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Abstract

Mushrooms encompass a very large number of species, and some of them are toxic to humans. It is
very difficult to classify mushroom species quickly and accurately, especially for common individuals
who often encounter wild mushrooms in nature. To address this problem, this study envisioned an
automated mushroom species classification system using deep learning methods and the InceptionV3
model. This model was chosen because it is highly generalizable, performs well with challenging
images, and is precise for most image-based classification tasks. The dataset comprises 18 mushroom
species and was created from a Kaggle version. Data balancing, preprocessing, data augmentation,
and model training constitute the research work. The dataset has been divided into 70% training, 15%
validation, and 15% test. The training results show that the model achieves 81.35% accuracy in
identifying mushroom species. The study contributes to the development of AlI-based image recognition
technology that can help humans find mushrooms more rapidly and securely.
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1 Introduction

Mushrooms, highly diverse organisms, play important roles in ecosystems as decomposers and
food sources. Some types of mushrooms, however, are poisonous and can cause serious health
problems or even death if accidentally consumed. Because many species have significant
morphological similarities, distinguishing between safe-to-eat and poisonous mushrooms is very
difficult [1]. To identify toxicity, people often use traditional methods, such as observing rice color
changes or using silver spoons when boiling mushrooms. However, these methods are not accurate
and cannot be relied upon as scientific references [1].

In Gujarat, India, wild mushrooms are abundant across various ecosystems, including forests,
agricultural fields, and farmer pathways. Through morphological observations and taxonomic
classification, the research successfully identified at least 57 mushroom species [2]. However, manual
identification requires considerable time and special skills, making it generally difficult to implement.
These limitations indicate that more effective and accessible methods for mushroom identification are
needed. Consequently, contemporary technology can play an important role in addressing this issue.

The image-based object identification process has become more efficient and accurate with the
development of artificial intelligence, particularly in computer vision. Deep learning methods based
on Convolutional Neural Networks (CNNs) have proven effective across many applications, including
plant disease classification, vegetable classification, skin cancer detection, and face mask usage

Received: 06 May 2025; Revised: 29 December 2025, Accepted: 10 January 2026, Published: 22 January 2026
Copyright (¢) 2026 The authors. Published by Department of Informatics, Universitas Diponegoro
This is an open access article under the CC-BY-SA license.


https://doi.org/10.14710/jmasif.17.1.73005
https://creativecommons.org/licenses/by-sa/4.0/
https://crossmark.crossref.org/dialog?doi=10.14710/jmasif.17.1.73005&domain=pdf

M. K., Naufal et al Jurnal Masyarakat Informatika, 17(1), 2026

detection. Previous researchers have developed CNN-based and vision transformer automatic
classification systems to identify wild mushrooms in mycology. With support from community science
data, a system called Fungivision can achieve classification accuracy of nearly 93% [3].

More advanced CNN architectures, such as InceptionV3, offer advantages in terms of
computational efficiency, accuracy, and stability on smaller datasets. To improve generalization
capability and accelerate training, this model uses auxiliary classifiers, batch normalization, and
convolution factorization [4]. Additionally, InceptionV3 has demonstrated outstanding performance
across various domains. For example, in fashion product image classification, this model can achieve
an accuracy score of 92.86% and an F1-score of 92.85% on data with high visual similarity between
classes [5]. InceptionV3 successfully completes challenging picture classification tasks that require
the model to discern large visual changes between classes, as demonstrated by Maryamah et al. [5].
These techniques seem to have great potential to improve the accuracy and efficiency of mushroom
classification systems.

However, a thorough analysis of the current research literature identifies several gaps. The
model's capacity to generalize to a wider range of species and visual situations is constrained by prior
research using deep learning on fungal species, which frequently concentrates on a small number of
classes [6] or makes use of fewer datasets. Importantly, many studies' use of transfer learning is not
adequately tuned, leading to very accurate models that are not resilient to strong visual similarity across
certain classes. Furthermore, a thorough per-class study that could identify specific visually
challenging species is often absent from the debates, which tend to focus solely on overall accuracy.

2. Research Method

2.1 Research Workflow

The purpose of this research is to create an automatic classification system that can identify mushroom
types. Deep learning methods and the InceptionV3 model were chosen because of InceptionV3's ability
to handle images with high complexity and provide very good results for image-based classification
tasks. This research aims to create a system that can automatically identify and classify mushroom
species with a high level of accuracy. The dataset used consists of 18 mushroom species, covering
various types of wild mushrooms with variations in morphology and color. The research methodology
is illustrated in Figure 1.

