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Abstract

Short-Term Load Forecasting (STLF) was a critical task in power system operations, enabling
efficient energy management and planning. This study presented a comparative analysis of five
machine learning models namely XGBoost, Random Forest, Multi-Layer Perceptron (MLP), Support
Vector Regression (SVR), and LightGBM using real-world electricity demand data collected over a
four-month period. Two modeling approaches were explored: one using only time-based features
(hour, day of the week, month), and another incorporating historical lag features (lag 1, lag 2,
lag 3) to capture temporal patterns. The results showed that MLP with lag features achieved the
best performance (RMSE: 57.63, MAE: 34.54, MAPE: 0.22), highlighting its ability to model
nonlinear and sequential dependencies. In contrast, SVR and LightGBM experienced performance
degradation when lag features were added, suggesting sensitivity to feature dimensionality and data
volume. These findings emphasized the importance of model-feature alignment and temporal context
in improving forecasting accuracy. Future work could explore the integration of external variables
such as weather and holidays, as well as the application of advanced deep learning architectures
like LSTM or hybrid models to further enhance robustness and generalizability.

Keywords : Short-Term Load Forecasting, Machine Learning Models, Lag Features, Electricity Demand
Prediction, Model Evaluation

1 Introduction

The increasing demand for electricity, driven by population growth, urbanization, and the
expansion of smart technologies, has made accurate short-term load forecasting (STLF) a vital
component in modern power systems. STLF enables utility providers to optimize energy distribution,
reduce operational costs, and maintain grid stability [1], [2]. Traditional statistical methods such as
ARIMA and exponential smoothing have been widely used for load prediction, but they often
struggle to capture the nonlinear and dynamic nature of electricity consumption patterns [3].

In contrast, machine learning (ML) techniques have gained prominence due to their ability to
model complex relationships and adapt to changing data trends [4], [5]. These models offer improved
forecasting accuracy and flexibility, making them suitable for real-time energy management
applications [6]. Various ML models have been applied to STLF, including tree-based methods like
Random Forest and XGBoost, neural networks such as Multi-Layer Perceptron (MLP), and kernel-
based approaches like Support Vector Regression (SVR) [7], [8]. Deep learning models, such as
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Long Short-Term Memory (LSTM) and Time-Augmented Recurrent Neural Networks (TARNN),
have also demonstrated strong performance in capturing temporal dependencies [1], [3], [4].

However, the effectiveness of these models is highly dependent on the quality and structure of
input features. Feature engineering, particularly the inclusion of time-based (e.g., hour, day, month)
and historical (lag) features, plays a crucial role in enhancing model performance [9], [10]. Several
studies have shown that lag features significantly improve forecasting accuracy by capturing
temporal trends and autocorrelation in electricity demand [9], [10]. Despite these advancements,
many existing studies focus on a single model or a narrow comparison between models, often under
inconsistent data or feature configurations [10].

This study addresses these gaps by conducting a comprehensive comparative analysis of five
machine learning models (XGBoost, Random Forest, MLP, SVR, and LightGBM) using real-world
electricity demand data. Two feature configurations are evaluated: one using only time-based
features and another incorporating lag features. The models are assessed using standard performance
metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE). This dual-configuration approach provides deeper insights into how
different models respond to feature variations and which combinations yield the most accurate
forecasts. By systematically evaluating the impact of lag features across multiple ML models, this
research aims to identify the most effective model-feature combination and offer practical guidance
for future forecasting system development.

2 Literature Review
Short-Term Load Forecasting (STLF) has long been a critical area of research in power system

operations, driven by the need for efficient energy management, cost reduction, and grid stability.
Traditional statistical methods such as ARIMA and exponential smoothing have been widely used in
early forecasting models. However, these methods often fall short in capturing the nonlinear and
dynamic nature of electricity consumption patterns, especially in modern, data-rich environments [3].

