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Abstract - This paper presents Reliability Based Design Optimization (RBDO) model to deal with uncertainties involved in concrete mix
design process. The optimization problem is formulated in such a way that probabilistic concrete mix input parameters showing random
characteristics are determined by minimizing the cost of concrete subjected to concrete compressive strength constraint for a given target
reliability. Linear and quadratic models based on Ordinary Least Square Regression (OLSR), Traditional Ridge Regression (TRR) and
Generalized Ridge Regression (GRR) techniques have been explored to select the best model to explicitly represent compressive strength of
concrete. The RBDO model is solved by Sequential Optimization and Reliability Assessment (SORA) method using fully quadratic GRR model.
Optimization results for a wide range of target compressive strength and reliability levels of 0.90, 0.95 and 0.99 have been reported. Also,
safety factor based Deterministic Design Optimization (DDO) designs for each case are obtained. It has been observed that deterministic
optimal designs are cost effective but proposed RBDO model gives improved design performance.
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performance concrete under specified requiremeédsimal
theoncrete mix proportions for maximum compressiversjth
of concrete using Taguchi method and genetic dlyorivere
determined byOzbay et al. (2006). Jayaranet al. (2009)
proposed elitist genetic algorithm models for tiptirnization

I. INTRODUCTION

Sustainable development while conserving
environment with an objective of welfare and safefythe
people has been a subject of increasing conceringdiast
few decades. At the same time, optimal allocatibavailable

natural and financial resources is considered Wportant.
Therefore methods of risk and reliability analydisveloped

of high volume fly ash concrete. Lest al. (2009) used
convex hull approach to define effective region staained

during the last few decades are becoming more aace mbPY the domain defined by limited data base and,tgenetic

important as decision support tools in civil engirieg
applications (Sorenson, 2004).

algorithm was used to find optimal concrete mixgvagters
in the effective region. Baykagm et al. (2009) solved a

Concrete is the most widely used man made coniruct Multi-objective optimization model for high strehgtoncrete

material. Every year billion tons of cement is certgd into
concrete world-wide. Concrete is a mixture of cetnesmter,
fine aggregate, coarse aggregate and admixturegodd
amount of work has been done by researchers tonalbyi
allocate the ingredients proportions for concretres while
satisfying specific requirements related to comgikes
strength, slump, tensile strength efeh (1999, 2003, 2007,
and 2009) determined optimal concrete mix compmssti
with lowest cost and required performance usinglinear

parameters using genetic algorithm with predictiondels
based on regression analysis and Gene Expression
Programming (GEP).

The formulation of a structural optimization profle
that ignores the scattering of various design patama is
termed as Deterministic Design Optimization (DD®.
numerically feasible optimum design, according toe t
deterministic formulation, once applied in a redlygcal
system, may lose its feasibility due to the unaabld

programming technique. Karihaloo and Kornbak (20019ispersion on the values of structural parameteratdfrial
optimized tensile strength and ductility, simultansly, for a Properties, dimensions, loads, etc.). Performantethe
given compressive strength in the design of filenforced applied design may be far worse than expected.ush,sin

concrete mixes. Linet al. (2004) used genetic algorithm to'eal world applications, if uncertainties are naken into
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limited (Lagaroset al., 2008). In DDO, the uncertainties arestrength of concrete are developed using Ordinagast

usually accounted for by the introduction of saffatgtors as
described by the design codes of practied56 (2000). As a
matter of fact, these safety factors are calibrd¢ecaverage
design situations and cannot ensure consistenabikty
levels for specific design conditions. In this smnghe
Reliability Based Design Optimization (RBDO) becama
very powerful tool for robust and cost-effective sims.
Contrary to traditional DDO, RBDO process modulaties
safety margins within the optimization process rgkinto
account uncertainty effect for each variable. lis gense, the
safety factors are optimally defined within the teys,
compared to deterministic design where the safat{ofs are

Square Regression (OLSR), Traditional Ridge Regass
(TRR) and Generalized Ridge Regression (GRR) teci®si.
The performance of developed models is comparedhen
basis of prediction accuracy. The full quadraticRsRiodel
that has best prediction power is used in RBDO motee
RBDO model formulated based on the selected moidels
cost and compressive strength of concrete is thied using
SORA method. RBDO results are obtained for a watege
of target compressive strength with target religblevels of
0.90, 0.95 and 0.99. Also, safety factor based DI2Signs
for each case are obtained to compare the perfasnah
proposed RBDO model.

set before undergoing the optimization process. sThu

optimizing concrete mix proportions based on rdliighis of

Il. EXPERIMENTAL DATASET

great practical importance in comparison to deteistic Tphe Compressive strength data explored in this ystwes

optimization (Chateauneuf, 2008).

generated in controlled laboratory conditions byriém (2002).

