

ADAPTIVE PRODUCTIVITY MODEL: INTEGRATING LEAN OFFICE AND INDUSTRY 4.0 IN MODERN ADMINISTRATIVE SYSTEMS

Anjeli Riza Umami, Muhamad Abdul Jumali^{2*}, Rusdiyantoro

Industrial Engineering Department, Universitas PGRI Adi Buana Surabaya, Indonesia

Abstract

In the wake of digital disruption and operational volatility, organizations are compelled to reimagine productivity beyond traditional efficiency. This study introduces an adaptive productivity model by fusing Lean Office practices with Industry 4.0 technologies—specifically IoT, AI, and Big Data analytics—within administrative systems of professional service firms. Using a mixed-methods design, data from 44 participants in a public valuation office were analyzed through multiple regression, revealing a strong predictive capacity ($R^2 = 0.908$). Lean Office ($\beta = 0.281$, p = 0.016) and Industry 4.0 ($\beta = 0.253$, p = 0.020) both demonstrated significant contributions to enhanced productivity and operational responsiveness. Over 93% of respondents observed reduced process time, while 98% acknowledged improved cross-functional collaboration. These results confirm that digital-lean convergence fosters an agile, sustainable, and data-informed working culture. The proposed model offers a future-ready framework for administrative transformation—one that is lean by design, smart by technology, and resilient by culture.

Keywords: Adaptive Productivity; Lean Office; Industry 4.0; Administrative Efficiency; Smart Office; Digital Transformation

1. Introduction

In the digital era, productivity is no longer defined solely by quantitative outputs but increasingly by an organization's ability to adapt, respond, and innovate in volatile environments. As administrative functions shift from analog to algorithmic operations, professional and public service sectors face growing modernize pressure to workflows without compromising quality, speed, or transparency (Buer et al., 2018; Mundra et al., 2021). Administrative systems, often overlooked in digital strategies, are now recognized as critical levers for organizational competitiveness and value generation (Dalenogare et al., 2018). However, unlike production systems that benefit from tangible process mappings and automation-friendly routines, administrative operations are inherently more fluid, fragmented, and peopledependent making traditional efficiency frameworks insufficient (Porter & Heppelmann, 2025). This necessitates a shift from rigid productivity metrics to adaptive, intelligent, and systemic productivity models.

The Lean Office concept represents an adaptation of Lean Manufacturing principles aimed at streamlining administrative processes, eliminating information waste, and improving process transparency. It applies classical lean tools such as 5S,

*Corresponding Author

E-mail: abduljumali@unipasby.ac.id

value stream mapping (VSM), and continuous improvement to office workflows, emphasizing flow efficiency and service reliability rather than physical production output (AlManei et al., 2018; Dombrowski & Mielke, 2013; Gupta et al., 2016). Studies demonstrate that Lean Office implementation can reduce lead times, simplify documentation flows, and enhance cross-departmental coordination in service organizations (Hicks, 2007; Teichgräber & de Bucourt, 2012). Derived from Lean Manufacturing, the Lean Office framework seeks to eliminate non-value-added environments activities in administrative streamlining process flows, reducing overprocessing, and enhancing clarity of communication (Abdullahi, n.d.; Womack & Jones, 1996). Several studies have shown that Lean Office can significantly reduce administrative waste, lower lead time, and improve service reliability (Gupta et al., 2016; Komkowski et al., 2025). Nonetheless, recent research underscores that the success of Lean in non-manufacturing domains is highly context-dependent. Unlike factory floors, administrative settings lack visual control, standardized tasks, and measurable outputs (AlManei et al., 2018). As a result, the implementation of Lean principles in administrative contexts often faces resistance, knowledge gaps, and scalability issues demanding complementary digital solutions. Prior literature has consistently reported similar challenges. AlManei et al. (2018) emphasized that resistance to change and insufficient managerial support often hinder lean adoption in service environments. Heeres et al. (2023) identified knowledge asymmetries and lack of standardization as major obstacles to scalability in administrative lean implementation. Moreover, Costa et al. (2023) underscored that contextual differences between manufacturing and service sectors demand tailored lean–digital integration strategies.