In recent years, machine learning (ML) techniques have gained prominence due to their ability
to model complex relationships and adapt to evolving data trends. Studies have demonstrated the
effectiveness of various ML models, including tree-based methods like Random Forest and
XGBoost, neural networks such as Multi-Layer Perceptron (MLP), and kernel-based approaches like
Support Vector Regression (SVR) [4], [5], [7], [8]. These models offer improved accuracy and
flexibility, making them suitable for real-time applications in energy forecasting.

Moreover, deep learning models such as Long Short-Term Memory (LSTM) and Time-
Augmented Recurrent Neural Networks (TARNN) have shown strong performance in capturing
temporal dependencies in load data [1], [3], [4]. These models are particularly effective in scenarios
where sequential patterns and long-term dependencies play a significant role. A key factor
influencing the performance of ML models in STLF is feature engineering. The inclusion of time-
based features (e.g., hour, day of the week, month) and historical lag features (e.g., lag 1, lag 2,
lag 3) has been shown to significantly enhance forecasting accuracy [9], [10]. Lag features, in
particular, help models capture short-term trends and autocorrelation in electricity demand, which are
crucial for accurate predictions. Despite these advancements, many existing studies focus on a single
model or a limited comparison under varying data conditions, leading to inconsistent conclusions.
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There is a growing need for comprehensive comparative analyses that evaluate multiple models
under standardized conditions to identify the most effective approaches for STLF.

This study addresses this gap by comparing five widely used ML models (XGBoost, Random
Forest, MLP, SVR, and LightGBM) under two feature configurations that are using only time-based
features and another incorporating lag features. This dual-configuration approach provides deeper
insights into the role of temporal context in improving forecasting performance and offers practical
guidance for future model development.

Recent studies demonstrated the effectiveness of each of the five machine learning models
evaluated in this study. XGBoost was widely used in STLF due to its high accuracy and
computational efficiency. For example, [11] implemented a hybrid model combining XGBoost with
LSTM for electricity demand forecasting and reported superior performance compared to standalone
models. [12] compared XGBoost with Random Forest and linear regression for forecasting Turkey’s
electricity consumption and found XGBoost to be the most accurate. Random Forest was also
extensively applied in STLF. [13] conducted a comprehensive study on Random Forest for STLF
and found that it consistently outperformed both statistical and other ML models across multiple
datasets. Additional studies showed that Random Forest performed well in hybrid configurations and
remained robust to overfitting. MLP (Multi-Layer Perceptron) showed strong performance in various
forecasting tasks. A 2025 study by Liu et al. [14] proposed a deep learning framework for STLF
using attention mechanisms and demonstrated that MLP-based models achieved competitive
accuracy on real-world smart grid datasets. Another study by [15] applied MLP in forecasting power
consumption in Al data centers and confirmed its ability to model nonlinear and dynamic load
patterns. SVR (Support Vector Regression) continued to be used in STLF research, particularly for
its robustness in small datasets and its ability to handle nonlinear regression problems. [16] proposed
an SVR model optimized with a whale optimization algorithm and demonstrated improved accuracy
compared to other models. [17] also explored the influence of data normalization on SVR
performance in STLF and highlighted its sensitivity to preprocessing techniques. LightGBM,
although relatively newer, gained popularity for its speed and scalability. [18] integrated LightGBM
into a hybrid forecasting framework and achieved high accuracy in multi-frequency sequence
prediction. [19] investigated the influence of hyperparameters on LightGBM performance in load
forecasting and emphasized the importance of tuning for optimal results. [20] applied optimized
LightGBM in a transfer learning-based hybrid model for smart grid forecasting and reported
competitive results. These studies supported the claim that the five models selected in this research
were among the most widely used and relevant for short-term load forecasting.

In addition to model selection, the accuracy of predictions in STLF is significantly influenced
by the quality and resolution of the input data. High-resolution data, such as hourly or 15-minute
intervals that enables models to capture finer fluctuations and short-term seasonal patterns in
electricity demand. However, such data also requires greater computational resources and more
sophisticated preprocessing techniques to mitigate issues like overfitting and noise [6].