Despite the evident advantages of RBDO o0V@he concrete mixes were proportioned using fouricbas

deterministic design procedures, its applicatioergineering
problems can be quite challenging due to high nigakcost

ingredients, namely, water, cement, coarse aggremad fine
aggregate. The proportions of materials for comcnmixes

involved in its solution (Valdebenito & Schuélle2010). \yere determined by DOE method of mix design (Gambhi

Considering these issues, several tools are deseldyy
researchers to solve RBDO problems efficiently prots

1995). Ordinary Portland cement of 43 grade hasipecific
gravity of 3.14 was used. The 7 and 28 days corspres

(Thanedar & Kodiyalam, 1992; Enevoldsen & Soren8893; gyrengih of cement was 35¥Pa and 45.3MPa, respectively.

Wang & Grandhi, 1995; Luo & Grandhi, 1995; Chetral.,

The fine aggregate was river bed sand with a fisgmeodulus

1997; Royseet al., 2001; Aggarwal, 2004; Du & Chen, 2004yt 5 09 and specific gravity of 2.54. Three typdscoarse
Zou & Mahadevan, 2006). SORA method developed by Qygregate viz., CA-I, CA-Il and CA-Ill, were usaddifferent

and Chen (2004) is an efficient decoupling apprdacéolve

proportions in order to increase the density ofiltexy mix.

RBDO problem. It employs a single loop strategyhwé Taple 1 contains the salient properties of theggesgtes. The

serial of cycles of deterministic optimization areliability

coarse aggregates were divided into three zoneslgaA, B

assessment. In the present work, SORA method id tse 54 C, based on the percentage of different tybaggregates

achieve reliable optimal concrete mixture proparsio

used. Table 2 summarizes details of these zonem, Ahe

In optimization process, simplified mathematicaldels \ater content variation for each zone of aggregaghown in
are needed that gould provide efficient represemadf Top1e 2. A set of 49 concrete mixes was preparedabying
various concrete mix parameters. Cost of conceetelinear \yater.cement ratio, cement contents and aggredatetons

function of its constituents but compressive sttengf
concrete might be a nonlinear function of its cibnenhts as it

(Kumar, 2002). Water-cement content ratio was kegitveen
0.42 and 0.55. Out of these 49 mixes, 18, 17 andnikés

is known only through its discrete outcomes. Somf@nd |\ are prepared using zone A, zone B and zone C afseo

degree of the model for compressive strength isknotvn.

aggregates, respectively. For each mix, 15 cubes506fmm

The success of prediction model depends both opeprog,e were cast and were tested at 28 days of cymémipd.

forms of the model and on the proper values oftmameters
of the model. The parameters are usually estimited the
experimental data. The purpose of the parametenaibn in
these cases is to not just to fit experimental ,dat4 to find
parameters as close to the true ones as possistiSts and
engineers traditionally rely on different varianf¢he method
of ordinary least square regression for estimatingdel
parameters. This method leads to unbiased estismatdre
unbiased property is meaningful only if the fitteddel is the

Thus, a sufficiently large data bank was generated the
same has been used in the present work for anglyzin
compressive strength of concrete. Also, unit caosteach
material is determined by taking into account theeprates in
India. Based on the prices, cost ofnf of concrete is
calculated for each mixture and is measured inaimdiupee

(Rs)).

Table 1.Properties of coarse aggregates

true model, and most often this may not be guaeahtend as
such unbiased property should not be over emplthgitgo
et al., 2004). Also, Hoerl and Kenna(d@970) argued that in

multiple linear regression, parameter estimatesedbasn
minimum residual sum of squares have a high prdibaloif
being far away from true parameter values, if préoin
variables are not orthogonal.

They proposed Ridge

Regression (RR) technique that belongs to the dab&ased
estimators. This method leads to smaller valuesMefin

Square Error MSE) function (which is the measure of

goodness of estimators) for estimating parametérinear
models using non-orthogonal predictor variables.

