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Abstract 

Workplace safety in the construction industry continues to face challenges due to frequent accidents 

linked to non-compliance with Personal Protective Equipment (PPE) regulations. Manual supervision 

is limited by human error and inefficiency, necessitating automated detection systems. However, prior 

models such as YOLOv5 demonstrate limited performance in detecting underrepresented PPE 

violations, particularly “no-helmet” and “no-vest” instances, due to class imbalance in the dataset. 

This study addresses these limitations by optimizing the YOLOv8 model through grid search-based 

hyperparameter tuning and enhancing generalization via Mosaic and MixUp data augmentation 

techniques. Trained on the imbalanced Construction Safety subset of Roboflow-100, the improved 

YOLOv8 model achieves a mAP@0.50 of 0.921 and mAP@50-95 of 0.533, surpassing earlier 

configurations. These findings demonstrate significant gains in detection accuracy—especially for 

rare PPE violations—supporting the development of more robust and scalable solutions for real-time 

workplace safety monitoring. 
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1   Introduction 

Workplace safety is a critical issue that must be addressed in the construction industry, as the 

number of work-related accidents each year is on the rise. According to data from the Ministry of 

Manpower of the Republic of Indonesia, there is a growing trend in workplace incidents that are the 

result of noncompliance with the use of Personal Protective Equipment (PPE). Material damage and 

human casualties are substantial losses as a consequence of accidents in the construction industry. The 

use of personal protective equipment (PPE) is mandatory for all construction workers in order to reduce 

the risk of accidents, as specified in Occupational Safety and Health (OSH) regulations in Act of 

Republic of Indonesia No. 1 of 1970 regarding safety [1]. 

According to the Occupational Safety and Health Administration (OSHA), proper use of 

personal protective equipment can minimize workplace accidents by up to 40%. However, PPE manual 

supervision compliance remains a concern due to a limited number of safety inspectors and the 

possibility of human error [2]. Manual monitoring is also time-consuming and may not be feasible in 

dynamic or high-risk environments where rapid detection of non-compliance is crucial. As a result, an 

automated solution to PPE compliance monitoring is required [3], offering the potential for real-time, 

consistent, and scalable enforcement across various industrial settings. 
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Several studies have shown that artificial intelligence (AI)-based technology can increase PPE 

compliance by automating detection [4]. YOLOv8, a deep learning-based object detection model, has 

demonstrated superior performance over previous methods. Compared to Faster R-CNN and YOLOv5, 

YOLOv8 is faster and more accurate [5]. Previous research has investigated PPE detection using 

various methods. According to Barlybayev et al. [6], YOLOv8 detected helmets and safety vests with 

a mean Average Precision (mAP) of 92.9%. Çiftçi et al. [7] found that YOLOv8 outperformed 

YOLOv5 by 6% in accuracy. Furthermore, hyperparameter optimization utilizing the grid search 

method has been shown to improve model performance, as demonstrated by Popek et al. [8]. 

Further research has looked into the effectiveness of several PPE detection technologies. A study 

[6] examined several YOLOv8 model sizes and discovered that YOLOv8x (extra-large) had the best 

performance, with a mAP of 0.929. In comparison, [9] used the R-CNN method to achieve a higher 

mAP of 96% in PPE detection while incurring a much larger computational cost than YOLOv8. 

Another study [5] discovered that YOLOv8 outperformed R-CNN for object detection tasks in aquatic 

environments. Detection speed is also important in automated PPE monitoring systems. A study by 

[10] tested YOLOv5 and Faster R-CNN for space object recognition and discovered that while Faster 

R-CNN had a higher mAP, YOLOv5 was up to ten times faster. This emphasizes the necessity of 

detecting speed, especially in real-time application in building projects. Furthermore, research by [7] 

examined YOLOv5 and YOLOv8 on the same dataset and found a 5.3% accuracy improvement with 

YOLOv8, supporting the advancements of the most recent YOLO model over its predecessors. 

