JITAA

Journal of the Indonesian Tropical Animal Agriculture Accredited by Ditjen Riset, Teknologi dan Pengabdian kepada Masyarakat No. 164/E/KPT/2021 J. Indonesian Trop. Anim. Agric. pISSN 2087-8273 eISSN 2460-6278 http://ejournal.undip.ac.id/index.php/jitaa 50(4):324-337, December 2025 DOI: 10.14710/jitaa.50.4.324-337

Dietary clove (*Syzygium aromaticum*) powder enhanced broiler chicken performance, gut histomorphometry and health-associated whilst decreasing pathogenic microbiota

M. C. Ogwuegbu^{1,2*}, I. E. Uzochukwu^{2,3}, H. O. Edeh², E. G. Ukah ², C. O. Obey², U. Okpanachi⁴ and D. M. N. Mthiyane^{1,5}

¹Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Mmabatho 2735, South Africa. ²Department of Animal Science, Faculty of Agriculture, University of Nigeria, Nsukka 410001, Enugu State, Nigeria.

³Department of Hydrobiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.

⁴Department of Animal Production, University of Jos, P.O Box, 10337, Jos, Plateau, State, Nigeria.
⁵Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X 2046,

Mmabatho 2735, South Africa.

*Corresponding Email: mercyogwuegbu@gmail.com

Received March 15, 2025; Accepted June 29, 2025

ABSTRACT

This study evaluated the impact of dietary clove powder on growth performance, carcass traits, nutrient digestibility, jejunal histomorphometry and ileal microbiota in broiler chickens. A total of 250 *Chikun* day-old broiler chicks were allocated to 5 dietary groups with 5 replicates of 10 birds each for 6 weeks in a completely randomized design. The groups were fed diets containing clove powder at 0, 0.5, 1.0, 1.5 and 2 g/kg diet. Results showed that dietary clove supplementation improved final body weight and feed conversion ratio (P < 0.001) while reducing total feed intake. Also, it increased weights of live chickens at slaughter, breast meat, shank and drumstick/thigh ratio (P < 0.001). Further, it linearly increased apparent digestibility of DM, CP, and EE (P < 0.01) as it quadratically decreased CF (P < 0.01). Furthermore, it linearly increased jejunal villus length, crypt depth and thickness of muscularis (P < 0.001) whilst it quadratically decreased thickness of the epithelium (P < 0.01). Moreover, it increased ileal *Lactobacilli* whilst decreasing *Salmonella* and *E. coli* (P < 0.05) bacterial species. In conclusion, dietary clove powder improved growth performance, carcass characteristics, nutrient digestibility, gut histomorphometry and *Lactobacilli* while it decreased *Salmonella* and *E. coli* bacteria.

Keywords: Carcass characteristics, Clove, Gut microbiota, Histomorphometry, Nutrient digestibility.

INTRODUCTION

In Nigeria, South Africa, and other Sub-Saharan African (SSA) countries, broiler production provides a viable means of ensuring food security and enhancing the economic prospects of the burgeoning human population. To limit pathogenic disease incidences and mortality, as well as improve appetite and growth performance in broilers, antibiotics have long been utilized in their production. However, concerns about the development of antibiotic-resistant microbes, the occurrence of antibiotic residues in animal products, as well as environmental pollution, have culminated in the banning of in-feed antibiotics in many countries including the USA, EU, China, and other regions of the world (Abdel-Moneim et al., 2020). Consequently, this has necessitated research into sustainable and environmentally friendly alternatives to conventional antibiotics.

Natural feed additives have been increasingly investigated as alternatives to conventional antibiotics. particular, phytogenics In (phytobiotics) including herbs are preferred for their inherent antioxidant, anti-inflammatory, and antimicrobial functionalities and for inducing no antibiotic-resistance or residues in animal products and the environment (Suliman et al., 2021). They are also relatively cheap and readily available which makes them beneficial in lowering the cost of production particularly among resource-limited small-scale farmers (Nahed et al., 2022).

Clove (Syzygium aromaticum; family Myrtaceae) flower buds contain high amounts of volatile essential oils, with eugenol being the dominant component, in addition to other phytochemicals that account for their numerous health benefits (Arif et al., 2022). Dietary clove supplementation improves nutrient absorption and utilization, growth performance, meat yield, immunity, beneficial intestinal bacteria (Elbaz et al., 2022) as well as protein digestibility, nutrient availability and utilization broilers (Kunnumakkara et al., 2018). However, negative effects on growth performance with increasing inclusion levels of clove seed (Suliman et al., 2021) or clove buds (Othman et al., 2022) have also been reported. Given these inconsistencies in previous studies, it has been necessary to further elucidate the effects of dietary clove supplementation in broiler nutrition. Additionally, there is paucity of information on the impact of cloves on gut populations of health-associated and pathogenic bacteria. Thus, this study aimed to address these gaps by comprehensively examining the effects of dietary clove powder supplementation on growth performance, carcass characteristics, nutrient digestibility, gut histomorphometry as well as health-associated and pathogenic gut microbiota in broiler chickens. Our hypothesis posits that feeding broilers with clove-containing diets from day-old to the finisher phase will yield improvements in these parameters, ultimately enhancing gut health and overall performance.

MATERIALS AND METHODS

Study Location

The study was carried out at the Poultry Section of the University of Nigeria, Nsukka Research Farm, Enugu State, Nigeria. The study site typically experiences rainy (May – October) and dry (December – March) seasons with average temperatures of 25.6–34.0 °C and annual average rainfall between 1680 and 1700mm.

Ethical Statement

The study was conducted in compliance with ethical guidelines to ensure adherence to both national and international standards for research involving animals. Approval for the use of animals in the research was granted by the Ethical Clearance Committee of the University of Nigeria, Nsukka, Nigeria.

Sourcing and Preparation of Materials

Dried clove flower buds were collected from Nsukka in the Nsukka Local Government Area of Enugu State (Nigeria), ground into powder, packaged and stored whilst *Chikun* broiler chicks were sourced from Agritted Hatchery (Ibadan, Nigeria).

