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Abstract - This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This 
research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS 
Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet 
with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. 
Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their 
analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination 
with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by 
considering their geometrical parameter . The results of this study reveal that spherical shell structures subjected to pressure loading 
experience snap-through instability for values of ≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels 
prior to the achievement of the critical point. This phenomenon was observed for values of =5.0 to =7.0.  
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I. INTRODUCTION 

Thin shells is widely used as structural elements in many 

industrial and construction engineering. Examples of their 

applications are arch bridges, roof of sport stadiums and 

convention halls, aircraft parts, industrial components and 

home appliances, car bodies and so on. One form of shell 

structures that is widely used in engineering is the shallow 

spherical shell, i.e. a shell with small arch depth. Such a shell 

is inexpensive due its small arch length which leads to a small 

surface and minimal weight. However, it may frequently be 

found close to its condition of instability.     

Buckling is a phenomenon that occurs in slender rods, thin 

plates and thin shells. Its consequence is essentially a problem 

of geometry. If large displacements occur, the geometry of the 

structure changes significantly, bringing with it changes in the 

method of analysis. Similar events, beside shells, also occur in 

arch and truss structures (Bazant and Cedolin, 1991). 

Snap-through buckling phenomena pose some of the most 

difficult problems in nonlinear structural analysis 

(Crisfield,1980). Its occurrence in spherical shell structures 

has been studied earlier by Karman and Kerr (1962), followed 

by other researchers such as Bushnell (1989), Uchiyama & 

Yamada (2000). Load-displacement curve models 

representing snap-through buckling of spherical shell 

structures were described by Karman and Kerr (1962), and 

Yamaguchi and Chen (1999). Figure 1 shows the basic outline 

of their curves. 
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Figure 1. Load-displacement snap-through buckling curve of spherical shell 

structures (Karman and Kerr, 1962; Yamaguchi and Chen, 1999). 

However, experimental results acquired by Kaplan (1954), 

and Uchiyama and Yamada (2000) showed snap-through 

curves dissimilar to those shown in Figure 1. The dissimilarity 
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was later learned due to the difference in the assumed 

geometrical parameter of the shells.   

This study aims to investigate the snap-through buckling 

problem that occurs in spherical shell structures and examine 

the effects of variation of their geometrical parameters, shell 

thicknesses and shell heights on their instability and patterns 

of snap-through buckling. 

II. MATERIAL AND METHOD 

Description of Model  

This study is part of a dissertation research in the Doctoral 

Program in Civil Engineering Diponegoro University of 

Semarang, Indonesia.  Numerical computational simulation 

using  facility with Finite Element Method ANSYS Program 

in Design and Tribology Laboratory of the Department of 

Mechanical Engineering Diponegoro University, Semarang. 

This research was conducted in 3 months from Februari 2010 

to April 2010.   

In this research a spherical shell structure like that shown 

in Figure 2(a) was considered. The structure rests on hinged 

supports along the rim and is subjected to a uniformly 

distributed pressure load q.  The shell was then modeled by a 

number of discrete axially symmetrical elements covering all 

structural parameters h0, R, a, and t. Figure 2(b) shows the 

finite element model of the shell structure. Varying values of t, 

ranging from 0.02a to 0.1a, and h, varying from 0.05a to 0.5a 

were considered. The shell height may be expressed in terms 

of R and a as 22

0 aRRh  . The parameter h0/a 

determines whether the shell is a deep or a shallow one. 

Kaplan (1954) includes shells with h0/a <1/8 in the category 

of shallow shells. 

According to the elastic theory, assuming small elastic 

deformations, critical loads of spherical shells with fixed 

supports, subjected to uniform pressure, was found to be 

(Timoshenko and Gere, 1961), 

 
2

2
cr

R

t

)-1(3

E2
q 












  (1) 

where  is Poison’s ratio, E is the modulus of elasticity, t is 

the shell thickness and R is the radius of curvature of the shell 

surface.  