Dataset Dataset Class Pre-Processing Architecture Model
Preparation Division Balancing Dataset and Model Training

Figure 1 Research Workflow of the Proposed Mushroom Classification System

2.2 Data Collection

This research began by analyzing the Kaggle mushroom image dataset at
https://www.kaggle.com/datasets/iftekhar08/mo-106?select=MO_94. This research used a dataset of
about 18 different mushroom species, each with significant visual variations. The dataset of 5,526
images spanning 18 mushroom species plays an important role in developing an accurate automatic
classification system. The distribution of images across 18 mushroom species is shown in Figure 2.
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Figure 2 Class Distribution

The number of samples collected for each species varied, with some species having more
images than others. Purple Mushroom has 477 images, while Honey Mushroom has 328 images.
According to previous research, bias in the classification process can be caused by an imbalance in the
distribution of sample numbers between species [7]. The existence of possible representation bias
between classes, which can affect model accuracy, is indicated by this significant variation in the
number of samples. Additionally, this imbalance indicates differences in image-taking conditions,
where each species has different visual attributes, such as size, shape, and color, which can affect the
model's ability to identify mushrooms correctly [3].
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Figure 3 Dataset Visualization

Three subsets were created from the entire dataset, comprising 4,248 samples from 18 different
species: 70% for training (about 2,974 samples), 15% for validation (about 637 samples), and 15% for
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testing (about 637 samples). This partitioning ratio, which maximizes training data while preserving
enough independent data for trustworthy model evaluation, is a conventional approach [8], [6].

Stratified splitting was used to provide a proportionate and balanced representation of each
species in the training, validation, and testing sets due to the varied morphology and intrinsic imbalance
in the number of samples between species. This crucial step improves the model's capacity to
generalize to new, unknown data by reducing the possibility of bias and preventing the model from
overfitting to the majority classes [9]. The 4,248 samples were systematically divided into three
groups, with 70% going toward training and 15% going toward testing and validation, as shown in
Figure 4. The structured distribution that was employed to get the data ready for the classification
model is validated by this graphic representation.

Dataset Distribution (Total: 4248 samples)

B Training: 2573 samples (70%) [ Validation: 637 samples {15%) Testing: 638 samples (15%)

Figure 4 Dataset Separation

2.3 Class Balancing

The quality of the dataset in the process of mushroom image classification using deep learning
is very important for the success of the model. Some mushroom species may have very different
numbers of image samples, which can cause an imbalance in data distribution between classes. This
can cause bias during the model training process, which can reduce the accuracy and generalization
ability of the classification system.

As shown in Figure 5, which illustrates dataset balancing. In this research, class balancing was
carried out to overcome the imbalance in the distribution of the number of images between species in
the dataset. The imbalance in the number of images between classes can cause the model to be more
likely to prioritize classes that have more images, which can affect classification accuracy in
underrepresented classes [10]. Therefore, class balancing was carried out by adjusting the number of
images in each class to achieve the smallest possible number, 236.

The mushroom image dataset was divided into training, validation, and testing sets at the pre-
processing stage. This dataset is then ready to be used in model training. The first step in the pre-
processing process is to reduce the size of the images. All images were resized to 224 x 224 pixels.
This was done to ensure the input required by the InceptionV3 model, which requires uniform image
sizes so that the architecture can process them well. Additionally, image pixel values were normalized
by dividing them by 255, so that pixel values were in the range between 0 and 1. The purpose of this
normalization is to speed up the training process by keeping input values stable and avoiding too large
scale differences between feature values [11]. To enhance the dataset and reduce the possibility of
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overfitting, the training set was augmented with data. Several augmentation techniques include image
rotation, horizontal flipping, zooming, and contrast changes. This augmentation improves the model's
ability to better classify mushrooms in various conditions, such as variations in lighting, position, and
viewpoint, because it helps it find more varied patterns in the images. Improving model generalization
and expanding data diversity are the goals of this augmentation.
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Figure 5 Balanced Dataset Visualization

Using the ‘KerasImageDataGenerator’ library, a rigorous data augmentation method was
implemented to further improve the dataset and reduce the risk of overfitting. A rotation range of up
to 45 degrees, width and height shifts of 0.35, and shear and zoom transformations of 0.35 and 0.4,
respectively, were among the augmentation approaches. To account for illumination fluctuations,
brightness adjustments ranging from 0.6 to 1.4 were applied in addition to horizontal and vertical flips.
These techniques work especially well for enhancing model generalization in datasets with intricate
morphological structures, as those present in a variety of mushroom species[12].

