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Abstract 

Medical image captioning aims to automatically generate descriptive textual reports from medical 

images, serving as a crucial task in the development of computer-aided diagnosis systems. This paper 

presents a systematic literature review (SLR) of medical image captioning models, focusing 

specifically on CNN-LSTM and Transformer-based architectures published between 2019 and 2024. 

The study analyzes 40 selected articles based on their architectures, datasets, evaluation metrics, and 

clinical applicability. We provide a comparative synthesis based on five research questions (RQ1–

RQ5), highlighting advancements, challenges, and future directions. A taxonomy of model types is 

introduced, and summary tables covering datasets, evaluation scores, and concept integration are 

presented. Our findings reveal the growing importance of multimodal learning, domain-specific 

metrics (e.g., BERTScore, RadGraph F1), and the integration of medical ontologies such as UMLS. 

The paper identifies key gaps in interpretability, clinical validation, and real-world applicability, 

providing guidance for future research. 

 

Keywords : Medical image captioning, convolutional neural network, transformer, healthcare ai, automatic report 

generation 

1   Introduction 

In the fields of artificial intelligence (AI) and healthcare, medical image captioning is a critical 

task that aims to generate accurate and informative textual descriptions from medical images such as 

computed tomography (CT) scans, magnetic resonance imaging (MRI), and X-rays [1]. The 

exponential growth of imaging data has placed increasing pressure on radiologists [2], prompting the 

need for automated and standardized reporting systems to reduce workload and diagnostic variability 

[3]. Traditional image analysis relied heavily on handcrafted feature extraction, which requires expert 

knowledge and is prone to inconsistency. Over time, captioning methods have evolved from rigid 

retrieval and template-based approaches to more adaptive deep learning models, most notably encoder-

decoder architectures enhanced with attention mechanisms and transformer-based designs [1]. These 

architectures integrate vision and language processing, enabling the transformation of complex visual 

inputs into coherent textual descriptions [4].  

Recent advances in deep learning, particularly convolutional neural networks (CNNs), have 

shown strong performance in medical imaging tasks such as classification, segmentation, and 

captioning by effectively extracting spatial hierarchies from images [4]. While CNN-LSTM-based 

models extract spatial features effectively, their limited capacity for long-range dependencies has 

prompted the use of encoder-decoder and Transformer-based architectures [5]. Still, these models 
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often fall short in handling clinical terminology, prompting the adoption of more advanced 

architectures like Transformers. 

Originally developed for natural language processing (NLP) applications, transformer models 

have proven to be remarkably effective at representing contextual information and long-range 

dependencies across input sequences [5, 6]. Transformers, in contrast to CNNs, are able to generate 

text descriptions while focusing on pertinent portions of the input image thanks to self-attention 

processes [7]. Because they can better capture hierarchical feature representations than conventional 

CNNs, Vision Transformers (ViT) and their variations, such Swin Transformer, have been investigated 

in medical imaging applications [6]. By offering superior contextual comprehension and generalization 

across a variety of medical datasets, these models have outperformed traditional methods. 

Despite these developments, the intricacy of medical terminology and the requirement for 

sizable, annotated datasets make medical image captioning a difficult undertaking [7]. Domain 

specialists must put in a lot of work to annotate medical images with matching captions, which 

frequently leaves little data available for building strong models. Furthermore, the model's capacity to 

generalize to rare diseases is limited by the strong bias of available datasets like IU-Xray, MIMIC-

CXR, and ROCO towards common ailments [8]. The interpretability of reports produced by AI is 

another difficulty, raising questions about acceptance and trust in therapeutic practice. For these 

models to be successfully used in real-world contexts, it is essential that the generated captions adhere 

to clinical principles and standards. 

To overcome the difficulty of integrating clinical knowledge into the generated reports, it has 

been suggested that medical image captioning models use external knowledge bases, such as the 

Unified Medical Language System (UMLS) [8]. Medical terminology is standardized with the use of 

Concept Unique Identifiers (CUI), which also enhances the correctness and consistency of the 

generated descriptions. According to studies, adding CUIs to the training process improves the model's 

capacity to generate interpretable and clinically significant captions, increasing the output's utility for 

radiologists and other healthcare professionals [9, 10]. 

Three main architecture families e.g CNN-LSTM, Transformer-based, and hybrid encoder-

decoder models, are highlighted in this systematic literature review (SLR), which offers a targeted 

examination of deep learning-based methods for medical image captioning. CNN-LSTM pipelines 

served as the foundation for many early medical captioning systems because of their interpretability, 

ease of architecture, and suitability for use in clinical settings with low resources [3]. However, recent 

research has shown that Transformer-based models, perform noticeably better than their CNN-based 

counterparts in producing semantically coherent and clinically correct reports [23]. 

Key elements including model architecture design, dataset utilization (e.g., IU X-Ray, MIMIC-

CXR, ROCO), assessment metrics (BLEU, ROUGE, CIDEr, BERTScore), and clinical deployment 

issues are methodically synthesized in the review. Although previous reviews of the research on image 

captioning have generally addressed either natural language generation or general medical vision tasks 

[2, 5], they either did not compare the performance of different model types directly or did not look at 

the architectural implications for clinical relevance. Furthermore, a lot of earlier research only used 

traditional n-gram overlap criteria, like BLEU or ROUGE, which have been demonstrated to be 

inconsistent with radiologists' assessments and to miss factual correctness [26]. 

By addressing these drawbacks, this paper provides a comparative synthesis of CNN-LSTM, 

Transformer, and hybrid techniques, thereby solving a significant gap in the field. In addition to 



H. Fadhilah and N.P Utama   Jurnal Masyarakat Informatika, 16(1), 2025 

 

34 
 
 

highlighting the language and clinical aspects of model performance, it also points out unresolved 

research issues such as explainability, factual consistency, and domain generalization. This review is 

limited in scope to peer-reviewed studies published in English between 2019 and 2024, focusing 

exclusively on deep learning-based image captioning models. Studies that are purely retrieval-based, 

GAN-driven, or outside the medical imaging domain were excluded. By clearly defining these 

boundaries, the study ensures targeted synthesis while offering practical guidance for future research 

on the development of reliable and clinically integrated medical image captioning systems. 

2   Research Method 

In order to gather, examine, and synthesize the body of research on medical image captioning 

using deep learning techniques, specifically Convolutional Neural Networks (CNNs) - Long Short 

Term Memory (LSTM) and Transformer-based models, this study uses a systematic literature review 

(SLR) methodology. Following the recommendations made by Kitchenham and Charters [11], the 

approach consists of formulating research questions, creating a search strategy, implementing 

inclusion and exclusion criteria, extracting data, and synthesizing findings. 

2.1   Research Questions 

The following research questions (RQs) have been developed in order to gain a thorough grasp 

of the body of existing literature and pinpoint areas in need of further investigation: 

1. RQ1: Using CNN-LSTM and Transformer-based architectures, what are the most advanced 

techniques currently employed in medical image captioning? 