Several studies also emphasize the importance of comprehensive model evaluation using
multiple performance metrics, including Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and Mean Absolute Percentage Error (MAPE). Relying on a single metric often fails to
provide a complete picture of model performance, especially when data distributions are uneven or
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contain outliers. As a result, multi-metric evaluation has become a standard practice in STLF
research to ensure a more reliable assessment of forecasting models [1], [2], [4], [5].

Finally, recent trends in STLF research show a growing interest in hybrid and ensemble
models, which combine the strengths of multiple algorithms to enhance prediction accuracy and
robustness. For instance, integrating LSTM with XGBoost or combining statistical models with
machine learning techniques has proven effective in overcoming the limitations of individual
methods. These approaches open new possibilities for developing adaptive and resilient forecasting
systems that can better respond to evolving electricity consumption patterns [1], [3], [4].

3 Research Methods

This study employs a systematic methodology to evaluate the effectiveness of various machine
learning models in short-term load forecasting. The process includes data collection, preprocessing,
model training, evaluation, and comparison of results using two feature configurations: Non-STLF
and STLF. Each model is assessed using RMSE and MAE metrics to ensure a fair and consistent
performance comparison. Research Method Flowchart can be seen in Figure 1.

3.1 Data Collection

The dataset comprises 40 entries with four key columns: Delivery Date, From GMT, To GMT,
and DFS Required MW. Data was collected from [https://www.neso.energy/data-portal/demand-
flexibility-service-test-events]. The data collection process in this study utilized real-world electricity
demand data. This dataset was recorded at 30-minute intervals, allowing for a detailed analysis of
short-term consumption patterns. The data spans from November 15, 2022, to March 28, 2023,
covering various daily and seasonal conditions. This time range ensures a representative sample for
developing and evaluating forecasting models. The quality and granularity of the data are crucial, as
they form the foundation for accurate and reliable model training.

The collected data reflects fluctuations in electricity usage influenced by temporal factors such
as hour of the day, day of the week, and month. It also supports the creation of lag features, which
are essential for short-term load forecasting models. Before being used in modeling, the data was
chronologically sorted and the date and time were combined into a single datetime format. This
preprocessing step ensures that the temporal sequence is preserved, which is vital for time series
analysis. With high-resolution and well-structured data, the forecasting models can learn patterns
more effectively and deliver better performance.

3.2 Data Preprocessing

The data preprocessing stage began with merging the separate date and time columns into a
unified datetime format. This step was crucial for enabling time-based analysis and ensuring that the
temporal sequence of the data was preserved. By converting the data into datetime format, it became
easier to extract relevant time features such as hour, day of the week, and month. This transformation
also facilitated chronological sorting, which is essential for time series forecasting. Ensuring the
correct order of data points helps maintain the integrity of the temporal relationships within the
dataset.
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After formatting the datetime values, the dataset was sorted in ascending chronological order.
This sorting ensured that the training and testing datasets reflected the natural flow of time, which is
vital for accurate forecasting. Any inconsistencies or missing values were addressed during this
phase to maintain data quality. The cleaned and ordered dataset was then ready for feature
engineering. This step laid the groundwork for building two different feature configurations for
model training.

The first configuration, known as Non-STLF, included only time-based features: hour, day of
the week, and month. These features capture regular patterns in electricity demand related to human
activity and seasonal trends. The second configuration, STLF, extended the feature set by adding lag
variables: lag 1, lag 2, and lag 3. These lag features represent previous electricity demand values
and are critical for capturing short-term dependencies. By preparing both configurations, the study
aimed to compare the effectiveness of time-based features alone versus a combination of time and
historical load features.