One of the main problems in pre-processing mushroom datasets is maintaining the unique
information of each species. The 224 x 224 pixel size was carefully chosen to balance computational
needs and the depth of visual information. Machine learning algorithms can converge more quickly
and stably with normalization by dividing by 255. This is very important considering the extraordinary
morphological diversity of the mushroom collection being studied. The purpose of this comprehensive
preprocessing approach is to turn raw datasets into the best representations for machine learning
analysis. Each step, from measurement to enhancement, is intended to gather and enhance visual
information that will be used by the model for the mushroom species classification process.

2.4 Architecture and Model

The Convolutional Neural Network (CNN) InceptionV3 architecture was used in this research.
Using techniques such as factorized convolution, auxiliary classifiers, and label smoothing, this CNN
is known to be capable of handling deep learning-based image classification [13]. In this research, the
transfer learning approach is very important, where the model uses initial weights that have been
trained on the ImageNet dataset [14]. The transfer learning process allows the model to use common
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features that have been learned from the reference dataset, which is very helpful in extracting complex
visual patterns in mushroom images [15].

A partial fine-tuning approach was used during the model optimization stage. The top 30% of
the base model layers were made trainable, but the first layers were kept frozen to maintain general
feature extraction skills acquired from ImageNet. This particular threshold was selected to prevent
catastrophic forgetting or overfitting while enabling the model to adjust its high-level convolutional
filters to the distinctive morphological features of the mushroom species. This approach finds a
compromise between applying domain-specific adaptation and utilizing pre-trained information.
Similar methods have proven effective in existing studies, such as the implementation by Hadi, which
utilized fine-tuning on the DenseNet model to yield superior results in specialized image classification
tasks [16].
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Figure 6 Modification of the InceptionV3 architecture

As 1illustrated in Figure 6, the InceptionV3 architecture was modified to optimize feature
extraction for the specific task of mushroom classification. Convolutional layers for fundamental
feature capture and inception modules that execute simultaneous convolutions at many scales make up
the base model [17]. In order to analyze the complicated cap structures, colors, and surface textures of
different mushroom species, these modules must be able to capture multi-level visual data, including
edges, textures, and complex patterns [17], [18].

A specially created classifier head was incorporated using the underlying InceptionV3
architecture to improve the classification performance. In particular, a 2D Global Average Pooling
layer processes the high-dimensional output from the base model to reduce spatial dimensions while
preserving important information. Two fully connected Dense layers with 512 and 256 neurons,
respectively, come next. To speed up convergence and guarantee training stability, both layers include
Batch Normalization with the ReLU (Rectified Linear Unit) activation function. A dropout rate of
0.001 was used to reduce overfitting and preserve the model's effectiveness. This is an important tactic
for preserving generalization ability in complicated datasets [19], [20].

To ensure reproducibility, a strict setup was used during training. In order to balance
computational speed and gradient update quality, the model was trained for 50 epochs using a batch
size of 32 [21]. To provide consistent, if slow, convergence, we used the Adam optimizer with a
learning rate of 0.0001 [18]. In addition, a number of callback strategies were used, including
ReduceLROnPlateau to dynamically modify the learning rate when convergence slows down,
ModelCheckpoint to maintain the best-performing weights, and EarlyStopping to avoid overfitting
[17]. Batch normalization, in conjunction with this thorough setup, ensures the model remains stable
while detecting the notable visual differences in the mushroom dataset.
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3 Results and Discussions

3.1 Accuracy and Loss

The training process of the InceptionV3 model for mushroom classification shows interesting
and complex machine learning dynamics. The model experienced a significant learning curve during
the initial training stage, with validation accuracy of only 19.3% and training accuracy of 43.9%. This
initial lack of accuracy indicates the complexity of the mushroom classification task, which includes
understanding diverse and complex visual patterns. During training, the model showed remarkable
adaptability and extraordinary learning speed. The rapid increase in accuracy demonstrates the
InceptionV3 architecture's ability to extract important features from mushroom images. As illustrated
in the accuracy and loss graph in Figure 7.
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Figure 7 Accuracy and Loss Graphic

At the 28th epoch, the model reached its optimal point with the highest training accuracy of
92.7% and the highest validation accuracy of 82.7%. The difference between validation and training
accuracy shows a good balance in the learning process, with minimal indications of overfitting. The
accuracy curve shows a stable pattern, with a validation accuracy range of 75-81%, even as training
accuracy increases. This stability shows the model's broad generalization ability, where the model
understands general mushroom classification patterns and not just memorizes training data. One sign
that effective transfer learning and data augmentation methods are the model's ability to maintain
consistent validation accuracy.