2. RQ2: Which evaluation metrics and datasets are frequently employed in this field? 

3. RQ3: What is the performance and clinical applicability comparison between Transformer-

based and CNN-LSTM based approaches? 

4. RQ4: What difficulties arise when using automatic captioning for medical images in actual 

clinical settings? 

5. RQ5: How could automated medical image captioning systems be improved in the future? 

2.2   Search Strategy 

 

Figure 1 Search strategy workflow 

To guarantee thorough coverage of pertinent studies, the literature search was carried out across 

several reliable digital databases. Among the databases that were searched are: 

1. IEEE Xplore 
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2. PubMed 

3. ScienceDirect 

4. SpringerLink 

5. Google Scholar 

To optimize the retrieval of pertinent articles, Boolean operators and keywords were combined. 

The following search terms were developed in accordance with the research focus. 

"CNN" AND "medical imaging" AND ("captioning" OR "description generation") 

"Transformer" AND "medical image analysis" AND ("diagnosis" OR "automatic report generation") 

"Deep learning" AND "medical image captioning" AND ("X-ray" OR "CT" OR "MRI") 

"Hybrid model" AND ("CNN" OR "Transformer") AND "medical image" 

"Automatic report generation" AND "medical imaging" AND ("self-supervised learning" OR "transfer learning") 

Figure 2 Deep learning search terms for diagnosing and medical image captioning 

The following filters were used to narrow down the search results: 

1. Publications from 2019 to 2024, making sure to incorporate the most recent developments. 

2. Papers on AI in healthcare that have been published at conferences and peer-reviewed 

journals. 

3. Publications in English exclusively. 

2.3   Criteria for Inclusion and Exclusion 

The following set of inclusion and exclusion criteria was established in order to guarantee the 

quality and applicability of the included studies: 

Table 1 Criteria for inclusion and exclusion used in this study 

No Inclusion Criteria Exclusion Criteria 

1 Research that was published between 2019 and 2024 in 

indexed journals and prestigious conferences. 

Studies that are not written in English. 

2 Studies that explicitly apply CNN and Transformer models 

to the captioning of medical images. 

Research lacking sufficient empirical validation or 

methodological clarity. 

3 Studies that use assessment metrics like BLEU, ROUGE, 

CIDEr, and METEOR to present empirical data. 

Review articles and opinion papers that do not 

present novel experimental findings. 

4 Articles addressing the difficulties and prospects for further 

study in medical image captioning. 

Duplicate studies or preprints without final 

publication. 

2.4   Extraction and Synthesis of Data 

Relevant information was gathered from the chosen studies using a systematic data extraction 

procedure. Among the elements of the extracted data are: 

1. Study details: title, authors, year of publication, and location. 

2. Model Architecture: The kind of encoder-decoder models that are employed (Hybrid 

methods, CNN, LSTM, Transformer, etc.). 

3. Dataset Used: Open-IU, ROCO, and MIMIC-CXR are examples of public datasets. 

4. Evaluation Metrics: Performance reported in terms of BLEU, ROUGE, CIDEr, METEOR, 

and BertScore. 

5. Challenges Identified: Issues related to dataset quality, interpretability, and generalization. 

6. Future Directions: Suggestions for model improvements and clinical integration. 
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Thematic analysis was utilized to synthesize the data, classifying the results according to 

patterns, similarities, and variations in the methods employed in the various research. 

2.5   Evaluation of Quality 

A quality evaluation checklist that comprises the following criteria was used to evaluate each 

chosen study in order to guarantee the validity and reliability of the results: 

1. Relevance to the Research Questions: How well the study responds to the research questions 

that were posed. 

2. Methodological Rigor: The lucidity of the research design and evaluation metrics, among 

other aspects. 

3. Replicability: Whether enough information is given to enable the experiments to be repeated. 

4. Findings and Results: The importance and influence of the stated results in the medical 

domain. 

5. Bias Assessment: Finding possible biases, like imbalances in the dataset or restricted 

generalizability. 

To guarantee that only top-notch research was incorporated into the final synthesis, each paper 

was graded according to these standards. 

2.6   Analysis of Data and Comparative Assessment 

The gathered data was analyzed using both quantitative and qualitative methods. Key 

performance metrics were evaluated between CNN-LSTM and Transformer-based models, including: 

1. Accuracy and Efficiency: Performance is assessed across various datasets using common 

measures. 

2. Interpretability: Evaluation of the generated captions usefulness and clarity. 

3. Computational Complexity: Evaluation of each model's resource needs. 

4. Clinical Relevance: Assessing the degree to which the generated captions correspond with 

reports from human experts. 

To conduct a meta-analysis and find trends among the examined research, statistical methods 

were employed. 

2.7   The Methodical Review Procedure 

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

framework [12] was adhered to throughout the review procedure, guaranteeing an open and organized 

methodology. The following Figure 3 is an overview of the procedure: 

1. Identification: Looking through several databases to find pertinent articles. 

2. Screening: Using predetermined criteria, duplicate and unnecessary investigations are 

eliminated. 

3. Eligibility: Examining the appropriateness of chosen publications through a full-text 

examination. 

4. Data Extraction: Noting important findings from relevant research. 

5. Synthesis: Condensing research results and coming to insightful conclusions. 
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Figure 3 PRISMA diagram of 612 records, with 40 studies included in the final synthesis 

3   Result and Discussion 

The systematic literature review's findings offer insightful information about the state-of-the-art 

methods, difficulties, and potential paths in medical image captioning. Figure 4 explains several 

criteria, including model designs, datasets, performance measures, and important discoveries, that 

were used to examine the chosen papers. 

 

(a) (b) (c) 

Figure 4 Searching result of paper: (a) Distribution of Papers by Topic Category, (b) Number of Papers per Publisher, (c) 

Citation Metrics Overview from Publish or Perish. 

3.1   Summary of Models for Medical Image Captioning (RQ1) 

From early CNN-RNN pipelines to more sophisticated vision-language foundation models, the 

development of medical image captioning models has undergone significant change. Convolutional 

neural networks (CNNs) like VGG16 or DenseNet-121 were the main tool used in the early methods 

to extract spatial information from medical images. Decoders based on LSTM or GRU were then used 

to provide descriptive reports. Notable examples include region-focused designs using YOLOv4 and 

attention-based LSTM models [13], as well as modifications of the Show-Attend-and-Tell framework 

for radiology [3].  

A major change was brought about by the development of Transformer-based architectures, 

which used self-attention mechanisms to represent long-range interactions between text sequences and 

visual areas. Clinical knowledge graphs and structured medical representations were incorporated into 

transformer-based models like R2GenCMN [14], PPKED [15], and KERP [16] to improve the factual 

correctness and structural coherence of the reports that were produced. In order to align vision and 

language embeddings, more recent developments, such as BLIP-2-based models like MedBLIP [17] 

and MAKEN [18], adopted frozen large language models (like OPT-2.7B, T5), and trained 

intermediate Q-Former modules, frequently with concept-level supervision from medical ontologies 

(like UMLS CUIs). Other innovations, such as RGRG [19], introduced region-guided captioning using 
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Faster R-CNN and GPT-2 decoders for sentence-level anatomical grounding, while longitudinally-

aware models like that of Serra et al. [20] incorporated prior and current X-rays to support progression-

aware report generation using sentence-anatomy dropout mechanisms. Moreover, few-shot GPT-3.5 

prompting and RadGraph serialization were employed by prompt-based models such as Yan et al. [21] 

to generate style-aware and institution-adaptable reports. 

