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I. INTRODUCTION 

In recent years, the analysis of hydro magnetic 

convection flow involving heat and mass transfer in porous 

medium has attracted the attention of many scholars 

because of its possible applications in diverse fields of 

science and technology such as – soil sciences, astrophysics, 

geophysics, nuclear power reactors etc. In geophysics, it 

finds its applications in the design of MHD generators and 

accelerators, underground water energy storage system etc. 

It is worth-mentioning that MHD is now undergoing a stage 

of great enlargement and differentiation of subject matter. 

These new problems draw the attention of the researchers 

due to their varied significance, in liquid metals, 

electrolytes and ionized gases etc. The flow of an 

incompressible Boussinesq fluid in the presence of rotation 

has applications in space science and engineering fluid 

dynamics. Bestman and Adjepong (1998) studied the 

unsteady hydro magnetic free convection flow with 

radiative heat transfer in a rotating fluid. Jha (1991) studied 

MHD free convection and mass transfer flow through a 

porous medium but did not consider the effect of radiation 

which is of great relevance to astrophysical and cosmic 

studies. The effects of Hall current on hydromagnetic free 

convection with mass transfer in a rotating fluid was 

studied by Agrawal et al. (1984). Singh and Sacheti (1988) 

presented a study on the finite difference analysis of 

unsteady hydro magnetic free convection flow with 

constant heat flux, while Ram and Jain (1990) presented the 

result of a study on hydromagnetic ekman layer on 

convective heat generating fluid in slip flow regime. Helmy 
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focused on MHD flow in a micro polar fluid. Recently, 

Chamkha (2004) investigated unsteady convective heat and 

mass transfer past a semi – infinite permeable moving plate 

with heat absorption where it was found that increase in 

solutal Grashof number enhanced the concentration 

buoyancy effects leading to an increase in the velocity. In 

other recent study Ibrahim et al. (2004) investigated 

unsteady magnetohydrodynamic micro polar fluid flow and 

heat transfer over a vertical porous plate through a porous 

medium in the presence of thermal and mass diffusion with 

a constant heat source. Chamkha and Cookey (2000, 2003), 

give a good review on MHD flows through a porous 

medium. 

Motivated by the work above, objective of the present 

work is to study the effects of Chemical reaction on an 

unsteady magnetohydrodynamic flow of a rotating fluid 

past a vertical porous plate in the presence of radiation. 

Hence, the purpose of this study is to extend 

Muthucumaraswamy and Ganesan (2002) to study the 

unsteady problem which includes internal thermal 

radiation and chemical reaction for first order. The 

governing equations are solved numerically using a very 

efficient finite element method known as Galerkin method. 

The results obtained under special cases are then compared 

with those of Muthucumaraswamy and Ganesan (2002)  in 

absence of thermal radiation by using Laplace transform 

technique and found to agree very favorably. In this study, 

the effects of different flow parameters encountered in the 

equations are also studied. The problem is solved 

numerically using the Galerkin finite element method, 

which is more economical from the computational view 

point. 

 

II. MATHEMATICAL ANALYSIS 

We consider in three dimensions the unsteady 

motion of an incompressible electrically 

conducting viscous fluid which moves in its own plane 

with velocity 0U  and rotates with angular 

velocity Ω .We assume a uniform magnetic  

field 0B  applied in the direction of the flow 

fixed relative to the plate. We also assume 

that induced magnetic fields are negligible in 

comparison with the applied f ield. Further,  

we assume no applied voltage present which 

means no electric field present and viscous 

dissipation heating is absent in the energy 

equation. With these assumptions and those 

usually associated with the Boussinesq 

approximations, the proposed governing 

equations are  
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We now introduce the following non – dimensional 

quantities and parameters 
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Introducing equation (6) into equations (1) – (5) we obtain 
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We now find it convenient to combine equations (1) and (2) 

into a single equation. We multiply equation (2) by i  and 

add the resultant to equation (1) to obtain 
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Further, for the radiative heat flux in equation (9) we 