Analysis of loss values provides additional information about how the model learns. Training
loss started at 2.89 at the beginning of the course and gradually decreased. This gradual decrease
indicates that the model systematically improves its predictions, reducing classification errors with
each iteration. The lowest training loss rate, 0.2137, was achieved at the 28th epoch. This indicates a
very low error rate. The validation amount also dropped from 1.86 at the first epoch to 0.6180 at the
peak, following a similar pattern. If there is the same decrease in training and validation, it indicates
good convergence. In this situation, the model can reduce errors on the training data and make accurate
generalizations on previously unseen data.

In addition, Table 1's comparison, which shows a distinct performance difference between the
Basic InceptionV3 and the Modified InceptionV3 models, bolsters the accuracy and loss trends. The
Modified InceptionV3's overall accuracy of 81% is a considerable improvement above the Basic
model's 72%. Both the weighted-average F1-score, which goes from 0.72 to 0.81, and the macro-
average F1-score, which rises from 0.71 to 0.81, consistently show this improvement. These findings
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show that improved classification ability across all mushroom classes is directly related to the noted
decrease in loss during training.

Table 1 Comparison Between Basic InceptionV3 and InceptionV3 Modified

Basic InceptionV3 InceptionV3 Modified
Types of FI FI
Mushroom Precision Recall Score Support  Precision  Recall Score Support

Golden 0.63 0.60 0.62 20 0.75 0.75 0.75 20
Hallucinogenic 0.58 0.58 0.58 33 0.79 0.79 0.79 33
Jack-o'-lantern 0.70 0.86 0.78 22 0.94 0.68 0.79 22
Button 0.54 0.54 0.54 26 0.79 0.73 0.76 26
Poisonous Button 0.66 0.63 0.64 30 0.79 0.73 0.76 30
Flat Wood 0.80 0.83 0.82 24 0.84 0.88 0.86 24
Rainbow Ear 0.92 0.85 0.88 40 0.78 0.90 0.84 40
Fly 0.82 0.97 0.89 34 0.89 1.00 0.94 34
Honey 0.46 0.53 0.49 30 0.67 0.67 0.67 30
Maitake 0.89 0.81 0.85 31 0.97 0.94 0.95 31
Butter 0.69 0.93 0.79 29 0.74 0.86 0.79 29
Brown Umbrella 0.55 0.58 0.56 19 0.78 0.74 0.76 19
Green Umbrella 0.59 0.57 0.58 46 0.71 0.80 0.76 46
Puftball 0.84 0.72 0.78 29 0.88 0.72 0.79 29
Sulfur Mold 0.90 0.51 0.65 35 0.88 0.66 0.75 35
Lion's Mane 0.97 0.91 0.94 33 1.00 0.97 0.98 33
Tint 0.76 0.83 0.79 23 0.83 0.83 0.83 23
Purple 0.65 0.67 0.66 36 0.75 0.86 0.81 36
Overall Accuracy 0.72 0.81

Macro Average 0.71 0.81

Weighted Average 0.72 0.81

The Modified InceptionV3 shows significant accuracy gains for a number of species at the class
level. While Poisonous Button Mushroom improves from 64% to 76%, Button Mushroom accuracy
rises from 54% to 76%, suggesting improved differentiation of visually similar groups. Additionally,
improvements are seen in Hallucinogenic Mushroom from 58% to 79% and Golden Mushroom from
62% to 75%. Fly Agaric accuracy rises from 89% to 94%, and Maitake Mushroom accuracy rises from
85% to 95% for classes that already perform well, demonstrating that the redesigned architecture not
only lowers misclassification in challenging classes but also improves predictions in visually unique
species.

3.2 Confusion Matrix

Confusion matrix analysis shows complex variants in the performance of the InceptionV3
model on 18 different mushroom species. One of the main problems in mushroom classification is the
high range of accuracy (63%-94%) and loss range (6%-53%). Each mushroom species has different
morphological diversity, colors, and structures, which causes this complexity. Large variations in
classification performance indicate that even with an advanced deep learning architecture, not all
mushrooms have the same easily recognizable visual features. These differences indicate the
complexity of the mushroom world and the limitations of the model. As shown in Table 2, the accuracy
and loss results for each class.
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Table 2 Accuracy and Loss for Each Class