In the present work, linear, pure quadratic (withou

interaction terms) and full quadratic models fompoessive

Unit mass - Percentage
;ypree O;te (compact) S?;\%TC absorption
ggred (eg/m®) gy (%)
CA-I 1.58 2.68 1.80
CA-Il 1.48 2.68 1.18
CA-lll 2.15 2.60 1.20
27
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some flexibility regarding the shrinkage of eaclgression
coefficient, as it may be desirable to treat thefficents

Table 2. Zones of aggregates differently (Ryan, 1996).
Percentage  Percentage  Percentage  WWater content If all the ridge parameters are taken to be eqoidl, t
passing 20nm passing passing rezu”e“;‘e”t then ridge estimates obtained using Eq. (4) areesasnTRR
zone ~ Seveand  10mmsieve  4.75mmsieve (kg/m") estimates. FoK = 0, the ridge regression coefficients are

retameql on and retained and retamgd on identical to OLSR coefficients.
10mm sieve on 4.75mm 2.36mm sieve It i h L h hat rid . .
(CA-) sieve (CA-) (CA-Il) _ t is worth mentioning here that ridge regressisnai
linear regression technique and exact form of iaiahip
67 33 - 180-210  petween compressive strength of concrete and giedients
B 50 50 - 190-220 is still not known. In the present work, first aselcond order
50 50 200—230 approximation models for compressive strength aiccete

have been developed. Cross validation criterionleyepl by
Yan (2008) has been used to find optimal ridge patars for

Il GENERALIZED RIDGE REGRESSION TRR and GRR models that minimizes the mean square
In matrix notation, the multiple linear regressiodel can prediction error ¥SE) of validation set given in Eq. (5).
be expressed as:

MSE = (yt_yt)’(yt_yt)/nt (5)

wherey, denotes vector oflependent variable for validation
set,y, denotespredicted values of, andn, denotes number
of observations in validation set.

Y=XB+¢ (1)

whereY is an x 1 vector for response variabl¥, is a
n X (p + 1) matrix. First column oX consists of ones and

remaining p columns are for explanatory variables or IV PREDICTION MODELS FOR COMPRESSIVE
predictors B is a(p + 1) x 1 vector for unknown regression STRENGTH OF CONCRETE
coefficients andce is an x 1 vector of experimental errors

with mean 0 and_varianmez. OLSR estimators of regressiongautors influencing compressive strength of concrete for
coefficients are given as: determlnlng predictor variables

B=XX)"'XY (2)  Concrete mixes used in this study are composedatérgy),
_ ) ) cement §), fine aggregatefi@) and coarse aggregatez§, all
A unique solution of Eq. (2) may exist even whee thymeasyred ikg/m® and 28 days compressive strengtt2g)
predictor variables are non orthogonal, i.e., t#rmX'X is s measured iMPa. Basic descriptive of these parameters is
ill co_ndltl_oned. However, in such nearly s!ngulases, the given in Table 3. Two statistical analyses have nbee
solution is very unstable. Also, OLSR estimateseh@rge conducted to decide the predictor variables for passive
variances in such cases (Rawliegal., 1998). This greatly gyength of concrete using correlation approach. fitst
affects the prediction accuracy of OLSR model. Rt&h  5n4)ysis 5628 has been considered with absolute content
accuracy is an important aspect of model developméen  \4jues ofw, fa, ca, c and in second analysis, this strength is
the m_odel is to be used for further analysis. Rmyess_mn considered with ratio of water and cement conténmtgc),
tec“”'q%*e propos_ed by HO@““?‘ Kennard (;970),'3 a biasedatip of fine aggregate and cement conterfits/€), ratio of
regression technique t_hat shrinks regression (cmermhs aqd coarse aggregate and cement contents/d) and cement
he”“r‘ reduces the variance of the regression cmﬂfs This content €). The results of these analyses are given in Fable
_techmque produ<_:e_s stable regression  coefficientsl a(a) and (b). These results suggest that potentaligtors for
Improves the pred|ct|_on accuracy_of the model. st28 arew/c, fa/c, ca/c andc as the numerical values of
Ridge regression estimates are given as: coefficient of correlations of these variables wstt28 is
. , , more than 0.500.
Brr = XX+ kD™ 'XY 3)
wherek > 0 is called the ridge parameter ahis$ the identity ~ Linear, pure quadratic and full quadratic modets fo
matrix of order(p+ 1) x (p+1). Regression estimates €stimating compressive strength of concrete areldped in
given by Eq. (3) are termed as TRR estimates. Haed the present work. Interaction termgc ¢, fa/c » ¢ and
Kennard (1970) also proposed an improvement on ifRRe  ca/c ¢ are not considered in the development of full ni®de
form of GRR. GRR estimates of the regression coiefits ~Since these terms will represent absolute valuegatdr, fine
are given as: aggregate and coarse aggregate contents, respective

