VIRULANCE FACTOR OF Staphylococcus sp. ISOLATED FROM SUBCLINICAL MASTITIS IN ETTAWA GRADE GOAT'S MILK IN SLEMAN REGENCY -YOGYAKARTA

W. Suwito¹, W. S. Nugroho², A.E.T.H. Wahyun² and B. Sumiarto²

¹Assessment Institutes for Agricultural Technology of Yogyakarta
Jl. Stadion Baru Maguwoharjo No. 22, Karang Sari, Wedomartani, Ngemplak, Sleman, Yogyakarta - Indonesia
²Faculty of Veterinary Medicine, Gadjah Mada University, Jl. Fauna No. 2, Bulaksumur Yogyakarta 55281 - Indonesia
Corresponding E-mail: widodo.suwito@yahoo.com

Received January 12, 2014; Accepted February 27, 2014

ABSTRAK

Kata kunci: faktor virulensi, identifikasi, Staphylococcus sp.

ABSTRACT

Staphylococcus sp., is bacteria that caused subclinical mastitis in Ettawa Grade (EG) goat. The purpose of this study was to determine virulence factor Staphylococcus sp., which was isolated from subclinical mastitis EG goat’s milk in Sleman regency, Yogyakarta. A total of 7 isolate Staphylococcus sp., were isolated from subclinical mastitis EG goat’s milk were determined by several virulence factors such as haemolysin, clumping factor, and coagulase. Haemolysin was determined by culture in blood agar plate and incubated in the temperature of 37°C for 24 hours. Clumping factor was determined by mixing the rabbit plasma with Staphylococcus sp., in the glass objects. Coagulase was determined by mixing the rabbit plasma and broth culture of Staphylococcus sp. After incubated in the temperature of 37°C for 24 hours in tube, then the gel formation was observed. Haemolytic type ß was yielded from 5 isolate Staphylococcus sp., whereas 2 isolates were not haemolytic. Clumping factor and coagulase were produced from 2 isolate Staphylococcus sp. This study showed that not all of Staphylococcus sp., isolate causing subclinical mastitis in EG goat have virulence factor.

Keywords: virulence factor, identification, Staphylococcus sp.

INTRODUCTION

Sleman Regency is one of areas rearing Ettawa Grade (EG) goat. In addition to its milk, EG goat is reared for hobbies. Recently, people consume goat milk for therapeutic purpose and strengthening their vitality. Therefore, the demand of goat milk in Sleman increases. However, subclinical mastitis still the obstacle due to its ability to reduce milk production. Subclinical mastitis reduces the production of goat milk for about 37% (Fthenakis and Jones, 1990). Koop et
al. (2010) stated that subclinical mastitis in goat results in economic loss because milk production decreases until 60%.

Subclinical mastitis is an inflammation found in the udder with no clinical symptoms. Subclinical mastitis is characterized by the increasing number of total somatic cell in milk without inflammation of the udder, and when tested by using California Mastitis Test (CMT), agglutination occurs (Marogna et al., 2012). The average of prevalence of subclinical mastitis found in goat ranch was approximately 20% to 35% (Contreras et al., 2003). In 2007, Contreras et al., (2007) reported that the prevalence of subclinical mastitis in goat was approximately 5% - 30%, and staphylococci negative coagulase was the dominant agent. Prevalence of staphylococci negative coagulase in goat with subclinical mastitis was approximately 44.7% to 95.9% (Contreras et al., 2007; White and Hinckley, 1999). In Israel, the prevalence of subclinical mastitis in goat was 35% to 71% with negative coagulase of S. aureus as the dominant agent (Leitner et al., 2004). Report of Suwito et al. (2012) showed that subclinical mastitis in EG goat from Sleman district was 35% resulted from *Staphylococcus sp*.

Virulence factor *Staphylococcus sp.*, plays the important role in the pathogenesis of subclinical mastitis in goat. *Staphylococcus sp.*, has several virulance factors such as surface type antigen, degradation enzym, enterotoxin, leucocidin, and haemolysin (Peacock et al., 2002). Clumping factor is one of virulance factors surface antigen from *Staphylococcus sp*. Clumping factor and coagulase are capable of forming coagulation of rabbit plasma, but the reaction mechanism is different. In addition to clumping factor and coagulase, haemolytic also serves as important virulance factor as it performs haemolytic erythrocytes. *Staphylococcus sp.*, produces two haemolytic factors, namely α and β. Haemolytic type α is produced from 20% to 50%, whereas haemolytic type β is approximately 75% to100% (Dinges et al., 2000).

