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Abstract 

Mushrooms encompass a very large number of species, and some of them are toxic to humans. It is 

very difficult to classify mushroom species quickly and accurately, especially for common individuals 

who often encounter wild mushrooms in nature. To address this problem, this study envisioned an 

automated mushroom species classification system using deep learning methods and the InceptionV3 

model. This model was chosen because it is highly generalizable, performs well with challenging 

images, and is precise for most image-based classification tasks. The dataset comprises 18 mushroom 

species and was created from a Kaggle version. Data balancing, preprocessing, data augmentation, 

and model training constitute the research work. The dataset has been divided into 70% training, 15% 

validation, and 15% test. The training results show that the model achieves 81.35% accuracy in 

identifying mushroom species. The study contributes to the development of AI-based image recognition 

technology that can help humans find mushrooms more rapidly and securely. 
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1   Introduction 

Mushrooms, highly diverse organisms, play important roles in ecosystems as decomposers and 

food sources. Some types of mushrooms, however, are poisonous and can cause serious health 

problems or even death if accidentally consumed. Because many species have significant 

morphological similarities, distinguishing between safe-to-eat and poisonous mushrooms is very 

difficult [1]. To identify toxicity, people often use traditional methods, such as observing rice color 

changes or using silver spoons when boiling mushrooms. However, these methods are not accurate 

and cannot be relied upon as scientific references [1]. 

In Gujarat, India, wild mushrooms are abundant across various ecosystems, including forests, 

agricultural fields, and farmer pathways. Through morphological observations and taxonomic 

classification, the research successfully identified at least 57 mushroom species [2]. However, manual 

identification requires considerable time and special skills, making it generally difficult to implement. 

These limitations indicate that more effective and accessible methods for mushroom identification are 

needed. Consequently, contemporary technology can play an important role in addressing this issue. 

The image-based object identification process has become more efficient and accurate with the 

development of artificial intelligence, particularly in computer vision. Deep learning methods based 

on Convolutional Neural Networks (CNNs) have proven effective across many applications, including 

plant disease classification, vegetable classification, skin cancer detection, and face mask usage 
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detection. Previous researchers have developed CNN-based and vision transformer automatic 

classification systems to identify wild mushrooms in mycology. With support from community science 

data, a system called Fungivision can achieve classification accuracy of nearly 93% [3]. 

More advanced CNN architectures, such as InceptionV3, offer advantages in terms of 

computational efficiency, accuracy, and stability on smaller datasets. To improve generalization 

capability and accelerate training, this model uses auxiliary classifiers, batch normalization, and 

convolution factorization [4]. Additionally, InceptionV3 has demonstrated outstanding performance 

across various domains. For example, in fashion product image classification, this model can achieve 

an accuracy score of 92.86% and an F1-score of 92.85% on data with high visual similarity between 

classes [5]. InceptionV3 successfully completes challenging picture classification tasks that require 

the model to discern large visual changes between classes, as demonstrated by Maryamah et al. [5]. 

These techniques seem to have great potential to improve the accuracy and efficiency of mushroom 

classification systems. 

However, a thorough analysis of the current research literature identifies several gaps. The 

model's capacity to generalize to a wider range of species and visual situations is constrained by prior 

research using deep learning on fungal species, which frequently concentrates on a small number of 

classes [6] or makes use of fewer datasets. Importantly, many studies' use of transfer learning is not 

adequately tuned, leading to very accurate models that are not resilient to strong visual similarity across 

certain classes. Furthermore, a thorough per-class study that could identify specific visually 

challenging species is often absent from the debates, which tend to focus solely on overall accuracy. 

 

2. Research Method 

2.1   Research Workflow            

 The purpose of this research is to create an automatic classification system that can identify mushroom 

types. Deep learning methods and the InceptionV3 model were chosen because of InceptionV3's ability 

to handle images with high complexity and provide very good results for image-based classification 

tasks. This research aims to create a system that can automatically identify and classify mushroom 

species with a high level of accuracy. The dataset used consists of 18 mushroom species, covering 

various types of wild mushrooms with variations in morphology and color. The research methodology 

is illustrated in Figure 1. 

 

 
Figure 1 Research Workflow of the Proposed Mushroom Classification System 

2.2  Data Collection 

 This research began by analyzing the Kaggle mushroom image dataset at 

https://www.kaggle.com/datasets/iftekhar08/mo-106?select=MO_94. This research used a dataset of 

about 18 different mushroom species, each with significant visual variations. The dataset of 5,526 

images spanning 18 mushroom species plays an important role in developing an accurate automatic 

classification system. The distribution of images across 18 mushroom species is shown in Figure 2. 

https://www.kaggle.com/datasets/iftekhar08/mo-106?select=MO_94
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Figure 2 Class Distribution 

 The number of samples collected for each species varied, with some species having more 

images than others. Purple Mushroom has 477 images, while Honey Mushroom has 328 images. 