Although earlier approaches such as Faster R-CNN and YOLOv5 have contributed significantly 

to automated PPE detection, there remains a substantial gap in balancing detection accuracy and 

computational efficiency, an area where YOLOv8 excels. While Faster R-CNN can achieve high mAP 

scores, it incurs high inference times, making it impractical for real-time deployment in dynamic 

environments like construction sites [9], [10]. YOLOv5, on the other hand, offers faster detection but 

at the cost of reduced accuracy, particularly for underrepresented PPE classes. In contrast, YOLOv8 

has demonstrated superior performance by achieving a mean Average Precision (mAP) of 92.9% in 

detecting helmets and vests [6], and has consistently outperformed YOLOv5 by 5-6% in accuracy 

across multiple studies [7]. Additionally, YOLOv8 maintains low computational overhead, allowing 

it to outperform R-CNN variants even in complex detection scenarios such as underwater 

environments [5]. As further evidenced by hyperparameter optimization studies [8], the integration of 

tuning and augmentation techniques in YOLOv8 yields significant performance gains, reinforcing its 

advantage as a robust, efficient, and scalable solution for real-time PPE compliance monitoring. 

This study uses the grid search approach for hyperparameter optimization to improve detection 

performance. In order to get an ideal model configuration, grid search makes it possible to investigate 

the best parameter combinations, such as learning rate, batch size, and optimizer [11]. The aim is to 

maximize detection accuracy, improving PPE monitoring in construction sites. Additionally, data 

augmentation is employed to address the problem of class imbalance, which can hinder model 

generalization [12]. In PPE datasets, underrepresented classes negatively affect detection accuracy. 

According to a study [13], augmentation techniques such as Mosaic and MixUp can effectively address 

this issue by increasing data diversity and improving model robustness. These methods are especially 

effective in one-stage detectors like YOLOv5, where traditional sampling and loss-reweighting 

methods yield limited gains. Integrating these augmentations into YOLOv8 training further improves 

mAP by generating more representative and diverse training samples [13].  



Z. R. Utomo et al.   Jurnal Masyarakat Informatika, 16(1), 2025 

 

3 
 
 

2   Research Methods 

 
Figure 1 Research Method 

This study adopts a research methodology composed of four main phases: (1) Data Preparation, 

(2) Model Development and Hyperparameter Optimization, (3) Data Augmentation for Class 

Imbalance, and (4) Model Evaluation. Each phase is designed to incrementally enhance the PPE 

detection performance using YOLOv8, guided by a structured workflow as illustrated in Figure 1. The 

first stage, Data Preparation, includes data collection and preliminary preprocessing. The Model 

Development phase then includes hyperparameter initialization, YOLOv8 model training, and grid 

search to optimize hyperparameter selection. The grid search strategy was selected for hyperparameter 

tuning due to its systematic and exhaustive nature, allowing the exploration of all possible 

combinations of selected training parameters to identify the optimal configuration for detection 

accuracy and convergence stability [11]. After determining the optimal hyperparameters, data 

augmentation is used to address class imbalances, particularly for No-Helmet and No-Vest. Mosaic 

and MixUp are augmentation strategies that improve feature diversity and detection performance in 

imbalanced datasets [13]. The Model Validation phase assesses performance on the validation dataset 

by calculating mean Average Precision (mAP) from precision, and recall [14].  

 

2.1 Data Preparation 

The dataset used in this study is Construction Safety, which is a component of Roboflow-100. 

RF100 is a collection of 100 datasets from seven different image domains, including satellite imagery, 

microscopy, and gaming, totaling 224,714 images and 805 class labels [15]. The goal of RF100 is to 

provide a semantic and multi-domain benchmark for assessing model generalization using real-world 

data. The Construction Safety dataset used in this study is a subset of RF100 that focuses on Personal 

Protective Equipment (PPE) detection on construction sites. This dataset includes a variety of PPE 

classes, such as helmets and vests, photographed under various lighting conditions and perspectives.  
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Figure 2 Construction Safety Dataset 

Figure 2 shows sample images from the Construction Safety dataset. Each bounding box label 

contains five distinct classes: helmet, no-helmet, vest, no-vest, and person. The Construction Safety 

dataset is divided into three sections: training, validation, and testing, with 80% for training, 10% for 

validation, and 10% for testing. This structured partitioning ensures that the model has enough data 

for training while also including a validation set for periodic performance monitoring and a test set for 

final accuracy evaluation on unseen data. The training set consists of 2,116 instances of helmets, 94 

instances of no-helmet, 741 instances of no-vest, 2,362 instances of persons, and 1,073 instances of 

vests. The validation set includes 232 instances of helmets, 11 instances of no-helmet, 90 instances of 

no-vest, 241 instances of persons, and 141 instances of vests. The testing set contains 195 instances of 

helmets, 24 instances of no-helmet, 61 instances of no-vest, 214 instances of persons, and 129 instances 

of vests.  