3.3 Model Training

The model training phase involved building predictive models using two different feature
configurations: Non-STLF and STLF. In the Non-STLF setup, only time-based features such as hour,
day of the week, and month were used. Five machine learning algorithms were employed: XGBoost,
Random Forest, Multi-Layer Perceptron (MLP), Support Vector Regression (SVR), and LightGBM.
These models were selected for their proven effectiveness in time series and regression tasks. Each
model was trained to learn patterns in electricity demand based solely on temporal characteristics.

For the STLF configuration, the same five models were used, but with the addition of lag
features. These lag features (lag 1, lag 2, and lag_3) represent previous electricity demand values
and help the models capture short-term dependencies. Including these historical values allows the
models to better understand recent trends and fluctuations in demand. This configuration is
particularly useful for improving the accuracy of short-term load forecasting. By comparing both
configurations, the study aimed to assess the impact of lag features on model performance.

To ensure fair evaluation, the dataset was split into training and testing sets using an 80/20
ratio. The training set was used to fit the models, while the testing set was reserved for evaluating
their predictive accuracy. This split helps simulate real-world forecasting scenarios where future data
is unknown during training. Consistent data partitioning across all models ensured comparability of
results. The training process was carefully monitored to avoid overfitting and to ensure
generalizability of the models.

To ensure reproducibility and support future research, the parameter settings used for each
machine learning model are detailed as follows. For XGBoost, the model was configured with a
learning rate of 0.1, a maximum tree depth of 6, and 100 estimators. Random Forest was
implemented with 100 trees and default settings for maximum depth and feature selection. The MLP
model used a single hidden layer with 100 neurons, the ReLLU activation function, and was trained
using the Adam optimizer for a maximum of 500 iterations. SVR was configured with a radial basis
function (RBF) kernel, a regularization parameter (C) of 1.0, and epsilon set to 0.1. LightGBM was
trained using 100 boosting rounds, with a learning rate of 0.1 and a maximum depth of -1 (no limit),
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allowing the model to determine the optimal tree structure. These parameters were selected based on
commonly used defaults and preliminary tuning to balance performance and training time.

3.4 Model Evaluation

The evaluation of the forecasting models was conducted using two widely accepted
performance metrics: Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). RMSE
measures the square root of the average squared differences between predicted and actual values,
emphasizing larger errors. MAE, on the other hand, calculates the average of the absolute
differences, providing a more balanced view of overall prediction accuracy. These metrics were
chosen for their ability to quantify both the magnitude and consistency of prediction errors. By using
both, the study ensured a comprehensive assessment of model performance.

Each model was evaluated under two configurations: Non-STLF and STLF. The Non-STLF
configuration relied solely on time-based features, while the STLF configuration included additional
lag features. This dual evaluation allowed for a direct comparison of how historical load data
influenced forecasting accuracy. The same evaluation metrics were applied consistently across all
models and configurations. This approach ensured that performance differences could be attributed
to feature configurations rather than inconsistencies in evaluation.

The evaluation process involved applying the trained models to the testing dataset and
comparing their predictions to actual electricity demand values. RMSE and MAE were calculated for
each model to determine how well they generalized to unseen data. Lower values of RMSE and
MAE indicated better model performance. The results were then tabulated and visualized to highlight
differences between models and configurations. This step was crucial for identifying which models
performed best under each feature setup.

Through this evaluation, the study aimed to determine whether the inclusion of lag features
significantly improved forecasting accuracy. The comparison revealed how each model responded to
the added complexity of short-term dependencies. In some cases, models showed marked
improvement with lag features, while others performed similarly across both configurations. These
insights helped in selecting the most effective model-feature combination for short-term load
forecasting. Ultimately, the evaluation guided the final recommendation for practical
implementation.