The purpose of this study was to determine virulance factor *Staphylococcus sp.*, from subclinical mastitis EG goat’s milk.

MATERIALS AND METHODS

Research Materials

The materials were 7 isolates of *Staphylococcus sp.* which were isolated from subclinical mastitis EG goat milk in Sleman regency.

Re-identification of Staphylococcus sp

Re-identification *Staphylococcus sp.*, was performed by observing the morphology of the colony in the blood agar plates (BAP) (BAP: Oxoid Ltd., Basingstoke, UK), Gram staining, catalase test, coagulase test, and mannitol fermentation test (Green et al., 2004).

Haemolytic Test

The ability of *Staphylococcus sp.*, in the haemolytic factor was tested by culturing in the blood agar plate (BAP) (BAP: Oxoid Ltd., Basingstoke, United Kingdom) and then incubated at 37°C for 24 hours. Types of haemolytic were classified into three categories, those were α, β, and non haemolytic (Barrow and Feltham, 1993).

Clumping Factor

Detection of clumping factor was determined by slide agglutination test. One colony of *Staphylococcus sp.*, was taken from BAP media using sterile Ose, and mixed with aquades sterile until homogen suspension *Staphylococcus sp.*. These suspension of *Staphylococcus sp.* were added with two drops of rabbit plasma stirred by a sterile toothpick and observed the occurrence of the agglutination. Clumping factor positive occurs when the agglutination may be formed from the suspension of *Staphylococcus sp.*, and rabbit plasma. It would be negative if suspension of *Staphylococcus sp.*, remains homogen (Barrow and Feltham, 1993).

Coagulase

The presence of enzym coagulase was detected by tube coagulation test. Culture of *Staphylococcus sp.* in 5 ml brain heart infusion medium (BHI; Oxoid Ltd., Basingstoke, UK) was incubated in 37°C for 24 h and then mixed with rabbit plasma in tube reaction with same volume and put in a water bath with a temperature of 37°C. The formation gel was observed in 15 min, 30 min, and 60 min. Positive coagulase will be found if the suspension of *Staphylococcus sp.* and rabbit plasma forms gel, but the coagulase will consider negative if this mixing remains homogen (Barrow and Feltham, 1993).

Data Analysis

Virulance factor *Staphylococci* data was
analyzed descriptively (Gomez and Gomez, 1984).

RESULTS AND DISCUSSION

Re-identification of 7 Staphylococcus sp., isolate were presented in Table 1. The 7 isolates Staphylococcus sp., was identified as S. intermedius (3 isolates), S. hyicus (2 isolates), S. aureus (1 isolate) and S. epidermidis (1 isolate). Contreras et al. (1995) reported that 49 isolates of Staphylococcus sp., were isolated from subclinical mastitis goat consisted of S. caprae was 22%, S. epidermidis was 20%, S. chromogenes was 12%, and S. aureus was 6%. Similar research was also conducted by Sanchez et al. (1999) that subclinical mastitis in goats resulted from S. aureus was 19.7%, S. epidermidis was 12.7%, S. hyicus was 4.2%, while S. intermedius was negative.

Morphology of Staphylococcus sp., isolates was cocc (Figure 1A) and a positive catalase test

<table>
<thead>
<tr>
<th>Test</th>
<th>A: Staphylococcus aureus; C,D,G: Staphylococcus intermedius; E: Staphylococcus epidermidis; B&F: Staphylococcus hyicus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology</td>
<td>coccus</td>
</tr>
<tr>
<td>Catalase</td>
<td>+</td>
</tr>
<tr>
<td>Manitol</td>
<td>+</td>
</tr>
<tr>
<td>Voges-Proskauer (VP)</td>
<td>+</td>
</tr>
</tbody>
</table>
with oxygen bubble formation (Figure 1B). In the mannitol salt agar (MSA) medium (MSA; Oxoid Ltd., Basingstoke, UK), \textit{Staphylococcus sp}, had two kinds of mannitol fermentation in which yellow colony was mannitol fermentation and red colony was not mannitol fermentation. (Figure 1C). Mannitol is one of carbohydrate medium used to differentiate the biochemical properties among \textit{Staphylococcus sp}, isolate (Barrow and Feltham, 1993).