Hybrid architectures have become viable solutions for striking a compromise between global 

semantic modeling and local detail extraction. For instance, MSMedCap [22] used a dual-encoder 

configuration with CLIP and SAM (Segment Anything Model) to capture both fine-grained anatomical 

information and generic semantics, while ViT-GPT2 [23] integrated Vision Transformer encoders with 

GPT-2 decoders. Two separate Q-Former modules were employed to combine these features into an 

OPT decoder, allowing for precise and comprehensible caption creation. Hybrid models provide a 

useful compromise between representational power and computational economy, especially in clinical 

settings with constrained hardware or data. 

Current developments place a strong emphasis on knowledge-enhanced generation, cross-

supervision, and domain-specific fine-tuning in order to adapt large-scale foundation models to the 

medical field. Zhou et al. [24] combined concept-level and caption-level fine-tuning to match BLIP-2 

with medical data, while REFERS [25] used cross-supervision between free-text reports and 

radiographs without the need for structured labels. At the same time, knowledge-aware techniques 

such as RadGraph-based pipelines [26] and ATAG [14] have shown better explainability and factual 

basis. Frameworks for style-controlled generation have also made it possible to customize outputs to 

suit the tastes of radiologists or other institutions. In general, the area is heading toward architectures 

that are more easily integrated into actual healthcare settings since they are cmodular, generalizable, 

and clinically interpretable. Medical image captioning has evolved through several architectural 

paradigms, from early CNN-LSTM models to more recent Transformer-based and Vision-Language 

Models. Figure 5 provides a comparative overview of these architectures, highlighting their key 

components and data flow. 

 
Figure 5 Comparison of three medical image captioning architectures (left-to-right): CNN-LSTM, Transformer-based, 

and Vision-Language Models, showing key components and data flow 
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3.2   Datasets and Metrics Evaluation (RQ2) 

a. Datasets in Medical Image Captioning Research 

 
Figure 6. Example of datasets image captioning (Radiology Objects in Context - ROCOv2 [27]) 

The reviewed papers primarily utilize a handful of publicly available medical datasets, most 

commonly chest X-ray datasets, but also extend to multi-modal collections including CT, MRI, 

ultrasound, and PET scans. Below is a structured breakdown: 

Table 2 Overview of commonly used datasets for medical image captioning, detailing modalities, dataset size, 

descriptions, and representative citations 

Dataset Name Modality Description # Images / 

Captions 

Used in (Paper 

Citations) 

MIMIC-CXR  Chest X-ray 

(frontal/ lateral) 

Large-scale clinical dataset 

with DICOM images and free-

text reports 

~377,110 images / 

~227,835 reports 

[3], [14], [15], [19], [21], 

[23], [26], [28], [29], [30], 

[31], [32], [33], [34], [35], 

[36]  

IU X-Ray Chest X-ray Small dataset with paired 

findings and impressions 

7,470 images / 

3,955 reports 

[14], [15], [19], [23], [28], 

[29], [30], [31], [33], [34], 

[36], [37], [38]  

ROCO Multi-modal (X-

ray, CT, MRI, 

PET, etc) 

Educational image dataset with 

UMLS CUIs and captions 

81,342 images / 

81,342 captions 

[17], [22], [39], [40], [41], 

[42], [43] 

ImageCLEF 

medical Caption 

Multi-modal 

(ROCO-derived) 

Competition dataset (2020–

2024), enriched with concepts 

~90,000 images / 

~90,000 captions 

[5], [18], [24], [44], [45], 

[46] 

Chest 

ImaGenome 

Chest X-ray Region-annotated dataset with 

phrase-level descriptions 

~240,000 images / 

~100,000 sentences 

[20] 

MedICaT CT, MRI, + text Biomedical publications with 

images and textual alignment 

~217,000 figures / 

~1.2M sentences 

[22], [41] 

ICH (Kaggle) Brain CT Labeled CT scans for 

intracranial hemorrhage 

detection 

~25,000 scans / 

25,000 binary 

labels 

[47], [48] 

MS-CXR-T Temporal Chest 

X-ray 

Paired current–prior CXR 

scans with longitudinal 

structure 

~140,000 images / 

~70,000 pairs 

[49] 

PEIR-Gross Histopathology Educational pathology dataset 

with gross specimen captions 

7,442 images / 

7,442 captions 

[13] 

Stomach Histo-

pathology Image 

Captioning  

Histopathology 

(H&E) 

Patch-level dataset of H&E-

stained gastric biopsy images 

for stomach adenocarcinoma 

34,000 train / 5,700 

test images + 

captions 

[50] 
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b. Natural Language Generation (NLG) Metrics 

Natural language generation (NLG) metrics and clinical or semantic accuracy measurements are 

the two types of metrics that are most frequently employed in evaluation. Surface-level fluency and 

overlap between generated and reference text are measured using NLG measures. The most commonly 

reported of these, BLEU (particularly BLEU-1 to BLEU-4) [51] captures accuracy in n-gram overlap. 

CIDEr [52] rewards rare but informative content with a TF-IDF weighted n-gram similarity score, 

while ROUGE-L [53] assesses sequence-level recall using the longest common subsequence. 

METEOR [54] enhances these by adding stemming and synonym matching, which increases its 

sensitivity to linguistic variance. A learning regression-based metric called BLEURT, which 

frequently represents human judgment more accurately than BLEU or ROUGE, was also used in some 

recent works. Various Natural Language Generation-based evaluation metrics have been employed to 

assess the quality of medical image captioning. These commonly used metrics are summarized in Table 

3. 

Table 3 Summary of Natural Language Generation based evaluation metrics commonly used in medical image captioning 

Metric Purpose What it Measures Observed in 

BLEU (1–

4) 

Fluency & n-gram 

overlap 

Measures precision of n-grams (e.g., unigrams 

for BLEU-1, 4-grams for BLEU-4); higher = 

more literal match 

Used in nearly all papers; e.g., 

PPKED [15], MAKEN [18], 

MedBLIP [17] 

ROUGE-L Recall-oriented 

match 

The longest common subsequence (LCS) 

between the reference and generated text 

Common in all Transformer-

based studies 

CIDEr Consensus-based 

informativeness 

Uses TF-IDF weighting of n-grams across 

multiple references; rewards rare but 

informative words 

MAKEN [18], MedBLIP [17], 

R2GenCMN [14] 

METEOR Semantic alignment Considers synonyms, stemming, and word 

order; more sensitive to linguistic variation 

Used in RGRG, PPKED [15], 

R2GenCMN [14] 

SPICE Scene graph overlap Compares semantic graphs (objects, attributes, 

relationships); seldom used in medical setting 

due to domain mismatch 

Limited use  

BLEURT Learned scoring of 

quality 

Pretrained regression metric to model human 

judgments; measures fluency + semantics 

ImageCLEF submissions  

c. Semantic and Clinical Relevance Metrics 

Newer measures have gained popularity to assess clinical integrity and semantic accuracy. 

