
Jurnal Masyarakat Informatika, 15(1), 2024
DOI:10.14710/jmasif.15.1.62835

ISSN: 2777-0648

Received: 25 March 2024; Revised: 9 May 2024; Accepted: 13 May 2024; Published: 31 May 2024.

© 2024 The author(s). Published by Department of Informatics, Universitas Diponegoro.

This is an open access article under the CC-BY-SA licence.

Hybrid ERC20 Ethereum Blockchain Multisignature Wallet 3of3 with

Withdrawal Pattern, External Effects, and Mutex as Single Key and

Reentrancy Mitigation.

Jason Al Hilal Sabda Dewa* , Indra Waspada, Priyo Sidik Sasongko

Department of Informatics, Universitas Diponegoro, Semarang, Indonesia

* Corresponding author: jasonalhilal@gmail.com

Abstract

In the rapidly evolving era of Decentralized Finance (DeFi), the convergence of Blockchain

technology with intermediary-free financial services has forged a revolutionary landscape. However,

this progress has been accompanied by critical challenges, notably the Single Key Risk and reentrancy

attack threats against ERC20 smart contracts in private Ethereum Blockchain. This research

formulated a proactive approach and implemented an innovative solution by embodying Reliable

Decentralized Finance through the deployment of a 3-of-3 Hybrid Multisignature Wallet system with

Withdrawal Pattern, External Effects, and Mutual Exclusion in the form of a Decentralized Application

(DApps). The system not only applied withdrawal patterns but also integrated external effects and the

principle of mutual exclusion to enhance the security of smart contracts. The system development

methodology was executed comprehensively using Agile Software Engineering, encompassing the

development of both smart contracts and external applications (decentralized applications). Testing

was conducted using Ganache EVM (Ethereum Virtual Machine) connected to the Hot Wallet

Metamask as an Externally Owned Account (EOA) for transaction signing. Valid results were obtained

from comprehensive testing against the system's functional requirements, affirming the system's

success in managing Single Key Risk and preventing reentrancy attacks, providing a reliable and

concrete solution.

Keywords : Decentralized Finance, Multi-Signature Wallet, Reentrancy Attack, Single Key Risk, Smart Contract

Security

1 Introduction

In the ever-evolving digital era, Blockchain technology has emerged as the backbone of

decentralized financial (DeFi) innovation. DeFi, a system free from traditional intermediaries, paves

the way for open and inclusive access to a myriad of financial services. Blockchain, as an immutable

digital ledger, offers unparalleled transparency and security through its consensus mining process to

verify each action within its domain [1]. In this landscape, Ethereum stands out as a trailblazer, being

the first platform to support smart contracts, thus enabling the development of decentralized

applications (dApps) within the DeFi ecosystem [2].

ERC20 smart contracts on Ethereum play a pivotal role in creating token interoperability and

laying a consistent foundation for crypto token-related services development [3]. With Blockchain’s

capability to provide unmatched security and immutability, ERC20 smart contracts ensure the integrity

https://doi.org/10.14710/jmasif.15.1.62835
https://creativecommons.org/licenses/by-sa/4.0/
https://crossmark.crossref.org/dialog?doi=10.14710/jmasif.15.1.62835&domain=pdf

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

15

and safety of crypto assets. However, the management of tokens within crypto wallets introduces a

single key risk, particularly when dealing with ERC20 smart contract withdrawals.

Addressing these vulnerabilities necessitates a more sophisticated security approach. The use of

a 3-of-3 multisignature (multisig) wallet emerges as a potential solution, where at least three private

keys are necessary to authorize a transaction [4]. This approach not only enhances security but also

minimizes the single key risk that could grant full access to digital assets. This mechanism ensures that

no single entity can unilaterally control the digital assets, creating a more secure environment for

managing and executing transactions [4]. Moreover, implementing a secure and verified withdrawal

pattern is crucial, with stringent verification requirements and comprehensive security checks to ensure

transaction integrity and reliability in the DeFi ecosystem.

By integrating a multisignature wallet with a withdrawal pattern, along with mechanisms to

handle external effects and mutual exclusions (mutex), DeFi can substantially improve the security of

digital asset management. Withdrawal patterns enforce a controlled and secure method for transferring

funds out of the wallet, ensuring that every transaction undergoes stringent verification and security

checks [5]. The handling of external effects, crucial for maintaining the integrity of transactions

affected by external state changes [5], and mutex for preventing reentrancy attacks, where an attacker

could potentially drain funds by recursively calling the withdrawal function, are fundamental to

safeguarding the assets within the DeFi ecosystem [5]. These measures offer additional protection

against potential risks, such as reentrancy attacks that could compromise the security of ERC20 smart

contract executions. Continuously developing and implementing innovative security solutions, the

DeFi ecosystem can build a more robust foundation for broader growth and acceptance in the future.

