and multivariate normality. This
algorithm is applicable to all tests of normality. Also, we
recommend that to calculate powers of multivariate normality
tests implement Cholesky decomposition based multivariate
normality test in practical situations just because of its
computational convenience and it is well known that cholesky
decomposition has computer built in function as well.
Moreover, the powers of the multivariate normality test with
all the decompositions are almost same.
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