Experiments on the buckling of spherical shells were 

conducted by Kaplan (1954) which acquired experimental 

critical loads much lower than that given by the classical 

linear theory of Eq. (1). Kaplan(1954) and then Taeprasartsit 

and Tao (2005)  showed that the behavior of the load-

deflection relationship is associated with a geometrical 

parameter  of the shell. The parameter was formulated as 

follows: 

  
t R

a
)(1 12 

4
1
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where a is the radius of the horizontal base of shell.  

 

h0

 
Figure 2. Shell structure geometry and its finite element model 

 

The Geometric Nonlinear Finite Element Analysis Methods 

 
Snap-through buckling is a geometric nonlinear problem 

of which the solution can be approximated by nonlinear 

finite element analysis. In such analysis, the considered 

equilibrium condition is the one prevailing at the last 

structural configuration. The element stiffness matrix and 

the load vector are derived applying the updated 

Langrangian formulation. The procedure has been 

comprehensively described by Bathe (1982) and ANSYS 

(2009).  

The equilibrium equation at the i-th iteration of the n-th 

loading stage is, 

 [Ki
T
]{ui}={F

a
}-{Fi

nr
}                         (3) 

where [Ki
T
] is the tangent stiffness matrix, i and n are 

subscripts indicating the i-th iteration and the n-th load step, 

{Fi
nr

} is the restoring load vector depending on the element 

forces or stresses and   is the load level parameter. In 

general the value of  varies between -11.  [Ki
T
] and 

{Fi
nr

}
 
are evaluated based on the given value of displacement 

{ui}. The right-hand side of Equation (3) represents the out-

of-balance residual force vector. Iterations carried out at each 

load increment are implemented in a similar manner. The 

procedure is illustrated on Figure 3(a) (ANSYS, 2009).  

The application of the constant arch-length method was 

necessary in recognizing critical points and the generation of 

the downward branch of a snap-through load-displacement 

curve beyond its critical point. The method was developed by 

Crisfield based on a method previously described by 

Wempner and Risk (Crisfield, 1980; Boediono, 1995). 
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Newton-Raphson’s method still functions as the basis of the 

constant arch-length approach. The approach is illustrated in 

Figure 3(b). The non-linear equation of the method may be 

written as (Crisfield, 1980; ANSYS, 2009), 

 [Ki
T
]{ui}={F

a
}-{Fi

nr
}                                  (4) 

At the n-th load sub-step and i-th iteration, the following 

equation may be written,  

           i
nr
i

a
in

a
i

T
i R F F )(F uK  ψψψ                (5) 

where Ψ  represents the incremental load parameter.  

The displacement increment  iu   consists of two parts: 

      II

i

I

ii u u u  ψ                               (6) 

 

where   u 
I

i  is the displacement due to a unit load increment 

and   u 
II

i  is the displacement increment due to Newton-

Raphson’s method, where: 
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At each iteration the arc length method utilizes Equations (7) 

and (8) to obtain the values of   u 
I

i  and   u 
II

i . The load 

level increments  are obtained from the arch-length 

equation of the i-th iteration as follows, 

      n
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where   is a scale factor (having displacement units), and 

i  is the radius of the arc length (in the force scale). 

Equation (6) and (9) are used to calculate the solution 

vector T

i ),u(  .  Load level increment  can be 

calculated by: 
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where ri  is a scalar for explicit iteration on a sphere is first 

calculation. 
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(a) The Newton-Raphson’s method.                   (b) The arc-length method. 