3.5 Comparison of Results

The comparison of results focused on evaluating the performance differences between the
Non-STLF and STLF configurations across all five machine learning models. Each model was
assessed using RMSE and MAE to determine how accurately it predicted electricity demand. The
inclusion of lag features in the STLF configuration generally led to improved performance,
especially for models that benefit from sequential data. For instance, models like XGBoost and
LightGBM showed noticeable reductions in error metrics when lag features were included. This
suggests that incorporating historical demand values enhances the model’s ability to capture short-
term fluctuations. The comparison provided a clear view of how each model responded to different
feature sets.
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In the Non-STLF configuration, models relied solely on time-based features such as hour, day
of the week, and month. While these features captured regular patterns, they lacked the ability to
reflect recent changes in demand. As a result, some models underperformed when compared to their
STLF counterparts. The SVR and MLP models, in particular, showed limited improvement without
lag features. This highlighted the importance of including recent historical data for more dynamic
forecasting. The comparison emphasized that time-based features alone may not be sufficient for
high-accuracy short-term predictions.

The STLF configuration, which included lag 1, lag 2, and lag 3, significantly enhanced the
predictive power of most models. These lag features allowed the models to learn from recent demand
trends, which is crucial in short-term forecasting scenarios. XGBoost and LightGBM consistently
outperformed other models in this configuration, achieving the lowest RMSE and MAE values.
Random Forest also showed strong performance, although slightly less accurate than the gradient
boosting models. The MLP model benefited from lag features but remained sensitive to data scaling
and training parameters. Overall, the STLF configuration proved to be more effective in capturing
the temporal dynamics of electricity demand.

The comparison also revealed that not all models responded equally to the inclusion of lag
features. While some models showed substantial improvement, others exhibited only marginal gains.
This variation underscores the importance of model selection in forecasting tasks. It also suggests
that the effectiveness of lag features may depend on the model’s architecture and its ability to handle
sequential data. For example, tree-based models like XGBoost and LightGBM naturally handle
feature interactions, making them more adaptable to lag-based inputs. These insights are valuable for
guiding future model development and feature engineering strategies.

Data Collection

l

(Data Preprocessing]

N

(Model Training (Non-STLF)] (Model Training (STLF))

\/

(Model Evaluation]

l

(Comparison of Results)

Figure 1 Research Framework
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Based on the evaluation results, the best-performing model-feature combination was identified
as XGBoost with the STLF configuration. This combination consistently delivered the lowest error
rates and demonstrated strong generalization on the test data. LightGBM with STLF was a close
second, offering a good balance between accuracy and computational efficiency. These findings
support the use of gradient boosting models with lag features for short-term load forecasting. The
comparison not only highlighted the strengths of specific models but also validated the importance of
incorporating historical demand data. Ultimately, this analysis provided a clear direction for selecting
optimal forecasting strategies in practical applications.

4 Results and Discussion

In this section, the results of the experiments conducted and various analyses related to the
obtained experimental results are presented. The comparison of machine learning models without lag
features revealed that LightGBM achieved the best performance, with the lowest RMSE and MAE
values. This indicates that LightGBM is highly effective in handling time-based features even
without historical context. XGBoost and Random Forest also performed relatively well, although
their error rates were slightly higher. On the other hand, MLP and SVR showed weaker performance,
suggesting that these models may require more complex feature inputs to perform optimally. The
results highlight the importance of model selection when working with limited feature sets. Time-
based features such as hour, day of the week, and month can capture general patterns, but may not be
sufficient for models that rely on sequential learning. Overall, LightGBM demonstrated strong
generalization capabilities in this configuration.

Table 1 Model Comparison Results without Lag

Evaluation Matrix

Model RMSE MAE MAPE
XGBoost 96.63 57.28 0.38
Random Forest 81.14 67.16 0.42
MLP 101.41 84.26 0.49
SVR 105.44 99.51 0.56
LightGBM 78.92 56.87 0.37

After incorporating lag features (lag 1, lag 2, lag 3), the performance of most models
improved significantly. MLP emerged as the top-performing model in this configuration, achieving
the lowest RMSE and MAE values among all models tested. This suggests that MLP benefits greatly
from sequential data, which enhances its ability to learn temporal dependencies. Random Forest and
XGBoost also showed improved accuracy, indicating that tree-based models can effectively utilize
historical load information. Interestingly, LightGBM and SVR experienced a decline in performance,
possibly due to their sensitivity to data volume and feature structure. These results emphasize that
while lag features generally enhance forecasting accuracy, their impact varies depending on the
model architecture. The inclusion of temporal context is particularly beneficial for models that can
capture nonlinear and sequential patterns.

