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Abstract 

This study aims to compare the effectiveness and efficiency of two convolutional neural network 

architectures, MobileNetV2 and Xception, for automated butterfly species classification. As 

biodiversity monitoring gains significance, effective species identification technologies are crucial 

for conservation. The research utilized a dataset of 100 butterfly species with 12,594 training images 

and 1,000 validation and test images. Transfer learning with pre-trained ImageNet weights was 

implemented, and both models were enhanced with custom classification layers. Data augmentation 

and class weighting mitigated dataset imbalance issues. Experimental results show Xception attained 

93.40% test accuracy compared to MobileNetV2's 93.20%. These high accuracy rates were achieved 

through effective transfer learning that preserved general feature extraction capabilities, 

comprehensive class balancing techniques, and carefully tailored learning rate strategies for each 

architecture. Despite minimal performance difference, MobileNetV2 offers significant computational 

efficiency advantages with 4.15M parameters compared to Xception's 25.27M, while Xception 

provides marginally better classification. This study contributes to entomological research and 

highlights trade-offs between model complexity and performance in fine-grained classification tasks, 

supporting implementation decisions for butterfly identification systems in practical applications. 

Keywords : Classification, Convolutional Neural Network, MobileNetV2, Xception, Butterfly 

1   Introduction 

The classification of butterfly species was essential for biodiversity monitoring, ecological 

study, and global conservation initiatives. With the acceleration of climate change and habitat 

destruction, monitoring butterfly populations has become crucial for evaluating ecosystem health [1]. 

Conventional butterfly classification techniques depend extensively on expert knowledge and 

intensive for resulting in considerable obstacles in extensive biodiversity research [2]. The advent of 

deep learning methodologies, especially Convolutional Neural Networks (CNNs), has transformed 

automated visual recognition tasks, providing effective solutions for species identification issues [3]. 

Recent advancements in CNN architectures have yielded robust instruments for automated 

butterfly classification. where pre-trained models are adapted for specific domains, has become the 

standard approach for biological image classification tasks where limited training data is available 

[2]. Among the diverse CNN architectures, lightweight models such as MobileNetV2 provide 

computational efficiency suitable for deployment in resource-limited settings, whereas more intricate 
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architectures like Xception may yield superior accuracy at the expense of heightened computaxtional 

requirements [4]. 

Numerous studies have explored automated butterfly classification with deep learning 

methodologies. For example, MobileNetV2 has exhibited impressive performance in entomological 

applications, with up to 94.6% accuracy in butterfly species recognition tasks and 86% accuracy in a 

classification including 75 species [5]. Xception, utilizing depthwise separable convolutions and 

significant architectural depth, has attained 80.58% accuracy at the species level and up to 98.02% at 

the order level in insect classification tasks [4]. Alternative CNN-based methodologies, such as 

modified InceptionV3 and hybrid models, have demonstrated elevated accuracy, with several studies 

attaining over 98% accuracy on extensive butterfly datasets [6]. 

Despite these advances, direct comparative analyses of MobileNetV2 and Xception for butterfly 

species classification are scarce, especially concerning extensive, heterogeneous datasets. While 

recent studies have made valuable contributions, such as Kaur's single-model optimization achieving 

94.6% accuracy with MobileNetV2 for 75 butterfly species and Santhiya et al.'s ensemble approach 

combining VGG19 and Xception for general insect classification across mixed taxonomic orders, 

several critical gaps remain in the literature [4][5]. These existing works either focus on individual 

model optimization without systematic architectural comparison, address mixed insect taxonomies 

rather than specialized butterfly classification, or lack comprehensive statistical validation of 

performance differences. 

This study addresses these limitations through a comprehensive comparative framework that 

advances the field in multiple dimensions. First, we provide rigorous statistical validation of 

architectural performance differences using McNemar's test and paired t-test analysis [7], which 

represents statistical rigor absent in previous comparative studies. Second, our research offers the first 

systematic computational efficiency benchmarking for butterfly classification, measuring inference 

time and memory usage critical for deployment decisions in resource-constrained field applications. 

Third, we conduct detailed per-class performance evaluation across 100 butterfly species, revealing 

species-specific classification challenges that provide deeper insights than aggregate accuracy metrics 

alone. 

