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I. INTRODUCTION 

Differential equations play an important role in several 

fields of science and engineering. One can easily see problems 

in the form of ordinary differential equations and partially 

differential equations in different branches of sciences and 

engineering. Vast applications of differential equations draw 

attention of engineers and scientists toward their solutions. 

According to the nature of differential equations their solutions 

always remain challenging. When a differential equation is of 

nonlinear type, finding its solution becomes more complicated. 

However, from time to time so many methods have been 

developed and their improved versions also came into 

existence. Finite difference methods, Lagrange multiplier 

method (Inokuti et al.,  1978), Backlund transformation, 

Darboux transformation , the inverse scattering transformation, 

symmetry method, the tanh method , Hirota’s bilinear method,  

Adomian decomposition method, the, Homotopy perturbation 

method, Homotopy analysis method, Variational iteration 

method (He, 1997, 1999) and Modified variational iteration 

method (Abassy et al.,  2007, 2007a ) are widely used to solve 

several nonlinear differential equations.   

Convective – diffusive problem is another example of a 

nonlinear partial differential equation. It is a combination of 

two different equations, convection equation and diffusion 

equation. It models the transfer of a physical quantity inside a 

physical system due to convection and diffusion. A Transient 

nonlinear convection-diffusion equation in three dimensions 

(Campos et al.,  2014) is given by: 

  
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑢

𝜕𝑦
+ 𝑢

𝜕𝑢

𝜕𝑧
= 𝑣 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑧2)            (1) 

where 𝑢(𝑥, 𝑦, 𝑧, 𝑡)  is the velocity field in the 𝑥, 𝑦, 𝑧 -

directions and 𝑣 is the kinematic viscosity.   

In this paper, modified variational iteration method(MVIM) 

(Abassy et al.,  2007) is applied successfully to obtain the 

highly accurate solution of the three dimensional transient 

nonlinear convective- diffusive problem. MVIM is developed 

by changing the formulation of variational iteration 

method(VIM) and gives better and faster results than VIM. To 

show the higher accuracy of the solutions obtained by modified 

variational iteration method, numerical results are compared 

with the results obtained in (Campos et al.,  2014).               

 

II. FORMULATION OF THE MODIFIED VARIATIONAL 

ITERATION METHOD: 

Materials used in this research were: In this section we will 

give a brief introduction about modified variational iteration 

method (Abassy et al.,  2007). Let us consider a general 

homogeneous unsteady nonlinear initial value problem in three 

dimensions of the form: 

 

𝐿𝑢(𝑥, 𝑦, 𝑧, 𝑡) + 𝑅𝑢(𝑥, 𝑦, 𝑧, 𝑡) + 𝑁𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 0   (2a) 

𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑓(𝑥, 𝑦, 𝑧)                                           (2b) 
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where 𝐿 = 𝜕/𝜕𝑡 , 𝑅  is a linear operator which has partial 

derivatives with respect to 𝑥, 𝑦, 𝑧  and 𝑁𝑢(𝑥, 𝑦, 𝑧, 𝑡)  is a 

nonlinear term. 

 According to the variational iteration method (He, 

1997, 1999, 2006) following iteration formula for equation (2) 

can be constructed: 

𝑈𝑛+1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈𝑛(𝑥, 𝑦, 𝑧, 𝑡) + ∫ 𝜆{𝐿𝑈𝑛 + 𝑅𝑈𝑛̃ +
𝑡

0

𝑁𝑈𝑛̃}𝑑𝜏                                                                             (3) 

where 𝜆 is called a general Lagrange multiplier (Inokuti et al.,  

1978) which can be identified optimally via variational theory 

(Inokuti et al.,  1978; Finlayson, 1972), 𝑅𝑈𝑛̃  and 𝑁𝑈𝑛̃  are 

considered as restricted variations i.e. 𝛿𝑅𝑈𝑛̃ = 0 and 𝛿𝑁𝑈𝑛̃ =
0. 

 Calculating variation (He, 1997, 1999) with respect to 

𝑈𝑛, the following stationary conditions are obtained: 

𝜆′(𝜏) = 0,                                                                  (4a) 

1 + 𝜆(𝜏)|𝜏=𝑡 = 0                                                      (4b) 

By solving equation (4), Lagrange multiplier can be identified 

as 𝜆 = −1. Substituting the identified multiplier into equation 

(3), following iteration formula can be obtained: 

𝑈𝑛+1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈𝑛(𝑥, 𝑦, 𝑧, 𝑡) − ∫ {𝐿𝑈𝑛 + 𝑅𝑈𝑛 + 𝑁𝑈𝑛}𝑑𝜏
𝑡

0
         (5) 

The second term on the right is called the correction term. Eq. 