According to previous research, bias in the classification process can be caused by an imbalance in the 

distribution of sample numbers between species [7]. The existence of possible representation bias 

between classes, which can affect model accuracy, is indicated by this significant variation in the 

number of samples. Additionally, this imbalance indicates differences in image-taking conditions, 

where each species has different visual attributes, such as size, shape, and color, which can affect the 

model's ability to identify mushrooms correctly [3]. 

  

 
Figure 3 Dataset Visualization 

 Three subsets were created from the entire dataset, comprising 4,248 samples from 18 different 

species: 70% for training (about 2,974 samples), 15% for validation (about 637 samples), and 15% for 
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testing (about 637 samples). This partitioning ratio, which maximizes training data while preserving 

enough independent data for trustworthy model evaluation, is a conventional approach [8], [6]. 

 Stratified splitting was used to provide a proportionate and balanced representation of each 

species in the training, validation, and testing sets due to the varied morphology and intrinsic imbalance 

in the number of samples between species. This crucial step improves the model's capacity to 

generalize to new, unknown data by reducing the possibility of bias and preventing the model from 

overfitting to the majority classes [9]. The 4,248 samples were systematically divided into three 

groups, with 70% going toward training and 15% going toward testing and validation, as shown in 

Figure 4. The structured distribution that was employed to get the data ready for the classification 

model is validated by this graphic representation. 

 

 
Figure 4 Dataset Separation 

2.3 Class Balancing 

 The quality of the dataset in the process of mushroom image classification using deep learning 

is very important for the success of the model. Some mushroom species may have very different 

numbers of image samples, which can cause an imbalance in data distribution between classes. This 

can cause bias during the model training process, which can reduce the accuracy and generalization 

ability of the classification system. 

As shown in Figure 5, which illustrates dataset balancing. In this research, class balancing was 

carried out to overcome the imbalance in the distribution of the number of images between species in 

the dataset. The imbalance in the number of images between classes can cause the model to be more 

likely to prioritize classes that have more images, which can affect classification accuracy in 

underrepresented classes [10]. Therefore, class balancing was carried out by adjusting the number of 

images in each class to achieve the smallest possible number, 236. 

The mushroom image dataset was divided into training, validation, and testing sets at the pre-

processing stage. This dataset is then ready to be used in model training. The first step in the pre-

processing process is to reduce the size of the images. All images were resized to 224 x 224 pixels. 

This was done to ensure the input required by the InceptionV3 model, which requires uniform image 

sizes so that the architecture can process them well. Additionally, image pixel values were normalized 

by dividing them by 255, so that pixel values were in the range between 0 and 1. The purpose of this 

normalization is to speed up the training process by keeping input values stable and avoiding too large 

scale differences between feature values [11]. To enhance the dataset and reduce the possibility of 
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overfitting, the training set was augmented with data. Several augmentation techniques include image 

rotation, horizontal flipping, zooming, and contrast changes. This augmentation improves the model's 

ability to better classify mushrooms in various conditions, such as variations in lighting, position, and 

viewpoint, because it helps it find more varied patterns in the images. Improving model generalization 

and expanding data diversity are the goals of this augmentation. 

 
Figure 5 Balanced Dataset Visualization 

 Using the ‘KerasImageDataGenerator’ library, a rigorous data augmentation method was 

implemented to further improve the dataset and reduce the risk of overfitting. A rotation range of up 

to 45 degrees, width and height shifts of 0.35, and shear and zoom transformations of 0.35 and 0.4, 

respectively, were among the augmentation approaches. To account for illumination fluctuations, 

brightness adjustments ranging from 0.6 to 1.4 were applied in addition to horizontal and vertical flips. 

These techniques work especially well for enhancing model generalization in datasets with intricate 

morphological structures, as those present in a variety of mushroom species[12]. 

 One of the main problems in pre-processing mushroom datasets is maintaining the unique 

information of each species. The 224 x 224 pixel size was carefully chosen to balance computational 

needs and the depth of visual information. Machine learning algorithms can converge more quickly 

and stably with normalization by dividing by 255. This is very important considering the extraordinary 

morphological diversity of the mushroom collection being studied. The purpose of this comprehensive 

preprocessing approach is to turn raw datasets into the best representations for machine learning 

analysis. Each step, from measurement to enhancement, is intended to gather and enhance visual 

information that will be used by the model for the mushroom species classification process. 