2 Literature Review

2.1 Related Research

A study conducted by Jongbeen Han, Mansub Song, Hyeonsang Eom, and Yongseok Son in

2021 entitled ‘An Efficient Multi-signature Wallet in Blockchain Using Bloom Filter’ proposed an

efficient multi-signature wallet for blockchain using the threshold elliptic curve digital signature

algorithm (T-ECDSA) and Bloom Filter [4]. The system successfully guarantees transaction integrity

as well as improves transaction validation efficiency and reduces transaction size without changing the

blockchain protocol. The wallet uses T-ECDSA to process multiple signatures as a single signature for

higher validation efficiency and uses Bloom filter to maintain privacy and reduce storage requirements

by effectively managing transaction participant data.

Another study conducted by Shahriar Ebrahimi, Parisa Hasanizadeh, Seyed Mohammad

Aghamirmohammadali, and Amirali Akbari in 2021, titled "Enhancing Cold Wallet Security with

Native Multi-Signature Schemes in Centralized Exchanges," found that the use of multi-signature

schemes in Cold Wallets could significantly improve asset data security by addressing the risk

associated with storing private keys on a single device [6]. Similar to the first study, this research also

aimed to enhance security in the management of digital assets on the blockchain, with a particular

focus on the implementation of multi-signature wallets in Cold Wallets.

Research [4] and [6] shows that using multi-signature wallets can improve the security of digital

wallets on the blockchain. Using multi-signature wallets can reduce the security risks associated with

storing private keys on a single device and maintain transaction integrity without changing the existing

blockchain protocol, making it more secure and efficient than conventional methods.

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

16

2.2 Blockchain

Blockchain is a decentralized database that employs independent nodes to store and retrieve data

[7]. This technology links data blocks sequentially in a distributed ledger. Each block contains various

content, including a "hash," which is a unique identifier of the block itself. The hash identifies and

connects this block to all other blocks, both preceding and succeeding it. Therefore, Blockchain can

be defined as a collection of blocks containing transaction data that are linked (chained) and arranged

in sequence. Blockchain can be regarded as a digital data storage system where every new or last block

is connected and contains the hash information (an alphanumeric code representing a word, message,

or data) from the previous block [8]. Figure 1 and Figure 2 show that each block refers to the previous

one and so on, forming a chain. Blockchain implements asymmetric cryptography to maintain the

security of users and the consistency of the ledger on a distributed network.

Figure 1 Illustration of Blockchain Consisting of Continuous Blocks

Figure 2 Block Structure in Blockchain [9]

An important aspect of Blockchain is its ability to maintain transparency while ensuring the

privacy of its users [8]. Through the use of public key cryptography, each user can have a uniquely

encrypted digital identity. Transactions conducted within the Blockchain are verified by the network

through a process known as mining, which permanently and irreversibly adds the transactions to the

public ledger as shown in Figure 3. This enables secure, anonymous transactions that are easily

verifiable by all users. This technology not only changes the way digital transactions are conducted

but also opens up potential for new applications in areas such as supply chain management, identity

authentication, and more.

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

17

Figure 3 Blockchain Structure

2.3 Smart Contract

Smart contracts, a key implementation of Blockchain technology, aim to establish consensus

among multiple parties based on the consensus mechanism used and are applied in the form of scripts

or code serving as business logic in Blockchain-based systems or applications [9]. Smart contracts can

be tailored to specific needs and actively utilized across any Blockchain platform like Ethereum, using

a programming language called Solidity. Designing smart contracts and executing transactions without

third-party involvement using Ether units on the Ethereum network should ideally enhance

transparency and trust in Blockchain applications for users.

Figure 4 Scheme of Ethereum Network Operation

The application of Blockchain architecture to Ethereum involves various interacting components

working together to fulfill their functions. Figure 4 shows ethereum's components include the

Ethereum Virtual Machine (EVM), miners, blocks, mining, Ether, and gas [10]. The Blockchain

network consists of nodes owned by miners and some nodes assisting in executing smart contracts and

transactions. Smart contract execution and transaction processing occur on the Ethereum Virtual

Machine (EVM), a Turing-complete device operating on the Ethereum network. EVM serves as a

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

18

storage place for smart contracts, aiding Ethereum's expansion by encapsulating functionality or

business logic in Blockchain-based application development. Smart contracts are executed as part of

transactions and mining processes, with Ether serving as the cryptocurrency unit within the Ethereum

network for transactions and smart contract functions.