Birds, Diets, Design and Management

Two hundred and fifty male *Chikun* strain day-old chicks (44.15 g \pm 0.7) were randomly assigned to 5 experimental maize-soybean-based diets respectively supplemented with 0, 0.5, 1.0, 1.5, and 2.0 g clove bud powder per kg feed (designated CLO0, CLO5, CLO10, CLO15, and

CLO20), each with 5 replicate pens (2.6m width x 3m length) of 10 birds in a completely randomized design, for 6 weeks. Both the diets and clean water were offered ad libitum. The diets were formulated to meet nutritional requirements of broilers as recommended by the NRC (1994). The birds were raised through the starter (d1 -21) and finisher (d22 - 42) phases on concrete floors with wood shavings as litter material. For brooding, the housing temperature was maintained at 32°C for the first 5 daysafter which it was gradually lowered to 25°C for the rest of the study. Vaccinations were carried out according to the recommendations of Afrimash (2019). The chemical composition of the experimental diets (Tables 1 and 2) was analyzed using standard methods (AOAC, 2005).

Growth Performance

Live body weights were taken weekly and used to calculate body weight gains (BWG). Feed offered and refusals were also recorded for calculation of feed intake (FI) and feed conversion ratio (FCR) using the formula:

Feed Conversion Ratio =

Average Feed Intake

Average Weight Gain

Carcass Measurements

At the end of the study, 2 birds were randomly selected from each replicate, weighed, and slaughtered using the cervical dislocation technique. Feathers were then plucked off and heads, shanks, and viscera removed. The carcasses and different cuts were weighed and expressed as absolute values.

Nutrient Digestibility Trial

Two birds randomly selected from each pen were placed in cleaned metabolism cages a week before the end of the feeding trial. They were adapted for 3 days prior to 4-day sample (droppings) collection. Samples were dried at room temperature, ground, and analyzed for dry matter (DM; method 930.15), crude protein (CP; method 954.01), ether extract (EE; method 920.39), and crude fibre (CF) (AOAC 2005). The digestibility of each of the measured nutrients was calculated using the formula:

Nutrient digestibility (%) =
$$\frac{Nutrient in feed - Nutrient in faeces}{Nutrient in feed} \times 100$$

Gut Histology

At the end of the feeding trial, approximately 2cm of the jejunum was collected from each of 2 birds randomly selected from each pen, rinsed with 0.9% saline, fixed in 10% buffered formalin, and stored at room temperature until analysis. The samples were then washed, trimmed, dehydrated with alcohol, cleared with xylene, and impregnated with paraffin wax. The jejunum was then cut into 2 µm sections, fixed onto slides, stained with haematoxylin and eosin, and examined under a Zeiss Axio light microscope equipped with a digital camera using a 2.5x magnification objective lens. Images were analysed for morphometric characteristics using Axio vision image-analysis software version 4.7.2 (Carl Zeiss microscopy).

Gut Microbiota

At the end of the feeding trial, ileal contents aseptically collected from 2 birds randomly selected from each pen were placed into sterile glass bags and placed on ice. They were then transferred to fresh, sterile bags, immediately diluted with sterile ice-cold anoxic phosphate buffered saline (0.1 M; pH 7.0) in a 10% wt/vol ratio, and homogenized in a stomacher (Bagmixer 100 Minimix, Interscience, Arpents, France) for 3 min. Subsequently, the ileum digesta was subjected to serial dilution from 10⁻¹ to 10⁻⁷, and the dilutions plated on duplicate selective agar plates. As described by Tuohy et al. (2002), specific strains of Lactobacilli, E. coli, and Salmonella were enumerated using VRB agar (MERCK, 1.01406), Rogosa agar (MERCK, 1.10660), and Beerens agar, respectively. The plates were then incubated anaerobically for 48 to 120 hrs at 39 °C (Beerens, Rogosa agars) or for 24-48hrs at 37 °C (VRB agar). Bacterial colonies were recorded, average live bacteria

ed based on the weight of original ileal contents, and data was converted into logarithmic colony-forming units (cfu/g) as described by (Koç *et al.*, 2010).

Table 1. Ingredient and Chemical Composition (%, Unless Stated Otherwise) of the Experimental Diets for Broiler Chickens at The Starter Phase (d1 - 21)

Ingredients	CLO0	CLO5	CLO10	CLO15	CLO20
Yellow maize	53.98	53.98	53.98	53.98	53.98
Groundnut cake	9.50	9.50	9.50	9.50	9.50
Wheat offal	4.75	4.75	4.75	4.75	4.75
Soybean meal	23.48	23.48	23.48	23.48	23.48
Fish meal	3.15	3.15	3.15	3.15	3.15
Limestone	2.50	2.50	2.50	2.50	2.50
Bone meal	1.64	1.64	1.64	1.64	1.64
Salt	0.27	0.27	0.27	0.27	0.27
Vitamin-mineral premix ¹	0.26	0.26	0.26	0.26	0.26
Lysine	0.23	0.23	0.23	0.23	0.23
Methionine	0.24	0.24	0.24	0.24	0.24
Total	100.00	100.00	100.00	100.00	100.00
Clove	0.00	0.05	0.10	0.15	0.20
Calculated Composition					
Metabolizable energy (Mcal/kg)	2950	2950	2950	2950	2950
Crude protein	23.00	23.00	23.00	23.00	23.00
Crude fibre	5.00	5.00	5.00	5.00	5.00
Calcium	1.54	1.54	1.54	1.54	1.54
Phosphorus	0.71	0.71	0.71	0.71	0.71
Chemical composition (%)					
Crude matter	88.84	88.81	89.56	89.84	88.96
Crude protein	22.56	22.29	22.37	22.36	22.45
Crude fat	3.00	3.02	3.02	3.02	3.02
Crude fibre	5.03	5.11	5.11	5.01	5.01
Ash	4.00	3.98	3.97	4.03	4.03
Nitrogen free extract	66.41	66.69	66.69	66.89	66.89

Statistical Analysis

Data were subjected to a one-way analysis of variance using the Agricolae Statistical package (De Mendiburu, 2019) in (RStudio 2020). Mean differences were tested at 5% a probability level (*P*< 0.05) while significantly different means were separated using Tukey's test. Then, the response surface regression analysis procedure (SAS 2002) was used to evaluate the data for linear and quadratic effects using the following non-linear model:

$$y = ax^2 + bx + c$$

Where y is the dependent variable; a and b = coefficients of the model; c = intercept; x is dietary clove dosage; and -b/2a is the x value for optimal response.