Our approach further contributes through domain-specialized analysis, focusing exclusively on 

large-scale butterfly classification rather than mixed insect taxonomies, enabling more precise 

understanding of lepidopteran visual recognition challenges [8]. Additionally, we implement 

systematic class imbalance mitigation through inverse frequency weighting, addressing a key 

practical challenge unaddressed in existing comparative studies. Our comprehensive training 

dynamics analysis, including interpretation of validation loss patterns and convergence behavior, 

provides interpretable insights into deep learning optimization for biological image classification [9]. 

Finally, we establish a deployment-oriented trade-off framework that balances accuracy and 

computational efficiency, offering practical guidance for real-world conservation applications rather 

than pursuing accuracy maximization alone. 

Based on these identified gaps, this study implements a systematic comparison of MobileNetV2 

and Xception architectures for butterfly species classification using a comprehensive dataset of 100 

distinct species, with findings intended to guide practical deployment decisions in conservation and 

entomological research applications [2][6]. 
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2   Research Methods 

This research performed a systematic comparison of the MobileNetV2 and Xception 

architectures for the classification of butterfly species utilizing an eight-stage methodological 

methodology.  The methodology combined standard deep learning protocols with bespoke tweaks to 

tackle the specific issues of butterfly image processing.  Figure 1 illustrates the research framework, 

detailing the methodological path from dataset preparation to performance evaluation.  This 

systematic method enabled uniform assessment of both architectures throughout all research phases, 

guaranteeing fair comparison of their classification capabilities. 

 
Figure 1 Research Methodology Workflow 

2.1   Dataset Preparation 

The dataset used in this study was sourced from Kaggle's public repository, which provides a 

comprehensive collection of butterfly images across numerous species. The selection of this 

comprehensive 100-species butterfly dataset was strategically motivated by several factors that 

distinguish it from alternative datasets commonly used in lepidopteran classification research. While 

existing studies have typically employed smaller taxonomic scopes ranging from 10-75 species, our 

dataset provides enhanced taxonomic diversity essential for robust architectural comparison and 

generalization assessment. This collection offers superior class representation compared to 

fragmented datasets, with standardized image quality and consistent annotation protocols that ensure 

reproducibility across different computational environments. The dataset's public availability through 

Kaggle's repository facilitates research reproducibility and enables direct comparison with future 

studies, addressing a critical gap in butterfly classification research where dataset fragmentation has 

hindered comprehensive architectural evaluations. Furthermore, the 100-species scope provides 

sufficient complexity to reveal meaningful performance differences between lightweight and 

complex CNN architectures while maintaining manageable computational requirements for 

systematic comparison. In the preparation and organization of datasets for classifying 100 butterfly 

species, this study structured the data into hierarchical directories comprising training, validation, and 

testing folders, each containing images appropriately partitioned for model development and 

evaluation purposes [10]. Image standardization to 224×224×3 pixel format represented a critical 

preprocessing step to ensure dimensional consistency for convolutional neural network inputs, as 

implemented in our butterfly classification methodology [11]. Our dataset distribution strategy 

allocated 12,594 images for training, 500 for validation, and 500 for testing, contributing significantly 

to maintaining data balance and enhancing model performance. Directory validation and verification 

protocols were systematically implemented to confirm proper data segregation across training, 
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validation, and testing subsets while preventing cross-contamination between partitions—a standard 

practice in butterfly classification dataset development [11]. Figure 2 shows a graph of the distribution 

of the datasets for training, validation, and testing, showing how many images are in each group. The 

bar graphs show how many images were given to each class for training, validation, and testing. 

 

 

Figure 2 Dataset Distribution 

Figure 3 illustrates representative images from the dataset, showcasing butterflies in the 

training, validation, and testing subsets. Each row displays images from distinct butterfly species, 

accompanied with labels for the train, validation, and test. This graphical depiction aids in 

comprehending the allocation of photos among various categories and dataset segments. 