2.4 Architecture and Model 

 The Convolutional Neural Network (CNN) InceptionV3 architecture was used in this research. 

Using techniques such as factorized convolution, auxiliary classifiers, and label smoothing, this CNN 

is known to be capable of handling deep learning-based image classification [13]. In this research, the 

transfer learning approach is very important, where the model uses initial weights that have been 

trained on the ImageNet dataset [14]. The transfer learning process allows the model to use common 
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features that have been learned from the reference dataset, which is very helpful in extracting complex 

visual patterns in mushroom images [15]. 

 A partial fine-tuning approach was used during the model optimization stage. The top 30% of 

the base model layers were made trainable, but the first layers were kept frozen to maintain general 

feature extraction skills acquired from ImageNet. This particular threshold was selected to prevent 

catastrophic forgetting or overfitting while enabling the model to adjust its high-level convolutional 

filters to the distinctive morphological features of the mushroom species. This approach finds a 

compromise between applying domain-specific adaptation and utilizing pre-trained information. 

Similar methods have proven effective in existing studies, such as the implementation by Hadi, which 

utilized fine-tuning on the DenseNet model to yield superior results in specialized image classification 

tasks [16]. 

 

 

Figure 6 Modification of the InceptionV3 architecture 

 As illustrated in Figure 6, the InceptionV3 architecture was modified to optimize feature 

extraction for the specific task of mushroom classification. Convolutional layers for fundamental 

feature capture and inception modules that execute simultaneous convolutions at many scales make up 

the base model [17]. In order to analyze the complicated cap structures, colors, and surface textures of 

different mushroom species, these modules must be able to capture multi-level visual data, including 

edges, textures, and complex patterns [17], [18]. 

 A specially created classifier head was incorporated using the underlying InceptionV3 

architecture to improve the classification performance. In particular, a 2D Global Average Pooling 

layer processes the high-dimensional output from the base model to reduce spatial dimensions while 

preserving important information. Two fully connected Dense layers with 512 and 256 neurons, 

respectively, come next. To speed up convergence and guarantee training stability, both layers include 

Batch Normalization with the ReLU (Rectified Linear Unit) activation function. A dropout rate of 

0.001 was used to reduce overfitting and preserve the model's effectiveness. This is an important tactic 

for preserving generalization ability in complicated datasets [19], [20]. 

 To ensure reproducibility, a strict setup was used during training. In order to balance 

computational speed and gradient update quality, the model was trained for 50 epochs using a batch 

size of 32 [21]. To provide consistent, if slow, convergence, we used the Adam optimizer with a 

learning rate of 0.0001 [18]. In addition, a number of callback strategies were used, including 

ReduceLROnPlateau to dynamically modify the learning rate when convergence slows down, 

ModelCheckpoint to maintain the best-performing weights, and EarlyStopping to avoid overfitting 

[17]. Batch normalization, in conjunction with this thorough setup, ensures the model remains stable 

while detecting the notable visual differences in the mushroom dataset. 
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3   Results and Discussions 

3.1   Accuracy and Loss 

 The training process of the InceptionV3 model for mushroom classification shows interesting 

and complex machine learning dynamics. The model experienced a significant learning curve during 

the initial training stage, with validation accuracy of only 19.3% and training accuracy of 43.9%. This 

initial lack of accuracy indicates the complexity of the mushroom classification task, which includes 

understanding diverse and complex visual patterns. During training, the model showed remarkable 

adaptability and extraordinary learning speed. The rapid increase in accuracy demonstrates the 

InceptionV3 architecture's ability to extract important features from mushroom images. As illustrated 

in the accuracy and loss graph in Figure 7. 

  

 
Figure 7 Accuracy and Loss Graphic 

 At the 28th epoch, the model reached its optimal point with the highest training accuracy of 

92.7% and the highest validation accuracy of 82.7%. The difference between validation and training 

accuracy shows a good balance in the learning process, with minimal indications of overfitting. The 

accuracy curve shows a stable pattern, with a validation accuracy range of 75-81%, even as training 

accuracy increases. This stability shows the model's broad generalization ability, where the model 

understands general mushroom classification patterns and not just memorizes training data. One sign 

that effective transfer learning and data augmentation methods are the model's ability to maintain 

consistent validation accuracy. 

Analysis of loss values provides additional information about how the model learns. Training 

loss started at 2.89 at the beginning of the course and gradually decreased. This gradual decrease 

indicates that the model systematically improves its predictions, reducing classification errors with 

each iteration. The lowest training loss rate, 0.2137, was achieved at the 28th epoch. This indicates a 

very low error rate. The validation amount also dropped from 1.86 at the first epoch to 0.6180 at the 

peak, following a similar pattern. If there is the same decrease in training and validation, it indicates 

good convergence. In this situation, the model can reduce errors on the training data and make accurate 

generalizations on previously unseen data. 