Table 1 Class Distribution of Dataset 

 Classes Counts 

1 Helmet 2.543 

2 No-Helmet 129 

3 No-Vest 892 

4 Person 2.817 

5 Vest 1.343 

Total - 7.724 

 

Table 1 presents the distribution of classes in the Construction Safety dataset. Despite the 

structured partitioning, the dataset still shows class imbalance, particularly in the No-Helmet and No-

Vest categories, which are significantly underrepresented when compared to other PPE classes. The 

No-Helmet class has only 94 training instances, which is 22 times fewer than the most frequent class 

(Person, with 2,362 instances). Similarly, the No-Vest class has 741 instances, which is 

disproportionately low when compared to the other categories. This imbalance presents a challenge 

for model training because the model may develop a bias toward majority classes, resulting in poor 

detection performance for underrepresented PPE violations. To address this issue, data augmentation 

techniques such as Mosaic and MixUp are used to artificially increase the number of No-Helmet and 
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No-Vest samples, thereby increasing model robustness and improving detection accuracy for critical 

safety violations. 

Data preprocessing standardizes image dimensions for PPE detection model training, resizing 

all images to 640×640×3 pixels. This resizing process keeps inputs consistent, allowing the model to 

process data efficiently and make accurate predictions. Resize and padding operations are used to 

maintain the original aspect ratio while avoiding distortion [16]. 

 

2.2 Model Development and Hyperparameter Optimization 

This stage focuses on building and optimizing the YOLOv8 model for PPE detection. The grid 

search approach is used to evaluate combinations of optimizers, batch sizes, and learning rates. Each 

configuration is trained and validated to measure its impact on model accuracy. The best-performing 

setup is then selected for further enhancement through data augmentation. 

 

Table 2 Hyperparameter Range for Grid Search 

Parameter Value 

Optimizer ['Adam', 'RMSProp', 'SGD'] 

Batch Size [8, 16] 

Learning Rate [0,01; 0,001; 0,0001] 

 

The YOLOv8 model's hyperparameters are selected using a grid search approach to identify the 

optimal configuration based on variations in key parameters [11]: optimizer, batch size and learning 

rate. The study investigates 18 hyperparameter combinations, including three optimizer types (Adam, 

RMSProp, and SGD), two batch sizes (8 and 16), and three learning rates (0.01, 0.001, and 0.0001). 

Each configuration is trained for 100 epochs, as described in Table 2. 

The choice of optimizer plays a central role in determining the convergence behavior and overall 

training efficiency. Adam was included for its capability to combine momentum and adaptive learning 

rate adjustments, which accelerates convergence even on sparse or noisy data [11]. RMSProp is 

selected for its strength in smoothing out gradient updates on non-stationary loss surfaces, often found 

in object detection tasks [17]. SGD, though simpler and slower to converge, serves as a foundational 

baseline and is useful to assess the relative performance gains offered by adaptive optimizers [17]. 

These optimizers represent diverse strategies in handling gradient-based updates, allowing for robust 

comparative evaluation. 

Additional important hyperparameters are batch size and learning rate, which significantly 

influence the performance of model training. Smaller batch sizes can introduce noise in gradient 

updates, which may enhance generalization. In contrast, larger batch sizes stabilize training but may 

necessitate adjustments in the learning rate to avoid underfitting or convergence issues [17]. Learning 

rates require careful calibration; if set too high, the model risks divergence, while if set too low, 

convergence may occur at an unacceptably slow pace. Optimal performance of training frequently 

results from the independent tuning of the learning rate for each optimizer, rather than utilizing a shared 

search space [17]. This underscores the significance of tuning protocols as a critical factor in achieving 

successful training outcomes. 

Model training is carried out with the Ultralytics YOLO library, which offers a simplified 

programming interface for training and validation. To ensure consistency during initial model learning, 
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the training process is carried out without the use of data augmentation. Each hyperparameter 

configuration is iteratively trained on the training dataset, with parameters like optimizer, batch size, 

and learning rate influencing the learning process and weight updates to reduce loss. 