2.4 ERC20

ERC20 stands for Ethereum Request for Comment 20. ERC20 was the first standard proposed

by Ethereum in 2015 to regulate token creation on the Ethereum platform [11]. This standard defines

functions that must exist within smart contracts used to create tokens, allowing various tokens to

interoperate within the Ethereum ecosystem. Tokens following the ERC20 standard are the most

commonly found digital assets within the Ethereum network and play a significant role in Blockchain

projects, including Initial Coin Offerings (ICOs), Decentralized Finance (DeFi), and cryptocurrency

exchanges.

ERC20 characteristics apply to payment transactions and are transferable, with all transaction

histories traceable despite each token's identical and unique code, requiring an identified total supply

of ERC20 tokens to ensure the ecosystem is aware of the circulating token amount [11]. Smart contract

tokens operate by facilitating token transfers across accounts, checking the total number of created

tokens, and verifying token balances at a specific address, similar to conventional digital currencies

following the ERC20 standard. Decentralized Ethereum applications and Ethereum wallets can access

tokens through this standard interface as ERC20 defines a constructor for token contracts to establish

and initialize contract status. Standard functions define the fundamental transactional and token

management operations of smart token contracts, and the interface for these standard functions is as

follows [12].

2.5 Single Key Risk and Reentrancy Attack

Single key risk refers to the risk associated with using a single private key in the Blockchain

system. The private key is fundamental to the cryptographic security of the Blockchain network, used

to identify the owner of crypto assets and authorize transactions within the network. Single key risk

occurs when a single private key controls access to all crypto assets in a wallet address or to control

smart contracts as shown in Figure 5. If this key is compromised, lost, or misused, the owner may lose

crypto assets or control over smart contracts. This vulnerability arises from an attacker's ability to sign

permanent and immutable transactions [4]. Therefore, it is crucial to safeguard the security of private

keys and mitigate potential misuse.

Reentrancy is a security attack that can occur in smart contracts on Blockchain platforms [13].

In Blockchain, reentrancy refers to a situation where a smart contract calls a function or external

contract, and then the contract receives a callback from that external contract before the execution of

its original function is complete, creating potential vulnerabilities to attacks. Attackers can exploit this

opportunity to disrupt the execution of smart contracts illegitimately or steal crypto assets. In a

reentrancy attack, the attacker leverages the execution sequence of smart contracts. A notable example

is the 2016 DAO project attack, where hackers stole $60 million worth of Ether by exploiting the

reentrancy vulnerability in TheDAO smart contract. This weakness was associated with the fallback

mechanism in Solidity, allowing misuse of the call.value() function, which consumes contract gas for

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

19

external calls. This incident underscores the importance of smart contract security in blockchain

application development, leading to the first hard fork in Ethereum's history in response to financial

losses and the need for strict security standards implementation and thorough testing to prevent

potential vulnerabilities.

Figure 5 Principle of Reentrancy Vulnerability

2.6 Multisignature Wallet

Multisignature, often referred to as 'multi-sig', is a form of technology that provides additional

security for cryptocurrency transactions. Essentially, this means that spending cryptocurrency requires

more than one approval or signature for the transaction to be executed. A multi-signature wallet is a

type of wallet that offers additional security by requiring unique dual signatures (hence multi-

signature) to authorize and execute a transaction [4]. Traditional cryptocurrency wallets, or single-sig,

contain token addresses, each with one associated private key that grants the key holder full control

over the funds. With a multi-signature wallet, users can have token addresses with three or more

associated private keys, requiring two of those keys for token usage as shown in Figure 6. Single-sig

wallets (private keys) provide direct access to user funds, providing token ownership and requiring the

private key to transact alongside the public key. If the private key is lost, all data will be lost, with no

way to recover it. Distributing access to the wallet through multiple keys (multi-signature) is a better

security measure.

Figure 6 Operation of Multi-Signature Wallet

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

20

2.7 Withdrawal Pattern, External Effect, and Mutex

Withdrawal pattern in Blockchain refers to a method used to transfer or withdraw

cryptocurrencies from one address or smart contract to another within the Blockchain network [5].

Figure 7 shows that the pattern is designed to mitigate the risk of attacks such as reentrancy attacks.