In addition, Table 1's comparison, which shows a distinct performance difference between the 

Basic InceptionV3 and the Modified InceptionV3 models, bolsters the accuracy and loss trends. The 

Modified InceptionV3's overall accuracy of 81% is a considerable improvement above the Basic 

model's 72%. Both the weighted-average F1-score, which goes from 0.72 to 0.81, and the macro-

average F1-score, which rises from 0.71 to 0.81, consistently show this improvement. These findings 
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show that improved classification ability across all mushroom classes is directly related to the noted 

decrease in loss during training. 

Table 1 Comparison Between Basic InceptionV3 and InceptionV3 Modified 

Types of  

Mushroom 

Basic InceptionV3 InceptionV3 Modified 

Precision Recall 
F1-

Score 
Support Precision Recall 

F1-

Score 
Support 

Golden  0.63 0.60 0.62 20 0.75 0.75 0.75 20 

Hallucinogenic  0.58 0.58 0.58 33 0.79 0.79 0.79 33 

Jack-o'-lantern  0.70 0.86 0.78 22 0.94 0.68 0.79 22 

Button  0.54 0.54 0.54 26 0.79 0.73 0.76 26 

Poisonous Button  0.66 0.63 0.64 30 0.79 0.73 0.76 30 

Flat Wood  0.80 0.83 0.82 24 0.84 0.88 0.86 24 

Rainbow Ear  0.92 0.85 0.88 40 0.78 0.90 0.84 40 

Fly  0.82 0.97 0.89 34 0.89 1.00 0.94 34 

Honey  0.46 0.53 0.49 30 0.67 0.67 0.67 30 

Maitake  0.89 0.81 0.85 31 0.97 0.94 0.95 31 

Butter  0.69 0.93 0.79 29 0.74 0.86 0.79 29 

Brown Umbrella  0.55 0.58 0.56 19 0.78 0.74 0.76 19 

Green Umbrella  0.59 0.57 0.58 46 0.71 0.80 0.76 46 

Puffball  0.84 0.72 0.78 29 0.88 0.72 0.79 29 

Sulfur Mold 0.90 0.51 0.65 35 0.88 0.66 0.75 35 

Lion's Mane 0.97 0.91 0.94 33 1.00 0.97 0.98 33 

Tint  0.76 0.83 0.79 23 0.83 0.83 0.83 23 

Purple  0.65 0.67 0.66 36 0.75 0.86 0.81 36 

Overall Accuracy 0.72 0.81 

Macro Average 0.71 0.81 

Weighted Average 0.72 0.81 

 

The Modified InceptionV3 shows significant accuracy gains for a number of species at the class 

level. While Poisonous Button Mushroom improves from 64% to 76%, Button Mushroom accuracy 

rises from 54% to 76%, suggesting improved differentiation of visually similar groups. Additionally, 

improvements are seen in Hallucinogenic Mushroom from 58% to 79% and Golden Mushroom from 

62% to 75%. Fly Agaric accuracy rises from 89% to 94%, and Maitake Mushroom accuracy rises from 

85% to 95% for classes that already perform well, demonstrating that the redesigned architecture not 

only lowers misclassification in challenging classes but also improves predictions in visually unique 

species. 

3.2   Confusion Matrix 

 Confusion matrix analysis shows complex variants in the performance of the InceptionV3 

model on 18 different mushroom species. One of the main problems in mushroom classification is the 

high range of accuracy (63%-94%) and loss range (6%-53%). Each mushroom species has different 

morphological diversity, colors, and structures, which causes this complexity. Large variations in 

classification performance indicate that even with an advanced deep learning architecture, not all 

mushrooms have the same easily recognizable visual features. These differences indicate the 

complexity of the mushroom world and the limitations of the model. As shown in Table 2, the accuracy 

and loss results for each class. 
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Table 2 Accuracy and Loss for Each Class 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some species show remarkable ability for classification, with Fly Agaric being the most 

prominent. This model can identify the unique characteristics of this mushroom with almost perfect 

precision, with 94% accuracy and 6% loss. Very different visual features, such as striking colors or 

different structures, are what most likely contribute to this success. Shelf Fungi have an accuracy of 

92% and 91%, respectively, showing that the InceptionV3 model is very good at capturing complex 

morphological features. The success of classification in these species shows that the InceptionV3 

model is very good at capturing complex morphological features. In contrast, species that are much 

more difficult to classify, such as Sulphur Fungi and Honey Mushrooms, have accuracy of 63% and 

65%, respectively. This difficulty indicates the difficulty of distinguishing species with comparable or 

less clear visual characteristics. 