 

Figure 3 Dataset Samples 

2.2   Exploratory Data Analysis 

This study Exploratory Data Analysis (EDA) revealed moderate class imbalance across the 

butterfly dataset, with statistical analysis showing training samples ranging from 100 to 187 images 

per species (mean=125.94, SD=15.26), while validation and test sets maintained consistent 5 samples 

per class. Specifically, "Sixspot Burnet Moth" emerged as the minority class with 100 samples and 

"Mourning Cloak" as the majority class with 187 samples, necessitating appropriate mitigation 

strategies [12]. Class weight calculations were implemented inversely proportional to sample counts, 

assigning weights of 1.0 for classes with 100 samples and 0.5348 for classes with 187 samples, 

effectively addressing potential classification bias [13]. Visualization through histograms and bar 
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charts facilitated class distribution analysis and informed subsequent data augmentation techniques. 

This approach aligns with research demonstrating that appropriate handling of class imbalance 

significantly improves model performance in fine-grained image classification tasks [14], particularly 

important in biological datasets where certain species are frequently underrepresented [15]. 

Quantitative analysis of class distribution provided essential guidance for implementing effective 

preprocessing strategies to ensure balanced model training across all butterfly species. Figure 4 

provides a visual representation of the class distribution within the dataset, offering insights into the 

classes with the most and the fewest samples. The bar charts below depict the top 10 classes with the 

highest number of training images, as well as the 10 classes with the fewest images. This visualization 

highlights the disparities in sample distribution across the butterfly species and emphasizes the 

importance of implementing strategies to address the class imbalance effectively. 

 

Figure 4 Top and Bottom Classes Visualization 

2.3   Data Preprocessing 

The data pre-processing phase combined several strategies to improve image quality and 

address dataset problems. Following established normalizing techniques [16], all images were 

rescaled to the [0,1] range by dividing pixel values by 255, resulting in more consistent input data 

ranges and more efficient convergence during model training. To resolve the identified class 

imbalance, a complete weighting technique was created based on inverse class frequency calculation 

[17], which prioritized underrepresented species during the learning phase. This method assigned a 

maximum weight of 1.0 to the least represented class Sixspot Burnet Moth with 100 samples, while 

the most abundant class Mourning Cloak with 187 samples received approximately 0.53, effectively 

balancing learning attention across all classes without requiring physical dataset modification. The 

implementation used TensorFlow's built-in class weighting mechanisms during model training, as 
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well as automated class indices generation via directory-based data loading methods, to ensure 

consistent mapping between butterfly species names and numerical representations throughout all 

processing stages. This unified method to pre-processing laid a solid foundation for future model 

building by ensuring data quality while maintaining class representation fidelity. 

 

Figure 5 Class Weight Distribution After Balancing Visualization 

Figure 5 illustrates the distribution of class weights after balancing, calculated using inverse 

class frequency to address the dataset's class imbalance. The visualization highlights the variation in 

class weights, which were assigned to ensure that underrepresented species received more focus 

during model training. The mean and median values, marked in the chart, provide additional insight 

into how the weight adjustment balanced the dataset across all butterfly species, laying a strong 

foundation for future model development. 

2.4   Data Augmentation 

A thorough data augmentation pipeline was created using TensorFlow's ImageDataGenerator 

module to improve model generalization and tackle the issue of limited training samples.  In 

accordance with established augmentation methodologies [18], the system implemented several real-

time transformations during training, including rotations of up to ±40° to account for diverse butterfly 

orientations, width and height adjustments of 20% to simulate different placements within frames, 

shear transformations of 20% to introduce perspective variations, and zoom operations within a 20% 

range to mimic varying capture distances.  Diversity was enhanced by employing both horizontal and 

vertical flipping, utilizing the nearest fill mode to effectively manage border pixels generated during 

transformations [19].  Each augmentation parameter was intentionally selected to represent natural 

differences in butterfly imaging, so enhancing the diversity of the training dataset without 

necessitating further data collection.  This method allowed the models to enhance their feature 

identification abilities, resulting in improved generalization to novel specimens [18]. A crucial 

methodological aspect was the exclusive use of augmentation techniques to the training set, while the 

validation and test sets were left unaltered to avert data leakage and maintain the integrity of model 

evaluation outcomes.  The strategic application of data augmentation greatly enhanced the models' 
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capacity to identify butterflies in various orientations, sizes, and viewpoints, hence increasing 

classification performance for all 100 target species. 