Models like MAKEN and MedBLIP frequently use BERTScore [55], which assesses similarity at the 

phrase embedding level using contextual embeddings (typically from BioBERT or PubMedBERT). 

CheXbert F1 measures the degree of alignment between generated reports and reference illness labels 

for 14 chest disorders in order to conduct clinical evaluation. The more modern RadGraph F1 is 

particularly helpful for grounding accuracy since it assesses the overlap of medical entities and their 

relationships (e.g., "opacity located_at left lung"). RadCliQ, a composite metric that combines BLEU, 

CheXbert, BERTScore, and RadGraph F1, was developed in 2023 and was shown to have a strong 

correlation with radiologist preferences. Other specialized metrics include RadRQI-F1 (focusing on 

abnormality-attribute alignment) and Anatomy Sensitivity Ratio (AS-Ratio), which measures how 

well model-generated sentences align with visual regions of interest. A summary of these semantic 

and clinical relevance metrics is provided in Table 4. 
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Table 4 Summary of semantic and clinical relevance metrics commonly used in medical image captioning 

Metric Purpose What it Measures Used in 

BERTScore Semantic similarity Uses contextual embeddings (e.g., BERT, 

PubMedBERT) to align predicted vs. reference 

captions 

MAKEN [18], 

MedBLIP [17], 

MSMedCap [22] 

RadGraph F1 Clinical 

entity/relation match 

Measures overlap of radiographic findings and 

relations (e.g., “opacity located_at left lung”) 

ATAG [14] 

CheXbert F1 Clinical concept 

match 

Matches presence/absence of 14 diseases; 

evaluates disease detection consistency 

KERP [16] 

RadCliQ Correlated with 

radiologist judgment 

Combines BLEU, CheXbert, BERTScore, 

RadGraph F1 into one regression metric 

Proposed by Yu [26] 

RadRQI-F1 Abnormality + 

attribute overlap 

Evaluates presence and modifiers (e.g., size, 

location) of clinical findings 

ATAG [14] 

Anatomy Sensitivity 

Ratio (AS-Ratio) 

Grounding quality Proportion of sentences that correctly reference 

image regions 

RGRG [19] 

3.3   Performance Comparison (RQ3) 

The systematic literature review's findings offer insightful information about the state-of-the-art 

methods, difficulties, and potential paths in medical image captioning. A number of criteria, such as 

model designs, datasets, performance measures, and important discoveries, were used to examine the 

chosen papers. In terms of evaluation criteria like BLEU, ROUGE, CIDEr, and METEOR, 

Transformer-based techniques perform better than CNN-LSTM based designs, according to a 

comparative examination of several models [9][10]. A summary of the performance comparison of 

several models across widely used datasets is shown in the Table 5. 

Table 5 Performance comparison of medical image captioning models across various datasets and evaluation metrics 

Model Dataset BLEU ROUGE CIDEr METEOR BERT-

Score 
Notes Strength Limitation 

MAKEN 

[18] 

ROCO 

(CLEF 

2023) 

0.226 0.252 0.287 – 0.639 Adapter tuning 

+ MKE 

High semantic 

fidelity; 

efficient tuning 

Needs 

external 

medical 

knowledge 

MedBLIP 

[17] 

ROCO 

(CLEF 

2023) 

0.221 
(BLEU-

1) 

0.247 0.220 0.098 0.617 BLIP-2 + CUI-

based fine-

tuning 

Grounded 

medical 

concept 

representation 

Complex 

architecture; 

resource-

intensive 

ViT-GPT2 

[23] 

IU X-

Ray 

0.226 
(BLEU-

4) 

0.433 – 0.385 – Vision 

Transformer + 

GPT-2 

Fluent 

generation with 

autoregressive 

decoding 

Lacks clinical 

concept 

alignment 

PPKED [15] IU X-

Ray 

0.168 
(BLEU-

4) 

0.376 0.351 - – Prior/posterior 

KG + 

distillation 

(CNN-RNN) 

Structured 

planning 

enhances 

factuality 

Depends on 

historical data 

R2GenCMN 

[21] 

MIMIC-

CXR 

0.184 - - - 0.378 RadGraph 

(Clinical graph 

+ multi-view) 

Good for 

handling 

radiographic 

complexity 

Missing 

metrics; 

limited 

dataset 

validation 

RGRG [19] MIMIC-

CXR 

0.126 
(BLEU-

4) 

0.264 0.495 0.168 – Region-guided 

GPT-2 decoder 

Strong 

alignment with 

anatomical 

regions 

Low BLEU; 

long 

inference 

time 

 

The MAKEN model [18], based on a BLIP-2 backbone with adapter tuning and Medical 

Knowledge Enhancement (MKE) loss, achieved consistently high performance on the 
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ImageCLEFmedical 2023 Caption Prediction task. It reported strong scores across BLEU (0.226), 

ROUGE (0.252), and CIDEr (0.287), with the highest observed BERTScore (0.639). The MKE loss, 

which reinforces learning of clinically significant terms based on concept frequency, contributes to the 

model's strong semantic alignment with ground-truth reports. Its adapter-based design allows efficient 

domain adaptation without updating the frozen LLM decoder (OPT-2.7B). 

MedBLIP [17], another BLIP-2-derived model, also demonstrated competitive performance: 

BLEU-1 (0.221), ROUGE (0.247), CIDEr (0.220), METEOR (0.098), and BERTScore (0.617). It 

introduces a two-phase training pipeline, starting with CUI-based concept supervision followed by 

fine-tuning on full captions, which improves its ability to generate factually grounded and domain-

aware descriptions. Despite slightly lower CIDEr and BERTScore values compared to MAKEN, 

MedBLIP’s overall performance and clinical relevance remain strong. 

ViT-GPT2 [23], a hybrid model combining a Vision Transformer encoder and a GPT-2 decoder, 

achieved BLEU-4 (0.226) and ROUGE (0.433) on IU X-Ray. Its autoregressive decoder ensures fluent 

generation, while the Transformer encoder preserves high-resolution spatial detail. However, the 

model lacks medical concept alignment or knowledge-aware modules, which may limit its factual 

specificity compared to medically tuned alternatives. 

PPKED [15] employs a cross-domain Transformer framework that integrates prior and posterior 

knowledge via two modules e.g PoKE (posterior knowledge explorer) and PrKE (prior knowledge 

explorer). On IU X-Ray, it achieved BLEU-4 (0.168), ROUGE (0.376), and CIDEr (0.351). Although 

PPKED predates modern Q-Former or BLIP architectures, its strength lies in explicitly structured 

content planning and knowledge distillation, which enhances its performance on datasets with 

structured reports. 