RESULTS AND DISCUSSION

Growth Performance

The effect of dietary clove powder inclusion on the growth performance of broiler chickens is presented in Table 3. The initial body weight of the birds upon grouping did not show significant differences across the groups (P > 0.05). However, adding clove powder yielded diverse responses in critica

growth parameters, including FBW, BWG, TFI, and FCR. The inclusion of dietary clove powder induced quadratic decreases in both FCR [$y=1.40\ (\pm0.23)x-0.23\ (\pm0.04)x^2+0.66\ (\pm0.30);$ R² = 0.754, P<0.001] and TFI [$y=3184\ (\pm446)x-543\ (\pm72.9)x^2+3651\ (\pm585);$ R² = 0.824, P<0.001]. These quadratic responses allowed us to identify the optimum clove powder inclusion level, determined to be 3.04 g/kg. At lower levels of clove powder (CLO10 and CLO15), there was a significant increase (P<0.001) in the TFI and FCR, but a decrease (P<0.001) in FBW and BWG. Notably, CLO15 re-

sulted in the lowest FBW and BWG (P < 0.001), whilst CLO0, CLO5 and CLO20 promoted the highest FBW and BWG (P < 0.001). Importantly, there were no significant differences in FBW, BWG, TFI and FCR between the CLO20 and control groups.

While our study did not reveal effects of dietary clove supplementation on FBW, BWG, and FCR in broiler chickens, a closer examination through regression analysis unveiled a potential for optimizing BWG and feed consumption when clove powder was provided at 3.04 g/kg of diet. The observed dose-dependent effect of clove supplementation was highlighted by a reduced quadratic response in both TFI and FCR, notably at the higher inclusion level of 2.0 g./kg of diet. The decreased TFI at this higher level may be attributed to reduced palatability, potentially influenced by the higher concentration of

eugenol, which has been reported to decrease gut motility (Daniel et al., 2009). Furthermore, the lower FCR value in the group that received 2.0 g/ kg of clove powder suggests potential improvements in nutrient absorption and utilization with higher clove inclusion levels, although these values remained comparable to those of the control group. This aligns with previous reports of increased BWG and feed consumption in broilers fed diets supplemented with clove powder (Islam et al., 2023). The enhancement in growth performance may be attributed to clove's ability to stimulate appetite and improve feed utilization efficiency (Islam et al., 2023; Naeem et al., 2022), possibly through eugenol's stimulation of digestive enzyme secretion and gastrointestinal tract motility (Ogwuegbu et al., 2021).

Carcass Traits

Table 2. Ingredient and Chemical Composition (%, Unless Stated Otherwise) of the Experimental Diets for Broiler Chickens at The Finisher Phase (d22 – 42)

Ingredients	CLO0	CLO5	CLO10	CLO15	CLO20
Yellow maize	62.75	63.75	63.75	63.75	63.75
Groundnut cake	8.50	9.50	9.50	9.50	9.50
Wheat offal	6.38	6.38	6.88	6.88	6.88
Soybean meal	14.98	14.98	14.98	14.98	14.98
Fish meal	2.00	2.00	2.00	2.00	2.00
Limestone	2.50	2.50	2.50	2.50	2.50
Bone meal	1.89	1.64	1.64	1.64	1.64
Salt	0.27	0.27	0.27	0.27	0.27
Mineral-vitamin premix ¹	0.26	0.26	0.26	0.26	0.26
Lysine	0.23	0.23	0.23	0.23	0.23
Methionine	0.24	0.24	0.24	0.24	0.24
Total	100.00	100.00	100.00	100.00	100.00
Clove	0.00	0.05	0.10	0.15	0.20
Calculated composition					
Metabolizable energy (Mcal/kg)	3105	3105	3105	3105	3105
Crude protein	19.98	19.98	19.98	19.98	19.98
Crude fibre (%)	5.00	5.00	5.00	5.00	5.00
Calcium	1.59	1.59	1.59	1.59	1.59
Phosphorous	0.73	0.73	0.73	0.73	0.73
Chemical composition (%)					
Crude matter	90.01	90.00	90.02	90.03	90.00
Crude protein	18.08	18.25	18.11	18.05	18.20
Crude fat	5.00	5.01	5.00	4.99	4.87
Crude fibre	4.98	5.00	4.81	5.11	5.00
Ash	4.00	3.91	4.01	4.03	4.05
Nitrogen free extract	67.94	68.13	68.07	67.90	68.11

CLO0: Basal diet only (Control), CLO5: Diet with 0.5 g/kg clove powder, CLO10: Diet with 1.0 g/kg clove powder, CLO15: Diet with 1.5 g/kg clove powder, and CLO20: Diet with 2 g/kg clove powder.

Table 3. Effect of Dietary Clove Powder on Growth Performance of Broiler Chickens

Domonotomo			Treatments			SEM	Signi	Significance
r at attletets	CLO0	CLO5	CLO10	CLO15	CLO20	TATAL	P- Linear	P- Quadratic
Initial body weight (g)	43.98	44.28	44.27	44.61	43.60	0.18	0.743	0.150
Final body weight (g)	3276.67 ^a	3460.67^{a}	3033.00^{b}	2750.00°	3366.00^{a}	74.20	0.298	0.105
Body weight gain (g/d)	3232.69^{a}	3416.39^{a}	2988.73 ^b	2705.39°	3322.40^{a}	74.25	0.298	0.105
Total feed intake (g/d)	6320.92 ^b	7753.51ª	8427.08ª	7639.76^{a}	5999.16^{b}	269.52	0.398	<.0001
Feed conversion ratio	1.96°	2.27 ^b	2.82^{a}	2.82^{a}	1.81°	0.12	0.577	<.0001

g clove kg-1 diet), CLO15 (BD + 1.5 g clove kg-1 diet), and CLO20 (BD + 2 g clove kg-1 diet).