 

Figure 6 Comparison of Original and Augmented Images 

Figure 6 illustrates the comparison between original and augmented photos, highlighting the 

efficacy of the data augmentation pipeline employed during training. The original photos are 

displayed above, while the augmented versions, generated through various transformations like 

rotations, scaling, flipping, and shifting, are presented below. These modifications facilitate the 

simulation of various butterfly orientations, sizes, and perspectives, thereby substantially augmenting 

the model's capacity to generalize and enhance classification performance across all 100 target species 

without necessitating further data gathering. 

2.5   Model Architectures 

This study implemented two complementary convolutional neural network architectures: 

MobileNetV2 and Xception, selected for their balance of computational efficiency and classification 

accuracy. MobileNetV2 represents a lightweight architecture specifically designed for resource-

constrained environments [20], featuring inverted residual blocks with bottleneck layers and 

depthwise separable convolutions that decompose standard convolutions into depthwise and 

pointwise operations. Figure 7 shows the MobileNetV2 architecture's inverted residual blocks. On 

the left are stride=1 blocks with skip links, and on the right are stride=2 blocks. These blocks are the 

most important part of the network. They use depthwise separable convolutions to make the network 

much faster while keeping the richness of the features [21]. This innovative structure significantly 

reduces computational demands while maintaining high accuracy, with the implemented model 

containing approximately 2.3 million non-trainable parameters with ImageNet pre-trained weights 

[22]. The architecture leverages linear bottlenecks between expanded representations and skip 

connections that enhance gradient flow during training, making it particularly suitable for deployment 

scenarios where processing efficiency is critical [23].  
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Figure 7 MobileNetV2 Architecture [21] 

 

Figure 8 Xception Architecture [24] 

Figure 8 depicts the entire Xception architecture used in this study, highlighting the three 

separate flows. The diagram depicts the entry flow (top), which includes initial convolutions and 

increasing filter depth, the middle flow (bottom left), which contains eight repeated blocks of 

depthwise separable convolutions, and the exit flow (bottom right), which transitions to higher-

dimensional feature representations before classification. This layered method allows for effective 

cross-channel correlations while being computationally feasible. Xception provides a deeper 

architectural alternative that extends the concept of depthwise separable convolutions with additional 
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cross-channel correlations. The architecture is organized into three primary segments: entry flow with 

initial convolutional layers, middle flow containing repeated depthwise separable convolutions, and 

exit flow for transition to classification layers [25]. Featuring enhanced depthwise separable 

convolutions and more extensive residual connections, the Xception base model implemented in this 

study utilized approximately 20.8 million non-trainable parameters, reflecting its substantially deeper 

structure. Despite its increased complexity, Xception achieves high accuracy with relatively moderate 

parameter count compared to other high-performance models, outperforming several alternatives in 

fine-grained image classification tasks [26]. Both architectures were implemented through transfer 

learning, utilizing pre-trained ImageNet weights to leverage generalized visual feature extraction 

capabilities while enabling domain-specific adaptation through custom classification heads designed 

for the butterfly species identification task. 

2.6   Model Development 

 

Figure 9 Modified Model Architecture 

The model development process employed a systematic approach to adapt pre-trained 

architectures for butterfly species classification, following established practices in machine learning 

[27]. For both MobileNetV2 and Xception models, the base architectures were imported with pre-

trained ImageNet weights, and all base layers were frozen to preserve their generalized feature 

extraction capabilities while allowing for domain-specific adaptation. The MobileNetV2 model was 

extended with a custom classification head specifically designed for butterfly classification, 

incorporating a global average pooling layer to reduce spatial dimensions and parameter count, 

followed by two fully connected layers with 1024 and 512 neurons respectively, each using ReLU 

activation. Lightweight dropout (0.001) was strategically applied between these layers to minimize 

overfitting while maintaining effective information flow. This architecture culminated in a final 

classification layer with softmax activation for the 100 butterfly species, with the model compiled 

using the Adam optimizer (initial learning rate=0.001) and categorical cross-entropy loss function. 

As illustrated in the upper portion of Figure 9, MobileNetV2's custom classification head maintains 

computational efficiency with approximately 1.89 million trainable parameters while preserving the 
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frozen base model's pre-trained feature extraction capabilities, creating a balanced implementation 

suitable for deployment in resource-constrained environments. 