R2GenCMN [21], designed for the MIMIC-CXR dataset, incorporates a clinical knowledge 

graph and multi-view fusion (frontal and lateral views). It reported a BLEU score of 0.184 and 

BERTScore of 0.378, although ROUGE and CIDEr values were not reported. The model’s use of 

entity-aware attention and structural supervision allows for more context-aware generation, 

particularly in handling radiographic complexity and spatial alignment. 

RGRG (Region-Guided Radiology Generation) [19] represents a unique anatomy-grounded 

captioning approach. Using a Faster R-CNN to detect anatomical ROIs and GPT-2 to generate one 

sentence per region, it scored BLEU-4 (0.126), ROUGE (0.264), CIDEr (0.495), and METEOR 

(0.168) on MIMIC-CXR. Despite the relatively low BLEU score, it produced the highest CIDEr and 

METEOR values among these models, reflecting strong alignment with human-readable and clinically 

informative text. Its modular design supports interpretability and region-level traceability, which is 

particularly useful for clinician-end usability, though potentially at the cost of holistic fluency. 

Transformers typically require large datasets to perform well, which poses a challenge in the 

medical domain due to privacy and limited annotations. In contrast, CNNs are more effective with 

smaller datasets, especially when pre-trained on natural images and fine-tuned for medical use. Recent 

hybrid models like ConTrans and CTranS combine the strengths of both architectures, using CNNs for 

local feature extraction and Transformers for capturing global context, resulting in improved 

performance in medical image segmentation and captioning tasks. [11, 15]. 

In a variety of medical image processing applications, hybrid models have been demonstrated to 

perform better than both Transformer and pure CNN models. For example, Transformer-based models 

were able to capture long-range dependencies between various breast views in mammograms used for 
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breast cancer diagnosis, and Transformer-based models produced more accurate and comprehensible 

captions for multimodal tasks such as combining retinal fundus images and OCT scans [58], [59]. 

3.4   Summary Table of Reviewed Study 

This table summarizes the key characteristics of the 40 reviewed studies, including model 

architectures (CNN-LSTM, Transformer-based, or Hybrid), datasets utilized, evaluation metrics 

applied, and primary findings. It offers a comparative overview that supports the synthesis of results 

and directly addresses Research Questions RQ1 to RQ3, concerning architectural trends, dataset 

selection, and model performance outcomes can see at Table 6 

Table 6 Summary of Reviewed Studies in Medical Image Captioning (2019–2024) 

Model Dataset Notes Result Strength Limitation 

CLIP-Text 

Similarity [45] 

ImageCLEF 

medical 

Caption 

Multi-stage approach 

combining image 

classification and CLIP for 

medical image captioning. 

BERT: 0.5776, 

ROUGE: 0.15392, 

BLUERT: 0.27136, 

METEOR: 0.15404, 

CIDEr: 0.06970, 

CLIP Score: 

0.10482. 

Combines 

classification with 

CLIP to improve 

accuracy and text 

relevance. 

Initial image 

classification is 

limited; struggles 

with hard-to-classify 

images. 

Efficient Net-

Text 

Similarity [42] 

ROCOv2 Uses CUI-based multi-

label classification and 

feature similarity to 

generate captions. 

BERT: 0.5673 (Run 

5, ViT32, 10 

groups).  

Enhances 

consistency with 

CUI-based 

classification; 

easier for medical 

professionals to 

interpret. 

Complex model with 

high computational 

needs; requires CUI-

labeled data; 

difficult to scale 

across diverse 

medical imaging 

modalities. 

BioViL-T [49] MS-CXR-T Uses temporal info from 

medical images to improve 

tasks like disease 

progression 

classification/reporting. 

BLEU-4: 9.2 ± 0.3, 

ROUGE-L: 29.6 ± 

0.1, CHEXBERT: 

31.7 ± 1.0.  

Effectively uses 

temporal features to 

enhance clinical 

report quality. 

Requires historical 

data; complex 

model. 

CNN-

Transformer 

[43] 

ROCO Combines CNN and 

Transformer for generating 

medical image 

descriptions across 

multiple modalities. 

Accuracy: 0.7628, 

BLEU-1: 0.5387.  

Strong integration 

of CNN and 

Transformer; high 

accuracy and cross-

modality support. 

High computational 

demand; some 

descriptions lack 

detail due to data 

diversity limitations. 

CNN-LSTM 

[5]  

ImageCLEF 

medical 

Caption 

Uses visual and semantic 

features (via CNN & 

multi-label classifier) with 

LSTM for medical image 

captions. 

BLEU: 42.28% 

(beam search k=5). 

Outperformed 

ImageSem (BLEU: 

25.70%).  

Combines visual & 

semantic features 

effectively; beam 

search improves 

output; good 

ablation study. 

Struggles with 

long/complex 

captions; 

performance 

sensitive to image 

quality; rare terms 

poorly handled. 

Multimodal 

Masked Auto 

Encoder 

(M3AE) [41] 

ROCO, 

VQA-RAD, 

SLACK, 

VQA-2019 

Self-supervised learning 

using multi-modal masked 

autoencoders to align 

vision and language 

representations. 

VQA-RAD: 77.01, 

SLACK: 83.25, 

VQA-2019: 79.87, 

ROCO: 78.50.  

No need for large 

labeled data; strong 

cross-modal 

understanding; 

relatively simple 

architecture. 

Needs further 

optimization for 

complex modalities; 

limited by smaller 

datasets. 

PRIOR [35] MIMIC-

CXR 

Joint learning of global-

local representations from 

medical images and reports 

for accurate and granular 

clinical understanding. 

CIDEr: 82.1, 

BLEU-4: 20.5.  

Improves granular 

clinical 

representation. 

High complexity in 

global-local 

alignment. 

CNN-LSTM 

[50]  

Histo-

pathological 

Dataset 

Combines ConvNext-

Large + PVT_v2_b5 for 

vision, and BioLinkBERT-

Large for captioning 

histopathological images. 

BLEU1: 0.576, 

BLEU2: 0.455, 

BLEU3: 0.411, 

BLEU4: 0.309.  

High accuracy and 

consistency in 

histopathological 

image captions. 

Requires heavy 

computation; 

performance may 

drop with highly 

varied image 

datasets. 
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Model Dataset Notes Result Strength Limitation 

ORGAN [34] IU-Xray, 

MIMIC-

CXR 

Uses tree-based reasoning 

and observation graphs to 

generate consistent 

radiology reports. 

+12.4% report 

consistency, +10.5 

CIDEr over 

baseline. 

Improves report 

consistency 

significantly. 

Tree-based 

reasoning adds 

complexity and 

longer training time. 

XraySwinG 

[38] 

NIH Chest 

X-ray, PT-

BR (derived 

from IU X-

ray) dataset 

Combines Swin 

Transformer (vision) and 

GPT-2 (language) with 

cross-attention for 

multilingual reporting. 

ROUGE-L: 0.748, 

METEOR: 0.741 

(PT-BR); ROUGE-

L: 0.404, METEOR: 

0.393 (NIH). 