\textit{Staphylococcus aureus} and \textit{S. intermedius} have characteristic of fermented mannitol, whereas the others were not fermented mannitol. The result of voges-proskauer (vp) test was only positive in \textit{S. aureus} and \textit{S. epidermidis} (Figure 1D). The purpose of v-p test is to determine the ability of \textit{S. aureus} to produce acetyl methyl carbinol (acetoin) from glucose metabolism. \textit{Staphylococcus aureus} may produce acetoin as the result of glucose fermentation which differentiate it with other \textit{Staphylococcus sp} (Quinn et al., 2002).

Virulence factor from each \textit{Staphylococcus sp}, isolate is presented in Table 2. Table 2 shows that virulence factor of type β haemolytic may be found in most \textit{Staphylococcus sp}, isolated from subclinical mastitis EG goat’s milk. Dinges et al. (2000) stated that most \textit{Staphylococcus sp}, isolate had haemolytic type β about 75% to 100%. The type β haemolytic from \textit{S. aureus}, \textit{S. hyicus}, \textit{S. intermedius}, \textit{S. epidermidis} isolates are shown in Figure 2.

Haemolysin is virulence factor in \textit{Staphylococcus sp}, which works by performing haemolysis in red blood cells (Dinges et al., 2000). Haemolysin was not produced from any isolates of \textit{S. intermedius} and \textit{S. hyicus} (Table 2), so these isolates were less pathogen. Andresen (2005) reported that \textit{S. hyicus} isolated from pig with exudative epidermidis was pathogen with the exfoliative toxin, and so it was the \textit{S. hyicus} from mastitis cow in Japan. \textit{Staphylococcus hyicus} was grouped into two types, those were pathogens and less pathogens. The pathogen \textit{Staphylococcus hyicus} causes exudative epidermitis in pigs (Wegener et al., 1993).

Based on the Table 2, isolate A (\textit{S. aureus}) and E (\textit{S. epidermidis}) had virulence factors, clumping factor and coagulase. Positive clumping factor and coagulase are shown in Figures 2B and 2D. Clumping factor is type of surface antigen which plays important role in the process of attachment in the mammary gland epithelial cells (McDevitt et al., 1992).

Surface antigen consists of clumping factor A (ClfA), clumping factor B (ClfB), fibronectin protein A, protein collagen, elastin proteins, sialoprotein, protein A (IgG-binding protein), synthesis CP5 enzyme, synthesis CP8 enzyme, and intracellular adhesion protein A. \textit{Staphylococcus sp}, produces coagulase enzyme which can coagulate the rabbit plasma (Dinges et al., 2000). In \textit{Staphylococcus sp}, mechanism of clumping factor is similar to coagulase, but different in the pathogenesis. The role of coagulase in the infection endocarditis caused by \textit{S. aureus} is to facilitate procoagulant in the bonding activity with fibrinogen (Boden and Flok, 1989).

CONCLUSION

\textit{Staphylococcus aureus}, \textit{S. epidermidis}, \textit{S. intermedius}, and \textit{S. hyicus} from Ettawa Grade (EG) goat’s milk subclinical mastitis have virulence factor with haemolytic β, but \textit{S. aureus} and \textit{S. epidermidis} only have clumping factor and coagulase. The type β haemolytic from \textit{S. aureus}, \textit{S. hyicus}, \textit{S. intermedius}, \textit{S. epidermidis} isolates are shown in Figure 2.

Table 2. Virulence Factor \textit{Staphylococcus sp}. Isolated from Subclinical Mastitis of Ettawa Grade (EG) Goat in Sleman regency

<table>
<thead>
<tr>
<th>Virulence Factor</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemolytic</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>−</td>
<td>β</td>
<td>−</td>
<td>β</td>
</tr>
<tr>
<td>Clumping factor</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Coagulase</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

coagulase. Further research to examine the characterization of genotif Staphylococcus sp. from subclinical mastitis goat’s milk is essential to perform.

ACKNOWLEDGEMENTS

The authors are thankful to LPPM-UGM for funding via multidiciplinary research 2013 and technicians in Laboratory of Microbiology and Veterinary Public Health, Gadjah Mada University for their assistance during the study.

REFERENCES

\textit{Virulence of Staphylococcus sp from Subclinical Mastitis (W. Suwito et al.)}