During training, the model's performance is assessed at each epoch using recall, precision, and 

mean Average Precision (mAP) at various thresholds (mAP50-95 and mAP50) to determine its 

accuracy in PPE detection. The validation dataset is used to perform single-fold validation. The model 

checkpoints are saved based on the highest mAP score achieved at each epoch, as well as the final 

epoch. This ensures that the best-performing model from each hyperparameter configuration is saved 

for later analysis in order to select the optimal hyperparameter set.  

 

Table 3 Grid Search Hyperparameter Configurations for Each Model 

Model ID Optimizer BatchSize LearningRate 

model_001 Adam 8 0,01 

model_002 Adam 8 0,001 

model_003 Adam 8 0,0001 

model_004 Adam 16 0,01 

model_005 Adam 16 0,001 

model_006 Adam 16 0,0001 

model_007 RMSProp 8 0,01 

model_008 RMSProp 8 0,001 

model_009 RMSProp 8 0,0001 

model_010 RMSProp 16 0,01 

model_011 RMSProp 16 0,001 

model_012 RMSProp 16 0,0001 

model_013 SGD 8 0,01 

model_014 SGD 8 0,001 

model_015 SGD 8 0,0001 

model_016 SGD 16 0,01 

model_017 SGD 16 0,001 

model_018 SGD 16 0,0001 

 

Each trained model is assigned a unique identifier, as shown in Table 3, to allow for performance 

tracking and comparison across different configurations. During training, the model's performance is 

assessed at each epoch using recall, precision, and mean Average Precision (mAP) at various 

thresholds (mAP50-95 and mAP50) to determine its accuracy in PPE detection. The validation dataset 

is used to perform single-fold validation. The model checkpoints are saved based on the highest mAP 

score achieved at each epoch, as well as the final epoch. This ensures that the best-performing model 

from each hyperparameter configuration is saved for later analysis in order to select the optimal 

hyperparameter set. Each trained model is assigned a unique identifier, as shown in Table 3, to allow 

for performance tracking and comparison across different configurations. 

 

 

 



Z. R. Utomo et al.   Jurnal Masyarakat Informatika, 16(1), 2025 

 

7 
 
 

2.3 Data Augmentation 

Following hyperparameter optimization, data augmentation techniques are used to address class 

imbalances in the dataset. The No-Helmet and No-Vest classes are significantly underrepresented in 

the training set, with only 94 and 741 instances, respectively, as opposed to the dominant classes, 

Person (2,362 instances) and Helmet (2,116 instances). This imbalance can result in biased model 

learning, in which the detector predicts frequent classes but fails to detect rare PPE violations. 

To address this, post-training augmentation is applied using Mosaic and MixUp techniques, 

which improve model generalization by increasing sample diversity and enhancing feature learning 

[13]. This augmentation method improves the detection accuracy of PPE violations in real-world 

construction settings by ensuring more balanced class representation.   

 
Figure 3 Mosaic and Mixup Augmentation Visualization [13] 

 

Mosaic augmentation combines four randomly selected training images into a single composite 

image by partitioning the input space and stitching image segments together, resulting in a greater 

variation in object scales, spatial distributions, and contextual backgrounds. This augmentation 

broadens the range of object placements within an image, allowing the model to better learn feature 

representations across different scenarios [18]. Following mosaic augmentation, Mixup augmentation 

is used to create new training samples by blending the mosaic-generated image with a randomly 

selected image. This is accomplished through linear interpolation of pixel values and bounding box 

labels, with a randomly chosen mixing coefficient determining each image's contribution to the final 
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augmented sample. Mixup reduces overfitting by introducing smooth transitions between different 

object instances, encouraging the model to learn more general decision boundaries [13]. Figure 3 

depicts how this process works. 

 

2.4 Model Evaluation 

The model evaluation process is conducted to assess the final performance of the selected 

YOLOv8 model on the independent testing dataset. The key metric used in this evaluation is mean 

Average Precision (mAP), which is derived from the relationship between precision and recall at 

various Intersection over Union (IoU) thresholds [14]. Precision measures the proportion of correct 

positive detections among all predicted positives, while recall quantifies the proportion of actual 

positives correctly identified by the model. Together, these metrics form the basis of the Precision-

Recall (PR) curve, where the AP is computed as the area under the curve for each class. 