Strong multimodal 

integration; 

supports 

multilingual 

reporting; captures 

global image 

features well. 

Limited availability 

of high-quality, 

multilingual medical 

report datasets. 

CvT-

DistillGPT2 

[33] 

IU-Xray, 

MIMIC-

CXR 

Uses CvT as image 

encoder and DistillGPT2 

as text decoder for 

automated CXR report 

generation. 

BLEU-1: 0.750, 

BLEU-2: 0.500, 

BLEU-3: 0.632, 

BLEU-4: 0.707, 

METEOR: 0.768, 

ROUGE-L: 0.643, 

CIDEr: 0.785. 

Efficient 

transformer 

architecture; 

performs well in 

resource-limited 

settings. 

Limited to CXR; 

requires 

optimization for 

broader 

generalization. 

GIT-large [40] ROCOv2 Part of 

ImageCLEFmedical 2024: 

concept detection using 

CNN ensemble; caption 

prediction using GIT 

models. 

Concept Detection: 

F1-score 0.6374; 

Caption Prediction: 

BERTScore 0.5769 

Strong ensemble for 

concept detection; 

GIT performs 

reasonably for 

captioning. 

Hierarchical model 

underperformed; 

ensemble is 

resource-intensive; 

GIT still lacks 

medical precision. 

3DCNN-

DistillGPT2 

[47] 

ICH 

(Kaggle) 

Captioning CT images for 

intracerebral hemorrhage 

using 3D CNNs and 

DistillGPT-2 for spatially-

aware descriptions. 

BLEU: 0.35, 

METEOR: 0.23, 

ROUGE-L: 0.56, 

Cosine Similarity 

(ClinicalBERT): 

0.78. 

Captures 3D spatial 

info well; efficient 

with DistillGPT-2; 

supports automated 

ICH diagnosis. 

High computational 

cost; limited 

generalization to 

external datasets. 

CNN-GPT2 

[48] 

ICH 

(Kaggle) 

Uses pretrained CNN 

classifiers and GPT-2 for 

sequential brain CT image 

captioning for ICH. 

BLEU-4: 0.17, 

ROUGE-L: 0.29, 

CIDEr: 0.27; 

Embedding Avg: 

0.71, Greedy 

Matching: 0.63. 

Strong CNN-GPT2 

combo; DenseNet-

121 yields best 

performance. 

GPT-2 is resource-

intensive; less 

effective on rare 

abnormalities. 

ASGK 

(KERP) [16] 

CX-CHR, IU 

X-Ray, 

COV-CTR 

Uses auxiliary visual and 

linguistic signals to 

enhance encoder-decoder 

Transformer performance 

for report generation. 

CIDEr: 89.4 (↑ 7.6 

over baseline). 

Improves 

benchmark scores 

using enriched 

auxiliary features. 

High complexity; 

requires detailed 

auxiliary signals. 

PhraseAug 

[36] 

IU-Xray, 

MIMIC-

CXR 

Two-stage model using 

phrasebook and clinical 

history to improve medical 

report generation, 

addressing visual-

linguistic bias. 

IU-Xray: BLEU-4: 

0.231, METEOR: 

0.218, ROUGE-L: 

0.431, CIDEr: 

0.665. MIMIC-CXR: 

BLEU-4: 0.184, 

METEOR: 0.208, 

ROUGE-L: 0.353, 

CIDEr: 0.280.  

Enhances cross-

modal alignment 

with phrasebook; 

adapts to writing 

styles; uses clinical 

history for 

contextual 

relevance. 

Phrase selection may 

miss rare but critical 

terms; handling 

underrepresented 

abnormalities is still 

a challenge; 

complex phrasebook 

construction. 

CXRFEScore 

[32] 

MIMIC-

CXR 

Leverages LLMs for fact 

extraction and uses BERT-

based encoding to enhance 

radiology report 

representation. 

Fact extraction F1: 

75.8, fact encoding 

F1: 68.4.  

Boosts factual 

representation of 

radiology text; 

effective use of 

LLM + BERT 

pipeline. 

Dependent on LLM 

fact extraction 

quality. 

TrMRG [37] IU-Xray Transformer-based model 

(ViT encoder + MiniLM 

decoder) for generating 

radiology reports from X-

rays. 

BLEU-1: 0.483, 

BLEU-4: 0.168, 

METEOR: 0.376, 

ROUGE-L: 0.351 

Handles data 

imbalance better 

than CNN-RNN; 

better performance 

in ablation study 

Struggles with rare 

abnormalities; 

requires large 

training data 

Efficient Net-

Text 

Similarity [39] 

ImageCLEF 

medical 2024 

Ensemble of 5 EfficientNet 

B0 models, each 

specialized in a subgroup 

of medical concepts. 

F1-score: 0.59876 

(run 1), 0.52921 

(run 2);  

Tackles data 

imbalance with 

subgroups; 

improves recall for 

certain classes;  

Lower precision due 

to false positives; 

minimal 

improvement 
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Model Dataset Notes Result Strength Limitation 

Vision 

Diagnostor-

BioBART 

[44] 

ImageCLEF 

medical 2024 

Transformer-based models 

(BioBART, ClinicalT5, Q-

BioMistral) used for 

diagnostic caption 

generation. 

BERTScore: 

0.6267, ROUGE: 

0.2452, CIDEr: 

0.2243;  

High scores on 

BERTScore and 

CIDEr; advanced 

Transformer 

architecture; object-

level feature 

exploration 

Large models (e.g., 

Q-BioMistral) don't 

always outperform 

smaller ones; weak 

on long captions 

BEiT - 

BioBart [8] 

ImageCLEF 

medical 2024 

Combines concept 

detection (Swin-V2) and 

enhanced attention for 

medical captioning. 

F1 (concept): 

0.58944 (val), 

0.61998 (test); 

BERTScore 

(caption): 0.60589 

(val), 0.5794 (test);  

Concept integration 

improves relevance; 

significant boost in 

concept detection 

and captioning 

performance 

Struggles with 

complex image 

context; post-

processing not 

always effective 

CNN-Text 

Similarity [46] 

ROCOv2 Uses DenseNet-121, 

MobileNetV2, and 

ResNet-50 for multi-label 

concept detection in 

medical images. 

Best: ResNet-50 

(F1: 0.181); 

MobileNetV2 (F1: 

0.178); DenseNet-

121 (F1: 0.114) 

ResNet-50 strong in 

concept detection; 

MobileNetV2 

efficient for low-

resource settings 

DenseNet-121 prone 

to overfitting; more 

regularization 

needed 

MeFD-Net 

[31] 

IU X-ray, 

MIMIC-

CXR 

Mimics clinical multi-

expert diagnosis with 

fusion modules integrating 

visual and text features. 

IU X-ray: BLEU-4: 

0.190, ROUGE-L: 

0.413, METEOR: 

0.248; MIMIC-CXR: 

BLEU-4: 0.148, 

ROUGE-L: 0.336, 

METEOR: 0.155 

Accurate via multi-

expert modeling; 

modular and 

extendable. 