An in-depth analysis of the confusion matrix reveals informative classification error patterns in 

the InceptionV3 model. The confusion matrix shows that the visual characteristics of some mushroom 

species are very similar. As a result, the model tends to misclassify certain species. For example, with 

an error rate of 87.6%, Sulphur Fungi are often classified as Jack-o'-lantern Mushrooms. This indicates 

that both species have significant visual features, such as color, structure, and surface texture. The 

complexity of these classification errors indicates a major difficulty in distinguishing mushroom 

species with similar morphology. Understanding the limitations of deep learning-based classification 

systems is very helpful because the model's ability to find these error patterns itself. 

 Additionally, classification error patterns show a hierarchy of visual proximity between 

mushroom species. Some species pairs show a higher tendency for this cross-classification, which can 

be considered an indication of morphological proximity. For example, there is a possibility of 

classification errors in species with similar characteristics, such as Golden Mushrooms and Honey 

Mushrooms. Additionally, there is a possibility of errors between Sulphur Fungi and Jack-o'-lantern 

Mushrooms. The high frequency of these errors indicates the very subtle complexity of the mushroom 

world, not a weakness of the model. The InceptionV3 model shows the limitations of visual 

discrimination between species and finds visual nuances that are almost invisible to the human eye. 

Thus, analyzing the confusion matrix enhances scientific understanding of mushroom classification 

and also measures model performance. 

No. Mushroom Classes Accuracy (%) Loss (%) 

1 Golden Mushroom 78 22 
2 Hallucinogenic Mushroom 75 25 
3 Jack-o'-lantern Mushroom 84 16 
4 Button Mushroom 75 25 
5 Poisonous Button Mushroom 71 29 
6 Shelf Fungi 92 08 
7 Wood Ear Mushroom 89 11 
8 Fly Agaric 94 06 
9 Honey Mushroom 65 35 
10 Maitake Mushroom 85 15 
11 Butter Mushroom 91 09 
12 Brown Umbrella Mushroom 80 20 
13 Green Umbrella Mushroom 79 21 
14 Puffball Mushroom 82 18 
15 Sulphur Fungi 63 37 
16 Lion's Mane Mushroom 89 11 
17 Inky Cap Mushroom 78 22 
18 purple mushroom 87 13 
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3.3   Model Performance 

This subsection describes the performance of the InceptionV3 model in classifying 18 mushroom 

species using accuracy, recall, and F1-Score metrics. A comprehensive analysis of these metrics shows 

the complex nuances of model performance that go beyond simple accuracy. The accuracy of the 

model in classifying a class, namely the proportion of correct positive predictions, is called precision. 

This research found that Fly Agaric and Lion's Mane Mushroom have the highest accuracy levels, 

reaching 0.941, indicating that the model's predictions for this class are very reliable. Conversely, Shelf 

Fungi has the lowest accuracy of 0.825, indicating larger positive errors. Recall assesses the model's 

ability to find all instances of a class. As shown in Table 3. 

Table 3 Model Performance 

 

An interesting pattern is shown by recall, which assesses the model's ability to find all instances 

of a class. With the highest recall of 0.909, Butter Mushroom became the most prominent class, 

showing that the model successfully identified most of the specimens of this class. Conversely, Sulphur 

Fungi has the lowest recall of 0.633, indicating that the model has difficulty finding all instances of 

this class. High internal variability, limited sample sizes in the dataset, or significant morphological 

complexity are among the reasons recall rates are low. F1-Score, which is the harmonic mean of 

precision and recall, provides a balanced assessment of classification performance. With the highest 

F1 score of 0.941, fly agaric outperforms again, followed by jack-o'-lantern mushroom with a score of 

0.853, showing consistency in the model in classifying certain species. 

Recall, which assesses the model's ability to find all instances of a class, shows an interesting 

pattern. With the highest recall of 0.909, Butter Mushroom became the most prominent class, 

indicating that the model successfully found most of the specimens of this class. Conversely, Sulphur 

Fungi has the lowest recall of 0.633, indicating that the model has difficulty finding all instances of 

this class. Low recall percentages can be caused by high internal variables, sample limitations in the 

dataset, or significant morphological complexity. F1-Score, which is the harmonic mean of precision 

and recall, provides a balanced assessment of classification performance. Fly agaric has the highest F1 

score, 0.941, and jack-o'-lantern has a lower score, 0.853, indicating the model's consistency in 

classifying certain species. 