The overall performance of the model is measured using mean Average Precision (mAP), 

calculated as the average of the AP values across multiple object classes and IoU thresholds. For 

example, mAP50 evaluates performance at a fixed IoU threshold of 0.5, while mAP50-95 represents 

the average of AP values computed at thresholds from 0.5 to 0.95 in 0.05 increments. These metrics 

provide a comprehensive assessment of the model’s accuracy and robustness in object detection. A 

higher mAP50 indicates strong sensitivity, while mAP50-95 captures precision under stricter 

localization requirements. This evaluation confirms whether the optimized YOLOv8 model achieves 

the desired level of generalization and detection performance on unseen data [14]. 

 

3   Results and Discussion 

The research was conducted exclusively in a Jupyter Notebook environment on a local server.  

The specifications of the local computing device used in this research are presented in Table 4. The 

dataset was stored on local storage for fast access and responsiveness on training and data processing. 

However, the use of a local GPU imposes limitations, particularly in handling large batch sizes and 

training configurations involving high-resolution inputs or extended epochs, as the limited video 

memory constrains memory-intensive operations. 

 

Table 4 Research Device Specifications 

Component Specification 

Processor AMD Ryzen 5 5600X 

RAM 32GB 

GPU NVIDIA RTX 4060, 8GB 

CUDA Version 12.01 

GPU Driver Version 566.03.00 

PyTorch Version 2.4.1+cu121 

Ultralytics Version 8.3.95 

Python Version 3.10.11 
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The training results of the YOLOv8 model using various hyperparameter combinations obtained 

through a grid search process [19] are presented in Table 5. The hyperparameter combinations consist 

of three types of optimizers (Adam, RMSProp, and SGD), two batch size values (8 and 16), and three 

learning rate values (0.01, 0.001, and 0.0001). Each combination was tested to assess model 

performance using key metrics like mean Average Precision (mAP) at various Intersection over Union 

(IoU) thresholds and object classes (helmet, no-helmet, no-vest, person, and vest). A total of 18 

hyperparameter combinations were tested, and each model was assigned a unique ID based on the 

training sequence. 

Table 5 Grid Search Results 

ID Optimizer 
BatchSize LearningRate mAP50-95 mAP50 mAP75 recall 

model_001 

Adam 

8 

0.01 0.5037 0.8671 0.52 0.86226 

model_002 
0.001 0.4972 0.8922 0.4723 0.84097 

model_003 
0.0001 0.5218 0.8984 0.5269 0.87705 

model_004 

16 

0.01 0.4913 0.8707 0.4871 0.7426 

model_005 
0.001 0.4894 0.8648 0.4731 0.82113 

model_006 
0.0001 0.5244 0.9081 0.4982 0.86117 

model_007 

RMSProp 

8 

0.01 0.1495 0.3503 0.1094 0.35646 

model_008 
0.001 0.4528 0.8186 0.4451 0.81588 

model_009 
0.0001 0.4885 0.8688 0.4594 0.86547 

model_010 

16 

0.01 0.0613 0.1089 0.066 0.10827 

model_011 
0.001 0.4429 0.8401 0.3832 0.83534 

model_012 
0.0001 0.4675 0.8367 0.4625 0.83549 

model_013 

SGD 

8 

0.01 0.5167 0.8916 0.5395 0.82795 

model_014 
0.001 0.5221 0.8673 0.57 0.8427 

model_015 
0.0001 0.5008 0.8559 0.5073 0.83361 

model_016 

16 

0.01 0.508 0.8862 0.4757 0.86931 

model_017 
0.001 0.5217 0.8874 0.5654 0.87751 

model_018 
0.0001 0.5004 0.849 0.5268 0.84487 

 

Table 5 shows how different hyperparameter combinations affect model performance, with 

model_006 achieving the best results with the Adam optimizer, batch size 16, and a learning rate of 

0.0001, resulting in a mAP50-95 of 0.5244. This suggests that larger batch sizes and the Adam 

optimizer improve training stability and reduce overfitting, resulting in better PPE detection. 