(5) can be solved iteratively using 𝑈0 = 𝑢(𝑥, 𝑦, 𝑧, 0) =
𝑓(𝑥, 𝑦, 𝑧) as initial approximation. 

In application of iterative formula (5) to obtain 

approximate solution of equation (2), repeated calculations 

occur in every iteration which increase computational time of 

the method. Also, formula (5) produces non-settled terms in the 

approximate solution that slow convergence down.  

To overcome with these problems, in 2007, Abassy et 

al. proposed the following modified variational iteration 

method: 

𝑈𝑛+1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈𝑛(𝑥, 𝑦, 𝑧, 𝑡) − ∫ {𝑅(𝑈𝑛 − 𝑈𝑛−1) + (𝐺𝑛 −
𝑡

0

𝐺𝑛−1)}𝑑𝜏                                                                                (6) 

where 𝑈−1 = 0, 𝑈0 = 𝑓(𝑥, 𝑦, 𝑧)  and 𝐺𝑛(𝑥, 𝑦, 𝑧, 𝑡)  is obtained 

from 

 𝑁𝑈𝑛(𝑥, 𝑦, 𝑧, 𝑡) = 𝐺𝑛(𝑥, 𝑦, 𝑧, 𝑡) + 𝑂(𝑡𝑛+1)                (7) 

Equation (6) can be solved iteratively to obtain an approximate 

solution of equation (2) that takes the  form 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) ≃ 𝑈𝑛(𝑥, 𝑦, 𝑧, 𝑡)                                        (8) 

  where n is the final iteration step.  

III.  NUMERICAL RESULTS 

The In this section, modified variational iteration method (Abassy 

et al.,  2007) is applied successfully to obtain the solutions of the 

three dimensional transient nonlinear diffusive-convective 

problems. The computational work is performed on Mathematica 

9.0.   

a) Problem 1: Taking Eq. (1) with initial condition 

𝑢(𝑥, 𝑦, 𝑧, 0) = exp ((𝑥 + 𝑦 − 2𝑧)/𝑣)  which is directly taken 

from exact solution 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = exp ((𝑥 + 𝑦 − 2𝑧 + 6𝑡)/𝑣) 

(Campos et al.,  2014). 

Compare Eq. (1) and Eq. (2) to get 

𝐿𝑈𝑛 =
𝜕𝑈𝑛

𝜕𝑡
, 𝑅𝑈𝑛 = −𝑣 (

𝜕2𝑈𝑛

𝜕𝑥2 +
𝜕2𝑈𝑛

𝜕𝑥2 +
𝜕2𝑈𝑛

𝜕𝑥2 ) , 𝑁𝑈𝑛 =

𝑈𝑛
𝜕𝑈𝑛

𝜕𝑡
+ 𝑈𝑛

𝜕𝑈𝑛

𝜕𝑡
+ 𝑈𝑛

𝜕𝑈𝑛

𝜕𝑡
                                                  (9) 

where 𝑈𝑛 is the nth approximation of Eq. (1). Initial conditions for 

Eq. (6) are given as: 

𝑈−1 = 0, 𝑈0 = 𝑢(𝑥, 𝑦, 𝑧, 0) =  exp ((𝑥 + 𝑦 − 2𝑧)/𝑣) 

and 𝐺𝑛(𝑥, 𝑦, 𝑧, 𝑡) is calculated by Eq. (7) as follows: 

𝑈𝑛
𝜕𝑈𝑛

𝜕𝑡
+ 𝑈𝑛

𝜕𝑈𝑛

𝜕𝑡
+ 𝑈𝑛

𝜕𝑈𝑛

𝜕𝑡
= 𝐺𝑛(𝑥, 𝑦, 𝑧, 𝑡) + 𝑂(𝑡𝑛+1)   (10) 

Now apply modified variational iteration formula (6) to get 

approximate solutions as: 

