EFFECT OF FERMENTED Sauropus androgynus LEAVES ON BLOOD LIPID FRACTION AND HAEMATOLOGICAL PROFILE IN BROILER CHICKENS

U. Santoso, Y. Fenita and Kususiyah
Faculty of Agriculture, Bengkulu University,
Jalan Raya W.R. Supratman, Kandang Limun, Bengkulu 38371A - Indonesia
Corresponding E-mail: uripsantoso60@gmail.com

Received September 25, 2015; Accepted November 21, 2015

ABSTRACT

This study was conducted to evaluate effect of fermented Sauropus androgynus leaves on blood lipid fractions and haematological profiles in broilers. One hundred and twelve broilers were distributed to 7 treatment groups. One group was fed diets without Sauropus androgynus leaves as the control, and other six groups were fed Sauropus androgynus leaves fermented by Neurospora crassa, Lactobacillus sp. or Saccharomyces cerevisiae at level of 25 g/kg or 50 g/kg diet. Experimental results showed that the treatments had no effect on cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c) and atherogenic index, very low-density lipoprotein cholesterol (VLDL-c) and triglyceride concentration (P>0.05). It was shown that fermented Sauropus androgynus leaves significantly affected red blood count (RBC), white blood count (WBC), packed cell volume (PCV), trombosit dan erythrocyte sedimentation rate (ESR) (P<0.05), tetapi tidak berpengaruh pada hemoglobin, mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), dan mean corpuscular volume (MCV). It was concluded that Sauropus androgynus leaves fermented by Neurospora crassa increased trombocyte number. Fermented Sauropus androgynus leaves had no beneficial effect on lowering blood triglyceride and cholesterol concentrations, and atherogenic index in broilers.

Kata kunci: daun katuk fermentasi, fraksi lipid, profil hematologis, ayam broiler
broiler chickens. Feeding 50 g EM4 fermented *Sauropus androgynus* leaves per kg diet might be toxic for broiler chickens.

Keywords: fermented *Sauropus androgynus*, lipid fractions, haematological profiles, broilers

INTRODUCTION

Rapid increases in the body weight was accompanied by a higher abdominal fat and carcass fat in broiler chickens. This excess fat accumulation was a waste of energy for poultry producers and consumers (Musa et al., 2006). Therefore, the selection of lean breed of broiler chicks become an important value in recent years. However, measuring abdominal fat and carcass fat content for selecting lean broiler chicks required slaughtering broiler and fat analysis which require many facilities and high cost. Therefore, it is required a simple method to predict those values. Experimental results showed that lipid concentration in serum was a good parameter to predict lipid content in animals. Musa et al. (2007) reported that abdominal fat was positively correlated with triglycerides, very low-density lipoprotein (VLDL), and low-density lipoprotein (LDL), and negatively correlated with cholesterol and high-density lipoprotein (HDL) in chickens.

On the other hand, experimental results showed that there is correlation between concentration of blood fat such as cholesterol with the risk of atherosclerosis, heart coronary, stroke and other metabolic diseases (Willett, 2012). This phenomenon could be minimized by feed additive supplementation. *Sauropus androgynus* leaves were rich in linolenic acid (31.75%), palmitic acid (12.14%), chlorophyll (9.33%), benzoic acid (8.58%) and alkaloid (7.2%) (Samad et al., 2014) which might be benefit for reducing lipid fractions concentration. Previous study showed that *Sauropus androgynus* leaves reduced serum cholesterol (Santoso et al., 2010). In addition, it has been shown that *Sauropus androgynus* leaves and its extract reduced fat contents of meat and egg (Santoso et al., 2005; Subekti, 2007). However, the reduction of fat contents in broiler chicks was still under 25% which was still not economic significant in industries (Santoso et al., 2005). Furthermore, *Sauropus androgynus* leaves tended to lower body weight gain (Santoso and Sartini, 2001). This will decrease the profit of broiler industries because in Indonesia the price of broiler meat is still based on body weight rather than carcass quality.

Sauropus androgynus leaves contained antinutritions such as oxalate, saponin, tannin, oligosacharide and inhibit calcium absorption (Santoso, 2014), and caused lung abnormality (Hasyimoto et al., 2013).