No. Mushroom Classes Accuracy (%) Loss (%)
1 Golden Mushroom 78 22
2 Hallucinogenic Mushroom 75 25
3 Jack-o0'-lantern Mushroom 84 16
4 Button Mushroom 75 25
5 Poisonous Button Mushroom 71 29
6 Shelf Fungi 92 08
7 ‘Wood Ear Mushroom 89 11
8 Fly Agaric 94 06
9 Honey Mushroom 65 35
10 Maitake Mushroom 85 15
11 Butter Mushroom 91 09
12 Brown Umbrella Mushroom 80 20
13 Green Umbrella Mushroom 79 21
14 Puftball Mushroom 82 18
15 Sulphur Fungi 63 37
16 Lion's Mane Mushroom 89 11
17 Inky Cap Mushroom 78 22
18 purple mushroom 87 13

Some species show remarkable ability for classification, with Fly Agaric being the most
prominent. This model can identify the unique characteristics of this mushroom with almost perfect
precision, with 94% accuracy and 6% loss. Very different visual features, such as striking colors or
different structures, are what most likely contribute to this success. Shelf Fungi have an accuracy of
92% and 91%, respectively, showing that the InceptionV3 model is very good at capturing complex
morphological features. The success of classification in these species shows that the InceptionV3
model is very good at capturing complex morphological features. In contrast, species that are much
more difficult to classify, such as Sulphur Fungi and Honey Mushrooms, have accuracy of 63% and
65%, respectively. This difficulty indicates the difficulty of distinguishing species with comparable or
less clear visual characteristics.

An in-depth analysis of the confusion matrix reveals informative classification error patterns in
the InceptionV3 model. The confusion matrix shows that the visual characteristics of some mushroom
species are very similar. As a result, the model tends to misclassify certain species. For example, with
an error rate of 87.6%, Sulphur Fungi are often classified as Jack-o'-lantern Mushrooms. This indicates
that both species have significant visual features, such as color, structure, and surface texture. The
complexity of these classification errors indicates a major difficulty in distinguishing mushroom
species with similar morphology. Understanding the limitations of deep learning-based classification
systems is very helpful because the model's ability to find these error patterns itself.

Additionally, classification error patterns show a hierarchy of visual proximity between
mushroom species. Some species pairs show a higher tendency for this cross-classification, which can
be considered an indication of morphological proximity. For example, there is a possibility of
classification errors in species with similar characteristics, such as Golden Mushrooms and Honey
Mushrooms. Additionally, there is a possibility of errors between Sulphur Fungi and Jack-o'-lantern
Mushrooms. The high frequency of these errors indicates the very subtle complexity of the mushroom
world, not a weakness of the model. The InceptionV3 model shows the limitations of visual
discrimination between species and finds visual nuances that are almost invisible to the human eye.
Thus, analyzing the confusion matrix enhances scientific understanding of mushroom classification
and also measures model performance.

62



M. K., Naufal et al Jurnal Masyarakat Informatika, 17(1), 2026

3.3 Model Performance

This subsection describes the performance of the InceptionV3 model in classifying 18 mushroom
species using accuracy, recall, and F1-Score metrics. A comprehensive analysis of these metrics shows
the complex nuances of model performance that go beyond simple accuracy. The accuracy of the
model in classifying a class, namely the proportion of correct positive predictions, is called precision.
This research found that Fly Agaric and Lion's Mane Mushroom have the highest accuracy levels,
reaching 0.941, indicating that the model's predictions for this class are very reliable. Conversely, Shelf
Fungi has the lowest accuracy of 0.825, indicating larger positive errors. Recall assesses the model's

ability to find all instances of a class. As shown in Table 3.
Table 3 Model Performance

No. Mushroom Class Precision Recall F1-Score Support
1 Golden Mushroom 0.781 0.781 0.781 32
2 Hallucinogenic Mushroom 0.889 0.750 0.814 32
3 Jack-o'-lantern Mushroom 0.867 0.842 0.853 38
4 Button Mushroom 0.648 0.750 0.696 32
5 Poisonous Button Mushroom 0.707 0.707 0.707 41
6 Shelf Fungi 0.825 0917 0.868 36
7 Wood Ear Mushroom 0.886 0.886 0.886 44
8 Fly Agaric 0.941 0.941 0.941 34
9 Honey Mushroom 0.652 0.652 0.652 23
10 Maitake Mushroom 0.967 0.853 0.906 34
11 Butter Mushroom 0.857 0.909 0.882 33
12 Brown Umbrella Mushroom 0.804 0.804 0.804 41
13 Green Umbrella Mushroom 0.756 0.790 0.772 43
14 Puffball Mushroom 0.861 0.816 0.838 38
15 Sulphur Fungi 0.679 0.633 0.656 30
16 Lion's Mane Mushroom 0914 0.889 0.901 36
17 Inky Cap Mushroom 0.842 0.780 0.810 41
18 purple mushroom 0.742 0.867 0.800 30