Figure 3. Load increments of Newton-Raphson’s method and arc-length approach (ANSYS, 2009) 

 

Axially Symmetric Shell Element Model 

The shell elements used in this study were axially 

symmetrical shell elements which have the ability to endure 

large deflection and represent stress stiffening effects. This 

kind of element is available in the ANSYS Program as 

SHELL51 (ANSYS, 2009). Stress stiffening effect accounts 

for the operation of membrane forces which is responsible of 

the buckling of shells. SHELL51 element possesses two nodal 

points with four degrees of freedom each, i.e. the translational 

nodal displacements in the X, Y, and Z directions and a 

rotational about the Z axis. These displacements are 

sequentially denoted by Ux, Uy, Uz and z, as shown in 

Figure 4. The validity of applying element SHELL51 in the 

analysis was corroborated by analysis results applying 

nonlinear elastic quadrilateral shell elements SHELL63 which 

contains 4 nodal points. 
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Figure 4. Notation of nodal degrees of freedom of axially symmetric shell 

element SHELL51. 
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III. RESULTS AND DISCUSSIONS  

Snap-Through Buckling Behavior 

Analysis results of a nonlinear shell with geometric 

parameters =3.0, height h0=12.7 mm, radius of curvature 

R=2346 mm, thickness t=9.303 mm are incorporated in the 

load-displacement curve shown on Figure 5. Stability was 

maintained along path 0-1. Upon the attainment of the critical 

point, the displacement of the apex point remains U0y<h0. The 

deformed shape of the shell is still convex. An equilibrium 

condition at an infinitesimal load increase above the critical 

load in the neighborhood of point 1 was not found. The 

following equilibrium condition for loads above the critical 

point was found along the curve branch 3-4. This branch was 

reached by a large sudden jump in deflection. This jump is 

described by the curve 1-3, which actually is representing the 

buckling phenomenon. The downward branch of the load-

displacement curve beyond the critical point was obtained by 

applying the constant arch-length approach.  

The displacements of the apex point proceed along the 

rotational axis of symmetry of the shell. At point 2 the 

deflection of the apex point has exceeded h. After buckling 

the shell assumes a downward concave shape. Beyond, but 

adjacent to, the critical point 1, equilibrium conditions can 

only be obtained by applying load reductions or adding 

negative charges in the analysis. After point 2 displacements 

increase with increasing loads. The curve eventually will 

reach point 3 and point 4 and beyond. The displacement of the 

apex point Uy0 has now exceeds the value of h0 and the shell 

has a downward concave geometry. 
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Figure 5. Load-displacement curve a spherical shell with   = 3.0. 

The arch length method as well as the line search method 

was used as the solution techniques in this study. Both 

methods are founded on the basic Newton- Raphson approach. 

The arch-length method performs very well in generating 

undulating curves like that taking place in cases of snap-

through buckling. However this method requires previously 

determined favorable estimates of load increments and arch 

radii to warrant the attainment of critical points through 

convergent iterations. Line search is advantageous due to its 

accelerating iteration process, but unfortunately, it is not 

capable of converging to points on a downward progressing 

curve. Therefore these two methods are used to complement 

each other in generating the load-displacement curves. In 

difficult situations, like that around critical points, the 

combined use of both methods may help accelerate the 

iteration process as previously proposed by Crisfield (1980) 

and later applied by Boediono (1995). 

At values of <4.0, applying 25 load steps with arch radius 

of 1, the process converges quickly to the desired points. 

However, at values of ≤4.0, tedious adjustments by trial and 

error need to be done on the values of load stages and arch 

radii.    

Comparative Study of Shell Element Type 

A study was conducted on the validity of the use of 

axisymmetric shell element SHELL51 by comparing the 

results with those where other types of elements were applied. 

For this purpose trapezoidal elements SHELL63 were 

considered. These elements were applied on a spherical shell 

having the following data, =3.0, h=12.7mm, t=9.303mm, 

=0.3, and E=2x10
5
 N/mm

2
. The shell was hinged supported 

along its rim. Mesh patterns with 12x6, 24x6, 48x6, and 72x6 

elements were reviewed.  