The main objective of the withdrawal pattern is to allow cryptocurrency owners to send or withdraw

assets as needed, such as transferring to a personal wallet, exchanges, or other smart contracts. All

transactions involving the withdrawal pattern are recorded transparently on the Blockchain, allowing

anyone to verify them.

Figure 7 Operation of Withdrawal Pattern

External Effects Examination is a crucial principle in Ethereum smart contract development

aimed at ensuring the security and integrity of smart contracts [14]. This principle refers to the practice

of checking and ensuring that operations that can result in changes within the contract (such as fund

transfers or status changes) are only executed after external operations are completed successfully.

Thus, examining external effects reduces the risk of reentrancy attacks, where malicious external

contracts attempt to exploit unfinished operations to harm running contracts.

The concept of Mutual Exclusion (Mutex) is a key principle in the development of distributed

systems and multithreading aimed at preventing access conflicts to shared resources by multiple

processes or threads simultaneously [15]. This principle ensures that only one process or thread has

exclusive access to the resource at any given time, avoiding situations that may lead to data

inconsistency or deadlock.

3 Research Method

Research methodology serves as a crucial foundation to ensure the quality, security, and

reliability of the developed systems. This method encompasses approaches and steps utilized

throughout the research process. Below are the details of the research methodology adopted from the

study "An Agile Software Engineering Method to Design Blockchain Application" [16], including

steps such as Identity Resource, Identity Requirements, Design System (External and Smart Contract),

Implementation System, and Integrate and Test.

In the process of developing Blockchain-based systems, the first step involves identifying the

primary resources required through observing current industry business processes. The subsequent

stage is to determine system specification details by dividing the system into smart contract subsystems

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

21

and external systems. Following that, system design is carried out based on the previous specifications.

The development stage is conducted to implement the system design, including selecting suitable

platforms and programming languages. Integration of smart contracts and external systems is

performed in the next stage, followed by testing to ensure the system operates according to the

established specifications. By employing this method, this research aims to ensure the quality, security,

and reliability of the developed systems, with a specific focus on the development of smart contracts

and external systems within the context of blockchain technology as shown in Figure 8.

Figure 8 Flow of Research Methods

3.1 System Configuration and Functional Testing Plan

The Hybrid Multi-Signature Wallet System with Withdrawal Pattern, External Effects, and

Mutual Exclusion is implemented in both hardware and software, as detailed in Table 1. The Hot

Wallet is configured with the Ethereum Virtual Machine (EVM) on the system to provide user wallet

access to the testnet Blockchain environment. The Hot wallet used is Metamask, with the EVM

environment utilizing Ganache. After successfully adding the Ganache RPC network to Metamask,

wallet accounts on Ganache can be imported for use with Metamask. This process can be done through

the import account menu by entering the wallet's private key. In this case, 5 Ganache wallet accounts

are imported into Metamask. These wallet accounts are used for testing purposes. All Ganache wallet

accounts imported into Metamask are utilized. To determine whether the system can meet functional

requirements, a functional system testing plan is created in Table 2.

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

22

Table 1 Specifications of Software and Hardware in System Implementation

3.2 Scenario Solution for 3-of-3 Scheme Multisignature Wallet

Single key risk is a risk associated with using a single private key in a Blockchain system. In

commonly used hot wallets, the majority employ a single key scheme where one wallet is held by a

single account. In the event of a breach or unauthorized access by another account, there's a risk of

risky transactions occurring, potentially depleting the currency balance in that wallet. To mitigate such

risky transactions, a solution will be developed, namely the implementation of a multi-signature wallet

with a 3-of-3 scheme.

Table 2 Functional System Testing Plan

No Components Specification

1 CPU Intel® Core™ i7-9750H CPU @2.60GHz

2 Operation System Windows 10 Home Single Language

3 Programming Language Solidity (pragma ^0.8.15), Javascript

4 Framework Next14, Moralis, Truffle, Openzeppelin

5 Blockchain Ethereum

6 Hot Wallet Metamask Wallet

7 Token Standard ERC-20

8 EVM Ganache

9 IDE Remix

10 Web Browser Google Chrome 113.0.5672.114

Test Classes Test Cases

Cryptocurrency Token Creating a cryptocurrency token and token supply by applying the ERC20 standard token

smart contract and performing token approval.

Multisig Factory Contract Initializing a multisig wallet smart contract dynamically based on the owner's wallet

address using a factory contract.

Token Wallet Adding the currency token created based on the ERC20 token standard to the multisig

wallet and viewing both the currency token and coin that can be used in the multisig

wallet.

Multisignature Wallet

Owner

Adding, removing, and viewing wallet owners in the multisig wallet.