No. Mushroom Class Precision Recall F1-Score Support 

1 Golden Mushroom 0.781 0.781 0.781 32 

2 Hallucinogenic Mushroom 0.889 0.750 0.814 32 

3 Jack-o'-lantern Mushroom 0.867 0.842 0.853 38 

4 Button Mushroom 0.648 0.750 0.696 32 

5 Poisonous Button Mushroom 0.707 0.707 0.707 41 

6 Shelf Fungi 0.825 0.917 0.868 36 

7 Wood Ear Mushroom 0.886 0.886 0.886 44 

8 Fly Agaric 0.941 0.941 0.941 34 

9 Honey Mushroom 0.652 0.652 0.652 23 

10 Maitake Mushroom 0.967 0.853 0.906 34 

11 Butter Mushroom 0.857 0.909 0.882 33 

12 Brown Umbrella Mushroom 0.804 0.804 0.804 41 

13 Green Umbrella Mushroom 0.756 0.790 0.772 43 

14 Puffball Mushroom 0.861 0.816 0.838 38 

15 Sulphur Fungi 0.679 0.633 0.656 30 

16 Lion's Mane Mushroom 0.914 0.889 0.901 36 

17 Inky Cap Mushroom 0.842 0.780 0.810 41 

18 purple mushroom 0.742 0.867 0.800 30 
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Analysis of support reveals an important dimension in the distribution of mushroom 

classification datasets, with the number of samples per species varying significantly from 23 to 44. 

Rainbow Ear Mushroom has the largest collection with 44 samples, while Honey Mushroom has the 

smallest with only 23 examples, which could affect the classification model's performance. This 

imbalance creates methodological challenges, where species with limited samples face more complex 

representation difficulties in the machine learning process. To overcome these limitations, the research 

implemented data augmentation techniques, such as image rotation, horizontal flipping, and contrast 

adjustments, enabling the model to explore broader visual variations. Transfer learning with the 

InceptionV3 model trained on the ImageNet dataset plays a crucial role in overcoming sample 

limitations, enabling the model to leverage common features learned from large datasets to better 

generalize to relatively small mushroom datasets. 

3.4   Prediction Results 

 The classification results are displayed. This gives a clear picture of how the InceptionV3 

model identifies mushroom species. Examples of successful and unsuccessful classifications are 

shown in the image. This provides direct evidence of the model's strengths and weaknesses. Examples 

of successful classifications show a very accurate model, with some species found with almost perfect 

confidence. For example, golden mushrooms are identified with 99.6% confidence, indicating that the 

model is very precise in identifying this species. This success demonstrates the model's ability to 

extract highly distinctive visual features. As shown in Table 4. 

Table 4 Mushroom Species Prediction Results 

 

Interesting patterns emerged in the classification process during a thorough analysis of the 

prediction results. Butter mushrooms were categorized with 99.9% confidence, indicating that the 

model can recognize this species with almost perfect precision. However, this research also found 

some classification error cases that provide important information. One of the most interesting 

examples is the error in classifying Sulphur Fungi. The model with 87.6% confidence misidentified 

the species as Jack-o'-lantern Mushrooms. This error is not just a weakness of the model, but it also 

shows the morphological complexity of mushrooms that are very similar visually. This shows an 

important problem in mushroom classification, where differences between species can be very subtle 

and difficult to distinguish. 

Classification error cases provide significant understanding of the limitations and possibilities of 

deep learning models in species identification. For example, Poisonous Button Mushrooms were found 

with 98.8% confidence. This shows the model's ability to identify complex visual details of various 

types of mushrooms. However, differences in confidence between species indicate that not all 

mushrooms have the same visual features. Certain species have prominent features, while other species 

require more careful examination. This phenomenon demonstrates the extraordinary morphological 

No. Mushroom Species Actual Class Predicted Class Confidence 

1 Golden Mushroom Golden Mushroom Golden Mushroom 99.6% 

2 Sulphur Fungi Sulphur Fungi Jack-o-lantern 87.6% 

3 
Poisonous Button 

Mushroom 

Poisonous Button 

Mushroom 

Poisonous Button 

Mushroom 
98.8% 

4 Golden Mushroom Golden Mushroom Golden Mushroom 87.5% 

5 Butter Mushroom Butter Mushroom Butter Mushroom 99.9% 
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diversity of mushrooms, with each species having a unique visual signature. The InceptionV3 model 

classifies and explains the visual complexity of various mushroom species. 

The results go far beyond simple classification. There is a lot of potential in fields such as 

mycology, conservation, and food safety because of the model's ability to distinguish species 

accurately. However, classification errors indicate the importance of additional validation and caution. 