𝑈0 = ⅇ
𝑥+𝑦−2𝑧

𝑣 , 

𝑈1 = ⅇ
𝑥+𝑦−2𝑧

𝑣 + ⅇ
𝑥+𝑦−2𝑧

𝑣 (
6t

𝑣
), 

𝑈2 = ⅇ
𝑥+𝑦−2𝑧

𝑣 + ⅇ
𝑥+𝑦−2𝑧

𝑣 (
6t

𝑣
) + ⅇ

𝑥+𝑦−2𝑧

𝑣
1

⌊2
(

6t

𝑣
)

2

, 

𝑈3 = ⅇ
𝑥+𝑦−2𝑧

𝑣 + ⅇ
𝑥+𝑦−2𝑧

𝑣
1

⌊2
(

6t

𝑣
)

2

+ ⅇ
𝑥+𝑦−2𝑧

𝑣
1

⌊3
(

6t

𝑣
)

3

, 

. 

. 

. 

𝑈𝑛 = ⅇ
𝑥+𝑦−2𝑧

𝑣 + ⅇ
𝑥+𝑦−2𝑧

𝑣
1

⌊2
(

6t

𝑣
)

2

+ ⅇ
𝑥+𝑦−2𝑧

𝑣
1

⌊3
(

6t

𝑣
)

3

+ ⋯ +

ⅇ
𝑥+𝑦−2𝑧

𝑣
1

⌊n
(

6t

𝑣
)

n

, 

as 𝑛 → ∞, 𝑈𝑛 converges to the exact solution. 

Hence, by applying modified variational iteration method, 

exact solution is obtained which shows superiority of the modified 

variational iteration method over the method in (Campos et al.,  

2014).     

b) Problem 2: Taking Eq. (1) with initial condition 

𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑧Cos[2𝜋𝑦]Sin[2𝜋𝑥] and computational domain 

as being an unit cube and 𝑡 = 0.1 (Campos et al.,  2014).   

Therefore, initial conditions for Eq. (6) are given as: 

𝑈−1 = 0, 𝑈0 = 𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑧Cos[2𝜋𝑦]Sin[2𝜋𝑥] 
and 𝐺𝑛(𝑥, 𝑦, 𝑧, 𝑡) is calculated as in Eq. (10). 

Applying modified variational iteration formula (6) considering 

Eq. (9), first two approximate solutions can be given as: 

𝑈1 = Cos[2𝜋𝑦]Sin[2𝜋𝑥] −
1

2
𝑡𝑧Cos[2𝜋𝑦]Sin[2𝜋𝑥](16𝜋2𝑣 +

4𝜋𝑧Cos[2𝜋(𝑥 + 𝑦)] + Sin[2𝜋(𝑥 − 𝑦)] + Sin[2𝜋(𝑥 + 𝑦)])  

𝑈2 = Cos[2𝜋𝑦]Sin[2𝜋𝑥] −
1

2
𝑡𝑧Cos[2𝜋𝑦]Sin[2𝜋𝑥](16𝜋2𝑣 +

4𝜋𝑧Cos[2𝜋(𝑥 + 𝑦)] + Sin[2𝜋(𝑥 − 𝑦)] + Sin[2𝜋(𝑥 + 𝑦)]) +
1

2
𝑡2(−4𝜋2𝑣𝑧Cos[2𝜋𝑥]Cos[2𝜋𝑦](Cos[2𝜋(𝑥 − 𝑦)] +

Cos[2𝜋(𝑥 + 𝑦)] − 4𝜋𝑧Sin[2𝜋(𝑥 + 𝑦)]) +
4𝜋𝑣Cos[2𝜋𝑦]Sin[2𝜋𝑥]((−1 + 8𝜋2𝑧2)Cos[2𝜋(𝑥 + 𝑦)] +
2𝜋𝑧(8𝜋2𝑣 + Sin[2𝜋(𝑥 − 𝑦)] + Sin[2𝜋(𝑥 + 𝑦)])) +
𝑧Cos[2𝜋𝑦]2(𝜋𝑧Sin[4𝜋𝑥](16𝜋2𝑣 + 4𝜋𝑧Cos[2𝜋(𝑥 + 𝑦)] +
Sin[2𝜋(𝑥 − 𝑦)] + Sin[2𝜋(𝑥 + 𝑦)]) + Sin[2𝜋𝑥]2(16𝜋2𝑣 +
8𝜋𝑧Cos[2𝜋(𝑥 + 𝑦)] + Sin[2𝜋(𝑥 − 𝑦)] + Sin[2𝜋(𝑥 + 𝑦)] −
8𝜋2𝑧2Sin[2𝜋(𝑥 + 𝑦)])) − 𝜋𝑧Sin[2𝜋𝑥](4𝜋𝑣Cos[2𝜋(𝑥 −
𝑦)]Sin[2𝜋𝑦] + Cos[2𝜋(𝑥 + 𝑦)](−4𝜋𝑣Sin[2𝜋𝑦] +
4𝜋𝑧2Sin[2𝜋𝑥]Sin[4𝜋𝑦]) + 𝑧(16𝜋2𝑣Sin[2𝜋𝑦]Sin[2𝜋(𝑥 +
𝑦)] + Sin[2𝜋𝑥]Sin[4𝜋𝑦](16𝜋2𝑣 + Sin[2𝜋(𝑥 − 𝑦)] +
Sin[2𝜋(𝑥 + 𝑦)])))). 
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Fig. 1: Contour plot of first approximate solution 𝑈1 at 𝑣 =