98



E. Vianita and H. Tantyoko Jurnal Masyarakat Informatika, 16(1), 2025

Table 2 Model Comparison Results with Lag Features

Evaluation Matrix

Model RMSE MAE MAPE
XGBoost 63.73 42.03 0.27
Random Forest 62.59 46.13 0.29
MLP 57.63 34.54 0.22
SVR 105.70 102.44 0.57
LightGBM 97.50 94.07 0.52

The comparison between Table 1 (without lag features) and Table 2 (with lag features) showed
that incorporating lag features generally improved forecasting performance for models such as
XGBoost, Random Forest, and MLP. This improvement was attributed to these models’ ability to
capture sequential patterns and nonlinear relationships in the data. XGBoost and Random Forest, as
tree-based ensemble models, were particularly effective at handling complex feature interactions.
The inclusion of lag features provided additional temporal context, allowing these models to better
recognize short-term fluctuations and recurring demand patterns. MLP (Multi-Layer Perceptron), a
type of feedforward neural network, benefited significantly from the added historical information.
Since MLPs relied heavily on informative input features to learn patterns, the lag variables helped
the model understand recent trends in electricity demand, which were not captured by time-based
features alone. In contrast, the performance of SVR (Support Vector Regression) and LightGBM
declined when lag features were introduced. SVR was sensitive to the dimensionality and scaling of
input features. The addition of lag variables increased the feature space, which may have led to
overfitting or difficulty in finding the optimal hyperplane, especially when the dataset was relatively
small. LightGBM, although also a tree-based model, used aggressive histogram-based feature
binning and leaf-wise growth strategies. If the added lag features were highly correlated or not
sufficiently informative, LightGBM could struggle to find meaningful splits. In this study, training
logs indicated that LightGBM failed to identify valid splits, suggesting that the structure and volume
of the data were not optimal for this model under the STLF configuration. This analysis highlighted
that while lag features were generally beneficial, their effectiveness depended on the model
architecture and the nature of the dataset. Careful feature selection and model tuning were essential
to fully leverage the advantages of temporal information in short-term load forecasting.

The contrasting results between the Non-STLF and STLF configurations underscore the critical
role of feature engineering in short-term load forecasting. Models that performed moderately with
time-based features alone showed substantial improvement when lag features were added. This
demonstrates that recent historical data provides valuable context for predicting near-future
electricity demand. However, not all models responded equally to the addition of lag features,
highlighting the need for careful model-feature alignment. For instance, MLP's performance leap
suggests its architecture is well-suited for learning from sequential patterns. In contrast, LightGBM's
performance drop may indicate overfitting or difficulty in handling the increased feature complexity
with limited data. These findings suggest that model performance is not only dependent on the
algorithm but also on how well the input features align with the model's strengths.
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Based on the overall evaluation, the most effective model-feature combination was MLP with
the STLF configuration. This setup consistently delivered the most accurate predictions, making it a
strong candidate for practical implementation in short-term load forecasting systems. XGBoost and
Random Forest also showed reliable performance, offering a balance between accuracy and
interpretability. The results validate the hypothesis that incorporating lag features enhances model
performance by capturing short-term trends. Moreover, the study highlights the importance of testing
multiple models and configurations to identify the optimal forecasting strategy. Future research
could explore the integration of external variables such as weather and holidays to further improve
accuracy. Additionally, testing advanced models like LSTM or hybrid architectures may yield even
better results in dynamic environments. These insights provide a solid foundation for developing
robust and adaptive forecasting systems.