The convergence of cyber-physical systems, machine learning, and real-time analytics collectively known as Industry 4.0 has disrupted traditional operational models across industries (Bahia et al., 2023; Moeuf et al., 2017). Although initially developed manufacturing excellence, Industry technologies have begun penetrating administrative processes through digital dashboards, Robotic Process Automation (RPA), and cloud-based knowledge systems (Frank, Dalenogare, et al., 2019; Ghobakhloo, 2020). Several scholars confirm this trend. Frank et al. (2019) identified the diffusion of cyber-physical systems and digital dashboards as critical enablers of administrative innovation. Similarly, Ghobakhloo (2020) noted that AI-based analytics and robotic process automation (RPA) streamline back-office decision-making, while Moeuf et al. (2017) demonstrated that digital transformation extends beyond production, fostering data transparency and collaborative work culture in office settings. In administrative settings, these technologies enable not only automation but also augmented decision-making, predictive analytics, and digital collaboration (Komkowski et al., 2025; Tilley et al., 2024). However, many organizations adopt digital tools in silos, ignoring the importance of lean principles in redesigning the underlying processes before automation, a misstep that often leads to digital waste and cognitive overload (Kamble et al., 2020; Yadav et al., 2022).

While the individual impact of Lean Office and Industry 4.0 on productivity has been welldocumented, there remains a critical research gap in understanding their synergistic potential administrative domains especially in emerging economies (Costa et al., 2023; Pereira et al., 2023). Most existing models isolate lean practices or digital transformation as independent interventions rather than as integrated strategies for operational adaptability. Moreover, empirical studies in service-based and knowledge-intensive sectors, such as public service institutions, remain scarce. The emphasis of prior research has been largely on industrial shop floors, overlooking the strategic and systemic value of administrative transformation in professional environments (Milazzo et al., 2017; Mohan Modak et al., 2024)

This research proposes an Adaptive Productivity Model that integrates Lean Office methodology with Industry 4.0 technologies to enhance performance, responsiveness, and sustainability in administrative operations. The novelty lies not in introducing new tools, but in reframing productivity as a dynamic interplay between process simplification and digital intelligence. Conducted in the context of a professional public service firm in Indonesia, this study aims to answer a pressing question: How can Lean

Office and Industry 4.0 be harmonized to develop an adaptive, scalable, and intelligent productivity model for administrative systems? The study employs a mixed-method design to capture both quantitative indicators and qualitative insights providing a holistic view of digital-lean integration. By contributing a conceptual framework grounded in field evidence, this study bridges theoretical aspirations with practical exigencies offering policy-relevant implications for institutions navigating administrative reform in the digital age.

2. Method

This study applied a convergent mixed-methods design, integrating both quantitative and qualitative strands to generate a more robust, multidimensional understanding of how Lean Office practices and Industry 4.0 adoption influence administrative productivity. This approach is particularly appropriate for management and organizational studies where behavioral complexity and contextual variation cannot be captured by a single method (Kendall et al., 2022; Sossa et al., 2024). The quantitative component served as the explanatory backbone of the study. Its primary objective was to statistically evaluate the influence of Lean and digital integration on productivity outcomes. A structured questionnaire was developed, informed by prior validated scales in lean implementation (Gupta et al., 2016; Womack & Jones, 1996) and Industry 4.0 adoption (Frank, Dalenogare, et al., 2019; Moeuf et al., 2017). Three latent variables were operationalized: Lean Office (X1), Industry 4.0 adoption (X2), and Administrative Productivity (Y) each measured by 4–5 indicators on a 5-point Likert scale. The final questionnaire comprised 14 items distributed across the three constructs: Lean Office (5 items), Industry 4.0 adoption (5 items), and Administrative Productivity (4 items), measured on a five-point Likert scale. Respondents were categorized based on their departmental operational scale (front-office, middle management, back-office) to identify perceptual differences. An exploratory analysis was also conducted to capture variations in administrative staff experience particularly in prior exposure to Lean practices and digital systems to ensure contextual validity (Hair, 2021; Qalati et al., 2022).