1, 𝑧 = 0.5 and 𝑡 = 0.001 in 𝑥𝑦-plane. 

 

 
Fig. 2: Contour plot of second approximate solution 𝑈2 at 

𝑣 = 1, 𝑧 = 0.5 and 𝑡 = 0.001 in 𝑥𝑦-plane. 

 

 
Fig. 3: Contour plot of first approximate solution 𝑈1 at 𝑣 =

1, 𝑦 = 0.5 and 𝑡 = 0.001 in 𝑥𝑧-plane. 

 
Fig. 4: Contour plot of second approximate solution 𝑈2 at 

𝑣 = 1, 𝑦 = 0.5 and 𝑡 = 0.001 in 𝑥𝑧-plane. 

 

 
Fig. 5: Contour plot of first approximate solution 𝑈1 at 𝑣 =

1, 𝑧 = 0.5 and 𝑡 = 0.01 in 𝑥𝑦-plane. 

 

 
Fig. 6: Contour plot of second approximate solution 𝑈2 at 

𝑣 = 1, 𝑧 = 0.5 and 𝑡 = 0.01 in 𝑥𝑦-plane. 
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Fig. 7: Contour plot of first approximate solution 𝑈1 at 𝑣 =

1, 𝑦 = 0.5 and 𝑡 = 0.01 in 𝑥𝑧-plane. 

 

 
Fig. 8: Contour plot of second approximate solution 𝑈2 at 

𝑣 = 1, 𝑦 = 0.5 and 𝑡 = 0.01 in 𝑥𝑧-plane. 

 

 
Fig. 9: Contour plot of first approximate solution 𝑈1 at 𝑣 =

0.1, 𝑧 = 0.5 and 𝑡 = 0.1 in 𝑥𝑦-plane. 

 
Fig. 10: Contour plot of second approximate solution 𝑈2 at 

𝑣 = 0.1, 𝑧 = 0.5 and 𝑡 = 0.1 in 𝑥𝑦-plane. 

 

 
Fig. 11: Contour plot of first approximate solution 𝑈1 at 𝑣 =

0.1, 𝑦 = 0.5 and 𝑡 = 0.1 in 𝑥𝑧-plane. 

 

 
Fig. 12: Contour plot of second approximate solution 𝑈2 at 

𝑣 = 0.1, 𝑦 = 0.5 and 𝑡 = 0.1 in 𝑥𝑧-plane. 

 

From Fig. 1 - Fig. 8, first and second approximations of velocity 

field remain smooth with respect to time in unit cube 

computational domain for kinematic viscosity 𝑣 = 1, in 𝑥𝑦 and 

𝑥𝑧-plane. From Fig. 9 – Fig. 12 it is clear that second approximate 

solution is smoother than first approximate solution for kinematic 
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viscosity 𝑣 = 0.1,  in 𝑥𝑦  and 𝑥𝑧 -plane. Hence second 

approximate solution remains smooth with respect to time and 

viscosity. Similarly, high order approximate solutions obtained by 

modified variational iteration method improve smoothness.    

 

IV. CONCLUSIONS 

In this paper, modified variational iteration method is 

applied successfully to solve nonlinear convection-diffusion 

problems in three dimensions. By comparing our results with 

results in (Campos et al.,  2014), it is found that modified 

variational iteration method gives better results with respect to 

method mentioned in (Campos et al.,  2014). Modified iteration 

method can be applied to other complex linear (Joshi and 

Kumar, 2012; Kumar and Joshi, 2012, 2012a, 2013) and 

nonlinear system arising in various other branches of science 

and engineering.     
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