Performance drops 

with imbalanced 

multimodal data; 

high computational 

demand. 

CNN + 

YOLOv4 -

LSTM [13] 

PEIR YOLOv4 for feature 

extraction and soft 

attention-based LSTM for 

generating medical image 

captions. 

BLEU: 81.78%, 

METEOR: 78.56%;  

Efficient object 

detection with 

YOLOv4; accurate 

descriptive 

captions. 

Less suitable for 

complex medical 

images with subtle 

or multiple 

anomalies. 

SAT-GPT3 

[3] 

MIMIC-

CXR, IU-

Chest 

Combines Show-Attend-

Tell (SAT) with GPT-3 for 

generating cohesive and 

clinically meaningful 

captions. 

Accuracy: 0.861, 

Precision: 0.445, 

Recall: 0.351, F1: 

0.369. CIDEr: 

1.989, ROUGE-L: 

0.480, BLEU-4: 

0.418 

Combines powerful 

models for rich 

captions; integrates 

2D heatmaps for 

visual support. 

Slightly lower 

CIDEr due to weak 

n-gram tuning; 

complex 

architecture with 

high computational 

cost. 

Faster R-

CNN-LM [20] 

Chest 

ImaGenome 

Uses longitudinal X-ray 

representations (past & 

present) via CNN-RNN to 

generate anatomy-

controllable reports. 

BLEU: 21.4, 

CIDEr: 77.3;  

Fine-grained 

control over 

anatomical focus in 

reports. 

Requires 

longitudinal image 

data, which is not 

always available in 

practice. 

Transformer + 

Mix MLP – 

LSTM [30] 

IU-Xray, 

MIMIC-

CXR 

Combines label 

information with co-

attention and hierarchical 

LSTM for structured report 

generation. 

BLEU-4: 0.227 

(IU), 0.155 

(MIMIC); 

METEOR: 0.244 

(IU), 0.201 

(MIMIC); ROUGE-

L: 0.435 (IU) 

Label-guided 

attention improves 

report accuracy; 

good performance 

on multi-label 

classification. 

Needs high-quality 

labeled data; 

struggles with rare 

outliers. 

ATAG [14] IU-Xray, 

MIMIC-

CXR 

Uses Attributed 

Abnormality Graph and 

Graph Attention Networks 

to model spatial 

relationships between 

abnormalities. 

Clinical accuracy: 

84.3% vs SOTA 

79.5%. 

Captures 

abnormality-

attribute relations 

effectively; 

improves clinical 

accuracy. 

High computational 

demand due to 

complex graph 

modeling. 

KEMHA [29] IU-Xray, 

MIMIC-

CXR 

Integrates general and 

specific knowledge into 

multi-head attention using 

knowledge graphs for 

richer report generation. 

BLEU-4: 24.6, 

CIDEr: 87.2; 

improves clinical 

understanding and 

terminology use. 

Enhances clinical 

accuracy and 

medical language in 

reports. 

Requires large, well-

structured external 

knowledge sources 

that are hard to 

integrate. 

RadCliQ [26] MIMIC-

CXR 

Evaluates alignment 

between automated 

metrics and radiologist 

judgment; introduces 

RadGraph F1 and RadCliQ 

metrics. 

RadCliQ Kendall's 

tau: 0.615 (highest), 

RadGraph F1: 

0.531, BERTScore: 

0.518; BLEU worst 

at 0.462. 

Better alignment 

with clinical 

evaluation than 

traditional metrics; 

captures critical 

clinical errors. 

BLEU still 

underperforms; gap 

remains between 

automated and 

radiologist-level 

report quality. 
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Model Dataset Notes Result Strength Limitation 

CNN + Cross 

Modal -

Transformer + 

Knowledge 

[22] 

COCO, 

ROCO, 

MedICaT 

Uses dual encoders (CLIP 

+ SAM) with mixed 

semantic pre-training; 

incorporates Q-Former for 

aligning vision and 

language features. 

BLEU-1: 48.1, 

ROUGE: 15.4, 

CIDEr: 57.5;  

Strong global-local 

feature extraction; 

effective cross-

modal 

representation; 

substantial 

performance boost. 

Sensitive to noisy 

captions; lacks deep 

evaluation in strictly 

medical domains; 

vulnerable to 

localized errors. 

MSMedCap 

[28] 

IU-Xray, 

MIMIC-

CXR 

Combines teacher-student 

model with encoder-

decoder network; enhances 

semantic alignment and 

output fluency via 

decoding supervision. 

BLEU-4: 0.116, 

METEOR: 0.150, 

ROUGE-L: 0.292 

(MIMIC-CXR);  

Better handling of 

small lesion detail 

and long report 

fluency; improved 

output structure. 

Computationally 

intensive; less 

adaptable across 

highly varied 

datasets. 

REFERS [25] - Uses cross-supervision 

between radiograph 

images and associated 

free-text reports to 

improve representation 

learning. 

CIDEr improved by 

9.3 over baseline on 

multiple radiograph 

datasets; better 

generalization to 

unseen domains. 

Reduces reliance on 

manual labels; 

supports domain 

shift handling. 

Relies on quality of 

free-text reports 

used as supervision. 

BLIP2 [24] ImageCLEF 

2023 

Utilizes BLIP-2 with ViT-

g encoder and OPT-2.7B 

decoder; two-stage fine-

tuning and post-processing 

applied for better captions. 

BERTScore: 

0.6281, ROUGE: 

0.2401, BLEURT: 

0.3209, CIDEr: 

0.2377, BLEU: 

0.1846, METEOR: 

0.0873 

Strong across 

multiple metrics; 

post-processing 

improves quality; 

well adapted to 

medical imaging 

tasks. 

Struggles with 

complex anomaly 

detection; prone to 

misclassifying 

anatomical regions 

in some cases. 

3.5   Challenges Identified (RQ4) 

Despite the notable advancements driven by deep learning in medical image captioning, 

significant challenges persist, chief among them being the limited availability of annotated datasets. 

This issue is especially pronounced for imaging modalities beyond chest X-rays, such as MRI, CT, and 

histopathology, where public, captioned datasets are scarce. Annotating medical images demands 

specialized domain expertise and is both time-consuming and costly, often resulting in small, 

institution-specific corpora that hinder model generalization. For instance, Elbedwehy et al. [50] 

resorted to generating synthetic descriptions for histopathology images due to the absence of publicly 

available captioned datasets. 

Another persistent issue is clinical interpretability and explainability. While Transformer-based 

models offer superior fluency, it is often unclear how predictions align with medical findings. Several 

models attempt to bridge this gap through region-grounded generation [19], RadGraph serialization 

[21], or anatomical attention maps [22], but these remain limited in clinical usability without extensive 

validation. 

Computational complexity also poses a major barrier. High-performing models like BLIP-2 [17] 

and MAKEN [18] require large memory and inference time, which limits their deployability in 

resource-constrained clinical environments. Moreover, these models are data-hungry, with optimal 

performance only achieved when pre-trained on massive general-domain datasets and then carefully 

adapted, a step not feasible for many healthcare institutions. 