Model_010 (RMSProp, batch size 16, learning rate 0.01) had the poorest performance (mAP50-95 of 
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0.0613), indicating that RMSProp is ineffective for YOLOv8. The next phase will concentrate on data 

augmentation to increase detection accuracy. Data augmentation will increase dataset diversity and 

generalization, resulting in more accurate detection of underrepresented PPE violations. 

The Mosaic and MixUp augmentations were used to make the dataset more diverse and improve 

the model's ability to find PPE violations, especially in classes that aren't used very often, like "no-

helmet" and "no-vest." To use mosaic augmentation, four training images were picked at random and 

put together to make a single 2 × 2 composite image. Each picture was resized to fit a quadrant on a 

1280 × 1280 canvas, and the coordinates of the bounding boxes were changed to keep the accuracy 

of the annotations. This addition let the model see objects in a wider range of sizes, positions, and 

backgrounds, which helped it work better in a wider range of detection situations. The process of 

augmentation consistently increased the number of rare PPE violations, fixing imbalances in the 

dataset at both the spatial and contextual levels. 

After Mosaic, MixUp augmentation was used to blend the composite with a fifth randomly 

selected image using a linear interpolation based on a Beta distribution (𝛼 = 0.4) mixing coefficient. 

Merging the pixel values and bounding boxes from both images created synthetic examples that 

simulate transitional object boundaries and class co-occurrences. A Jupyter Notebook was used to 

implement this method in Python using OpenCV and NumPy. Custom scripts automatically read, 

transformed, and stored augmented samples and processed all images and annotations into a new 

augmented directory. The process added visually diverse and semantically balanced samples to the 

training set, improving model robustness and detection accuracy. The examples of images produced 

with this technique can be seen in Figure 4. 

 

 
Figure 4 Mosaic and MixUp Augmentation Results 

 

The model was then retrained on the augmented dataset and compared to previous models. The 

comparison focused on detection performance for each PPE class, evaluating improvements in mean 

Average Precision (mAP). The evaluation includes four model variations to determine the impact of 

augmentation and hyperparameter tuning. The first variation establishes a baseline by training a 

previous YOLO version (YOLOv5) with default hyperparameters for 100 epochs, as trained by a 

previous study on the same dataset [15]. The second model is the more recent YOLO version, YOLOv8, 

which was also trained with default settings to compare improvements between versions. The third 

model uses the best-performing hyperparameters identified during the hyperparameter tuning stage, 



Z. R. Utomo et al.   Jurnal Masyarakat Informatika, 16(1), 2025 

 

11 
 
 

but without augmentation [13]. Finally, the fourth model employs the same optimized hyperparameters 

while incorporating Mosaic and MixUp augmentations to assess their impact on detection performance. 

The results are shown in Table 6. 

 

 

Table 6 Model Performances Across Different Configurations 

Model mAP50 mAP50-95 

mAP50 

helmet 
no-

helmet 
no-vest person vest 

YOLOv5 Default 

Params [15] 
0.867 0.5 0.936 0.675 0.838 0.964 0.922 

YOLOv8 Default 

Params 
0.9 0.515 0.958 0.856 0.845 0.952 0.888 

YOLOv8 Best Params 0.888 0.52 0.936 0.715 0.901 0.961 0.929 

YOLOv8 Best Params + 

Mosaic + MixUp [13] 
0.921 0.533 0.943 0.889 0.866 0.957 0,951 

 

 

Interestingly, although a previous study by Ciaglia et al. [15] reported that YOLOv5s trained on 

the same Construction Safety dataset (as part of Roboflow-100) achieved a mAP50 of 0.915, the 

reproduced baseline in this study only reached 0.867. Both models were trained under similar 

conditions, 640 × 640 resolution, 100 epochs, and default hyperparameters—but the performance 

discrepancy may be attributed to differences in training hardware, PyTorch versions, or slight 

preprocessing variations. Nonetheless, this study successfully closed the gap and outperformed the 

previously reported result by applying optimized training and augmentation techniques, with the final 

YOLOv8 model reaching a mAP50 of 0.921 and demonstrating superior performance across all PPE 

classes.  
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Figure 5 Precision-Recall Curve Across Each Model 