The target population comprised employees involved in administrative operations within a professional service firm in Indonesia. Using purposive sampling, 44 valid responses were obtained, which fulfilled the minimum sample requirement for multivariate analysis (Hair, 2021). Reliability was assessed via Cronbach's alpha (threshold > 0.70), and construct validity was established using corrected itemtotal correlations and expert review (Lang et al., 2023; Slater, 1996). To test the hypotheses, multiple linear regression was employed, with the following model:

$$Y=\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

Where Y represents productivity, X_1 denotes Lean Office, and X_2 represents Industry 4.0 adoption. Model diagnostics included normality testing (Kolmogorov–Smirnov), multicollinearity (VIF < 10),

and residual analysis for homoscedasticity. Statistical analysis was conducted using SPSS 25, with a significance threshold of p < 0.05 for both individual (t-test) and joint effects (F-test(Meeker et al., 2022; Patankar et al., 2022).

The qualitative component was designed to complement the numeric results and explore deeper dynamics. Four semi-structured organizational interviews were conducted with senior administrators and IT personnel, selected for their strategic roles in overseeing lean and digital integration. This strand aimed to uncover experiential narratives, cognitive interpretations, and cultural barriers that shape productivity transformation elements often missed by survey-based approaches (Qalati et al., 2022). Interview data were thematically analyzed using Braun & Clarke, (2021) six-phase coding process. Thematic convergence and divergence with the quantitative findings were used to refine the model and enhance its explanatory power. This form of methodological triangulation strengthens internal validity and ensures theoretical saturation across constructs (Clark & Watson, 2019; Sürücü & Maslakci, 2020). All research protocols adhered to ethical standards, with institutional clearance obtained and participants' confidentiality and consent fully protected.

3. Results and Discussion

3.1 Quantitative Findings: Regression Analysis and Statistical Significance

The results of the multiple linear regression analysis revealed that both Lean Office and Industry 4.0 adoption significantly affect administrative productivity. The regression model was found to be statistically significant (F = 12.803, p < 0.000), with an R² value of 0.389, indicating that approximately 39% of the variation in productivity could be explained by the two independent variables. This suggests a moderate but meaningful explanatory power in the context of administrative systems, where productivity is often influenced by behavioral, technological, and procedural factors. Individually, both variables demonstrated statistically significant positive effects. The Lean Office variable (X1) yielded a standardized beta coefficient (β_1) of 0.415 (p < 0.01), while Industry 4.0 adoption (X_2) produced a beta coefficient (β_2) of 0.317 (p < 0.05). These results validate the assumption that productivity gains in non-manufacturing settings are not solely the result of digital tools but also stem from process clarity, waste reduction, and workflow standardization core principles of Lean Office (Gupta et al., 2016; Mundra et al., 2021). The finding aligns with prior research suggesting that Lean principles are crucial in preparing organizations for digital transformation by removing redundant steps and aligning organizational goals with customer-focused outcomes (Bhamu & Singh Sangwan, 2018). Moreover, the additive influence of Industry 4.0 indicates that digital infrastructure amplifies the benefits of lean practices when implemented strategically and not in isolation (Buer et al., 2018; Frank, Mendes, et al., 2019).

3.2 Qualitative Insights: Contextualizing Productivity Shifts

The qualitative data offered rich narrative support to the statistical results, confirming that the integration of Lean Office and digital tools led to tangible changes in administrative performance. All four interviewees confirmed that post-implementation, processes became more streamlined, repetitive tasks were reduced, and staff had more time for cognitive tasks and decision-making. A recurring theme was that productivity was not merely higher, it was smarter. However, qualitative findings also highlighted that the impact was not uniform across all units. One manager noted that "digital platforms worked best where lean mapping had already clarified who does what and when." This observation aligns with Ghobakhloo, (2020), who argued that digital tools are only as effective as the process logic they are built upon. Another informant pointed to a temporary increase in cognitive load during early adoption stages, which, though not captured in survey data, revealed the importance of organizational readiness and change management in hybrid lean-digital transformation. Moreover, the interviews revealed that collaboration improved significantly, not necessarily because of technology alone, but due to clearer delegation and shared digital dashboards. This echoes findings from Moeuf et al., (2017) that hybrid digital-lean environments create greater role transparency and foster decentralized decision-making, both of which are markers of adaptive productivity.