invoke the differential approximation, Elbarbary and 

Elgazery (2004) 
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For an optically thick fluid, as noted in Azzam (2002), in 

addition to emission there is also self – absorption and 

usually the absorption coefficient is wavelength dependent 

and large (as noted in [5]) so we can adopt the Rosseland 

approximation of equation (12) where the radiative flux 

vector rq  is given by 

y
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Assuming small temperature differences within the flow we 

can expand T  in a Taylor series about a free stream 

temperature ∞T , neglecting higher order terms, we obtain 

                                    (14) 

 

Substituting equation (14) into equation (9) we obtain  
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 The initial and boundary conditions are now 
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The mathematical statement of the problem is now 

complete. 

 

III. METHOD OF SOLUTION 

By applying Galerkin finite element method for equation 

(11) over the element )(e ,                                    (

kj yyy ≤≤ ) is: 
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Neglecting the first term in equation (18), one gets: 
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Let 
)()()( eee Nq φ=  be the linear piecewise approximation 

solution over the element )(e                        (
kj yyy ≤≤ ) 
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Simplifying, the we get 
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Where prime and dot denotes differentiation w.r.t y  and 

time t  respectively. Assembling the element equations for 

two consecutive elements ( )ii yyy ≤≤−1 and 

( )1+≤≤ ii yyy
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Now put row corresponding to the node i  to zero, from 

equation (19) the difference schemes with hl e =)(
is:
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Applying the trapezoidal rule, following system of 

equations in Crank – Nicholson method are obtained: 
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Here 
2h

k
r =   and kh,  are mesh sizes along y  – direction 

and time – direction respectively. Index i  refers to space 

and j  refers to the time. In the equations (21), (22) and 

(23), taking                       ni )1(1=  and using boundary 

conditions (16), then the following system of equations are 

obtained: 

3)1(1== iBXA iii                       (24) 

where '
iA s are matrices of order n  and iX , '

iB s are 

column matrices having n  – components. The solutions of 

above system of equations are obtained by using Thomas 

algorithm for velocity, temperature and concentration. Also, 

numerical solutions for these equations are obtained by  C  

– programme. In order to prove the convergence and 

stability of Galerkin finite element method, the same C  – 

programme was run with smaller values of h  and k  no 

significant change was observed in the values of ,q  θ  and 

C . Hence the Galerkin finite element method is stable and 

convergent. 

 

Skin – friction and Rate of heat transfer 

The expression for skin – friction coefficient (τ ) at the 

plate is 
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The rate of Heat transfer coefficient ( Nu ) at the plate is 
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The rate of mass transfer coefficient ( Sh ) at the plate is 
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IV. RESULTS AND DISCUSSIONS 

The problem of radiative heat transfer to unsteady 

hydro magnetic flow involving heat and mass transfer is 

addressed in this study. Numerical calculations have been 

carried out for the non – dimensional Temperature ( )θ , 

Concentration ( )C , Complex velocity ( )q  keeping the 

other parameters of the problem fixed. The solution 

obtained for the velocity is complex and only the real part 

of the complex quantity is invoked for the numerical 

discussion with the help of Abramowitcz and Stegun 

(1972). Numerical calculations of these results are 

presented graphically in figures 1 – 10. These results show 

the effect of material parameters on the temperature 

distribution, concentration profiles, complex velocity and 

the shear stress at the wall. And the results of skin – friction 

)(τ  due to complex velocity, Rate of heat transfer )(Nu  
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due to temperature and mass transfer )(Sh due to 

concentration are presented in tabular form. To find out the 

solution of this problem, we have placed an infinite vertical 

plate in a finite length in the flow. Hence, we solve the 

entire problem in a finite boundary. However, in the graphs, 

the y  values vary from 0 to 4 and the complex velocity, 

temperature, and concentration tend to zero as y  tends to 

4. This is true for any value of y . Thus, we have considered 

finite length. 