Lastly, domain shifts between training and target data present a challenge for generalization. 

Variability in imaging protocols, language styles, and institutional reporting conventions often causes 

performance degradation in cross-domain evaluation, as noted in studies on transfer learning [24] and 

few-shot prompting [21]. 
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3.6   Key Findings  

From the review of recent literature, several consistent findings emerge. First, Transformer-based 

models, particularly those using vision-language pretraining (e.g., BLIP-2), outperform traditional 

CNN-RNN architectures across all major metrics e.g BLEU, ROUGE, CIDEr, and BERTScore. Their 

strength lies in modeling global dependencies and integrating rich semantics. 

Second, the introduction of domain knowledge, whether through CUIs (e.g., MedBLIP [17]), 

prior/posterior report reasoning (PPKED) [15], or structured knowledge graphs (e.g., RadGraph [21], 

ATAG [14]), significantly improves factual accuracy and clinical relevance. These models better 

identify abnormalities and produce consistent terminology. 

Third, hybrid and region-aware approaches demonstrate that modular interpretability can be 

embedded without sacrificing overall fluency. For instance, RGRG [19] achieved high METEOR and 

CIDEr scores while maintaining sentence-level alignment with anatomical ROIs, offering a path toward 

explainable AI. 

Fourth, evaluation strategies are maturing. While BLEU and ROUGE remain ubiquitous, metrics 

like RadGraph F1, CheXbert F1, and RadCliQ are increasingly adopted to reflect clinical correctness 

rather than just n-gram overlap. This shift aligns with findings from Yu et al. [26], which showed weak 

correlation between BLEU and radiologist-assessed report quality. 

3.7   Potential Applications (RQ5) 

a. Automated Radiology Report Generation 

The automated creation of radiology reports, which can save time and minimize human mistake, 

is one promising use of medical image captioning. Medical images can be analyzed by vision-language 

models such as 3D-CT-GPT, which can produce precise text summaries that include the location and 

severity of diseases [18, 19]. Additionally, memory-driven transformer models have demonstrated 

promise in producing comprehensive reports that include image-text attention mappings and medically 

important phrases, supporting radiologist training and guaranteeing consistent reporting. 

b. Clinical Decision Support Systems 

Vision-language models (VLMs) have shown significant promise in enhancing Clinical Decision 

Support Systems (CDSS) by interpreting medical images and generating relevant textual insights. 

These models integrate visual data (e.g., X-rays, MRIs, CT scans) with natural language understanding 

to deliver accurate, context-aware responses that assist clinicians in making informed decisions. One 

notable application is Medical Visual Question Answering (Med-VQA), where models like VQA-

RAD, PathVQA, and more recently MedBLIP and Med-VQA are trained to answer complex clinical 

questions grounded in radiology images. By combining image features with domain-specific language 

models, they provide precise and explainable answers that support both diagnostic reasoning and 

treatment planning [62]. 

To improve diagnostic accuracy, these models can also be tailored for particular tasks, including 

recognizing anatomical features in multi-modal pictures or spotting anomalies in mammograms [19, 

20]. These systems can offer contextually relevant information by utilizing sophisticated attention 

processes and sizable databases, which lowers the possibility of diagnostic errors and enhances patient 

outcomes. 



H. Fadhilah and N.P Utama   Jurnal Masyarakat Informatika, 16(1), 2025 

 

48 
 
 

c. Enhanced Patient Communication 

Through the creation of comprehensible summaries of radiological results, medical image 

captioning can help enhance patient communication. Patients can have more informed conversations 

with clinicians if they have a better understanding of their diseases thanks to these summaries. For 

instance, models such as those reported in recent studies might produce easily understandable 

explanations of observations, such as the location and severity of diseases [65]. 

Furthermore, visual aids like heatmaps or highlighted places of interest can be produced using 

vision-language models to go along with text-based reports. This multimodal strategy can improve 

patient comprehension and involvement in their treatment. 

d. Medical Education and Training 

Vision-language models are useful resources for medical education because they can produce 

precise, in-depth descriptions of medical images. Radiology residents can investigate a variety of cases 

and abnormalities by using these models to generate training datasets. For instance, models such as 

those reported in recent research can produce captions for vast collections of medical images, assisting 

learners in accurately recognizing and characterizing diseases [66]. 

Additionally, trainees can practice picture interpretation and report generation in a controlled 

setting by using these models to mimic clinical events [13]. This can assist novice radiologists become 

more proficient in image interpretation and lower their learning curve. 

e. Research and Public Health Applications 

Additionally, vision-language models can be very important for public health and medical 

research. These models can assist researchers in finding patterns and trends that might not be visible 

through manual analysis by automating the investigation of big databases of medical images. For 

instance, multi-modal medical imaging, like MRI and CT scans, can be analyzed using models similar 

to those reported in recent studies to find disease biomarkers or track the course of a disease over time 

[63]. 

By producing textual summaries at scale, medical image captioning models may extract 

structured insights from millions of archival images. In large health systems, this facilitates phenotypic 

discovery, risk profiling, and retrospective study of illness trends. For instance, REFERS [25] opened 

the door for automated population health surveillance and public health research by using cross-

supervision to extract radiographic ideas from large CXR corpora. 

4   Conclusion 

This systematic literature review has comprehensively addressed five research questions (RQ1–

RQ5) related to medical image captioning using deep learning. First, regarding RQ1, the review 

classified and compared three primary architecture families: CNN-LSTM models, Transformer-based 

models, and hybrid approaches. Transformer-based models, particularly those incorporating cross-

modal alignment and large-scale pretraining, have emerged as the dominant paradigm due to their 

superior semantic understanding and flexibility. In response to RQ2, the study identified key datasets, 

such as IU X-Ray, MIMIC-CXR, ROCOv2, and CLEF 2023, as the most widely used benchmarks, 

detailing their imaging modalities, annotation formats, and scale diversity. Addressing RQ3, 

performance metrics including BLEU, ROUGE, CIDEr, METEOR, and BERTScore were 

systematically compiled and compared, revealing that Transformer-based models consistently 



H. Fadhilah and N.P Utama   Jurnal Masyarakat Informatika, 16(1), 2025 

 

49 
 
 

outperform CNN-LSTM baselines in generating clinically coherent and linguistically fluent reports. 

For RQ4, this review synthesized major challenges such as the lack of factual grounding, domain shift 

issues, limited explainability, and dataset imbalance, which often compromise the clinical reliability 

of generated captions. Lastly, in response to RQ5, the review proposed future directions emphasizing 

explainable and knowledge-grounded captioning, few-shot and cross-institutional learning, and the 

integration of structured clinical knowledge into generative pipelines. 

Overall, this review contributes an updated synthesis of the state-of-the-art, a taxonomy of model 

architectures, a comparative performance framework, and a detailed analysis of clinical challenges and 

future needs. These insights are expected to inform and guide future research toward safer, more 

accurate, and clinically relevant applications of image captioning in medical AI. 
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