Berr = XX+ K)'XY 4)

whereK is a(p + 1) X (p + 1) diagonal matrix. Diagonal
entries ofK are called ridge parameters. GRR gives the user
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Table 3.Descri

ptive statistics

Minimum Maximum Mean Sta.nd.ard Specific
Variable (kg/m?) (kg /m?) (kg/m?) deviation gravity
7 I 7 (kg/m*)
w 180.00 230.00 202.44 12.69 1.00
fa 416.93 642.18 535.64 57.29 2.54
ca 798.48 1252.05 1064.85 133.42 2.65
c 350.00 475.00 424.49 37.32 3.12
st28 31.66 54.49 45.80 5.42 -
Table 4(a)Correlation matrix for analysis 1
w fa ca c st28
Parameer  (kg/m?)  (kg/m®)  (kg/m®) _ (kg/m®) _ (MPa)
w (kg/m®) 1.000 0.805 -0.305 0.541 0.000
fa(kg/m®) 1.000 0.102 0.026 -0.462
ca(kg/m?) 1.000 -0.375 -0.214
clkg/m?) 1.000 0.821
Table 4(b).Correlation matrix for analysis 2
c st28
Parameter w/c fa/c ca/c (kg/m?) (MPa)
w/c 1.000 0.960 0.517 -0.734 -0.968
fa/c 1.000 0.546 -0.637 -0.900
cajc 1.000 -0.776 -0.581
c(kg/m?) 1.000 0.821
Sample data analysis The pair wise correlation between the selectedipied

To analyze multicollinearity among the sample d&gan
(1996) suggested to examine the correlations betwhe
pairs of predictor variables and the Variance tidla Factor
(VIF) of predictor variables. A pair wise correlatiomtnix of

predictor variables might be insufficient to idépnti
collinearity problem because linear dependenciey edst
among combinations of predictors. Hence, it is Bsagy to
examineVIFs also. Following Ryan (1996), thdF; of it

predictor variable; (say) has been considered as:

1
2
1-R;]

VIF, =

(6)

whereR? is the squared multiple correlation coefficienatth
results from regression af against all other predictors. It is

clear that ifx; has a strong linear relationship with other

predictor variablesk? is close to 1 andIF value tends to be
very high.

In the absence of linear relationship among predict
variables,R? is zero and/IF equals 1. As a rule of thumb,
multicollinearity is said to exist iIF value for a predictor

variable is more than 10.

variables listed in Table 4(b) shows that all thar pvise
correlations are numerically greater than 0.500e@&!pairs of
variables have very high degree of correlation. pagw/c
andfa/c has highest correlation (0.960). The other twogai
with high correlation are that of:/c andc (-0.776) and that
of w/c and c (-0.734). These results indicate that given
data set suffers from multicollinearity. Also, iarc be noted
from the Table 5 that/F values fow/c andfa/c exceed 10
and thus provide an evidence for presence of naliitiearity.
Further, in quadratic models, strong multicollingaris
present because of form of the models.

Table 5.VIF values

Parameter VIF value
w/c 33.444
fa/c 25.863
ca/c 4.532

c 7.877

29
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Development of prediction models for compressive strength
of concrete

The total sample set consists of 49 concrete mpasition
observations. Total sample set is randomly dividetb
training set of 33 observations and validation eét16
observations. In order to illustrate the perforngnof
developed model$/SE,, for validation sets defined as:

MSE, = MSE(K ;) (7

where MSE(K,,,) is the value of mean square e

evaluated from Eq. (5) at optimal value Kf which is
Evolution (DE) algorith
However, for OLSR model& = 0. In order to obtain the
optimal ridge parameters for TRR and GRR models,
algorithm was employed using parametgs= 50, Cr = 0.9,
F = 0.85 andg,,,, = 500. Here,N,, symbolizes the number

obtained using Differential

of individuals in a populationCre [0,1] is the crossov
probability, F e[0,2] denotes the mutation probabil

DEMAT, a MATLAB program developed by Pricet al.
(2005) is used to carry out DE algorithm.