To improve the value of *Sauropus androgynus* leaves, they could be fermented. Fermentation had an important role in improvement of nutritional and functional properties of foods. Cleavage of food proteins by microbial or indigenous proteases yields the bioactive peptides, leading to substantial increases in the biological properties of the food (Steinkraus, 2002). Moreover, fermented food products are a good source of peptides and amino acids (Rajapakse et al., 2005). Fermentation increased nutritional values and feed utilization in poultry, and protein and soluble protein, and converted protein to peptide and amino acid (Susil, 2012), increased nutrient digestibility (Chiang et al., 2010), increased the activity of trypsin, lipase, and protease (Feng et al., 2007), improved amino acid balance (Ali et al., 2012; Susil, 2012), reduced crude fiber and reduced antinutritios such as trypsin inhibitor (Ali et al., 2012), tannin (Olaniyi dan Mehdizadeh, 2013) and phytic acid (Ali et al., 2012; Olagunju dan Ifesan, 2013), phenol, phytin phosphorus and oxalate (Olagunju dan Ifesan, 2013), saponin (Olaniyi dan Mehdizadeh, 2013), and alkaloid (Shu et al., 2010). Fermentation by *Lactobacillus* or *Saccharomyces cerevisiae* (Dordevic et al., 2010) and *Bacillus subtilis* (Juan dan Chou, 2010) increased antioxidant properties. Experimental results also showed that fermentation increased mineral availability. Furthermore, there is no study of fermented *Sauropus androgynus* leaves influence on haematological profiles in broiler chickens.

The present study was conducted to evaluate effect of fermented *Sauropus androgynus* leaves on blood lipid fractions and haematological profiles in broiler chickens. It was hypothesized that feeding fermented *Sauropus androgynus* leaves reduced blood cholesterol, triglyceride and LDL but increased HDL concentration, whereas haematological profiles were also improved.
MATERIALS AND METHODS

Animals
One hundred and twelve broiler chicks were obtained from commercial hatchery, and all feedstuffs were purchased from commercial plants. Chemicals used for analysis were of analytical grade. The experimental diets contained protein 19% and Metabolizable Energy (ME) 3,150 kcal/kg. The composition of experimental diet was published elsewhere (Santoso et al., 2015). From 1 to 14 days of age, supplemental heat was provided. Broiler chickens were maintained on the floor in a house under continuous lighting.

Fermented Sauropus androgynus Treatments
At 15 days of age, one hundred and twelve broiler chicks were selected and distributed to 7 treatment groups with 4 replicates of 4 broiler chicks each as follows: 1) Broiler were fed diets without Sauropus androgynus leaves as the control (P0); 2) Broilers were fed diets contained 25 g Sauropus androgynus leaves fermented by Neurospora crassa/kg diet (P1); 3) Broilers were fed diets contained 50 g Sauropus androgynus leaves fermented by Neurospora crassa/kg diet (P2); 4) Broilers were fed diets contained 25 g Sauropus androgynus leaves fermented by Lactobacillus sp (EM4)/kg diet (P3); 5) Broilers were fed diets with 50 g Sauropus androgynus leaves fermented by Lactobacillus sp (EM4)/kg diet (P4); 6) Broilers were fed diets contained 25 g Sauropus androgynus leaves fermented by Saccharomyces cerevisiae/kg diet (P5); 7) Broilers were fed diets contained 50 g Sauropus androgynus leaves fermented by Saccharomyces cerevisiae/kg diet (P6).

Feed and water were provided ad libitum. Broiler chickens were weighed individually on a weekly basis, and feed consumption was recorded daily.

Sampling and Data Analysis
At the end of experiment (35 days of age), 4 broiler chickens in each treatment group were selected and blood samples were collected by puncturing wing vein using 3 ml syringe and collected to bottles without anticoagulant agent. Immediately after blood collection, the sample bottles were gently shaken to prevent lysing of the blood (Ekeh et al., 2010).

The packed cell volume (PVC) was determined by the micro haematocrit method (Coles, 1986). The haemoglobin concentration was determined using the cyanmethemoglobin method while the erythrocyte (red blood count, RBC) was carried out using the haemocytometer method (Schalm et al., 1975). The thrombocyte count was determined using the Ress–Ecker method (Brown, 1976) and the total leucocyte (white blood count, WBC) was determined using haemocytometer method (Schalm et al., 1975) while the differential leucocyte count was determined using the Leishman technique (Coles, 1986).