The temperature and the species concentration are 

coupled to the velocity via Grashof number )(Gr and 

Modified Grashof number )(Gc as seen in equation (11). 

For various values of Grashof number and Modified Grashof 

number, the velocity profiles u  are plotted in figures (1) 

and (2). The Grashof number )(Gr signifies the relative 

effect of the thermal buoyancy force to the viscous 

hydrodynamic force in the boundary layer. As expected, it is 

observed that there is a rise in the velocity due to the 

enhancement of thermal buoyancy force. Also, as Gr  

increases, the peak values of the velocity increases rapidly 

near the porous plate and then decays smoothly to the free 

stream velocity. The Modified Grashof number )(Gc  

defines the ratio of the species buoyancy force to the 

viscous hydrodynamic force. As expected, the fluid velocity 

increases and the peak value is more distinctive due to 

increase in the species buoyancy force. The velocity 

distribution attains a distinctive maximum value in the 

vicinity of the plate and then decreases properly to 

approach the free stream value. It is noticed that the 

velocity increases with increasing values of Modified 

Grashof number )(Gc . 

Figure (3) depicts the effect of Prandtl number on 

complex velocity profiles in presence of foreign species 

such as Mercury ( Pr= 0.025), Air ( Pr= 0.71), Water ( Pr= 

7.00) and Methanol ( Pr= 11.62) are shown in figure (3). 

We observe that from figure (3), the complex velocity 

decreases with increasing of Prandtl number ( )Pr . The 

effects of the thermal radiation parameter )(N  on the 

complex velocity and temperature profiles in the boundary 

layer are illustrated in figures (4) and (8) respectively. 

Increasing the thermal radiation parameter )(N  produces 

significant increase in the thermal condition of the fluid and 

its thermal boundary layer. This increase in the fluid 

temperature induces more flow in the boundary layer 

causing the velocity of the fluid there to increase. The 

nature of complex velocity profiles in presence of foreign 

species such as Hydrogen ( Sc = 0.22), Helium ( Sc = 0.30), 

Oxygen ( Sc = 0.60) and Water vapour ( Sc = 0.66) are 

shown in figure (5). The flow field suffers a decrease in 

complex velocity at all points in presence of heavier 

diffusing species. Figure (7) depicts that the temperature 

profiles )(θ  against y  taking different values of Prandtl 

number (Pr) . The thermal boundary layer thickness is 

greater for fluids with small Prandtl number. The reason is 

that smaller values of Prandtl number are equivalent to 

increasing thermal conductivity and therefore heat is able 

to diffuse away from the heated surface more rapidly than 

for higher values of Pr.   

Figure (9) shows the concentration field due to 

variation in Schmidt number )(Sc
 
for the gasses Hydrogen, 

Helium, Water – vapour and Oxygen. It is observed that 

concentration field is steadily for Hydrogen and falls 

rapidly for Water – vapour and Oxygen in comparison to 

Helium. Thus Hydrogen can be used for maintaining 

effective concentration field and Helium can be used for 

maintaining normal concentration field. Figures (6) and 

(10) display the effects of the chemical reaction parameter 

( )rk  on the complex velocity and concentration profiles, 

respectively. As expected, the presence of the chemical 

reaction significantly affects the concentration profiles as 

well as the velocity profiles. It should be mentioned that the 

studied case is for a destructive chemical reaction ( )rk . In 

fact, as chemical reaction ( )rk  increases, the considerable 

reduction in the velocity profiles is predicted, and the 

presence of the peak indicates that the maximum value of 

the velocity occurs in the body of the fluid close to the 

surface but not at the surface. Also, with an increase in the 

chemical reaction parameter, the concentration decreases. 

It is evident that the increase in the chemical reaction ( )rk
significantly alters the concentration boundary layer 

thickness but does not alter the momentum boundary 

layers. 