For linear, pure quadratic and full quadratic TRR
models, the optimal ridge parameters obtained by db&
0.000690, 1 and 0.021556, respectively. For lin€&R
model, five diagonal elements of optimal diagonatnim K
are 0, 0.008037, 1, 0.737931 and 1, respectively. roe p
guadratic GRR model, nine diagonal elements of noguti
diagonal matrixK are 0.000374, 0.007582, 1,1, 1,1, 1, 0 and
0.921217, respectively. For full quadratic GRR mptieelve
diagonal elements of optimal diagonal mafiare 0.999999,
1,0,1,1,1, 1,1, 0.997760, 1, 0.002325 andc:pectively.
The regression coefficients of the developed models
summarized in Table 6.

E To demonstrate the performances of nine developed
compressive strength models, the predicted compeess
strength values for the validation s&te plotted against the
observed values for the validation set. The graghtained

€ are shown in Fig. 1. ThESE, values of each of the nine

ity, developed models are listed in Table 7.

rro

D

maximum number of generations are denoted ghy, -

Table 6. Regression coefficients for developed models

Regression Coefficients
Pure Full Pure Full Pure Full
Linear OLSR  Quadratic Quadratic Linear TRR Quadratic Quadratic Linear Quadratic Quadratic
model OLSR OLSR model TRR TRR GRR model GRR
model model model model model GRR model
w/c -189.13975 476.20913 561.35812  -103.55820 -0.761215.36516 -80.14997  -52.69489 -0.110144
fa/c 12.05470 -22.21296  -113.09515 -3.23475 -2.57674 426314 -2.80901 -1.39377 -35.27014
ca/c -1.21449 13.08796 52.26107 0.67563 1.15347 1191685 0.84905 0.59404 0.83211
c 0.01453 -0.12024 -0.09109 0.04807 0.17823 0.198390.06636 0.40038 0.38787
(w/c)? -650.43865 -677.48681 -0.70444 -5.39211 8915 -0.11413
(fa/c)? 10.18659 -66.87370 -6.23284 -9.84671 -3.53504 -0.39153
(ca/c)? -2.78011 -2.62999 0.18649 -3.06588 - 0.20384 34481
c? 0.00016 0.00014 -0.00011 -0.00017 - -0.00039 0.00041
w/c* fa/c - 356.09713 -9.12190 -0.20540
w/c*ca/c - -194.69196 -8.81293 -35.14388
fa/c *cafc - 43.56722 7.34365 11.91443
Intercept 117.95049 -14.03388 -37.12946 77.31834  -0.12678 .27211 57.36012 -22.81334 -0.034569
30
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55 -

strength K1Pa)
I a1
a1 o

N
o

Predicted 28 days compressive

35

m Full quadratic GRR model

35 40

Observed 28 days compressive strength

45 50 55

(MPa)

Figure 1. Performances of nine compressive stremgidiels

Table 7.Mean square error for test sample data set

Name of the model MSE,
Linear OLSR model 1.78793
Pure Quadratic OLSR model 3.05464
Full Quadratic OLSR model 3.02470
Linear TRR model 1.42587
Pure Quadratic TRR model 1.52168
Full Quadratic TRR model 1.80699
Linear GRR model 1.02357
Pure Quadratic GRR model 1.12640
Full Quadratic GRR model 0.89794

It can be seen from Fig. 1 that predicted value&BR
models distribute closer along the diagonal in carigon to
OLSR and TRR models indicating that prediction powé
these models is better than that of OLSR and TRRefso
The above observation is also supported byMK€,, values
for each of the nine developed models given in &abl It
can be noted from the Table 7 that valuesMSE,, of GRR
models are lesser than that for OLSR and TRR moaleds
least value oMSE,, is for full quadratic GRR model.

So, full quadratic GRR model for 28 days compressiv

strength of concrete is selected to be used in RBia@el for
concrete mix parameters.

Prediction modelsfor cost of concrete

In this study, no cost is associated with the watertent and
as such, cost of concrete is a linear functionrd figgregate
content, coarse aggregate content and cement ¢oRtestly,
it can be noted from Table 4 that pair wise cotiets
between predictor variables lie between 0.026 a7

numerically. Also,VIF values for predictor variables are

1.016, 1.181 and 1.169. All the thriégF values are very near
to one. The above observations suggest that militiearity
does not affect the linear OLSR model for cost aficrete.
So, linear OLSR model is developed for cost of cete
Regression coefficients for linear OLSR model fastcof
concrete are given in Table 8.