Table 4. Effect of Dietary Clove Powder on Carcass Characteristics of Broiler Chickens

			Treatments				Signii	Significance
rarameters	CL00	CLO5	CLO10	CLO15	CLO20	SEIVI —	P- Linear	P- Quadratic
Live weight (g)	3276.67a	3460.67a	3033.00 ^b	2750.00°	3366.00^{a}	74.20	0.298	0.105
Dressed weight (g)	2550.00	2786.67	2583.33	2270.00	2533.00	67.11	0.281	0.923
Drumstick/thigh (g)	334.67 ^b	388.67ª	342.0^{b}	257.33°	323.67^{b}	11.57	0.068	0.885
Shank (g)	48.67 ^b	55.00^{a}	45.00^{b}	55.67ª	48.30^{b}	1.26	1.000	0.563
Back cut (g)	423.33°	502.12^{bc}	701.67^{a}	593.67 ^{ab}	637.00^{a}	31.23	0.001	0.021
Wings (g)	123.33	126.33	135.0	121.33	134.00	2.82	0.452	0.906
Breast-meat (g)	942.00^{a}	1095.37^{a}	685.67 ^b	646.69^{b}	981.69^{a}	50.49	0.277	0.080

g clove $\rm kg^{\text{--}1}$ diet), CLO15 (BD + 1.5 g clove $\rm kg^{\text{--}1}$ diet), and CLO20 (BD + 2 g clove $\rm kg^{\text{--}1}$ diet). a.b.c Row means with a common superscript do not differ differ $(P \ge 0.05)$; SEM= Standard error of the mean; CLO0 (only basal diet; BD), CLO5 (BD + 0.5 g clove kg⁻¹ diet), CLO10 (BD + 1.5 g clove kg⁻¹ diet), CLO10 (B

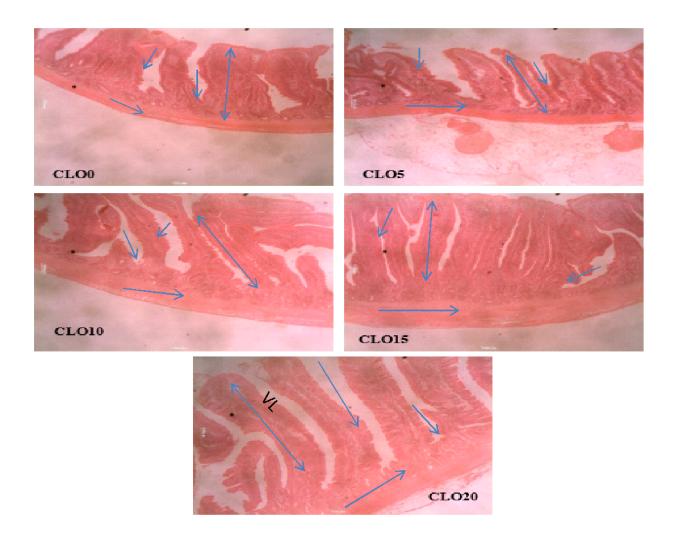


Figure 1. Histomicrograph of the jejunum of birds fed clove powder supplemented diets. CLO0 (Basal diet (BD) only; Control), CLO5 (BD + 0.5 g clove powder kg⁻¹ diet), CLO10 (BD + 1 g clove powder kg⁻¹ diet), CLO15 (BD + 1.5 g clove powder kg⁻¹ diet), and CLO20 (BD + 2 g clove powder kg⁻¹ diet). VL= Villus length; CD= Crypt depth;TM= Thickness of epithelium; TM = Thickness of muscularis.

The effect of dietary clove powder inclusion on carcass traits of broilers is shown in Table 4. Dietary inclusion of clove powder resulted in a quadratic decrease in back-cut weight [y = 216 (± 63.4)x - 27.5 (10.4) $x^2 + 225$ (± 83.2); $R^2 = 0.671$, P < 0.05], relative dressed weight [$y = 11.2(\pm 5.34)x - 1.93(0.87)x^2 + 67.8(\pm 7.01)$; $R^2 = 0.294$; P < 0.05], relative drumstick/thigh weight [$y = 1.19(\pm 0.64)x - 0.24(0.11)x^2 + 9.52(\pm 0.84)$; $R^2 = 0.492$; P < 0.05] and relative back-cut weight [$y = 10.0(\pm 2.65)x - 1.35(0.43)x^2 + 3.03$ (± 3.47); $R^2 = 0.664$; P < 0.01], with an optimal level of 3.9 g clove powder per kg diet. Whilst there was no effect of diet (P > 0.05) on dressed weight and wing weight, dietary clove powder

increased the weights of live chickens at slaughter (P < 0.001), shank (P < 0.01), breast meat (P < 0.001), and back-cut (P < 0.001), as well as the drumstick/thigh ratio (P < 0.001).

Considering that broilers nowadays are predominantly marketed in the form of meat portions rather than whole birds (Barbut 2015), it is necessary to assess the carcass and meat yield responses to dietary phytogenic additives (Ncube et al., 2017). In this regard, the observed increased weights of birds at slaughter, breast meat, shank, as well as drumstick/thigh ratio indicate an improvement in muscle and bone development and demonstrate clove powder as a desirable phytogenic feed additive, consistent

Table 5. Effect of Dietary Clove Powder on Apparent Nutrient Digestibility (%) in Broiler Chickens

			Treatments			CEM	Signii	Significance
r at attreters	CL00	CLO5	CLO10	CLO15	CLO20	- SEIVI	P- Linear	P- Quadratic
Dry matter	70.99°	73.79°	80.57 ^b	83.38 ^{ab}	86.12ª	1.59	<.0001	0.363
Crude protein	63.17 ^d	68.39°	72.56 ^b	71.67bc	80.85^{a}	1.61	<.0001	0.653
Crude fibre	16.49 ^d	20.67^{bc}	20.34°	23.60^{a}	21.60^{b}	0.63	<.0001	0.005
Ether extract	57.78°	60 79bc	62.43 ^b	60.91^{b}	65.43ª	0.76	0.0006	0.934

 kg^{-1} diet), CLO15 (BD + 1.5 g clove kg^{-1} diet), and CLO20 (BD + 2 g clove kg^{-1} diet).