An interesting pattern is shown by recall, which assesses the model's ability to find all instances
of a class. With the highest recall of 0.909, Butter Mushroom became the most prominent class,
showing that the model successfully identified most of the specimens of this class. Conversely, Sulphur
Fungi has the lowest recall of 0.633, indicating that the model has difficulty finding all instances of
this class. High internal variability, limited sample sizes in the dataset, or significant morphological
complexity are among the reasons recall rates are low. F1-Score, which is the harmonic mean of
precision and recall, provides a balanced assessment of classification performance. With the highest
F1 score of 0.941, fly agaric outperforms again, followed by jack-o'-lantern mushroom with a score of
0.853, showing consistency in the model in classifying certain species.

Recall, which assesses the model's ability to find all instances of a class, shows an interesting
pattern. With the highest recall of 0.909, Butter Mushroom became the most prominent class,
indicating that the model successfully found most of the specimens of this class. Conversely, Sulphur
Fungi has the lowest recall of 0.633, indicating that the model has difficulty finding all instances of
this class. Low recall percentages can be caused by high internal variables, sample limitations in the
dataset, or significant morphological complexity. F1-Score, which is the harmonic mean of precision
and recall, provides a balanced assessment of classification performance. Fly agaric has the highest F1
score, 0.941, and jack-o'-lantern has a lower score, 0.853, indicating the model's consistency in
classifying certain species.
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Analysis of support reveals an important dimension in the distribution of mushroom
classification datasets, with the number of samples per species varying significantly from 23 to 44.
Rainbow Ear Mushroom has the largest collection with 44 samples, while Honey Mushroom has the
smallest with only 23 examples, which could affect the classification model's performance. This
imbalance creates methodological challenges, where species with limited samples face more complex
representation difficulties in the machine learning process. To overcome these limitations, the research
implemented data augmentation techniques, such as image rotation, horizontal flipping, and contrast
adjustments, enabling the model to explore broader visual variations. Transfer learning with the
InceptionV3 model trained on the ImageNet dataset plays a crucial role in overcoming sample
limitations, enabling the model to leverage common features learned from large datasets to better
generalize to relatively small mushroom datasets.

3.4 Prediction Results

The classification results are displayed. This gives a clear picture of how the InceptionV3
model identifies mushroom species. Examples of successful and unsuccessful classifications are
shown in the image. This provides direct evidence of the model's strengths and weaknesses. Examples
of successful classifications show a very accurate model, with some species found with almost perfect
confidence. For example, golden mushrooms are identified with 99.6% confidence, indicating that the
model is very precise in identifying this species. This success demonstrates the model's ability to
extract highly distinctive visual features. As shown in Table 4.

Table 4 Mushroom Species Prediction Results

No. Mushroom Species Actual Class Predicted Class Confidence

1 Golden Mushroom Golden Mushroom Golden Mushroom 99.6%

2 Sulphur Fungi Sulphur Fungi Jack-o-lantern 87.6%

3 Poisonous Button Poisonous Button Poisonous Button 98.8%
Mushroom Mushroom Mushroom ’

4 Golden Mushroom Golden Mushroom Golden Mushroom 87.5%

5 Butter Mushroom Butter Mushroom Butter Mushroom 99.9%

Interesting patterns emerged in the classification process during a thorough analysis of the
prediction results. Butter mushrooms were categorized with 99.9% confidence, indicating that the
model can recognize this species with almost perfect precision. However, this research also found
some classification error cases that provide important information. One of the most interesting
examples is the error in classifying Sulphur Fungi. The model with 87.6% confidence misidentified
the species as Jack-o'-lantern Mushrooms. This error is not just a weakness of the model, but it also
shows the morphological complexity of mushrooms that are very similar visually. This shows an
important problem in mushroom classification, where differences between species can be very subtle
and difficult to distinguish.

Classification error cases provide significant understanding of the limitations and possibilities of
deep learning models in species identification. For example, Poisonous Button Mushrooms were found
with 98.8% confidence. This shows the model's ability to identify complex visual details of various
types of mushrooms. However, differences in confidence between species indicate that not all
mushrooms have the same visual features. Certain species have prominent features, while other species
require more careful examination. This phenomenon demonstrates the extraordinary morphological
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diversity of mushrooms, with each species having a unique visual signature. The InceptionV3 model
classifies and explains the visual complexity of various mushroom species.