Table 8.0LSR models for cost of concrete

Parameter ((;?:t)
fa ((kg/m?) 0.629
ca (kg/m?) 0.333

c (kg/m?) 4.892

Intercept 236.461

V. OPTIMIZATION MODEL FORMULATION
Formulation of RBDO models for concrete mix parameters

The RBDO model for concrete mix parameters is fdateal
with cost of concrete as objective function. Thigeative is
minimized satisfying a ratio constraint, an absolublume
constraint, boundary constraints on input variabdesl a
reliability constraint on 28 days compressive githn
requirement. All the four input variables, namely,fa, ca
andc have been considered as random variables thatwfoll
normal distribution with their respective means atahdard
deviations listed in Table 3. So, the design vaeslor the
proposed multi-objective RBDO problem have beertais
the mean values of water content, fine aggregatdeog
coarse aggregate content and cement content derasted
Hws Urar Meq @Nd pg, respectively.

The RBDO problem formulated for concrete mix cost
optimization is given below:
Minimize
Hwlfalcalc

Prob(st28(w, fa,ca,c) = f.) = R

cost (fa,ca,c)
Subject to:

042<W%/.< 055
ca

8)

Cc
+ —> +0.001 +0.02 = 1.00
Ge

W SwSwy

fai<fa<fay

ca; < ca<cay
q<c=<cy

where,
cost - Cost of concrete
st28 - 28 days compressive strength of concrete
f. - Target 28 days compressive strength of coacret
Prob(.) - Probability of constraint satisfaction
R

- Target reliability level

w/c - Water-cement content ratio

32
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Grar Geq andG, — specific gravities of fine aggregate, coars¢han 5% of the results will fall belofy MPa. Here,s denotes

aggregate and cement content, respectively

the assumed standard deviation of the compressieagsh
data. So, in DDO problem based on safety factorcam,

wy, fa;, ca;, andc; - Lower bounds for water, fine aggregateprobabilistic constraint given in Eq. (8) is repdcby the

coarse aggregate and cement content, respectively

w,, fa,, ca,, andc, - Upper bounds for water, fine

aggregate, coarse aggregate and cement contqrectiesly

First constraint in (8) is the reliability cstraint on
compressive strength of concrete which ensuresstdétis
more than a specified value of compressive strenjtiith

deterministic constraint given below:

st28 = f, + 1.65s (11

Also, the design variable®, fa, ca andc are taken as
deterministic design variables.

VI. RESULTS AND DISCUSSIONS

reliability R . The second constraint is a deterministikBDO models based on full quadratic GRR model afeesl
constraint which shows thav /c ratio lies between 0.42 and Py SORA method. The influence of reliability levein

0.55. Third constraint is a condition that ensutiest total
volume of components of concrete should be equalns.
In this constraint, 0.02 signifies the percentafaiocontent
in concrete mix.
constraints for design variables. The specific ijies; lower
bounds and upper bounds for the design variab&egiaen in
Table 3.

optimization results is also investigated in thesent study.
The RBDO problem formulated in preceding sectiosalved
for three target reliability levels of 0.90, 0.96da0.99. The

Last four constraints are boundargPtimal mix proportions obtained are presented abl& 9.

or finding optimal proportions of concrete mix, eth
minimum target compressive strength is taken ak& Pd and
is increased in steps ofMPa. The results are reported up to

Using SORA method, RBDO problem formulated in Eqthe maximum target compressive strength for whiGR&
(8) is replaced by deterministic optimization perblas given Optimizer converged for a given reliability.

below:

Minimize cost (fa,ca,c)

BwHfalbcatc
(k) 9] 9]
sc’) 2 f

Subject to: stZS(uW - S‘E,k),ufa —Stq Hea — Sca' He —

i) +0.001 + 0.02 = 1.00
Ge

042 <%/, < 0.55
W Sw<=sw,
fa,<fa<fa,
ca; < ca <cay,
g<c=<cy

€))

where k denotes the cycle number asg,s¢,, Scq,S. are
called shift factors defined as:

0, k=1

[s99]