1.5+
— Actual values

——- Predicted Values
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0.5 1
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Electricity Demand
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Figure 2 The Actual vs Predicted Values (MLP with STLF)

Figure 2 illustrates the comparison between actual values and the predicted results from the
MLP model using the STLF configuration. It is evident that the model successfully follows the
fluctuations in electricity demand throughout the testing period. Peaks and troughs in the predicted
curve closely align with those in the actual data, indicating the model’s ability to capture short-term
seasonal dynamics. Although minor deviations are present, the overall trend remains consistent
between the two curves. This consistency suggests that the model generalizes well to unseen data.
Overall, this visualization reinforces the claim that the MLP with STLF is the most accurate model in
this study.

The histogram of prediction errors in Figure 3 shown the difference between actual and
predicted values from the MLP-STLF model. The error distribution appears symmetric and centered
around zero, indicating that the model does not exhibit systematic bias. In other words, the model
does not consistently overestimate or underestimate the electricity load. Most errors fall within a
narrow range, suggesting that the model’s predictions are stable. The small spread of errors also
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reflects the model’s high precision in forecasting. Therefore, this distribution provides additional
evidence that the MLP with STLF is not only accurate but also reliable.

12 4

,_.
o
L

Frequency

2 ‘--
—0.6 —-0.4 -0.2 0. 0.2
Prediction Error

Figure 3 Distribution of Prediction Errors (MLP with STLF)
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In this study, the Multi-Layer Perceptron (MLP) with the STLF design, which had both time-
based and lag features, did the best. The feature set and the way the model's parameters were set up
both played a role in MLP's better performance in this situation. In this test, the MLP was set up with
a single hidden layer that had 100 neurons and was trained for a total of 500 times. This pretty basic
design was enough to show how the input features and the goal variable were not linearly related,
especially when lag features were added. The lag features (lag 1, lag 2, lag 3) gave the model
recent past background, which is very important for learning how energy demand changes over short
periods of time. The model was able to find a good mix between its ability to learn and its ability to
generalize because it used 100 neurons. It's possible that a smaller number of neurons would have
made it harder for the model to learn complex patterns, while a much larger number could have
caused it to overfit, which would not have been good since the dataset was so small. The 500
iteration limit made sure that the model had enough chances to converge, but a convergence signal
was seen, which meant that more tuning (for example, changing the learning rate or stopping early)
might make performance better. The MLP may have also done well with lag features because they
tend to have similar scales to the goal variable. This is because it is sensitive to feature scaling. It's
likely that this alignment helped the model learn better than setups that only used categorical time-
based features. Overall, the parameter choices for MLP and the addition of lag features made it the
best model for detecting short-term trends and making correct predictions out of all the ones that
were tried.

5 Conclusion

This study conducted a comprehensive comparison of five machine learning models namely
XGBoost, Random Forest, MLP, SVR, and LightGBM for short-term load forecasting (STLF) using
two feature configurations: time-based features only (Non-STLF) and time-based plus lag features
(STLF). The results demonstrated that incorporating lag features significantly improved model

101



E. Vianita and H. Tantyoko Jurnal Masyarakat Informatika, 16(1), 2025

performance, particularly for models capable of capturing sequential patterns such as MLP,
XGBoost, and Random Forest. Among all models, MLP with the STLF configuration achieved the
best performance (RMSE: 57.63, MAE: 34.54, MAPE: 0.22), benefiting from its ability to learn
nonlinear relationships and temporal dependencies. In contrast, SVR and LightGBM showed reduced
performance with lag features, likely due to sensitivity to feature dimensionality and data structure.
These findings highlighted the importance of selecting appropriate model-feature combinations and
tuning model parameters to match the characteristics of the dataset. Future research could consider
incorporating external variables such as weather, holidays, and socio-economic indicators, as well as
exploring advanced architectures like LSTM, GRU, or hybrid models (e.g., CNN-LSTM) to improve
adaptability and accuracy in dynamic load environments.
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