To obtain the plasma, blood samples were collected to bottle with anticoagulant agent, and centrifuged at 3000 rpm. Blood serum obtained were then analyzed for triglyceride, cholesterol, high-density lipoprotein cholesterol (HDL-c) and low-density lipoprotein cholesterol (LDL-c).

Total cholesterol and LDL-c were determined by the method of Kulkami (2006) and triglyceride concentrations were determined by the method of Fossati and Prencipe (1982). Very low-density lipoprotein cholesterol (VLDL-c) was calculated by the following equation:

\[VLDL-c = \text{cholesterol} - (\text{HDL-c} + \text{LDL-c}) \]

In order to predict the risk of atherosclerosis occurrences, atherogenic index was calculated by the equation:

\[\text{Atherogenic index} = \frac{(\text{Total cholesterol} - \text{HDL-c})}{\text{HDL-c}} \]

Internal organs (liver, heart, pancreas, intestine, gizzard, spleen) were removed and weighed, and then calculated by the equation:

\[\text{Internal organ} \% = \frac{\text{internal organ weight/live weight}}{100} \]

Toxicity score was calculated by the equation:

\[\text{Toxicity} \% = \frac{\text{liver + spleen weights/live weight}}{100} \]

Statistical Analysis
All data were subjected to analysis of variance (Toutenburg and Shalabh, 2009) and if it was significantly different it was further tested by Duncan’s multiple range test.

RESULTS AND DISCUSSION

Lipid Fraction Concentrations
Experimental results showed that the treatments had no effect on blood cholesterol, HDL-c, LDL-c, atherogenic index, VLDL-c and triglyceride concentration (P>0.05) as shown in
Table 1. Lipid Fraction Concentration in Plasma of Broiler Chickens

<table>
<thead>
<tr>
<th></th>
<th>P0</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol</td>
<td>113.8</td>
<td>118.5</td>
<td>116.5</td>
<td>114.5</td>
<td>123.3</td>
<td>114.0</td>
<td>126.3</td>
<td>15.1 ns</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>18.0 a</td>
<td>26.0</td>
<td>39.8</td>
<td>26.8</td>
<td>21.8</td>
<td>23.8</td>
<td>28.3</td>
<td>15.7 ns</td>
</tr>
<tr>
<td>HDL-c</td>
<td>70.5</td>
<td>68.8</td>
<td>70.3</td>
<td>66.0</td>
<td>69.5</td>
<td>67.3</td>
<td>74.3</td>
<td>9.0 ns</td>
</tr>
<tr>
<td>LDL-c</td>
<td>39.3</td>
<td>42.8</td>
<td>38.0</td>
<td>42.8</td>
<td>48.8</td>
<td>40.3</td>
<td>45.8</td>
<td>9.0 ns</td>
</tr>
<tr>
<td>VLDL-c</td>
<td>4.0</td>
<td>6.9</td>
<td>8.2</td>
<td>5.7</td>
<td>5.0</td>
<td>6.4</td>
<td>6.2</td>
<td>3.5 ns</td>
</tr>
<tr>
<td>Atherogenic index</td>
<td>0.61</td>
<td>0.72</td>
<td>0.66</td>
<td>0.73</td>
<td>0.77</td>
<td>0.69</td>
<td>0.70</td>
<td>0.11 ns</td>
</tr>
</tbody>
</table>

P0= control; P1= diets with 2.5% Sauropus androgynus leaves fermented by Neurospora crassa; P2= diets with 5% Sauropus androgynus leaves fermented by Neurospora crassa; P3= diets with 2.5% Sauropus androgynus leaves fermented by Lactobacillus sp (EM4); P4= diets with 5% Sauropus androgynus leaves fermented by Lactobacillus sp (EM4); P5= diets with 2.5% Sauropus androgynus leaves fermented by Saccharomyces cerevisiae; P6= diets with 5% Sauropus androgynus leaves fermented by Saccharomyces cerevisiae.