Although deep learning models are very helpful in species identification, they should not be considered 

a source of absolute truth. To achieve the most accurate and reliable mushroom classification, this 

research emphasizes that a collaborative approach that combines artificial intelligence with 

mycological expertise is urgently needed. 

3.5   Comparison with Baseline Architectures 

 Two prominent baseline Convolutional Neural Network (CNN) architectures, VGG16 and 

MobileNetV2, were used in a comparative experiment on the same mushroom dataset in order to 

confirm our architectural choice and support the changes made. Table 5 provides a succinct 

presentation of the comparison's findings. According to the overall accuracy data, the InceptionV3 

Modified model outperformed both MobileNetV2 (80.6 %) and VGG16 (76.1% ), achieving an overall 

accuracy of 81.3%. This result provides empirical evidence that InceptionV3 is the best architecture 

for classifying mushroom species in this dataset. 

Table 5. Comparison with Baseline Architectures 

Model Accuracy (%) 

VGG16 76.1 

MobileNetV2 80.6 

Modified InceptionV3 81.3 

 The strong performance of InceptionV3, especially when compared to VGG16 and 

MobileNetV2, stems directly from its unique Inception Module architecture. This module is expertly 

designed to process convolutions simultaneously across various spatial scales. This capacity to handle 

multiple scales is particularly vital for classifying mushrooms, given their considerable visual 

variability in size, placement, and intricate physical characteristics. In contrast, VGG16's architecture, 

which relies on sequential filter operations, proved less effective at capturing this broad range of multi-

scale features, resulting in its lowest accuracy. While MobileNetV2 offers excellent computational 

efficiency through its Depthwise Separable Convolution, its accuracy was slightly below that of 

InceptionV3. This suggests that for classification tasks demanding fine-grained feature resolution and 

the ability to differentiate subtle distinctions between species, InceptionV3's emphasis on high-quality 

multi-scale feature extraction ultimately delivers a more effective and optimal classification outcome. 

3.6   Comparison with Previous Research 

 This study of mushroom classification using the InceptionV3 model offers a new perspective 

in the development of artificial intelligence-based mushroom species recognition technology. This 

research achieved an overall accuracy of 81.3% in classifying 18 mushroom species, which places it 

in a competitive position in the current research landscape. This method stands out compared to 

previous research, especially in terms of dataset complexity and techniques used. Previous research, 

such as that conducted by Picek et al., used a combination of Convolutional Neural Network (CNN) 

and Vision Transformer with 80.45% accuracy, but only used a few species. The difference in this 
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accuracy does not necessarily make the research conducted less important. On the contrary, this 

difference provides a deeper understanding of the complexity of mushroom classification. Table 6 is 

attached to provide a more comprehensive context about research on mushroom classification. 

Table 6 Comparison with Previous Researches 

Researches Method Number of Species Accuracy Main Approach 

Proposed method InceptionV3 18 81.3% Transfer Learning 

Picek et al (2022) [3] CNN + Transformer 1604(DF20 Dataset) 80.45% (VIT) Hybrid Model + ViT 

I’itsyam et al (2023)[21] CNN 8 95% CNN 

 

 Compared to earlier techniques, this method offers significant advances, especially in 

balancing accuracy with realistic deployment considerations. Using a complex combination of 

Convolutional Neural Network (CNN) and Vision Transformer architectures, Picek et al. achieved 

80.45% accuracy on their large Danish Fungi 2020 dataset, which included 1,604 species. Although 

their hybrid model produced remarkable results, it needed human validation and extensive metadata 

integration. A standard CNN approach was utilized in another study by I'itsyam et al. [21] that focused 

on 8 different kinds of mushrooms and reported a 95% accuracy for edible/poisonous classification. 

 The comparison provides valuable information regarding the compromises in fungal 

classification schemes. With a much simpler architecture and less auxiliary data, our InceptionV3 

model achieves similar accuracy to the more complicated system of Picek et al [3]. The 81.3% accuracy 

is a well-balanced option that is easier to implement in field settings while maintaining respectable 

performance. For cases where expert validation or metadata gathering may not be feasible, this is 

especially helpful. It is important to view the variations in accuracy among studies as reflections of the 

different aims and limits of each study context rather than as limitations. Our method specifically 

addresses the need for medium-scale, realistic classification systems that don't require a lot of 

infrastructure to implement. 