Table 6. Effect of Dietary Clove Powder on Gut Histomorphometric Traits of Broiler Chickens

Poromotors			Treatments			SEM	Signif	Significance
T at attletets	CLO0	CLO5	CLO10	CLO15	CLO20	DEIVI	P- Linear	P- Quadratic
Villus length (nm)	1183.64 ^b	1277.76 ^{ab}	1347.71ª	1425.63a	1391.40 ^a	28.94	0.001	0.150
Crypt depth (nm)	144.60°	173.73 ^{bc}	191.49^{bc}	215.29^{ab}	252.42ª	11.28	<.0001	0.675
Thickness of epithelium (nm)	38.32°	42.51°	56.09^{b}	62.14 ^a	59.33 ^{ab}	2.61	<.0001	0.027
Thickness of muscularis (nm)	127.37^{d}	141.91°	150.53 ^{bc}	158.40^{ab}	166.30^{a}	3.75	<.0001	0.654

 $kg^{\text{--}l}$ diet), CLO15 (BD + 1.5 g clove $kg^{\text{--}l}$ diet), and CLO20 (BD + 2 g clove $kg^{\text{--}l}$ diet). Kow means with a common superscript do not differ $(F \ge 0.00)$; SEM— standard effor of the mean; CLOO (only basal diet; BD), CLO3 (BD + 0.3 g clove kg · diet), CLO10 (BD + 1 g clove with previous observations (Islam *et al.*, 2023). The improvement observed could be translated to more cuts available for sale, signifying high profitability for farmers. Mechanistically, phytogenic additives such as clove increase carcass yield by stimulating nutrient digestion and absorption, as well as protein synthesis, resulting in increased muscular and tissue development (Abd El-Hack *et al.*, 2015; Ogwuegbu *et al.* 2021). Contrary to our findings, (Suliman *et al.*, 2021) found no effects of dietary clove extract on carcass yield of broiler birds. Disparities among the observations may be due to the levels of administration of the phytogenic feed additives.

Nutrient Digestibility

Table 5 presents results of apparent nutrient digestibility in broiler fed diets supplemented with clove powder. Dietary clove powder linearly increased apparent digestibility of DM[$y = 5.74 \ (\pm 1.89)x + 64.9 \ (\pm 2.48); R^2 = 0.909; P = 0.001], CP [<math>y = 2.65 \ (\pm 2.69)x + 61.2 \ (\pm 3.54); R^2 = 0.821; P = 0.001], and EE [<math>y = 56.8 \ (\pm 2.36)x + 1.44 \ (\pm 1.80); R^2 = 0.635; P < 0.001], with maximum responses at 2.0 g clove powder inclusion level per kg diet. However, a negative quadratic effect was noted for CF [<math>y = 5.07 \ (\pm 1.10)x - 0.63 \ (0.18)x^2 + 12.21 \ (\pm 1.44); R^2 = 0.808, P < 0.01], with an optimum at 4.02 g clove powder inclusion level per kg diet.$

The improvements observed in the apparent digestibility of DM, CP, EE and CF in broilers fed clove powder-supplemented diets in our study, along with CP and CF digestibility in the meat birds fed the phytogenic feed additive-supplemented diets in previous studies (Mahrous et al., 2017), suggest multiple potential mechanisms. These mechanisms may involve cloves possession of antimicrobial and antioxidant attributes (Al-Mufarrej et al., 2019), in addition to their potential to enhance amino acid preservation and enteric absorption (Mansoub, 2011).

Gut Histology

Table 6 presents a jejunal histomorphometry of broilers fed diets supplemented with graded levels of clove powder. Dietary clove powder linearly increased villus length [$y = 163 \pm 70.7$) $x + 1032 \pm 92.8$; R² 0617; P = 0.001) and crypt depth [$y = 16.3 \pm 22.4$) $x + 129 \pm 29.4$; R² 0.747; P = 0.001], whilst there was a linear decrease in

the thickness of the muscularis muscle [y = 117 (± 5.05) - 12.2 (± 3.85)x; R² 0.942; P = 0.001]. A negative quadratic effect was observed for the thickness of epithelium [y = 15.4 (± 3.72)x -1.54 (± 0.609) $x^2 + 22.4$ (± 4.89); R² =0.869;P < 0.05], with an optimum at 5.0 g clove powder inclusion level per kg diet. These results were corroborated by the thinning accompanied by elongation of the villi in the jejunum of broilers as the dietary inclusion level of clove powder increased, with maximum villi heights at 2.0 g clove powder inclusion level per kg diet (Figure 1).

The morphometric properties of the intestinal tract serve as indicators of broiler health and are closely linked to their nutrient assimilation capacity and immune functionality (Nicholson et al., 2012). The dietary clove powder-induced linear increase in villus length and crypt depth, accompanied by a decrease in the thickness of the epithelium, align with the findings of (Islam et al. 2023) who reported increased intestinal length, suggesting that clove powder enhances the development of the jejunum in meat birds. Dietary clove supplementation has previously been shown to stimulate enterocyte proliferation and promote the development of the intestinal epithelium in broiler chickens (Agostini et al. 2012). This stimulation also results in improved villus height and surface area, as reported by (Thuekeaw et al., 2022) and (Islam et al., 2023). Importantly, increased villus length is positively correlated with higher nutrient absorption, as it provides a larger surface area for enhanced nutrient uptake (Mohamed et al., 2014). However, in contrast to our data, (Taheri Gandomani et al., 2014) and (Al-Mufarrej et al., 2019), respectively, observed decreased crypt depths and villi heights whilst (Chowdhury et al., 2018; Jahejo et al., 2019), found no effects on villus height, villus width, or crypt depth in chickens fed clovecontaining diets. The reason for the variation in responses is not known. Nonetheless, the clove powder-induced muscularis thickness may be due to mechanical effects of structural dietary fibre on bird intestinal wall (Jamroz et al., 2006) and could be attributed to clove powder enhancement of nutrient absorption, secretion of electrolytes and fluids, as well as renewal and replenishment of impaired cells or those lost to normal attribution (Yu WanWen et al., 2015).