The lower portion of Figure 9 shows Xception’s custom classification head with proportionally 

larger dense layers and approximately 4.4 million trainable parameters, designed to maximize the 

model’s ability to utilize richer feature representations while maintaining the same structural pattern 

for systematic comparison. The Xception model received a proportionally larger custom classification 

head with expanded dense layers (1536 and 768 neurons) to match its increased feature extraction 

capacity, while maintaining the same structural pattern and dropout rate (0.001) as the MobileNetV2 

implementation. This design choice accommodated the richer feature representations produced by 

Xception’s more complex base architecture, with a lower initial learning rate (0.0005) implemented 

to facilitate more gradual optimization through the deeper network. Both model development 

approaches prioritized effective adaptation to the butterfly classification domain while preserving the 

core feature extraction capabilities of the pre-trained architectures. The custom classification heads 

were deliberately designed with sufficient capacity to capture species-specific discrimination features 

while avoiding excessive complexity that might lead to overfitting, resulting in MobileNetV2 having 

approximately 1.89 million trainable parameters (out of 4.15 million total) and Xception having 

approximately 4.4 million trainable parameters (out of 25.27 million total). 

2.7   Model Training 

The training process for the butterfly classification models employed carefully selected 

parameters to balance computational efficiency with model performance. A batch size of 32 and 

maximum 50 epochs were utilized for both MobileNetV2 and Xception architectures, though neither 

required the full epoch allocation due to effective early stopping mechanisms. MobileNetV2 

completed training after 34 epochs, demonstrating the efficiency of the optimization strategies 

implemented [28]. The dataset’s size of 12,594 training images across 100 butterfly species 

influenced these parameter choices, providing sufficient iterations for learning while preventing 

excessive computational overhead. 

Both models benefited from comprehensive optimization techniques tailored to their specific 

architectures. Model checkpointing was implemented with validation accuracy monitoring and the 

save-best-only parameter enabled, ensuring only the highest-performing model versions were 

preserved during the training process. Early stopping mechanisms were configured differently 

between models, with MobileNetV2 using a patience parameter of 10 epochs while the more complex 

Xception architecture was allowed additional convergence time with 15 epochs of patience [29]. 

Learning rate reduction schedules were similarly customized, with MobileNetV2 employing a 

reduction factor of 0.2 after 5 epochs without improvement (minimum learning rate of 1e-6), while 

Xception utilized a more aggressive 0.1 reduction factor after 7 stagnant epochs, with a lower floor 

of 1e-7. These adaptations proved essential given Xception’s significantly larger parameter count—

approximately 20.8 million non-trainable parameters compared to MobileNetV2’s 2.3 million [30]. 

The models were compiled with the Adam optimizer but used different initial learning rates to 

accommodate their architectural differences. MobileNetV2 began with a learning rate of 0.001, while 

Xception started lower at 0.0005 to provide more stable training for its more complex structure. Both 
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employed categorical cross-entropy loss functions and accuracy metrics, with class weights 

implemented to address the inherent imbalance in the butterfly species dataset. These configurations 

resulted in MobileNetV2 achieving 93.20% test accuracy, while Xception reached a marginally 

superior 93.40%, demonstrating that thoughtfully implemented optimization approaches can yield 

comparable results despite significant differences in model complexity [31]. 

The training process leveraged GPU acceleration through TensorFlow, confirmed through 

environment checks that identified a single available GPU with CUDA support. This hardware 

configuration enabled efficient parallel processing for both models, though Xception naturally 

demanded more computational resources due to its larger parameter count and more complex 

architecture [32]. The successful implementation of these training procedures demonstrates how 

carefully configured parameters and optimization techniques can produce high-performing models 

for specialized image classification tasks, even with moderately-sized datasets and limited hardware 

resources. The marginal performance difference between the models (0.20%) despite their substantial 

architectural differences highlights the effectiveness of the training methodology and optimization 

strategies employed. 