Table 1. This finding did not agree with the observation of Kamalia et al. (2014) who found that supplementation of Sauropus androgynus leaves at level 1-3% in broiler chicken diets increased HDL-c and tended to decrease LDL-c. It was unknown why fermentation did not change blood lipid fractions of broiler chickens. Although fermented Sauropus androgynus did not reduce LDL-c and cholesterol it might still be benefit for broiler chickens, because Sauropus androgynus leaves had a high level of antioxidant and anti-inflammatory activities (Madhu et al., 2014). This antioxidant property of these leaves would inhibit LDL-c oxidation and therefore it might inhibit atherosclerotic lesion development (Koyama et al., 2006).

The present study was in contrary with the observation Kamalia et al. (2014), Zain (2011) and Santoso et al. (2005) who reported that supplementation of unfermented Sauropus androgynus leaves extract reduced total cholesterol, triglyceride, and LDL-c but increased HDL-c concentrations in serum of broiler chickens. Fermentation might reduce anti nutritions such as tannin and saponin (Olaniyi dan Mehdizadeh, 2013), and alkaloid (Shu et al., 2010). It was known that these compounds had antilipid properties (Afrose et al., 2010; Santoso et al., 2010). Therefore, no beneficial effect of fermented Sauropus androgynus leaves might partly be caused by the reduction of these antilipid compounds.

Various studies showed that lipid fraction concentration of broilers varied. Triglyceride, cholesterol, HDL-c, LDL-c and VLDL-c ranged from 19.09 to < 150 mg/dL, 52-157.8 mg/dL, >22-118.15 mg/dL, 35.56-<130 mg/dL, and 3.82-24.06, respectively (Basmacioglu and Ergul, 2005; Musa et al., 2007; Prasad et al., 2009; Daneshyar et al., 2011). It appeared that age and strain of broiler chickens affected lipid fraction concentrations. This study, therefore, showed that lipid fraction concentrations in the plasma of broiler chickens were still in normal range.

Haematological Profile

Table 2 presents haematological profile of broiler chickens. Results showed that fermented Sauropus androgynus leaves significantly affected red blood count (RBC), white blood count (WBC), PCV, erythrocyte sedimentation rate (ESR) and thrombocyte (P<0.05), but it had no effect on haemoglobin (Hb), MCH, MCV and MCHC (P>0.05). WBC was higher in P4 as compared to other treatment groups. Although it was not significantly different, Hb in P2, P3, P5 and P6 tended to be increased as compared to P0. PCV of P3 was higher than P0, P1, P2 and P4, whereas RBC of P3 was higher than P1 (P<0.05) but not significant with other treatment groups. ESR of P1 was the highest, whereas thrombocyte was higher in P1 and P2 as compared with P0, P4 and P6 (P<0.05).

Higher thrombocyte in Neurospora crassa fermented Sauropus androgynus leaves – but still in normal range – indicated that immunity system
was improved. Thrombocytes were found to phagocytose bacteria. Furthermore, oxidative burst activity was generated upon challenge of thrombocytes with various *Salmonella* strains, *E. coli*, three other bacterial species, and zymosan A (Wigley et al., 1999). Therefore, thrombocytes might play an important role in innate immunity to bacteria in the chicken (Farzana, 2014; Wigley et al., 1999).

Suprayogi et al. (2007) found that fermented *Sauropus androgynus* leaves extract tended to increase RBC, PCV, Hb and WBC. Furthermore, they stated that papaverine and polyunsaturated fatty acids contained in *Sauropus androgynus* leaves may be as precursors in the eicosanoids biosynthesis such as prostaglandin, prostacycline, thromboxane, lipoxines dan leukotrienes. Adesua and Onibi (2014) reported that inclusion of fermented wheat bran to broiler diets did not change PCV, Hb and RBC, whereas Adeyemi et