Gut Microbiota

The effect of dietary clove powder inclusion on health-associated and pathogenic gut microbiota dynamics of broilers is shown in Figures 2 to 4. The result indicated that dietary clove powder inclusion increased ileal *Lactobacillus* (P < 0.05), with a decrease in the *Salmonella* (P < 0.05) and E.coli(P < 0.05) counts. The inclusion of clove induced negative quadratic effect on the ileal E.coli(P < 0.05) and E.coli(P < 0.05) counts. The inclusion of clove induced negative quadratic effect on the ileal E.coli(P < 0.05) and E.coli(P < 0.05) and E.coli(P < 0.05) and E.coli(P < 0.05) counts. The inclusion of clove induced negative quadratic effect on the ileal E.coli(P < 0.05) and E.c

Both Salmonella and E. coli bacteria are serious public health concern whilst Lactobacilli are beneficial bacteria. Interestingly, our results demonstrated dietary clove powder to have increased Lactobacilli whilst it decreased Salmonella and E. coli bacteria in the ileum of broilers. These observations concur with previous studies that showed increased Lactobacilli in contrast to lowered E. coli populations in the gut of broilers (Islam et al., 2023). Conversely, no effects were observed on gut bacterial populations of chickens fed 100 - 150mg of cloves per kg diet (Eevuri and Putturu 2013), probably due to low clove inclusion levels. The observed pro-Lactobacilli and anti-Salmonella and anti-E. coli effects of clove powder may be attributed to the phytogenic feed additive's rich composition of eugenol, which possesses strong antibacterial and antifungal activities (El-Saber Batiha et al., 2020).

Notwithstanding the above-mentioned beneficial effects of clove powder, our data demonstrated that too high dietary inclusion of the phytogenic induced detrimental effects in broilers. In concurrence with (Mahrous et al., 2017), the optimal dietary inclusion level of clove powder was in the range of 1.0 to 1.5 g per kg diet; beyond which all measured parameters responded unfavorably. Other studies found higher dietary levels of cloves to decrease feed intake (Daniel et al., 2009), compromise intestinal epithelium integrity leading to inhibition of intestinal nutrient absorption by decreasing villus height, villus surface area and villus crypt (Budd et al., 2017; Ducatelle et al., 2018), inducing villus wall necrosis accompanied by luminal accumulation of mucus and desquamated intestinal sheets, swollen hepatocytes and dilated hepatic sinusoids (Al -Mufarrej et al., 2019). Cloves contain eugenol, a phenolic compound that protects the liver from damage (El-Hadary and Ramadan Hassanien 2016). Indeed, a previous study found the clove plant to be safe when consumed at concentrations of < 1.5 g/kg diet (Cortes-Rojas et al., 2014). Hence, excessive consumption of cloves induces detrimental effects on liver hepatocytes (Nwaopara et al., 2007). Interestingly, some studies did not observe any effects of cloves on liver histology (Chakma et al., 2020; Velisek et al., 2005) or liver enzyme activities (Kazi et al., 2017). It is contended that the mechanism underlying the detrimental effects of clove powder in broilers relates to the plant's containment of eugenol and tannins, high concentrations of which decrease not only feed palatability and feed intake (Islam et al., 2023; Naeem et al., 2022) but also BWG (Othman et al., 2022) in the meatproducing birds. Whilst beneficial to enterocytes, especially at low concentrations (Brus et al., 2018), tannins, particularly at high concentrations, induce perturbations on enteric wall morphology and function (Jamroz et al. 2006; Naeem et al., 2022).

CONCLUSION

Dietary clove powder improved growth performance, carcass characteristics, nutrient digestibility, gut histomorphometry and *Lactobacilli* while it decreased *Salmonella* and *E. coli* bacterial species in a dose-dependent manner, with optimal responses at 1.0 to 1.5 g per kg diet. Therefore, clove powder can be included as a phytogenic feed additive alternative to conventional antibiotics in broiler diets at these inclusion levels without adverse effects.

ACKNOWLEDGEMENTS

We hereby express our gratitude for the funding provided by North-West University to support open-access publishing.

CONFLICT OF INTEREST

Authors declare no conflict of interest for this article.

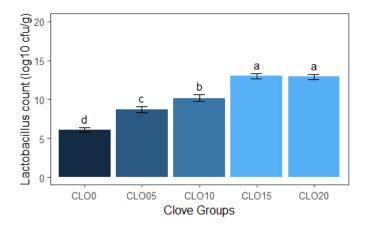


Figure 2. Effect of dietary clove powder on ileal *Lactobacillus spp.* counts (log10 cfu/g) (\pm SEM) ^{a,b,c,d}. Means with a common superscript do not differ ($P \ge 0.05$). CLO0 (Basal diet (BD) only; Control), CLO5 (BD + 0.5 g clove powder kg⁻¹ diet), CLO10 (BD + 1 g clove powder kg-1 diet), CLO15 (BD + 1.5 g clove powder kg⁻¹ diet), and CLO20 (BD + 2 g clove powder kg⁻¹ diet).

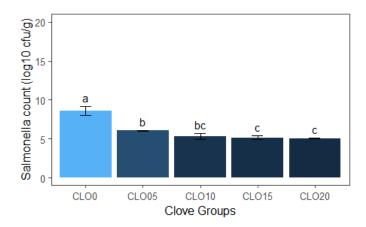


Figure 3. Effect of dietary clove powder on ileal *Salmonella spp.* counts (log10 cfu/g) (\pm SEM) a,b,c,d. Means with a common superscript do not differ ($P \ge 0.05$); CLO0 (Basal diet (BD) only; Control), CLO5 (BD + 0.5 g clove powder kg⁻¹ diet), CLO10 (BD + 1 g clove powder kg⁻¹ diet), CLO15 (BD + 1.5 g clove powder kg⁻¹ diet), and CLO20 (BD + 2 g clove powder kg⁻¹ diet).