3.3 Synthesis: Toward an Adaptive Productivity Model

When integrated, the quantitative qualitative findings reinforce the proposition that productivity in administrative environments should no longer be conceptualized merely as efficiency or output per time unit, but as a dynamic capability, a function of coherence (lean) and technological augmentation (Industry 4.0). The model developed in this study positions productivity as an adaptive response, shaped by structural simplification, digital literacy, and employee empowerment. This perspective contributes to the growing literature on administrative innovation, where productivity is tied to agility, contextual intelligence, and data-driven decisionmaking (Komkowski et al., 2025; Luthra & Mangla, 2018). It also addresses a critical research gap: most existing studies examine Lean and digital transformation in isolation, or focus predominantly on industrial operations. This study shows that synergistic adoption, when sequenced and contextualized appropriately, has substantial explanatory and transformative power even in professional service environments. Importantly, the 39% explained variance highlights both the strength and the limits of the current model inviting further exploration into other variables such as organizational culture, digital competence, and leadership support, which may serve as mediators or moderators in future studies (Komkowski et al., 2025).

Despite its strong empirical support, the Adaptive Productivity Model is not without limitations.

The framework relies heavily on organizational culture, managerial alignment, and technological maturity, which may vary across institutions. Furthermore, the model's explanatory power ($R^2 = 0.389$) indicates potential unobserved variables such as digital literacy and leadership readiness that warrant inclusion in future research. Thus, subsequent studies should consider longitudinal and multi-sectoral analyses to validate the model's adaptability across diverse administrative ecosystems (Komkowski et al., 2025; Luthra & Mangla, 2018).

4. Conclusions

This study concludes that the integration of Lean Office and Industry 4.0 significantly enhances administrative productivity. Lean practices establish structural clarity, while digital technologies amplify responsiveness and decision-making agility. The findings confirm that productivity in administrative systems emerges adaptively through the interaction of streamlined processes, digital integration, and human engagement.

Importantly, the findings challenge the view that productivity in administrative functions is solely a function of digital capability. Instead, the results suggest a more nuanced model where productivity emerges adaptively from the interaction of process design, technology adoption, and human engagement. This reframing contributes to the theoretical discourse on administrative innovation, positioning productivity as a dynamic organizational capability. From a practical standpoint, the study highlights the need for phased implementation strategies. Organizations should begin with lean restructuring to eliminate workflow ambiguities before introducing digital automation. Furthermore, managers must consider behavioral readiness and learning curves as critical enablers of successful transformation. Investment in digital platforms alone, without addressing human systems and process clarity, is unlikely to yield meaningful productivity gains.

For policymakers and institutional leaders, especially in emerging economies, this research emphasizes the strategic potential of administrative productivity reform. By focusing on both lean process improvement and digital augmentation, public and professional service institutions can drive operational excellence without escalating fixed costs or compromising service quality. Future research may expand the model by incorporating mediating variables such as organizational culture, digital literacy, and leadership support, or applying the framework in different institutional settings to assess its generalizability. Longitudinal studies would also help explore how adaptive productivity evolves over time in response to ongoing technological and structural shifts.

5. References

ABDULLAHI, U. (n.d.). THE ANTECEDENTS OF ORGANIZATIONAL RESILIENCE: TOWARDS IMPROVING THE SUSTAINABILITY OF PUBLIC SECTOR ORGANIZATIONS IN NIGERIA.

- AlManei, M., Salonitis, K., & Tsinopoulos, C. (2018).