The profiles for skin – friction )(τ  due to complex 

velocity under the effects of Grashof number ),(Gr

Modified Grashof number ),(Gc  Schmidt number ),(Sc

Prandtl number (Pr), Thermal radiation parameter )(N
 

and Chemical reaction )( rk  are presented in the table 1. 

We observe from the above table 1, the skin – friction )(τ
 

due to complex velocity rises under the effects of Grashof 
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number ),(Gr
 
Modified Grashof number 

radiation parameter ).(N
 
And the skin 

to complex velocity falls under the effects of Schmidt 

number ),(Sc Prandtl number (Pr)  

).( rk  The profiles for Nusselt number 

temperature profile under the effect of Prandtl number

(Pr) is presented in table 3. We see from this table the 

Nusselt number )(Nu due to temperature profile falls 

under the effect of Prandtl number (Pr)  

effect of Thermal radiation parameter (N

Sherwood number )(Sh due to concentration profiles 

under the effect of Schmidt number 

reaction )( rk
 
are presented in the table 3. We see from 

this figure the Sherwood number 

concentration profile decreases under the effects of 

Schmidt number )(Sc and Chemical reaction 

to ascertain the accuracy of the numerical results, the 

present results are compared with the previous analytical 

results of Muthucumaraswamy and Ganesan 

Gc = 1.0, Pr= 0.71, Sc = 0.22 and                       

table 2. They are found to be in an excellent agreement.

 

Table 1: Skin – friction coefficient (

Gr  Gc  Sc  Pr  N
 

1.0 1.0 0.22 0.71 1.0 

2.0 1.0 0.22 0.71 1.0 

1.0 2.0 0.22 0.71 1.0 

1.0 1.0 0.30 0.71 1.0 

1.0 1.0 0.22 7.0 1.0 

1.0 1.0 0.22 0.71 2.0 

1.0 1.0 0.22 0.71 1.0 
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Modified Grashof number ),(Gc  Thermal 

And the skin – friction )(τ
 
due 

to complex velocity falls under the effects of Schmidt 

 Chemical reaction 

The profiles for Nusselt number )(Nu  due to 

temperature profile under the effect of Prandtl number

able 3. We see from this table the 

due to temperature profile falls 

 and rises under the 

)N . The profiles for 

due to concentration profiles 

)(Sc and Chemical 

are presented in the table 3. We see from 

number )(Sh due to 

concentration profile decreases under the effects of 

and Chemical reaction )( rk
 
In order 

to ascertain the accuracy of the numerical results, the 

compared with the previous analytical 

Ganesan [15] for Gr = 

= 0.22 and                       Kr = 1.0 in 

table 2. They are found to be in an excellent agreement.  

friction coefficient ( )τ
 

rk  τ  

1.0 1.2265 

1.0 2.0398 

1.0 2.6398 

1.0 1.1684 

1.0 0.4307 

1.0 1.4568 

2.0 0.3602 

Table 2: τ  is the skin – friction results obtained in the 

present study, and 
*τ  is the 

by Muthucumaraswamy and Ganesan [15].

Gr  Gc  Sc  Pr

1.0 1.0 0.22 0.71

2.0 1.0 0.22 0.71

1.0 2.0 0.22 0.71

1.0 1.0 0.30 0.71

1.0 1.0 0.22 7.0

1.0 1.0 0.22 0.71

Table 3: Rate of heat & mass transfer

(Nu

Pr  N  Nu  

0.71 1.0 5.9361 

7.00 1.0 4.0179 

0.71 2.0 6.0335 

Figure 1. Velocity profiles for different values of 

 

0
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100 

friction results obtained in the 

is the Skin – friction results obtained 

by Muthucumaraswamy and Ganesan [15]. 