Multisignature Wallet

Transaction

Performing deposit, checking balances, and currency withdrawals by implementing

withdrawal patterns, external effects, and mutual exclusion on the multisig wallet.

Multisignature Wallet

Transfer Transaction

Creating transfer requests and canceling transfer requests to a specific wallet address

using currency tokens or coins in the multisig wallet.

Multisignature Wallet

Approval

Transaction

Approving transfer requests to specific wallet addresses and executing currency transfers

by implementing withdrawal patterns, external effects, and mutual exclusion on a

multisig wallet using a 3-of-3 scheme.

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

23

This solution will implement a scheme where private key usage is distributed among three

authorized accounts. In other words, in the event of a wallet breach and risky transactions, as

mentioned above, with multiple parties involved, the wallet will not execute those transactions until it

receives authorization from all authorized parties or accounts. With the 3-Of-3 scheme, if any of the

authorized accounts do not approve the transaction, it will fail. The transaction will be executed only

if all authorized accounts approve it.

Figure 9 Multisignature Wallet 3-of-3 Scenario

Testing scenarios for the multi-signature wallet with a 3-of-3 scheme will also involve

transferring 10 ETH from the sender's address (address X) to the recipient's address, where the owners

of the multi-signature wallet are addresses X, Y, and Z as shown in Figure 9. When the transfer()

function is executed, the 10 ETH balance will not be sent to the recipient's address until the two other

owners besides address X approve it. This is because all balance transfer transactions require approval

from the three owners as per the designed scheme (3-of-3). If the requirements are met, the 10 ETH

balance will be sent; otherwise, it will not be sent, or it will return to the sender's contract address.

3.3 Scenario Solution for Withdrawal Pattern, External Effects, and Mutex Integration

Withdrawal Pattern, External Effects, and Mutual Exclusion (Mutex) are solutions to prevent

reentrancy attacks (repeated transaction calls during the delay process) in smart contracts. This solution

will be applied to the multi-signature wallet being created, resulting in a comprehensive hybrid system.

Therefore, the solution to be implemented is the creation of middleware using withdrawal pattern,

external effects, and mutual exclusion techniques in these transactions. This middleware is useful for

limiting and preventing repeated calls in transactions within the smart contract, especially in the multi-

signature wallet being created.

Testing scenarios for the implementation of withdrawal pattern, external effects, and mutual

exclusion on the multisignature wallet with a 3-of-3 scheme will also involve conducting a withdrawal

transaction worth 10 ETH from the sender's address to the contract address. The application of

withdrawal pattern, external effects, and mutual exclusion will broadly serve as middleware to address

the continuous invocation of transaction functions, in this case, withdrawal transactions, during the

delay in transaction validation or mining processes. Figure 10 shows the middleware will continually

check each transaction function call to validate whether the transaction is still delayed or not, in other

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

24

words, whether the transaction has truly completed or not. Each called withdrawal transaction process

will pass through this middleware for validation; if it meets the validation criteria, the 10 ETH balance

will be sent, otherwise, if the transaction process is incomplete, the balance will not be sent.

Figure 10 Scenario with Middleware (Withdrawal Pattern, External Effects, and Mutual Exclusion)

4 Result and Discussion

4.1 Smart Contract Implementation

The implementation of smart contracts in the system uses the Solidity programming language

version 0.8.0 and above, and the OpenZeppelin framework is utilized for programming smart contracts

on the Ethereum platform. The development of these smart contracts is carried out using an online

Integrated Development Environment (IDE) that can be accessed directly through the browser at

remix.ethereum.org. The use of the Remix IDE greatly facilitates the process of smart contract

development. This is because the Remix IDE supports debugging, testing, and direct deployment of

smart contracts on virtual Blockchain networks. The implemented smart contracts will be deployed on

a private Blockchain network with the Ganache EVM Testnet, which can instantly validate

transactions (Proof of Authority).

4.2 External System Implementation

Development of the external system referred to in the implementation of the multisignature

wallet system involves the entire system outside the blockchain network. The external system

developed in this final project is a client application serving as the interface system used to interact

with the smart contract. The implementation of the client application in this final project is developed

using the JavaScript programming language with the Next.js framework. Additionally, the client

application uses the web3.js library and Moralis to interact with the smart contract on the blockchain

via HTTP/Websocket.

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

25

4.3 Smart Contract and External System Integration

The integration process of the smart contract and external system is carried out using Truffle.