2.8   Evaluation 

Both CNN architectures were evaluated using standard classification metrics, including 

accuracy, precision, recall, and F1-score, with targeted visualization strategies to manage the 

complexity of the 100-class problem [33]. Instead of examining the entire 100×100 confusion matrix, 

the implementation concentrated on the top 10 most represented classes and determined the 10 worst-

performing classes using per-class accuracy computation [34][35]. This selective approach, combined 

with sample prediction visualizations with color-coded results, allowed for efficient identification of 

misclassification patterns between visually similar butterfly species while avoiding information 

overload, revealing similar classification challenges across both model architectures despite structural 

differences [36][37]. To quantify model performance with precision, the research utilized a suite of 

complementary metrics, each providing unique insights into classification behavior. The overall 

classification effectiveness was measured using accuracy, which represents the ratio of correctly 

classified instances to the total number of test samples, as defined in Equation (1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝛴𝑖=1

100𝑇𝑃𝑖

𝑇𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑏𝑢𝑡𝑡𝑒𝑟𝑓𝑙𝑦 𝑠𝑝𝑒𝑐𝑖𝑒𝑠

500
                 (1) 

 For a more granular assessment of model behavior, precision was calculated for each butterfly 

species i. Precision quantifies the exactness of positive predictions by measuring the proportion of 

correctly identified instances among all predictions for a specific class, as demonstrated in Equation 

(2). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖+ 𝐹𝑃𝑖
=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑖

𝑇𝑜𝑡𝑎𝑙 𝑏𝑢𝑡𝑡𝑒𝑟𝑓𝑙𝑖𝑒𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑖
                       (2) 

Complementing precision, recall was employed to evaluate the model’s completeness in 

identifying all relevant instances. Equation (3) presents the mathematical formulation of recall, which 

measures the proportion of actual positives that were correctly identified by the model. 
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𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖+ 𝐹𝑁𝑖
=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑖

𝑇𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑏𝑢𝑡𝑡𝑒𝑟𝑓𝑙𝑦 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑖
                              (3) 

To balance the trade-off between precision and recall, the F1-score was calculated according to 

Equation (4). This metric provides a harmonic mean of both precision and recall, proving particularly 

valuable for species with classification challenges. 

𝐹1 𝑆𝑐𝑜𝑟𝑒𝑖 =  2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
                                              (4) 

These metrics were calculated individually for all 100 butterfly species, then aggregated using 

both macro-averaging and weighted-averaging to provide comprehensive performance assessment 

across the diverse butterfly taxonomy while accommodating species-specific classification 

challenges. 

3   Results and Discussion 

The comparative analysis of MobileNetV2 and Xception architectures for butterfly species 

classification yielded several significant findings. Both models demonstrated robust performance, 

with MobileNetV2 achieving 93.20% test accuracy and Xception reaching 93.40%. This minimal 

difference (0.20%) despite substantial architectural disparity represents a key finding, suggesting that 

lightweight architectures can achieve comparable results to more complex models in specialized 

classification tasks. Figure 10 visualizes the accuracy comparison between both architectures, 

illustrating how the minimal performance difference (0.20%) occurs despite significant differences 

in model complexity. This visualization affirms MobileNetV2’s efficiency in achieving competitive 

performance with a substantially simpler architecture. 

 

Figure 10 Model Accuracy Comparison 

Both architectures exhibited consistent classification metrics across the 100 butterfly species, 

with identical precision (0.94), recall (0.93), and F1-score (0.93) in both macro-averaged and 

weighted-averaged measurements. This balanced performance validates the effectiveness of the 
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implemented class weighting strategy in mitigating dataset imbalance, where training samples ranged 

from 100 to 187 images per species.  

To validate the significance of performance differences between architectures, comprehensive 

statistical testing was conducted using McNemar's test and paired t-test analysis. McNemar's test 

examined the disagreement between model predictions, revealing no statistically significant 

difference (χ² = 0.9730, p = 0.3239, α = 0.05). The test identified 451 cases where both models were 

correct, 15 cases where MobileNetV2 was correct but Xception was wrong, 22 cases where Xception 

was correct but MobileNetV2 was wrong, and 12 cases where both models failed. Additionally, paired 

t-test analysis on per-class accuracy showed no significant difference between architectures (t = -

1.1224, p = 0.2644). These statistical results confirm that despite Xception's marginally higher 

accuracy (93.40% vs. 93.20%), the performance difference is not statistically significant, supporting 

the practical equivalence of both architectures for butterfly species classification tasks. 