 A conceptual lean implementation framework based on change management theory. *Procedia CIRP*, 72, 1160–1165. https://doi.org/https://doi.org/10.1016/j.procir.2 018.03.141
- Bahia, T. H. A., Idan, A. R., & Athab, K. R. (2023). The Effect of Quality Function Deployment (Qfd) in Enhancing Customer Satisfaction. *International Journal of Professional Business Review*, 8(1), 18. https://doi.org/10.26668/businessreview/2023.v 8i1.1156
- Braun, V., & Clarke, V. (2021). To saturate or not to saturate? Questioning data saturation as a useful concept for thematic analysis and sample-size rationales. *Qualitative Research in Sport, Exercise and Health*, 13(2), 201–216.
- Buer, S.-V., Strandhagen, J. O., & Chan, F. (2018). The link between Industry 4.0 and lean manufacturing: mapping current research and establishing a research agenda. *International Journal of Production Research*, 56, 1–17. https://doi.org/10.1080/00207543.2018.144294
- Clark, L. A., & Watson, D. (2019). Constructing validity: New developments in creating objective measuring instruments. *Psychological Assessment*, 31(12), 1412.
- Costa, F., Frecassetti, S., Rossini, M., & Portioli-Staudacher, A. (2023). Industry 4.0 digital technologies enhancing sustainability: Applications and barriers from the agricultural industry in an emerging economy. *Journal of Cleaner Production*, 408, 137208.
- Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018). The expected contribution of Industry 4.0 technologies for industrial performance. *International Journal of Production Economics*, 204, 383–394. https://doi.org/https://doi.org/10.1016/j.ijpe.20 18.08.019
- Dombrowski, U., & Mielke, T. (2013). Lean Leadership – Fundamental Principles and their Application. *Procedia CIRP*, 7, 569–574. https://doi.org/https://doi.org/10.1016/j.procir.2 013.06.034
- Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019).
 Industry 4.0 technologies: Implementation patterns in manufacturing companies.

 International Journal of Production Economics, 210, 15–26.
 https://doi.org/https://doi.org/10.1016/j.ijpe.20 19.01.004
- Frank, A. G., Mendes, G. H. S., Ayala, N. F., & Ghezzi, A. (2019). Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective. *Technological Forecasting and Social Change*, 141, 341–351.
- Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. *Journal of Cleaner Production*, 252, 119869.

- https://doi.org/https://doi.org/10.1016/j.jclepro. 2019.119869
- Gupta, S., Sharma, M., & M., V. S. (2016). Lean services: a systematic review. *International Journal of Productivity and Performance Management*, 65(8), 1025–1056. https://doi.org/10.1108/IJPPM-02-2015-0032
- Hair, J. F. (2021). Reflections on SEM: An introspective, idiosyncratic journey to composite-based structural equation modeling. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 52(SI), 101–113.
- Heeres, T. J., Tran, T. M., & Noort, B. A. C. (2023). Drivers and barriers to implementing the internet of things in the health care supply chain: mixed methods multicase study. *Journal of Medical Internet Research*, 25, e48730.
- Hicks, B. J. (2007). Lean information management: Understanding and eliminating waste. International Journal of Information Management, 27(4), 233–249. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2006.12.001
- Kamble, S., Gunasekaran, A., & Dhone, N. C. (2020). Industry 4.0 and lean manufacturing practices for sustainable organisational performance in Indian manufacturing companies. *International Journal of Production Research*, 58(5), 1319– 1337.
- Kendall, H., Clark, B., Li, W., Jin, S., Jones, G. D.,
 Chen, J., Taylor, J., Li, Z., & Frewer, L. J.
 (2022). Precision agriculture technology adoption: A qualitative study of small-scale commercial "family farms" located in the North China Plain. *Precision Agriculture*, 1–33.
- Komkowski, T., Michael, S., Jiju, A., Fabiane Letícia, L., Jose Arturo, G.-R., & and Tortorella, G. L. (2025). Operational practices for integrating lean and industry 4.0 a dynamic capabilities perspective. *International Journal of Production Research*, 63(4), 1517–1537. https://doi.org/10.1080/00207543.2024.238112
- Lang, L. D., Tiwari, A. K., Hieu, H. N., Ha, N. M., & Gaur, J. (2023). The role of structural social capital in driving social-oriented sustainable agricultural entrepreneurship. *Energy Economics*, 124, 106855. https://doi.org/https://doi.org/10.1016/j.eneco.2 023.106855
- Luthra, S., & Mangla, S. K. (2018). Evaluating challenges to Industry 4.0 initiatives for supply chain sustainability in emerging economies. *Process Safety and Environmental Protection*, 117, 168–179. https://doi.org/https://doi.org/10.1016/j.psep.20 18.04.018
- Meeker, W. Q., Escobar, L. A., & Pascual, F. G. (2022). Statistical methods for reliability data. John Wiley & Sons.
- Milazzo, P., Sgandurra, M., Matarazzo, A., Grassia, L., & Bertino, A. (2017). The new ISO 14001: 2015