Truffle is a development environment for compiling, testing, and asset pipeline for Ethereum

blockchain-based systems. The steps involved in integrating the smart contract and external system

include installing Truffle, initializing a Truffle project, configuring the blockchain address used, and

the location of the client application requiring smart contract metadata in the Truffle configuration file.

Additionally, configuring the deployment mechanism for each smart contract and compiling and

deploying the smart contract.

4.4 Functional Testing Results

4.4.1 Cryptocurrency Token

This test was conducted to check how users, as wallet owners, can perform transactions related

to Currency Tokens. Firstly, the wallet owner deploys the Token contract in Token.sol to create

currency tokens and token supply by applying the ERC20 standard smart contract token. The created

currency token is named "DIYUT" with the currency code "DYT" and a total supply of

10000000000000000000000000 Wei or 10000000 Ether.

This currency token will be used as a means of transaction payment besides using the Ether

(ETH) currency coin as shown in Figure 11. Once the transaction is successfully executed, the

transaction data will enter the Blockchain through the consensus process. After the currency token is

successfully created, the wallet owner can perform approval transactions for the multisig wallet that

will use the currency token. Approval of the multisig wallet for the token can be done by executing a

transaction on the Token contract by entering parameters such as the multisig wallet address and the

maximum token supply that can be used. The test results for transactions related to Currency Tokens

are declared valid and the successful transaction results have been added to the Blockchain.

Figure 11 Currency Token Testing Mechanism

4.4.2 Multisig Factory Contract and Multisignature Wallet Owner

 This test was conducted to check how users, acting as wallet owners, can perform transactions

related to the Multi-Signature Factory Contract and Multi-Signature Wallet Owner. Figure 12 shows

that the wallet owner can deploy the MultisigFactory contract in MultisigFactory.sol and MultisigTA

in Multisig.sol and then perform transactions to initialize the multisig wallet smart contract

dynamically based on the wallet address owner with the factory contract. After the multisig wallet

instance is created, the wallet owner can also perform transactions to add, remove, and display new

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

26

wallet owners on the multisig wallet smart contract instance. A check was conducted on the

MultisigTA contract to ensure and display that the wallet owner's address has been added as an owner

of the multisig wallet.

The test results show that the wallet owner successfully added another additional address to use

the 3-of-3 approval scheme on the multi-signature wallet. In addition to adding wallet owners,

transactions can also be performed to remove wallet owners who hold authority from the multisig

wallet by the main wallet owner. Based on the test results of transactions related to the Multi-Signature

Factory Contract and Multi-Signature Wallet Owner, the test is declared valid and the successful

transaction results have been added to the Blockchain.

Figure 12 Multisignature Factory Contract and Multisignature Wallet Owner Testing Mechanism

4.4.3 Token Wallet

This test was conducted to determine how users, acting as wallet owners, can perform

transactions related to the Token Wallet. The wallet owner can add the currency token that has been

created in the Token contract, namely "DYT," to the multisig wallet. This process is carried out so that

the wallet owner can have the option to use currency tokens in transactions without always relying on

the Ether currency coin as shown in Figure 13. Subsequently, the wallet owner can display the currency

tokens and currency coins that can be used in the wallet.

Based on the test results of transactions related to the Token Wallet, the test is deemed valid and

the successful transaction results have been added to the Blockchain.

Figure 13 Token Wallet Transaction Testing Mechanism

4.4.4 Multisignature Wallet Transaction

In this case, the wallet owner deposited 15 Ether (ETH) or 15000000000000000000 wei into the

smart contract. This process aims to make payments related to transactions conducted within the smart

contract, especially for gas fee payments. After the deposit process succeeds, the wallet owner can

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

27

check the balance of Ether currency coins deposited in the MultisigTA contract by entering the

parameter "ETH" according to the currency whose balance they want to view, and similarly, the wallet

owner can view the currency balance from the smart contract.

In addition to making deposits, the wallet owner can also withdraw funds from the smart contract

through the MultisigTA contract. This withdrawal process must be initiated by executing a transaction

through the initiateWithdrawal() function before executing the withdraw() function as a security

implementation aspect of one form of withdrawal pattern. Failure to do so will result in a failed

transaction. In this case, the smart contract balance will be reduced to 9 Ether or

9000000000000000000 wei, and the withdrawal process will be for 0.5 Ether or 500000000000000000

wei to facilitate observing the difference before and after the withdrawal transaction process.

Based on the test results of transactions related to the Multi-Signature Wallet Transaction, the

test is deemed valid and the successful transaction results have been added to the Blockchain as shown

in Figure 14.