The results go far beyond simple classification. There is a lot of potential in fields such as
mycology, conservation, and food safety because of the model's ability to distinguish species
accurately. However, classification errors indicate the importance of additional validation and caution.
Although deep learning models are very helpful in species identification, they should not be considered
a source of absolute truth. To achieve the most accurate and reliable mushroom classification, this
research emphasizes that a collaborative approach that combines artificial intelligence with
mycological expertise is urgently needed.

3.5 Comparison with Baseline Architectures

Two prominent baseline Convolutional Neural Network (CNN) architectures, VGG16 and
MobileNetV2, were used in a comparative experiment on the same mushroom dataset in order to
confirm our architectural choice and support the changes made. Table 5 provides a succinct
presentation of the comparison's findings. According to the overall accuracy data, the InceptionV3
Modified model outperformed both MobileNetV2 (80.6 %) and VGG16 (76.1% ), achieving an overall
accuracy of 81.3%. This result provides empirical evidence that InceptionV3 is the best architecture
for classifying mushroom species in this dataset.

Table 5. Comparison with Baseline Architectures

Model Accuracy (%)
VGGI16 76.1
MobileNetV2 80.6
Modified InceptionV3 81.3

The strong performance of InceptionV3, especially when compared to VGG16 and
MobileNetV2, stems directly from its unique Inception Module architecture. This module is expertly
designed to process convolutions simultaneously across various spatial scales. This capacity to handle
multiple scales is particularly vital for classifying mushrooms, given their considerable visual
variability in size, placement, and intricate physical characteristics. In contrast, VGG16's architecture,
which relies on sequential filter operations, proved less effective at capturing this broad range of multi-
scale features, resulting in its lowest accuracy. While MobileNetV2 offers excellent computational
efficiency through its Depthwise Separable Convolution, its accuracy was slightly below that of
InceptionV3. This suggests that for classification tasks demanding fine-grained feature resolution and
the ability to differentiate subtle distinctions between species, InceptionV3's emphasis on high-quality
multi-scale feature extraction ultimately delivers a more effective and optimal classification outcome.

3.6 Comparison with Previous Research

This study of mushroom classification using the InceptionV3 model offers a new perspective
in the development of artificial intelligence-based mushroom species recognition technology. This
research achieved an overall accuracy of 81.3% in classifying 18 mushroom species, which places it
in a competitive position in the current research landscape. This method stands out compared to
previous research, especially in terms of dataset complexity and techniques used. Previous research,
such as that conducted by Picek et al., used a combination of Convolutional Neural Network (CNN)
and Vision Transformer with 80.45% accuracy, but only used a few species. The difference in this
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accuracy does not necessarily make the research conducted less important. On the contrary, this
difference provides a deeper understanding of the complexity of mushroom classification. Table 6 is
attached to provide a more comprehensive context about research on mushroom classification.

Table 6 Comparison with Previous Researches

Researches Method Number of Species Accuracy Main Approach
Proposed method InceptionV3 18 81.3% Transfer Learning
Picek et al (2022) [3] CNN + Transformer 1604(DF20 Dataset) 80.45% (VIT) Hybrid Model + ViT
I’itsyam et al (2023)[21] CNN 8 95% CNN

Compared to earlier techniques, this method offers significant advances, especially in
balancing accuracy with realistic deployment considerations. Using a complex combination of
Convolutional Neural Network (CNN) and Vision Transformer architectures, Picek et al. achieved
80.45% accuracy on their large Danish Fungi 2020 dataset, which included 1,604 species. Although
their hybrid model produced remarkable results, it needed human validation and extensive metadata
integration. A standard CNN approach was utilized in another study by I'itsyam et al. [21] that focused
on 8 different kinds of mushrooms and reported a 95% accuracy for edible/poisonous classification.

The comparison provides valuable information regarding the compromises in fungal
classification schemes. With a much simpler architecture and less auxiliary data, our InceptionV3
model achieves similar accuracy to the more complicated system of Picek et al [3]. The 81.3% accuracy
is a well-balanced option that is easier to implement in field settings while maintaining respectable
performance. For cases where expert validation or metadata gathering may not be feasible, this is
especially helpful. It is important to view the variations in accuracy among studies as reflections of the
different aims and limits of each study context rather than as limitations. Our method specifically
addresses the need for medium-scale, realistic classification systems that don't require a lot of
infrastructure to implement.