Pr  rk  τ  *τ  

0.71 1.0 2.2265 2.2236 

0.71 1.0 3.0398 3.0309 

0.71 1.0 3.6398 3.6314 

0.71 1.0 2.1684 2.1621 

7.0 1.0 1.4307 1.4299 

0.71 2.0 2.3602 2.3593 

 

Rate of heat & mass transfer coefficients 

)& ShNu
 

Sc  rk  Sh  

0.22 1.0 7.3607 

0.30 1.0 7.1800 

0.22 2.0 7.2688 

 

elocity profiles for different values of Gr  

2 3

Gr = 1.0, 2.0, 3.0, 4.0
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Figure 2. Velocity profiles for different values of  

 

 

Figure 3. Velocity profiles for different values of 

 

Figure 4. Velocity profiles for different values of 
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elocity profiles for different values of  Gc  

 

elocity profiles for different values of Pr 

 

elocity profiles for different values of N  

Figure 5. Velocity profiles for different values of 

 

Figure 6. Velocity profiles for different values of 

Figure 7. Temperature profiles for different values of 
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elocity profiles for different values of Sc  

 

elocity profiles for different values of rk
 

 

 

profiles for different values of Pr 
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Figure 8. Temperature profiles for different values of 

 

Figure 9. Concentration profiles for different values of 

 

 

Figure 10. Concentration profiles for different values of 
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profiles for different values of N  

 

profiles for different values of Sc  

 

profiles for different values of rk
 

V. CONCLUSIONS

A comprehensive numerical parametric study for the 

numerical solutions of a class of nonlinear equations is 

conducted and results are reported in terms of graphs. This 

is done in order to illustrate special features of the 

solutions. So the numerical solut

element method were obtained. Apart from that, obtained 

results indicate that it is an adequate scheme for the 

solution of the present problems. 

We present results to illustrate the flow characteristics 

for the velocity and temperatur

friction, Nusselt number and Sherwood number 

the flow fields are influenced by the material parameters of 

the flow problem. The conclusions of the study are as 

follows: 

1). It is observed that the complex velocity (

increases with the increasing of parameters 

N and decreases with the increasing of parameters 

Sc  and rk .  

2). The fluid temperature (θ
of N  and decreases with the increasing of 

3). The Concentration of the fluid decreases with the 

increasing of rk  and Sc
4). From table (1) it is concluded that the magnitude of 

shearing stress τ  increases as the increasing values of 

Gr , Gc , N  and this behavior is found just reverse 

with the increasing of Pr
5). From table (3) it is concluded that the 

)(Nu  increases as the increasing values of 

behavior is found just reverse with the increasing of 

6). From table (3) it is concluded that the Sherwood 

number )(Sh  decreases as the increasing values of 

and rk
 

7). On comparing the skin 

skin – friction (
*τ ) results of 

Ganesan (2002) it can be seen that they agree very well.
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V. CONCLUSIONS
 

A comprehensive numerical parametric study for the 

numerical solutions of a class of nonlinear equations is 

conducted and results are reported in terms of graphs. This 

is done in order to illustrate special features of the 

solutions. So the numerical solutions by using finite 

element method were obtained. Apart from that, obtained 

results indicate that it is an adequate scheme for the 

solution of the present problems.  

We present results to illustrate the flow characteristics 

velocity and temperature fields as well as the skin – 

, Nusselt number and Sherwood number show how 

the flow fields are influenced by the material parameters of 

The conclusions of the study are as 

1). It is observed that the complex velocity ( q ) of the fluid 

increases with the increasing of parameters Gr , Gc , 

and decreases with the increasing of parameters Pr, 

)θ  increases with the increasing 

and decreases with the increasing of Pr .  

3). The Concentration of the fluid decreases with the 

Sc . 

able (1) it is concluded that the magnitude of 

increases as the increasing values of 

and this behavior is found just reverse 
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able (3) it is concluded that the Nusselt number 

increases as the increasing values of N  and this 

behavior is found just reverse with the increasing of Pr . 

able (3) it is concluded that the Sherwood 

decreases as the increasing values of Sc  

). On comparing the skin – friction )(τ results with the 
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it can be seen that they agree very well. 
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