 This study's thorough examination shows how deep learning models can be successfully 

modified for fungus classification tasks. We have created a system that achieves acceptable accuracy 

while remaining usable for researchers and practitioners with limited computational resources by 

focusing on transfer learning with InceptionV3. This is a significant step in expanding the availability 

of AI-based fungus recognition for field applications, citizen science initiatives, and ecological 

research. 

3.7   Discussion 

 Research on mushroom classification using the InceptionV3 model presents a comprehensive 

analysis that goes beyond mere image classification, revealing fundamental complexities in AI-based 

mushroom species identification. The model's performance variation across species reflects unique 

challenges in visually interpreting organisms with highly diverse morphology. Fly Agaric, with an 

accuracy of 94%, and Shelf Fungi at 92%, demonstrate the model's capability to extract highly 

distinctive visual features. In contrast, Sulphur Fungi with 63% accuracy and Honey Mushroom at 65% 

highlight the model's limitations in discriminating between species with more subtle visual differences. 

 The applied transfer learning methodology demonstrates an innovative approach to 

overcoming the limitations of domain-specific datasets. By leveraging general knowledge from the 

ImageNet dataset, the model was able to transfer generic features to the very specific context of 

mushroom classification. This process is not just a technical adaptation, but a sophisticated 
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representation of how deep learning can cross knowledge domain boundaries. Data augmentation 

techniques such as image rotation, horizontal flipping, and contrast adjustments play a crucial role in 

expanding the visual representation space, allowing the model to explore complex morphological 

variability. Confusion matrix analysis reveals classification error patterns that are far more complex 

than mere algorithmic inaccuracies. The error in classifying Sulphur Fungi as Jack-o'-lantern 

Mushrooms is not just a technical weakness, but a reflection of deep biological complexity. Mushroom 

species have very subtle visual nuances, almost indistinguishable even by the trained human eye. This 

indicates that mushroom classification is not just a matter of pattern recognition techniques, but also 

an epistemological challenge in understanding the morphological diversity of nature. 

 The methodological implications of this research are significant for the development of deep 

learning technology. The InceptionV3 model is not just a classification tool, but a representation of a 

new computational approach in understanding biological diversity. The model's ability to capture very 

complex visual nuances shows the potential of deep learning in transforming the way we categorize 

and understand species diversity. This approach opens new opportunities in various fields, from 

mycology and conservation to computational taxonomy. However, this research also critically explores 

the limitations of the deep learning approach. The variability in performance between species reveals 

the inherent complexity in visual-based classification. Factors such as color variation, growth structure, 

ecological context, and mushroom developmental stages create complex methodological challenges. 

The InceptionV3 model has successfully demonstrated the ability to capture some of this complexity, 

but it also underscores the need for more sophisticated approaches. 

 Data augmentation strategies have significant potential to expand the model's generalization 

capabilities. By manipulating images through rotation, flipping, and contrast adjustments, this research 

demonstrates how deep learning models can be enriched to capture broader visual variability. This 

approach not only improves accuracy but also provides insights into how computational systems can 

learn to see through various perspectives. The main challenges identified include morphological 

complexity across species, limitations in dataset representation, subtle visual nuances, and internal 

variability within each species. Going forward, further research should focus on developing more 

adaptive model architectures, expanding datasets with broader species coverage, integrating 

mycological expert knowledge, and exploring cutting-edge deep learning techniques to capture greater 

visual complexity. 

 The ethical and practical context of this research is also worth considering. Although automatic 

classification systems have significant potential in helping mushroom identification, this research 

firmly emphasizes that deep learning technology should not be considered an absolute source of truth. 

Ongoing validation, collaboration with domain experts, and multidisciplinary approaches remain key 

in developing reliable and meaningful species identification technology. Fundamentally, this research 

is not just about mushroom classification, but about how artificial intelligence can help us understand 

the complexity and diversity of life. The developed InceptionV3 model serves as a window to see how 

computational technology can translate the visual diversity of nature into understandable knowledge 

constructs. 

 

4.   Conclusion 

 In this research, a mushroom classification system using the InceptionV3 model has been 

successfully developed, achieving an overall accuracy of 81.35% and capable of automatically 
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classifying 18 mushroom species. Through transfer learning and data augmentation approaches, the 

model manifested special abilities in recognizing mushroom species with significant variations in 

performance between species: highest accuracy up to 94% achieved for Fly Agaric and Shelf Fungi, 

while facing the greatest challenges with Sulphur Fungi and Honey Mushroom, with accuracy of 63-

65%. Therefore, this research represents a significant contribution displayed in the field of mushroom 

recognition technology using deep learning. This generation solution offers a significantly faster, more 

accurate, and safer way to identify mushrooms, which enables it to be used in subsequent mushroom 

classification projects using deep learning techniques. 
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