S(k) | [/—ll(f V- W]\(/[kppl) ]

fa 1~ (k-1) (k-1)

S(k) { Heqg = —JAypp k>2 (10)

ca (k=1) k=1 |’ =
ls0]  |[néa™” — cayipe

s i

Here, (Wumpp, fampp, Caumpp, Cupp) denotes the inverse
Most Probable Point (MPP) of failure of compresstrength
constraint corresponding to the given reliabiligvel R at
deterministic optimal solution (u,,, Urqe, Hearte) - The
deterministic optimization problem in each cycleujdated
on the basis of MPP information obtained from thevipus
cycle. The above procedure is repeated cycle bie ayetil

Safety factor based DDO model is solved using
sequential quadratic programming method. As pel0362
(2009), assumed standard deviations for differeatigs of
concrete are listed in Table 10. It can be notechfifable 10
that the value of is 4.0MPa for target compressive strength
of 27 MPa and this is SMPa for target compressive strength
> 30MPa. As such, the safety margin is taken 6MRa for
target compressive strength of BPa and 8.25VPa in all
the remaining cases.

The results of safety factor based deterministisigie
optimization are summarized in Table 11. Reliapifihalysis
using mean value approximation method is carrietl aiu
DDO optimal designs and computed reliabilities afso
reported in Table 11. Fig. 2 shows the variatioropfimal
cost with target compressive strength for differegliability
levels and for safety factor based DDO approach.

Effect of reliability level on optimal cost

Fig. 2 shows variation of optimal cost with targempressive
strength and reliability level. It can be seen frthis figure
that difference between heights of the curves &iability

levels of 0.95 and 0.99 is higher than that of ¢heves for
reliability levels of 0.90 and 0.95. It indicatdsat raising the
reliability level from 0.95 to 0.99 is costlier thaaising the
reliability level from 0.90 to 0.95, for a given rgget

compressive strength. The rise in optimal cost iesveen
2.3% to 4.0% when reliability level is increasednr 0.90 to
0.95. However, to raise the reliability level fran®5 to 0.99,
the rise in optimal cost lies between 4.28% to %52

the cost function converges and the reliability requirement

for compressive strength constraint is achieved.

Formulation of Safety factor based DDO model

In deterministic design procedures, safety margjisei before
the optimization process. As péB 10262 (2009), for a
specified target compressive strengthfaffPa, the concrete

mix should be proportioned for an average compvessi

strength not less thafyf, + 1.65s) MPa, so that, no more
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Effect of reliability level on design variables strengths for a given reliability. Figures 3(b) aB(@) reveal
Figures 3 and 4 show variation of design variables water- that fa andca contents exhibit wide fluctuations as target
cement content ratio with target compressive strerapd strength and reliability level varies. Also, it che noted from
reliability level. It can be noted from Fig. 3(a)at water

contentw shows some variations for higher compressive
—&— SORA optimal for R=0.90

3400 - .
—&— SORA optimal for R=0.95
—#— SORA optimal for R=0.99
safety factor hased DDO
3200 -
P
% 3000 -
(@
(@)
2800 -
2600 T T T T )
25 50

3QI'arget cg5mpressiv‘éostrengtb|%5a)

Figure 2.Variation of optimal cost with target compressitesgth

Table 9.Reliability based design optimization results

Relagity  stob | ot egge y I ” ’ W)
N N
R y (MPa) (Rs.) (MPa) (kg/m3) (kg/m3) (kg/m3) (kg/m3) ‘
0.90 27 2756.46 40.20 180.00 577.31 1208.50 358.63502
30 2805.50 42.60 180.00 548.87 1227.58 371.02 0.485
33 2856.27 45.02 180.00 514.80 1251.91 384.12 0.469
36 2947.31 45.98 180.00 617.76 1133.53 397.55 0.453
39 2968.33 49.26 180.00 493.83 1252.05 409.71 0.439
42 3030.93 51.31 180.00 484.71 1249.56 423.85 0.425
45 3156.65 53.06 191.85 429.28 1248.03 456.78 0.420
0.95 27 2827.77 43.39 180.00 553.92 121851 37554  0.479
30 2905.33 44.13 180.00 637.13 1122.11 387.25 0.465
33 2964.37 46.08 180.00 631.09 1117.24 400.43 0.450
36 3017.46 48.18 180.00 610.09 1128.23 41324 0.436
39 3037.03 51.52 180.00 482.00 1251.11 42534 0.423
42 3153.04 53.04 191.23 432.65 1247.10 455.67 0.420
43 3202.52 52.99 195.44 463.03 1196.21 465.35 0.420
0.99 27 2983.80 46.65 180.00 630.20 1114.54 404. 10444
30 3035.78 48.33 180.00 620.17 1114.38 416.56 0.432
33 3091.31 49.97 180.37 608.17 1115.55 429.44 0.420
36 3166.28 52.92 192.18 451.49 1223.40 45757 0.420
38 3233.30 53.49 199.34 432.73 1209.56 47463 0.420