Figure 5 presents the Precision-Recall (PR) curves, offering a comparative visualization of 

detection performance among various YOLO model configurations. The YOLOv5 model with default 

parameters (top-left) exhibits limited effectiveness in detecting underrepresented classes, such as no-

helmet and no-vest, as evidenced by the shallow PR curves and sudden precision declines, which 

indicate low recall and high false-positive rates. In contrast, YOLOv8 with default parameters 

demonstrates a significant enhancement, particularly in helmet detection, as indicated by the 

pronounced and sustained PR curve. Nonetheless, the detection of individuals without helmets and 

vests remains moderate, indicating partial improvements in recall. The bottom-right configuration 

applies optimal hyperparameters without augmentation, enhancing overall detection, especially for no-

vest, yet experiences reduced recall in the no-helmet class, indicating a precision-recall trade-off that 

leads to a more conservative model approach. The most significant performance is evident in the 

bottom-left plot, which illustrates YOLOv8 with optimized parameters and data augmentation. All 

classes, including the previously challenging no-helmet and no-vest categories, demonstrate high and 

stable precision across a broad recall range. This demonstrates enhanced generalization and model 

robustness, highlighting the essential function of augmentation in improving the detection of rare or 

visually subtle classes in practical safety applications. 

The results clearly show how each step of the experiment, baseline comparison, hyperparameter 

tuning, and data addition, affects the model's overall performance. Going from YOLOv5 (mAP50: 

0.867, mAP50-95: 0.500) to YOLOv8 with the default settings gave an immediate accuracy boost 

(mAP50: 0.900, mAP50-95: 0.515), especially for helmet (0.958) and no-helmet (0.856) detection. 
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These improvements show how much better YOLOv8's new architecture is at extracting finer spatial 

features than its predecessor. 

The "YOLOv8 Best Params" model shows that hyperparameter tuning without adding anything 

else improved performance in the no-vest class (mAP50: 0.901). This shows that careful optimizer, 

learning rate, and batch size calibration is more important for some types of PPE. But this tuning 

caused mAP50 to drop slightly, from 0.900 to 0.888. This suggests that accuracy for some classes may 

have been lost because of changes in how learning works. This finding shows that hyperparameter 

optimization may not help all class categories equally in datasets that aren't balanced, even though it 

has a big effect. 

After adding Mosaic and MixUp enhancements, the improvement happened. The final model 

was the most accurate overall (mAP50: 0.921, mAP50-95: 0.533), and it did a great job of finding 

violations like "no helmet" (mAP50: 0.889) and "vest" (mAP50: 0.951) that hadn't been picked up 

before. These results support the idea that adding more class diversity can make models more reliable 

and accurate without lowering their precision. The PR curves show that this is also true because they 

show high accuracy across a wide range of recalls for all PPE categories. In real life, this means that 

the model is not only more accurate, but it's also less likely to miss important violations. This makes 

it a good choice for enforcing PPE compliance in construction sites in real time. 

 

4   Conclusion 

Using YOLO-based models, this study looked at how hyperparameter tuning and data 

augmentation affected PPE detection performance. The best hyperparameter combination was 

identified using a grid search process, with the Adam optimizer, batch size of 16, and a learning rate 

of 0.0001, resulting in the highest mAP50-95 (0.5244) score. Mosaic and MixUp augmentations were 

used to improve detection performance by increasing dataset diversity and model generalization. The 

evaluation of various model variations revealed that augmentation was critical in improving recall and 

precision, especially for underrepresented PPE violations such as no-helmet and no-vest.  

The best model was trained with the best hyperparameters and combined with Mosaic and 

MixUp augmentations. It had the highest mAP50 of 0.921 and the highest mAP50-95 of 0.533, doing 

better than both YOLOv5 and YOLOv8 without augmentation, showing that data augmentation 

improves detection performances. In terms of recall and precision, the Precision-Recall (PR) curves 

show that the model trained on augmented data does better than all classes. This is especially true for 

specific underrepresented classes, such as no-helmet and no-vest. 

Future work should explore additional augmentation strategies, advanced loss reweighting 

techniques, and domain-specific fine-tuning to further optimize model robustness. Additionally, 

testing the model on real-world construction site footage and integrating it into a real-time PPE 

compliance monitoring system could provide valuable insights into its practical applications. 
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