The results are compiled in Figure 6 Curve (1) represents 

the results of the shell with 12x6 element mesh.  The curve 

shows significant deviations. While the other four curves, 

inclusive Curve (5) obtained from 6 Elements SHELL51 

mesh, approximately coincide with each other. This excellent 

coincidence demonstrates the efficiency of Element 

SHELL63 due to the small number of elements required to 

model the shell. 
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Figure 6. Load-displacement curves of  = 3.0 with four different mesh 

pattern of element  SHELL51 and one with 6 elements SHELL63 

Comparison with Kaplan’s Results 

Kaplan (1954) conducted experiments on a number of 

shallow spherical shells with base diameter a=8 inches, radius 

of shell curvature R=20 inches and 30 inches, and varying 

shell thickness and shell height. The specimens were made of 

aluminum-magnesium alloy QQ-M-44 having an elastic 

modulus E=6.5x10 psi and Poison’s ratio = 0.32. The 

pressure load was generated by a hydraulic pressure pump 

and was raised by a 20 psi capacity Bourdon tube. Deflections 

were measured using dial-gages with accuracy of 0.001 

inches. The results of these experiments were much 

referenced by subsequent researches, in particular Fung and 

Sechler (1974), and Uchiyama and Yamada(2000).  

In this research a comparative study was made between 

Kaplan’s (1954) experimental results with those obtained 

from finite element analyses where axially symmetric 

elements SHELL51 were used. Comparison could be made 

with the first three specimens tested by Kaplan, namely 
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Specimens #1, #2, and #3, since test data and numerical finite 

difference analyses are available. Figure 7 shows Kaplan’s 

test results as well as   his finite difference analysis. The 

figure shows that Kaplan’s test results are significantly lower 

than his polynomial load-displacement model. It also shows 

that the results of finite element analysis applying element 

SHELL51 correlates better with Kaplan’s analysis rather than 

with his test results. Many researchers attributed this 

deficiency to the intrinsic imperfection of test specimens.       

SPEC.#1,   = 4.04 

Eksperiment, Kaplan(1954)

Analysis, Kaplan(1954)
FEM Analysis this study 

(SHELL51 axisymmetry ) 

  = 4.04 
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Figure 7.  Comparison of load-displacement curves obtained by Finite 
Element Analysis with Kaplan’s experimental work for Spec#1. 

Effect of Thickness, Radius of Curvature, and Geometric 

Parameter  

In Figure 8 and Figure 9 are presented load-displacement 

curves of spherical shells with varying =0.0 to =9.0. Figure 

8 shows that buckling does not take place in shells with =0.0 

and =2.0. Snap through does occur in shells with ≥2.5. 

Figure 9(a) shows load-displacement curves of shells with 

=4.0, 5.0, 6.0, and 7.0. These shells produce curves having 

close resemblance with each other, i.e. they possess a sharp 

critical point before continuing downward with increasing 

displacements. These curves, however, differ significantly 

with those exhibited by shells with =2.5, and 3.0 (Figure 8). 

Shells with =5.0, =6.0, and =7.0 reveal a peculiar ‘turn-

back’ phenomenon, i.e. prior to reaching their critical points 

the deflections of the apex point reverts (turn back up) with 

increasing loads. This feature was not reported by previous 

researchers (Felippa, 2004; Uchiyama and Yamada, 2000; 

Kaplan, 1954). However, having the same features with those 

of curves of =5.0, 6.0, and 7.0, Shells with =4.0 does not 

exhibit the surprising turn-back phenomenon.  

The deformation history of Figure 8 shows that the 

buckling mode of shells with =2.5 and =3.0 proceeded in a 

global manner, i.e. the shell configuration changes drastically 

in one instance from a convex shape into a concave one. 

Contrary, the buckling of shells with =5.0, =6.0, 7.0, 8.0, 

and 9.0 proceeded in a composite manner. The global snap-

through is preceded by a local buckling. This event is clarified 

by the deformation history shown in Figures 9(a) and 9(b). 