Table 10 Assumed standard deviation

Assumed
Grade of concrete  standard deviation
(MPa)
M10
M15 35
M20
M25 4.0
M30
M35
M40
M45 50
M50
M55
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Table 11. Safety factor based approach optimizasuolts

Tatrz%et rr?::eltr)\/ cost PretdzigtEd Y fa o ‘ wy Reliabilit

S S

(MPa) (MPa% (Rs.) (MPa) (kg/m3) (kg/m3) (kg/m3) (kg/m3) ‘ /
27 6.60 2687.79 33.60 191.93 512.30 1251.90 350.00 0548 0.730940
30 8.25 2706.22 38.25 180.44 541.66  1251.68 350.00 0.516 0.801893
33 8.25 2768.64 41.25 180.07 531.32 1251.47 364.11 0.495 0.823800
36 8.25 2838.22 44.25 180.08 518.49 1251.27 380.00 0.474 0.846715
39 8.25 2913.36 47.25 180.01 504.45 1251.63 397.14 0.453 0.872969
42 8.25 2997.75 50.25 180.06 488.45 1251.81 416.44  0.432 0.903361
45 8.25 3171.25 53.25 193.63 417.40 1252.05 461.02 0.420 0.951700

graphs thafa andca contents show opposite variations, i.e.RBDO model behaves in accordance with the existing

as fa content rises¢a content falls and vice-versa, for astandards and hence is of great practical impogtanc

given reliability curve. Fig. 3(d) depicts that oemh content ¢

increases according to target strength and rehalével. Fig. Comparison of RBDO approach with safety factor based

4 shows that water-cement content ratio falls ageta DDO approach

strength increases for a given reliability. The \abdwo It can be noted from Fig. 2 that optimal costsdafety factor

observations are as per already proven trendofmrete mix based DDO designs are less than that for RBDO dgsiy

design. It further strengthens the idea that thenfdated each corresponding case and for each reliabilitgllexcept
for f. = A5MPa. Safety factor based DDO curve lies above
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_ o
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R=0.99
£ g
2 210 - S 550
c o
2 o
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o
3 200 - 2 500 -
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i
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1280 - 500
o
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Fig. 3(c) Fig. 3(d)

Figure 3(a)Variation of water content with target compresstrength; Figure 3(b)ariation of Fine aggregate
content with target compressive strength; Figuny. 3{ariation of Coarse aggregate content with targetfressive
strength; Figure 3(d)/ariation of cement content with target compressivength
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the RBDO curve withR = 0.90 for this value of target although reliability improves as target compressitength
strength. This is justified as Table 11 reveals$ thkability of increases.
safety factor based optimal design for this striengt0.9517, Thus using DDO approach, required reliability level
that is greater than 0.90. cannot be maintained. The disadvantage of safetgrfbased
In particular, for reliability of 0.95 for which &y DDO approach is that recommended safety marginmate
factor based DDO designs are obtained, comparifows always suitable for the given system. But, as dyea
that optimal costs achieved for RBDO designs ai8%.to mentioned, RBDO process modulates the safety margin
7.36% more than optimal costs for safety factoedatesigns. within the optimization process taking into account
Also, Table 11 reveals that in safety factor baB&D uncertainty effect for each variable. Hence, theulteng
results, optimal designs do not meet the religbilitdesigns obtained by RBDO approach are the besti@olu
requirement of 0.95 in all cases except for 45MPa, relative to the designs obtained by safety factssed DDO
approach as the objective is to provide best comjz®
between cost and safety.

0.510
0.490

0.470

wi/c ratio

0.450

0.430

0.410 T T T T T T )

27 30 33 36 39 42 45 48
Target compressive strengtia)

Figure 4 .Variation of water-cement content ratio with targempressive strength
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