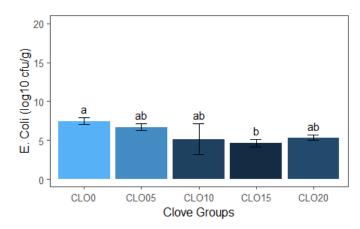


Figure 4. Effect of dietary clove powder on ileal *E. coli* counts (log10 cfu/g) a,b,c,d. Means with a common superscript do not differ ($P \ge 0.05$). CLO0 (Basal diet (BD) only; Control), CLO5 (BD + 0.5 g clove powder kg⁻¹ diet), CLO10 (BD + 1 g clove powder kg⁻¹ diet), CLO15 (BD + 1.5 g clove powder kg⁻¹ diet), and CLO20 (BD + 2 g clove powder kg⁻¹ diet).

PREPRINT

This manuscript partly has earlier been published as a preprint in research square (Ogwuegbu, *et al.*, 2023).

REFERENCES

- Abd El-Hack., M.E., S.A Mahgoub, M. Alagawan and K. Dhama. 2015. Influences of dietary supplementation of antimicrobial cold pressed oils mixture on growth performance and intestinal microflora of growing Japanese quails. Int J Pharmacol., 11:689-696.
- Abdel-Moneim, A. E., A. M. Elbaz, R. E. Khidr and F. B. Badri. 2020. Effect of *in ovo* inoculation of *Bifidobacterium spp*. on growth performance, thyroid activity, Ileum Histomorphometry, and microbial enumeration of broilers. Probiotics Antimicrob. Prot. 12:873-882.
- Afrimash. 2019. Making farming convenient for farmers Woculus and Afrimash Investments Limited First Floor. Freedom House (Beside PHCN Office), General Gas, Akobo, Ibadan 200103, Oyo State, Nigeria.
- Agostini, P. S, D. Solà-Oriol, M. Nofrarías., A.C. Barroeta, J. Gasa and E. G. Manzanilla. 2012. Role of infeed clove supplementation on growth perfo rmance, intestinal microbiology, and morph ology in broiler chicken. Livest Sci 147: 113 -118.
- Al-Mufarrej, S. I. Al-Baadani, H. H. and Fazea, E.H. 2019. Effect of level of inclusion of clove (*Syzygium aromaticum*) powder in the diet on growth and histological changes in the intestines and livers of broiler chickens. S Afr J Anim Sci 49:166-175.
- AOAC. 2005. Official methods of Analysis of the Association of Official Analytical Chemist, 18th edition, . (Association of Official Analysis Chemists Inc., Gaithersburg, MD USA).
- Arif, M., A.U., K, Rehman Naseer, S.H. Abdel-Hafez, F. M. Alminderej, M.T. El-Saadony, M.E. Abd El-Hack, A.E. Taha, S.S. Elnesr, H.M. Salem and Alagawany M. 2022. Effect of Aloe vera and clove powder supplem entation on growth performance, carcass an

- d blood chemistry of Japanese quails. Poult Sci 101:101702.
- Barbut S. .2015. "The science of poultry and meat processing. Canada cataloguing. Chapter 1, pp.2-10.
- Brus, M., L. Gradisnik, M. Trapecar, D. Skorjanc and Frangez R. 2018. Beneficial effects of water-soluble chestnut (*Castanea sativa Mill.*) tannin extract on chicken small intestinal epithelial cell culture. Poult. Sci. 97: 1 271-1282.
- Budd, G.R., A. Aitchison, A.S. Day and J.I. Kee nan. 2017. The effect of polymeric formula on enterocyte differentiation. Innate Immun. 23:240-248.
- Chakma, J., A. Samanta, T. Dutta and R. Arya. 2020. Effect of supplementing Moringa oleifera leaf extract and clove bud oil to the diet on microflora population and intestinal morphology of broiler birds. IJAH. 59:2 22-227.
- Chowdhury, S., G.P. Mandal, A.K. Patra, P. Kumar, I. Samanta, S. Pradhan Samanta, A.K., 2018. Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enz ymes. AFST. 236:39-47.
- Cortes-Rojas, D.F., C. R. de Souza and W. P. Oliveira. 2014. Clove (*Syzygium aromaticum*): a precious spice. Asian Pac J Trop Biomed. 4:90-6.
- Daniel, A.N., S.M. Sartoretto, G. Schmidt, S.M. Caparroz-Assef, C.A. Bersani-Amado and R.K.N. Cuman. 2009. Anti-inflammatory and antinociceptive activities A of eugenol essential oil in experimental animal models. Rev. BrasFarmacogn. 19:212-217.
- De Mendiburu F. 2019. Agricolae: statistical procedures for agricultural research.
- Ducatelle, R., E. Goossens, F. De Meyer, V. Eeckhaut, G. Antonissen, F. Haesebrouck and F. Van Immerseel. 2018. Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Vet. Res. 49:43.
- Eevuri, T. R and R. Putturu. 2013. Use of certain herbal preparations in broiler feeds-A review. Vet. World. 6:172-179.
- El-Hadary, A. E and M.F Ramadan Hassani-

- en. 2016. Hepatoprotective effect of coldpressed Syzygium aromaticum oil against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. Pharm. Biol. 54: 1364-1372.
- ElSaber Batiha, G., L. M. Alkazm, L. G. Wasef, A. M. Beshbishy, E. H. Nadwa, and E. K. Rashwan. 2020. *Syzygium aromaticum L.* (Myrtaceae): traditional uses, bioactive chemical constituents, pharmalogical and toxicological activities. Biomol.10:202.
- Elbaz, A., E. S. Ashmawy, M. Farahat, S.A. Ali, S.A. Amin, H. Thabet and G.G. Gad. 2022. Effect of different levels of clove essential oil on the growth performance, lipid metabolism, immunity, and intestinal microbial structure of broiler chickens. EJNF. 25:361-368.
- Islam, R., N. Sultana, S. Bhakta, Z. Haque, A. Hasan, M.P. Siddique and M. R. Islam. 2023. Modulation of growth performance, gut morphometry, and cecal microbiota in broilers by clove (*Syzygium aromaticum*) and tulsi (*Ocimum sanctium*) supplementation. Poult. Sci. 102: 102266.
- Jahejo, A. R., N. Rajput, W. X. Tian, M. Naeem, D. H. Kalhoro, A. Kaka, S. Niu, and F. J. Jia. 2019. Immunomodulatory and growth promoting effects of basil (Ocimum basilicum) and ascorbic acid in heat stressed broiler chickens. Pak. J. Zool. 51: 801-807.
- Jamroz, D., T. Wertelecki, M. Houszka and C. Kamel. 2006. Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken. J. Anim. Physiol. Anim. Nutr. (Be rl). 90:255-268.
- Kazi, S., M.A. Ansari, A. R. Memon, A. R. Memon and Q. Z. Phull. 2017. Reversal of paracetamol induced hepatotoxicity in animals model: Clove, an alternative medicine beyond the spices. JLUMHS. 16:154-157.
- Koç, F., H. Samli, A. Okur, M. Ozduven, H. Aky urek and N. Senkoylu. 2010. Effects of Sacc haromyces cerevisiae and/or mannanoligosaccharide on performance, blood parameters and intestinal microbiota of broiler chicks. Bulg. J. Agric. Sci. 16:643-650
- Kunnumakkara, A. B., B. L. Sailo, K. Banik, C. Harsha, S. Prasad, S. C. Gupta, A. C.