The deformation history of Figure 9(a) shows that prior to the 

attainment of the concave shape, the shell experienced local 

buckling at the rim. This explains the turn-back phenomenon 

referred to earlier. The local buckling deflection at the shell 

edge pushes the apex up. The deformation history shown on 

Figure 9(b) demonstrates that prior to the attainment of 

concave configuration the shell experienced local bucking at 

the apex. 
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Figure 8. Load-displacement curve of nondimensional shell 

structure, =0 to  =3.0. 
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(a)                                                                                      (b)  

Figure 9. (a) Load-displacement curve of Shells with =4, =5, =6, and =7; (b) Load-displacement curve of Shells with =8 and =9.0. 

 

The load-displacement curve of shells with =2.5, shown 

in Figure 8, indicates that snap-through takes place at the 

critical point, while buckling does not occur in shells with 

=2.0. Somewhere in between there is a transition point 

where the shell turns from a stable shell into an instable one. 

By more refined analysis, with two digits accuracy, this point 
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was found to be =2.15. Shells with ≥2.15 will experience 

snap-through buckling at their critical load. Kaplan (1954) 

contended that instability occurs in shells with 2< <3.  

To comprehend the effects of shell thickness t, curvature 

radius R, and parameter , on the behavior of spherical shells, 

it is necessary to look into their interrelations. For that 

purpose the chart in Figure 10 was constructed. It illustrates 

the relation of t/a and R/a, where a is the radius of the base 

circle of the shell and  is a geometric parameter. The 

transition curve =2.15 is also shown. Points 1 to 9 drawn on 

the transition curve indicate shells with differing thickness 

and curvature, but of the same value =2.15. All these 

differing shells are transition shells. Numerical checks have 

shown these shells behaves in a similar manner with respect 

to instability. They produce exactly the same load-deflection 

curves. Shells represented by curves on the right hand side of 

the transition curve =2.15 are stable. At sufficiently large 

loads, these shells exhibit a deformed shape similar to that of 

a buckled shell. However, the configuration takes shape 

through a smooth continuous process, not a sudden event of 

snap-through. Shells represented by curves at the left hand 

side of the transition curve are subject to snap-through 

instability. Figure 10 shows that for t/a  0.05 the value of  

is very sensitive to changes in shell thickness. The chart on 

this Figure may be put to practical use in determining the 

stability of spherical shells.    
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Figure 10. Inter-relation of (t/a), (R/a) and  with 

transition curve of =2.15 of  spherical shell. 

IV. CONLUSIONS 

a) Shells with =2.15 are transition shells. Shells with 

<2.15 are stable, while those with 2.15 are  subject to 

snap-through instability.   

b) At sufficiently large loads, stable shells exhibits a 

deformed shape similar to that of a buckled shell, 

however, it proceeds in a smooth transition manner, not a 

sudden event of snap-through.   

c) Shells with 2.15≤3.0 buckles globally in a single 

instance.  

d) The global snap-through of shells with =4.0, =5.0, 6.0, 

and 7.0 is preceded by local buckling along the shell 

edge.    

e) The global snap-through of shells with =8.0 and 9.0 is 

preceded by local buckling at the apex of the shell.  

f) The transition point between the case of single instance 

global buckling of shells with ≤3.0 and that preceded by 

local buckling at the edge of shells with =4.0, =5.0, 

6.0, and 7.0 lies in the interval of 3.0<<5.0. 

g) The transition point of the case of global buckling 

preceded by local buckling at the edge of shells with 

≤7.0 and that preceded by local buckling at the apex of 

shells with ≥8.0 lies in the interval of 7.0<<8.0. 

h) Shells with =5.0, 6.0, and 7.0 exhibit a ‘turn-back’ 

phenomenon prior to snap-through. 

i) Shell analysis applying element axisymmetric SHELL51 

of ANSYS is more efficient than using trapezoidal 

element SHELL63 due to the small number required to 

model the shell.  
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