- standard as a strategic application of life cycle thinking. *Procedia Environmental Science, Engineering and Management*, 4(2), 119–126.
- Moeuf, A., Pellerin, R., Lamouri, S., Tamayo Giraldo, S., & Barbaray, R. (2017). The industrial management of SMEs in the era of Industry 4.0. *International Journal of Production Research*, 56, 1–19. https://doi.org/10.1080/00207543.2017.137264
- Mohan Modak, N., Senapati, T., Simic, V., Pamucar, D., Saha, A., & Cárdenas-Barrón, L. E. (2024). Managing a sustainable dual-channel supply chain for fresh agricultural products using blockchain technology. *Expert Systems with Applications*, 244, 122929. https://doi.org/https://doi.org/10.1016/j.eswa.2 023.122929
- Mundra, N., Mishra, R. P., & Upreti, G. (2021). Development of framework for lean implementation. *SAE International Journal of Materials and Manufacturing*, 14(2), 223–242.
- Patankar, N., Fell, H. G., Rodrigo de Queiroz, A., Curtis, J., & DeCarolis, J. F. (2022). Improving the representation of energy efficiency in an energy system optimization model. *Applied Energy*, 306, 118083. https://doi.org/https://doi.org/10.1016/j.apenerg y.2021.118083
- Pereira, A. C., Alves, A. C., & Arezes, P. (2023). Augmented reality in a lean workplace at smart factories: a case study. *Applied Sciences*, 13(16), 9120.
- Porter, M. E., & Heppelmann, J. E. (2025). *How smart, connected products are transforming companies*. https://www.bollettinoadapt.it/wp-content/uploads/2015/09/How-Smart-Connected-Products-Are-Transforming-Companies.pdf
- Qalati, S. A., Zafar, Z., Fan, M., Sánchez Limón, M. L., & Khaskheli, M. B. (2022). Employee performance under transformational leadership and organizational citizenship behavior: A mediated model. *Heliyon*, 8(11), e11374. https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e11374
- Slater, S. F. (1996). The challenge of sustaining competitive advantage. *Industrial Marketing Management*, 25(1), 79–86.
- Sossa, J. W. Z., Posada, N. G., Montoya, L. H. B., Monsalve, A. M. Z., Piedrahíta, J. C. P., Mendoza, G. L. O., Grisales, L. V., & Cano, L. F. G. (2024). Foresight study using scenarios and the Delphi method in the leather agroindustrial chain to 2035 Alignment of results with open innovation. *Journal of Open Innovation: Technology, Market, and Complexity*, 10(3), 100374. https://doi.org/https://doi.org/10.1016/j.joitmc. 2024.100374
- Sürücü, L., & Maslakci, A. (2020). Validity and reliability in quantitative research. *Business & Management Studies: An International Journal*,

- 8(3), 2694–2726.
- Teichgräber, U. K., & de Bucourt, M. (2012). Applying value stream mapping techniques to eliminate non-value-added waste for the procurement of endovascular stents. *European Journal of Radiology*, 81(1), e47–e52. https://doi.org/https://doi.org/10.1016/j.ejrad.2 010.12.045
- Tilley, A., Dam Lam, R., Lozano Lazo, D., Dos Reis Lopes, J., Freitas Da Costa, D., De Fátima Belo, M., Da Silva, J., Da Cruz, G., & Rossignoli, C. (2024). The impacts of digital transformation on fisheries policy and sustainability: Lessons from Timor-Leste. *Environmental Science & Policy*, 153, 103684.

- https://doi.org/https://doi.org/10.1016/j.envsci. 2024.103684
- Womack, J., & Jones, D. (1996). Lean Thinking: Banish Waste and Create Wealth in Your Corporation. In *Journal of the Operational* Research Society (Vol. 48). https://doi.org/10.1038/sj.jors.2600967
- Yadav, V. S., Singh, A. R., Raut, R. D., Mangla, S. K., Luthra, S., & Kumar, A. (2022). Exploring the application of Industry 4.0 technologies in the agricultural food supply chain: A systematic literature review. *Computers & Industrial Engineering*, 169, 108304.