Table 2. Haematological Profile of Broiler Chickens

<table>
<thead>
<tr>
<th></th>
<th>P0</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC (x 10⁶/mm³)</td>
<td>2.63a</td>
<td>2.40b</td>
<td>2.61ab</td>
<td>2.85a</td>
<td>2.56ab</td>
<td>2.74ab</td>
<td>2.72ab</td>
<td>0.16*</td>
</tr>
<tr>
<td>WBC (x 10⁹/mm³)</td>
<td>26.55b</td>
<td>25.63b</td>
<td>26.54b</td>
<td>27.12b</td>
<td>36.06a</td>
<td>27.00b</td>
<td>27.10b</td>
<td>1.0*</td>
</tr>
<tr>
<td>Lymphocite, %</td>
<td>96.0</td>
<td>97.0</td>
<td>96.0</td>
<td>96.0</td>
<td>93.0</td>
<td>96.0</td>
<td>96.0</td>
<td>2.8ns</td>
</tr>
<tr>
<td>Thrombocyte, (x 10³/mm³)</td>
<td>2.25b</td>
<td>5.25a</td>
<td>6.25a</td>
<td>3.75ab</td>
<td>2.25b</td>
<td>3.50ab</td>
<td>2.0b</td>
<td>1.6*</td>
</tr>
<tr>
<td>PCV, %</td>
<td>33.75b</td>
<td>32.25b</td>
<td>33.00b</td>
<td>37.75a</td>
<td>32.75b</td>
<td>35.25ab</td>
<td>34.75ab</td>
<td>1.5*</td>
</tr>
<tr>
<td>Haemoglobin, g/ml</td>
<td>10.4</td>
<td>9.88</td>
<td>10.48</td>
<td>11.95</td>
<td>9.95</td>
<td>11.13</td>
<td>10.83</td>
<td>2.0ns</td>
</tr>
<tr>
<td>MCH, pg</td>
<td>39.25</td>
<td>40.75</td>
<td>39.75</td>
<td>41.75</td>
<td>38.5</td>
<td>40.0</td>
<td>39.5</td>
<td>2.0ns</td>
</tr>
<tr>
<td>MCV, fl</td>
<td>129.00</td>
<td>135.50</td>
<td>128.75</td>
<td>133.75</td>
<td>129.25</td>
<td>129.25</td>
<td>128.75</td>
<td>4.8ns</td>
</tr>
<tr>
<td>MCHC, %</td>
<td>30.0</td>
<td>30.0</td>
<td>30.5</td>
<td>31.0</td>
<td>29.75</td>
<td>30.75</td>
<td>30.25</td>
<td>0.9ns</td>
</tr>
<tr>
<td>ESR, mm/hour</td>
<td>3.25c</td>
<td>8.25a</td>
<td>3.25c</td>
<td>4.0c</td>
<td>5.0b</td>
<td>5.0b</td>
<td>4.5ab</td>
<td>1.5*</td>
</tr>
</tbody>
</table>

Note: see Table 1.

Table 3. Internal Organ Weights in Broiler Chickens

<table>
<thead>
<tr>
<th></th>
<th>P0</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>2.14</td>
<td>2.08</td>
<td>2.20</td>
<td>2.28</td>
<td>2.85</td>
<td>2.13</td>
<td>2.18</td>
<td>0.45ns</td>
</tr>
<tr>
<td>Heart</td>
<td>0.40</td>
<td>0.35</td>
<td>0.41</td>
<td>0.39</td>
<td>0.46</td>
<td>0.37</td>
<td>0.36</td>
<td>0.08ns</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.14</td>
<td>0.17</td>
<td>0.15</td>
<td>0.15</td>
<td>0.19</td>
<td>0.10</td>
<td>0.12</td>
<td>0.06ns</td>
</tr>
<tr>
<td>Intestine</td>
<td>3.27</td>
<td>2.86</td>
<td>3.18</td>
<td>3.28</td>
<td>3.86</td>
<td>3.13</td>
<td>3.12</td>
<td>0.49ns</td>
</tr>
<tr>
<td>Gizzard</td>
<td>1.83</td>
<td>1.93</td>
<td>2.06</td>
<td>2.03</td>
<td>2.21</td>
<td>1.84</td>
<td>1.78</td>
<td>0.24ns</td>
</tr>
<tr>
<td>Pankreas</td>
<td>0.29</td>
<td>0.30</td>
<td>0.33</td>
<td>0.26</td>
<td>0.45</td>
<td>0.28</td>
<td>0.30</td>
<td>0.08ns</td>
</tr>
<tr>
<td>Toxicity</td>
<td>2.27b</td>
<td>2.25b</td>
<td>2.36b</td>
<td>2.43b</td>
<td>3.04a</td>
<td>2.23b</td>
<td>2.30b</td>
<td>0.47*</td>
</tr>
<tr>
<td>Mortality</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note: see Table 1.
al. (2008) showed no change in PCV, RBC and Hb was observed with a decreased in WBC. A higher WBC in P4 might relate to toxicity indication. This prediction was supported by higher toxicity score, mortality and the tendency of higher liver and spleen weight.