Comprehensive computational benchmarking revealed significant efficiency advantages for 

MobileNetV2 across multiple metrics. Inference time analysis showed MobileNetV2 achieving 47.78 

± 5.64 ms per image compared to Xception's 51.22 ± 8.86 ms, representing a 1.1× speed advantage 

with lower variance. Model size comparison demonstrated dramatic differences, with MobileNetV2 

requiring only 15.82 MB compared to Xception's 96.38 MB (6.1× reduction). Parameter analysis 

revealed MobileNetV2's efficiency with 4.15 million total parameters (1.89 million trainable) versus 

Xception's 25.27 million total parameters (4.40 million trainable), representing a 6.1× reduction in 

model complexity. Batch processing benchmarks showed similar efficiency patterns, with 

MobileNetV2 processing multiple images 1.9× faster than Xception. Memory usage analysis 

indicated minimal differences (0.42 MB vs. 0.49 MB), suggesting both architectures are suitable for 

resource-constrained deployments, though MobileNetV2 maintains superior overall efficiency 

characteristics. 

 

Table 1 Comprehensive Performance and Efficiency Comparison 

Metrics MobileNetV2 Xception 
Ratio 

(Xception/MobileNetV2) 

Test Accuracy 0.9320 0.9340 1.015 

Model Size (MB) 15.82 96.38 6.1x 

Total Param (M) 4.15 25.27 6.1x 

Trainable Param (M) 1.89 4.40 2.3x 

Avg Inference Time (ms) 47.78 ± 5.64 51.22 ± 8.86 1.1x 

Batch Inference Time (ms) 102.21 202.49 1.9x 

Perfect Classification Species 48 52 1.1x 

 

Figure 11 and 12 illustrates the training curves of both models, visualizing the dynamics of 

accuracy and loss throughout the optimization process. The graph demonstrates how MobileNetV2 

achieved convergence more rapidly at epoch 34, while Xception required 50 epochs with a more 

gradual pattern of performance improvement. 
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Figure 11 MobileNetV2 Training History 

 

Figure 12 Xception Training History 

The validation loss dynamics observed in Figure 12 reveal important insights into the transfer 

learning optimization behavior of the Xception architecture. The notable fluctuations around epochs 

30-35, particularly the temporary loss spike, reflect the complex interaction between pre-trained 

ImageNet features and domain-specific butterfly classification adaptation. This phenomenon 

coincides with the learning rate reduction schedule implementation, where the aggressive reduction 

factor (0.1) temporarily disrupts the optimization trajectory before enabling more refined parameter 

adjustment. Such oscillatory behavior is characteristic of deeper architectures with extensive 

parameter spaces, which require more careful optimization compared to lightweight models. The 

subsequent stabilization and continued improvement demonstrate successful domain adaptation, with 

the model ultimately achieving superior test performance despite these temporary optimization 

challenges. This pattern validates the importance of extended patience parameters (15 epochs) in early 

stopping criteria for complex transfer learning scenarios. 

Species-specific analysis revealed performance patterns aligned with taxonomic visual 

characteristics. Perfect classification (100% accuracy) was achieved for species with distinctive 

visual features Atlas Moth, Monarch, and Red Admiral, while both models struggled with visually 

similar species, particularly among blue butterflies such as Chalk Hill Blue and Adonis as well as 

those with similar wing patterns. This pattern aligns with theoretical expectations in fine-grained 

classification, where subtle distinguishing features become critical determinants of model 

performance. Figure 13,14, and 15 presents a comparison of the highest and lowest performing 
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species for both models. This visualization reveals how specific morphological characteristics 

correlate with classification accuracy, with species having distinctive patterns such as Monarch and 

Atlas Moth consistently achieving perfect accuracy, while species with more common patterns or 

higher intra-species variation present greater classification challenges. 

 

Figure 13 Best Performing Species 

 

Figure 14 Worst Performing Species (MobileNetV2) 

Figure 16 and  Figure 17 presents confusion matrixes for both models, revealing the primary 

misclassification patterns among species. The dominant diagonal pattern confirms overall high 

accuracy, while the off-diagonal areas identify pairs of species frequently confused with each other, 

particularly among butterfly families with similar visual characteristics. Due to better understand the 

visual context of classification successes and failures, Figure 18 presents sample predictions with 

actual and predicted labels. These examples demonstrate cases where distinctive visual features 
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resulted in accurate classification (marked in green), as well as cases where similarities in wing 

patterns or posture led to misclassification (marked in red). 