- Bharti, and B. B. Aggarwal. 2018. Chronic diseases, inflammation, and spices: how a re they linked? J. Transl. Med. 16:14.
- Mahrous, H.S., A. H. El-Far, K.M. Sadek and M. A. Abdel-Latif. 2017. Effects of different levels of clove bud (*Syzygium aromaticum*) dietary supplementation on immunity, antioxidant status, and performance in broiler chickens. Alexandria Journal for Vet Sci 54:29-39.
- Mansoub, N. H 2011. Comparison of effects of using nettle (*Urtica dioica*) and probiotic on performance and serum composition of broiler chickens. Global. Vert. 6:247-250.
- Naeem, H., S. Z. H. Naqvi, J. Hussain, N. Abbas, S. Hayat, L. Arshad, A. Ghayas and A. Rehman. 2022. Efficacy of Tulsi (*Ocimum Sanctum*) Plant Powder on Health, Growth and Carcass Traits of Japanese Quail (Coturnix Japonica). Braz. J. Poult. Sci. 24:eRBCA-2021-1453.
- Nahed, A., M. E. Abd El-Hack, N. M. Albaqami,
 A. F. Khafaga, A. E. Taha, A. A. Swelum,
 M. T. El-Saadony, H. M. Salem, A.M. El-Tahan and S.F. AbuQamar. 2022. Phytoche mical control of poultry coccidiosis: a review. Poult Sci 101:
- Ncube, S., T.E. Halimani, M. Mwale and P. T. Saidi. 2017. Effect of Acacia angustissima leaf meal on the physiology of broiler intestines. J. Agric. Sci. 9:53-57.
- Nicholson, J. K. E. Holmes, J. Kinross, R. Burcelin, G. Gibson, W. Jia, and S. Petterson. 2012. Host-gut microbiota metabolic interactions. Science 336: 1262-1267.
- NRC. 1994. "Nutrient Requirement of Poultry," 9th/Ed. National Academy Press, Washington, DC. USA.
- Nwaopara, A., M. Odike, U. Inegbenebor and Adoye, M. 2007. The combined effects of excessive consumption of ginger, clove, red pepper and black pepper on the histology of the liver. Pak. J. Nutr. 6:524-527.
- Ogwuegbu, M. C., C. E. Oyeagu, H.O. Edeh, C.E. Dim, A.O. Ani and F.B. Lewu. 2021. Effects of sodium butyrate and rosemary leaf meal on general performance, carcass traits, organ sizes and nutrient digestibility of broiler chickens. IJAS. 11: 365-379.
- Ogwuegbu, M. C. I. E. Uzochukwu, E.G. Ukah, Obey, C.O. U. Okpanachi and

- D.M.N. Mthiyane. 2023. Dietary clove (*Syzygium aromaticum*) powder enhanced broiler chicken growth performance, carcass characteristics, nutrient digestibility, gut histomorphometry and health-associated whilst decreasing pathogenic microbiota. Preprint, Research Square.
- Othman, S.M., K.M. Ben Nase, A.H. Kanoun, A.A. Salim, B.M. Sherif, A.A. Asheg. 2022. Effect of adding clove bud powder in feed on performance and jejunum morphology in broiler chickens. Open. Open. Vet. J. 12:995-999.
- RStudio, T. 2020. RStudio: Integrated development environment for R. RStudio , PBC, Boston, Ma URL http://www.rstudio.com/.
- SAS, S. 2002. STAT user's guide statistics. Cary, NC: SAS Institute Inc.
- Suliman, G.M., A. N. Alowaimer, S.I. Al-Mufarrej, E. O. S. Hussein, E.H. Fazea, M. A. E. Naiel, R. A. Alhotan, and A. A. Swelum. 2021. The effect of clove (*Syzygium aromaticum*) dietary administrati on on carcass characteristics, meat quality, a nd sensory attributes of broiler chickens. Po ult. Sci. 100:100904.

- Taheri Gandomani, V., A.H. Mahdavi, H.R. Rahmani, A. Riasi and E. Jahanian. 2014. Effects of different levels of clove bud (*Syzygium aromaticum*) on performance, intestinal microbial colonization, jejunal, jejunal morphology, and immuno competence of laying hens fed different n-6 to n-3 ratios. Livest. Sci. 167:236-248.10.
- Thuekeaw, S., K. Angkanaporn and C. Nuengja mnong C. 2022. Microencapsulated basil oil (*Ocimum basilicum Linn*.) enhances growth performance, intestinal morphology, and antioxidant capacity of broiler chickens in the tropics. Anim. Biosci. 35:752-762.
- Velisek, J., Z. Svobodova, V. Piackova, L. Groch and L. Nepejchalova. 2005. Effects of clove oil anaesthesia on common carp (*Cyprinus carpio L.*). Veterinární medicína 50: 269-275.
- Yu WanWen, Y. W., Z. X. Zhang XuHui, H. Ahmad, Z.L. Zhao LinGuo, W.T. Wang Tian and C. F. Cao FuLiang. 2015. Intestinal absorption function of broiler chicks supplemented with Ginkgo leaves fermented with Bacillus species. Pak. J. Zool. 47:479-490.