Figure 14 Multisignature Wallet Transaction Testing Mechanism

4.4.5 Multisignature Wallet Transfer Transaction

This test was conducted to determine how users, acting as wallet owners, can perform

transactions related to the Multi-Signature Wallet Transfer Transaction. The wallet owner can initiate

a transaction to send currency coins or currency tokens to another wallet address. This process can be

carried out in the MultisigTA contract. This function is used to create a transfer request before being

approved by other wallet owners according to the multi-signature scheme. Thus, the transfer process

must go through approval first, which involves calling the function to create a transfer request. In this

case, the transfer process will be initiated from the main wallet owner with the address

0xa813e4D205B356955E6771dd3228E1E9B18461B5 to the recipient wallet address

0x13d6166f563Fa4752E72F7F633031e14613f53b8, with a transfer amount of 0.5 Ether or

500000000000000000 wei.

After initiating the transfer request, in this case, the wallet owner can also cancel the transfer

request made. Based on the test results of transactions related to the Multi-Signature Wallet Transfer

Transaction, the test is deemed valid and the successful transaction results have been added to the

Blockchain as shown in Figure 15.

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

28

Figure 15 Multisignature Wallet Transfer Transaction Testing Mechanism

4.4.6 Multisignature Wallet Approval Transaction

This test was conducted to assess how users, acting as wallet owners, can perform transactions

related to the Multi-Signature Wallet Approval Transaction. After the main wallet owner creates a

transfer request to the wallet address 0x13d6166f563Fa4752E72F7F633031e14613f53b8, other

wallet owners besides the main one can approve the transfer request through a function call in the

MultisigTA contract by entering "ETH" as the currency coin being transferred and "1" as the ID of the

transfer request.

Wallet owners who can approve include

0x663D7860A18492Eea9FE64Fe33653DAeE741DB57 as Wallet Owner A and

0xf18de099ADF182e218745630B70DE0Db2432fac7 as Wallet Owner B. Before giving approval, a

wallet owner can check the approval status of the transfer request to see if they have already approved

it or not. Wallet owners can also view the approval limit for the transfer request.

Based on the test results of transactions related to the Multi-Signature Wallet Approval

Transaction, the test is deemed valid and the successful transaction results have been added to the

Blockchain as shwon in Figure 16.

Figure 16 Multisignature Wallet Approval Transaction Testing Mechanism

4.4.7 Testing Summary

Based on the functional test cases that have been described, the results of this test are proven to

be valid by the specifications and security standards set. This indicates that the implementation and

functionality of the multi-signature wallet system have been successful. A summary of the test results

can be seen in more detail in Table 3.

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

29

Table 3 Testing Summary

5 Conclusion

Based on the research, the multi-signature wallet system with a 3-of-3 scheme on ERC20 smart

contracts in the Ethereum Blockchain has successfully enhanced transaction security. By requiring

approval from three different key holders, the risk of a single key is minimized, making transactions

safer. The architecture of this system also integrates withdrawal patterns, external effects, and mutual

exclusion, reducing the chances of reentrancy attacks and ensuring that transaction operations are

executed correctly.

Testing the system through the external system created, Ganache EVM Testnet, and Remix IDE

showed good performance, in line with the research goal to enhance security in transaction execution

in the Blockchain environment. The findings of this research contribute positively to the development

of security in the context of smart contracts and DeFi on the Ethereum platform. It is hoped that these

findings will serve as a foundation for further development, enhancing the security and reliability of

DeFi transaction systems in the future.

Test Classes Description Results

Cryptocurrency

Token

Creating a cryptocurrency token and token

supply by applying the ERC20 standard token

smart contract and performing token approval.

Cryptocurrency token (DYT) and token supply

are successfully created by applying ERC20

standard token smart contract.

Multisig Factory

Contract

Initializing a multisig wallet smart contract

dynamically based on the owner's wallet

address using a factory contract.

Multisig wallet smart contract is dynamically

initialized based on the wallet address owner

with a factory contract.

Token Wallet Adding the currency token created based on

the ERC20 token standard to the multisig

wallet and viewing both the currency token

and coin that can be used in the multisig

wallet.

A currency token (DYT) created based on the

ERC20 standard token is registered and can be

used in the multi-sig wallet.

Multisignature

Wallet

Owner

Adding, removing, and viewing wallet owners

in the multisig wallet.

Users can successfully add, delete, and view

wallet owners with a multi-sig wallet system.

Multisignature

Wallet

Transaction

Performing deposit, checking balances, and

currency withdrawals by implementing

withdrawal patterns, external effects, and

mutual exclusion on the multisig wallet.