This study's thorough examination shows how deep learning models can be successfully
modified for fungus classification tasks. We have created a system that achieves acceptable accuracy
while remaining usable for researchers and practitioners with limited computational resources by
focusing on transfer learning with InceptionV3. This is a significant step in expanding the availability
of Al-based fungus recognition for field applications, citizen science initiatives, and ecological
research.

3.7 Discussion

Research on mushroom classification using the InceptionV3 model presents a comprehensive
analysis that goes beyond mere image classification, revealing fundamental complexities in Al-based
mushroom species identification. The model's performance variation across species reflects unique
challenges in visually interpreting organisms with highly diverse morphology. Fly Agaric, with an
accuracy of 94%, and Shelf Fungi at 92%, demonstrate the model's capability to extract highly
distinctive visual features. In contrast, Sulphur Fungi with 63% accuracy and Honey Mushroom at 65%
highlight the model's limitations in discriminating between species with more subtle visual differences.

The applied transfer learning methodology demonstrates an innovative approach to
overcoming the limitations of domain-specific datasets. By leveraging general knowledge from the
ImageNet dataset, the model was able to transfer generic features to the very specific context of
mushroom classification. This process is not just a technical adaptation, but a sophisticated
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representation of how deep learning can cross knowledge domain boundaries. Data augmentation
techniques such as image rotation, horizontal flipping, and contrast adjustments play a crucial role in
expanding the visual representation space, allowing the model to explore complex morphological
variability. Confusion matrix analysis reveals classification error patterns that are far more complex
than mere algorithmic inaccuracies. The error in classifying Sulphur Fungi as Jack-o'-lantern
Mushrooms is not just a technical weakness, but a reflection of deep biological complexity. Mushroom
species have very subtle visual nuances, almost indistinguishable even by the trained human eye. This
indicates that mushroom classification is not just a matter of pattern recognition techniques, but also
an epistemological challenge in understanding the morphological diversity of nature.

The methodological implications of this research are significant for the development of deep
learning technology. The InceptionV3 model is not just a classification tool, but a representation of a
new computational approach in understanding biological diversity. The model's ability to capture very
complex visual nuances shows the potential of deep learning in transforming the way we categorize
and understand species diversity. This approach opens new opportunities in various fields, from
mycology and conservation to computational taxonomy. However, this research also critically explores
the limitations of the deep learning approach. The variability in performance between species reveals
the inherent complexity in visual-based classification. Factors such as color variation, growth structure,
ecological context, and mushroom developmental stages create complex methodological challenges.
The InceptionV3 model has successfully demonstrated the ability to capture some of this complexity,
but it also underscores the need for more sophisticated approaches.

Data augmentation strategies have significant potential to expand the model's generalization
capabilities. By manipulating images through rotation, flipping, and contrast adjustments, this research
demonstrates how deep learning models can be enriched to capture broader visual variability. This
approach not only improves accuracy but also provides insights into how computational systems can
learn to see through various perspectives. The main challenges identified include morphological
complexity across species, limitations in dataset representation, subtle visual nuances, and internal
variability within each species. Going forward, further research should focus on developing more
adaptive model architectures, expanding datasets with broader species coverage, integrating
mycological expert knowledge, and exploring cutting-edge deep learning techniques to capture greater
visual complexity.

The ethical and practical context of this research is also worth considering. Although automatic
classification systems have significant potential in helping mushroom identification, this research
firmly emphasizes that deep learning technology should not be considered an absolute source of truth.
Ongoing validation, collaboration with domain experts, and multidisciplinary approaches remain key
in developing reliable and meaningful species identification technology. Fundamentally, this research
is not just about mushroom classification, but about how artificial intelligence can help us understand
the complexity and diversity of life. The developed InceptionV3 model serves as a window to see how
computational technology can translate the visual diversity of nature into understandable knowledge
constructs.

4. Conclusion

In this research, a mushroom classification system using the InceptionV3 model has been
successfully developed, achieving an overall accuracy of 81.35% and capable of automatically
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classifying 18 mushroom species. Through transfer learning and data augmentation approaches, the
model manifested special abilities in recognizing mushroom species with significant variations in
performance between species: highest accuracy up to 94% achieved for Fly Agaric and Shelf Fungi,
while facing the greatest challenges with Sulphur Fungi and Honey Mushroom, with accuracy of 63-
65%. Therefore, this research represents a significant contribution displayed in the field of mushroom
recognition technology using deep learning. This generation solution offers a significantly faster, more
accurate, and safer way to identify mushrooms, which enables it to be used in subsequent mushroom
classification projects using deep learning techniques.
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