 

Figure 15 Worst Performing Species (Xception) 

 

Figure 16 MobileNetV2 Confusion Matrix 
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These findings directly address the study's primary objective of comparing MobileNetV2 and 

Xception architectures for butterfly classification. The results demonstrate that transfer learning with 

custom classification layers enables both architectures to achieve excellent performance, with 

MobileNetV2 offering substantial efficiency advantages without significant accuracy sacrifice. Such 

findings have important implications for practical implementation of butterfly identification systems 

in resource-constrained environments. The observed performance compares favorably with previous 

research, positioning in the upper tier of reported accuracy ranges for butterfly classification tasks. 

 

Figure 17 Xception Confusion Matrix 

This study results show MobileNetV2 achieved 93.20% accuracy which is slightly lower than 

Kaur's study in 2024 which reported 94.6% accuracy using MobileNetV2 for 75 butterfly species. 

However, several factors may explain this difference. First, our study classified a larger taxonomy 

with 100 species compared to 75 species, increasing classification complexity. Second, our 

implementation focused on architectural comparison rather than single-model optimization. Third, 

our dataset distribution with 12,594 training images across 100 classes differs from Kaur's approach 

with 9,285 training images across 75 classes. Notably, while Kaur's study emphasized mobile 

deployment optimization, our research provides additional insights through architectural comparison, 

demonstrating that with appropriate optimization, lightweight architectures can approach the 
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performance of more complex models for specialized visual domains, even with expanded taxonomic 

scope [5]. The effective implementation of class weighting and data augmentation strategies 

significantly contributed to model performance, supporting established research on addressing 

imbalanced datasets in biological classification tasks. The approach achieved balanced performance 

across all species despite training sample variations, demonstrating practical application of theoretical 

balancing techniques in entomological classification. 

 

Figure 18 Sample Predictions 

The significance of these findings extends to multiple domains. For conservation applications, 

the high accuracy across 100 species provides valuable tools for monitoring butterfly populations, 

particularly for rare or endangered species. The efficiency of MobileNetV2 makes it suitable for 

deployment in mobile applications, enabling citizen science initiatives through automated 

identification assistance. The successful classification across a comprehensive butterfly taxonomy 

supports detailed ecological studies requiring species-level identification precision. In conclusion, 

this study demonstrates that both MobileNetV2 and Xception architectures achieve excellent butterfly 

species classification performance when appropriately optimized, with MobileNetV2 offering 

compelling advantages in computational efficiency with negligible accuracy sacrifice. These findings 

support implementation decisions for automated butterfly identification systems in practical 

conservation and research applications, highlighting the effectiveness of transfer learning and custom 

classification layers for specialized visual recognition tasks. 

 

4   Conclusion 

This comparative analysis of lightweight and complicated CNN architectures for butterfly 

species categorization illustrates the effectiveness of transfer learning methods for specific taxonomic 

classification problems. The study effectively achieved the main goal by demonstrating that 

architectural complexity does not inherently connect to classification performance in domain-specific 

image recognition tasks. The results offer compelling scientific rationale for utilizing lightweight 

architectures in specialized visual classification tasks, which is particularly important for practical 

entomological identification systems with constrained computational resources. The minimal 
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performance variation between designs, despite significant parameter differences, questions 

traditional beliefs regarding the complexity needs of models for fine-grained classification tasks. This 

study methodologically contributes to the field by demonstrating the effective implementation of 

class weighting algorithms that provide balanced performance among taxonomically different species. 

The persistent trend of successful classification with visually dissimilar species and difficulties with 

visually similar ones highlights the essential connection between visual taxonomic traits and machine 

learning classification efficacy. 

Future research should investigate ensemble methods that utilize the complementing 

advantages of various architectural approaches, as indicated by the distinct error patterns identified 

among models. Additional research on attention mechanisms tailored to emphasize taxonomically 

significant butterfly characteristics may enhance classification precision for visually like species. 

Furthermore, the creation of region-specific models concentrating on butterflies from distinct 

geographical locales signifies another viable avenue for targeted conservation efforts. The wider 

implications reach beyond entomology to conservation biology, citizen science projects, and 

computer vision techniques, illustrating how optimized lightweight architectures can democratize 

access to sophisticated classification tools in resource-limited research and conservation settings. 
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