An increase in ESR of P1, P4 and P5 might be the result of increase tendency in serum LDL concentration (Khan and Zafar, 2005), as this lipoprotein got coated on the surface of RBC therefore increasing its ESR.

The average number of RBC in chicken range from 2.0×10^6 to 3.5×10^6/mm3 (Onibi et al., 2011; Swenson, 1984; Smith and Mangkoewidjojo, 1988). Normal value of hemoglobin in chicken range from 6.5-13.0 g/mL (Onibi et al., 2011; Orawan and Aengwanich, 2007; Swenson, 1984), PCV range from 22-43% (Onibi et al., 2011; Orawan and Aengwanich, 2007; Smith and Mangkoewidjojo, 1988), WBC range from 11.4-30 x 10^3/mm3 (Swenson, 1984; Orawan and Aengwanich, 2007); lymphocyte range from 24-84% (Smith and Mangkoewidjojo, 1988; Orawan and Aengwanich, 2007); thrombocyte range from 3-33 x 10^9/l (Smith and Mangkoewidjojo, 1988), erythrocyte sedimentation rate (ESR) range from 3.0-12 mm per hour, MCV 132.21 fl (Orawan and Aengwanich, 2007), MCH 33.0-47.0 pg (Orawan and Aengwanich, 2007) and MCHC 26.35 (Orawan and Aengwanich, 2007). Based on the above data it was concluded that the haematological profiles of broiler chickens in this study were still in normal range.

Internal Organ Weights and Toxicity Score

Experimental results showed that fermented Sauropus androgynus leaves had no effect on liver, heart, spleen, intestine, gizzard, and pankreas (P>0.05), whereas toxicity was significantly different (P<0.05) as shown in Table 3. Toxicity was higher in P4 than P0, P1, P2, P3, P5 and P6. Although it was not significantly different P4 had the highest internal organ weight including liver and spleen. It appear that feeding 50 g EM4 fermented Sauropus androgynus leaves/kg diet had higher PCV and RBC, whereas broiler chicken fed 50 g EM4 fermented Sauropus androgynus leaves/kg diet had higher WBC. Feeding 50 g EM4 fermented Sauropus androgynus leaves/kg diet might be toxic for broiler chickens.

CONCLUSION

Fermented Sauropus androgynus leaves had no beneficial effect on lowering cholesterol and triglyceride concentrations, and atherogenic index. Although fermented Sauropus androgynus did not reduce plasma LDL-c and cholesterol concentrations it might still be beneficial for broiler chickens, because a high level of antioxidant and anti-inflammatory activities in Sauropus androgynus leaves might inhibit LDL-c oxidation and therefore it might inhibit atherosclerotic lesion development. Neurospora crassa fermented Sauropus androgynus leaves increased the number of thrombocyte. Broiler chicken fed 25 g EM4 fermented Sauropus androgynus leaves/kg diet had higher PCV and RBC, whereas broiler chicken fed 50 g EM4 fermented Sauropus androgynus leaves/kg diet had higher WBC. Feeding 50 g EM4 fermented Sauropus androgynus leaves/kg diet might be toxic for broiler chickens.

ACKNOWLEDGMENTS

The present experiment was supported by Directorate General Higher Education, Ministry of Research, Technology and Higher Education under contract number: 349/UN30/15/LT/2015. The authors also thank to LPPM Universitas Bengkulu which supported this research.

REFERENCES

Ari, M. M., B. A. Ayanwale, T. Z. Adama and E. A. Olatunji. 2012. Effects of different fermentation methods on the proximate composition, amino acid profile and some...

OLAGUNJU, A. I. and B. O. T. Ilesan. 2013. Changes in nutrient and antinutritional contents of

Fermented Sauropus androgynus and Blood Profile (U. Santoso et al.)

Phagocytic and oxidative burst activity of chicken thrombocytes to *Salmonella, Escherichia coli* and other bacteria. Avian Pathol. 28:567-572.