Users can successfully deposit, display the

balance, and withdraw the currency coin (ETH)

or currency token (DYT) that has been created

by implementing withdrawal patterns, external

effects, and mutual exclusion in the multi-sig

wallet.

Multisignature

Wallet Transfer

Transaction

Creating transfer requests and canceling

transfer requests to a specific wallet address

using currency tokens or coins in the multisig

wallet.

User successfully made a transfer request and

canceled a transfer request to a specific wallet

address in the multi-sig wallet.

Multisignature

Wallet Approval

Transaction

Approving transfer requests to specific wallet

addresses and executing currency transfers by

implementing withdrawal patterns, external

effects, and mutual exclusion on a multisig

wallet using a 3-of-3 scheme.

User successfully approves a transfer request to

a specific wallet address and transfers currency

coin (ETH) or currency token (DYT) by

implementing withdrawal pattern, external

effects, and mutual exclusion in a multi-sig

wallet using 3-of-3 schema.

J. A. H. S. Dewa Jurnal Masyarakat Informatika, 15(1), 2024

30

References

[1] A. Beije, N. Vyas, and B. Krishnamachari, Blockchain and the Supply Chain: Concepts, Strategies and

Practical Applications, Second Edition. Kogan Page, 2022.

[2] A. M. Antonopoulos and G. Wood, Mastering Ethereum: Building Smart Contracts and DApps, First

Edition. Sebastopol, California: O’Reilly Media, 2018.

[3] W.-M. Lee, Beginning Ethereum Smart Contracts Programming: With Examples in Python, Solidity, and

JavaScript, 2nd Edition. New York: Apress, 2023.

[4] J. Han, M. Song, H. Eom, and Y. Son, “An Efficient Multi-signature Wallet in Blockchain Using Bloom

Filter,” in Proceedings of the ACM Symposium on Applied Computing, Association for Computing

Machinery, Mar. 2021, pp. 273–281. doi: 10.1145/3412841.3441910.

[5] R. Ma, J. Gorzny, and E. Zulkoski, Fundamentals of Smart Contract Security. New York: Momentum

Press, 2023.

[6] S. Ebrahimi, P. Hasanizadeh, S. M. Aghamirmohammadali, and A. Akbari, “Enhancing Cold Wallet

Security with Native Multi-Signature schemes in Centralized Exchanges,” Oct. 2021, doi:

10.48550/arXiv.2110.00274.

[7] J. W. Lim, Handbook of Digital Currency: Bitcoin, Innovation, Financial Instruments, and Big Data, First

Edition. Massachusetts : Academic Press, 2015.

[8] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An Overview of Blockchain Technology: Architecture,

Consensus, and Future Trends,” Proceedings - 2017 IEEE 6th International Congress on Big Data,

BigData Congress 2017, pp. 557–564, Sep. 2017, doi: 10.1109/BigDataCongress.2017.85.

[9] T. Laurence, Blockchain For Dummies, 3rd Edition. Hoboken: John Wiley & Sons, Inc, 2023.

[10] V. Dhillon, D. Metcalf, and M. Hooper, Blockchain Enabled Applications Understand the Blockchain

Ecosystem and How to Make it Work for You. California: Apress Berkeley, 2017. doi:

https://doi.org/10.1007/978-1-4842-3081-7.

[11] J. Sun, S. Huang, C. Zheng, M. Wang, Z. Hui, and Y. Ding, “A Novel Method to Prevent Multiple

Withdraw Attack on ERC20 Tokens,” in 2021 IEEE 21st International Conference on Software Quality,

Reliability and Security (QRS), IEEE, Dec. 2021, pp. 1–7. doi: 10.1109/QRS54544.2021.00011.

[12] V. Buterin, “Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform,” 2014.

[13] ChainLink, “Reentrancy Attacks and The DAO Hack Explained.” Accessed: Nov. 21, 2023. [Online].

Available: https://blog.chain.link/reentrancy-attacks-and-the-dao-hack/

[14] C. Diligence, “Ethereum Smart Contract Best Practices.” Accessed: Nov. 12, 2023. [Online]. Available:

https://github.com/ConsenSys/smart-contract-best-practices

[15] Maurice. Herlihy and N. Shavit, The Art of Multiprocessor Programming, 1st Edition. Massachusetts:

Morgan Kaufmann, 2012.

[16] M. Marchesi, L. Marchesi, and R. Tonelli, “An Agile Software Engineering Method to Design Blockchain

Applications,” vol. 8, pp. 1–8, Oct. 2018, doi: 10.1145/3290621.3290627.

