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Abstract 

This study proposes an optimized VGG16 architecture enhanced through Bayesian Optimization to 

improve the classification of tomato leaf diseases. The modified model integrates tunable parameters 

such as dropout rates, convolutional filters, and dense units, while maintaining the foundational 

structure of VGG16. To further refine performance, Bayesian Optimization is employed to search for 

the most effective combination of hyperparameters. Experiments conducted using the Tomato Leaf 

Disease Detection dataset demonstrate that the proposed method outperforms the original VGG16 

model, achieving a test accuracy of 97.1% compared to 89.0%. These results underline the importance 

of architecture customization and systematic hyperparameter tuning for domain-specific deep learning 

tasks in agriculture. 

Keywords : Tomato leaf disease, VGG16, Bayesian Optimization, Deep learning, Image classification, 

Hyperparameter tuning 

1   Introduction 

Tomato (Solanum lycopersicum) is among the most significant horticultural crops grown 

worldwide because of its nutritional benefits and high economic value. However, tomato plants are 

susceptible to various foliar diseases caused by pathogens such as fungi, bacteria, viruses, and pests. 

These diseases severely affect yield and fruit quality, highlighting the necessity for early and accurate 

disease detection to ensure sustainable agricultural production. 

Traditional methods of disease detection rely on manual inspection by agricultural experts, 

which are labor-intensive, time-consuming, and often subject to human error and inconsistencies. 

Recent advancements in artificial intelligence (AI), particularly in deep learning, have made the 

automation of plant disease detection through image classification increasingly feasible. Convolutional 

Neural Networks (CNNs) have shown state-of-the-art performance in various visual classification 

tasks, including identifying crop diseases. Among the different CNN architectures, VGG16 [1] is 

widely recognized for its uniform 3×3 convolution kernels and its deep architecture. Its effectiveness 

in general image classification has also resulted in strong performance in agricultural applications, 

particularly in plant disease diagnosis. However, the original VGG16 architecture contains 

approximately 138 million parameters, making it vulnerable to overfitting and unsuitable for 

lightweight or resource-constrained applications, such as those used in the field or on mobile devices 

[2]. 

Several studies have attempted to address these challenges by optimizing the VGG16 

architecture. This includes architectural modifications such as the integration of Inception modules 

[3], attention mechanisms [4], and the use of Global Average Pooling [5]. These enhancements not 
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only reduce the number of trainable parameters but also improve feature extraction and classification 

performance. Equally important is the selection of optimal hyperparameters, which significantly 

influences model training dynamics and final performance. Traditional methods such as grid search 

and manual tuning are computationally inefficient. Bayesian Optimization offers a promising 

alternative by modeling the objective function probabilistically and using acquisition functions to 

efficiently explore the hyperparameter space [6]. Recent studies by Khan et al. [7] and Khan et al. [4] 

demonstrate that applying Bayesian Optimization to CNN architectures can lead to significant gains 

in classification accuracy while reducing training time and mitigating overfitting. 

The rest of this paper is organized as follows. Section 2 reviews related work in plant disease 

classification, use of VGG16, and hyperparameter optimization. Section 3 describes the proposed 

methodology, including dataset preprocessing, architectural changes, and optimization strategy. 

Section 4 presents the results and analysis. Finally, Section 5 concludes the paper and outlines 

directions for future research. 

2   Literature Review  

Recent years have seen a surge in the application of deep learning techniques for agricultural 

diagnostics, particularly in plant disease identification. One of the foundational works by Mohanty et 

al. [8] employed AlexNet and GoogLeNet to classify 26 diseases across 14 crop species using the 

PlantVillage dataset, achieving over 99% accuracy. Ferentinos [9] further advanced this approach by 

applying multiple CNN architectures to various plant species, reinforcing the robustness of CNNs in 

agricultural image classification.  

Too et al. [10] compared multiple architectures, including VGG16, Inception V4, and 

DenseNet121, and found DenseNet121 to outperform the others in both accuracy and computation 

time. Atila et al. [11] demonstrated the capabilities of EfficientNet-B4 and B5 in this domain, while 

Sutaji and Yıldız [12] proposed a combination of Vision Transformers (ViT) and MobileNetV2 to 

enhance model generalization.VGG16 has remained a popular architecture because of its consistent 

performance in transfer learning tasks. For instance, Chen et al. [13] used a modified VGG16 for maize 

and rice diseases, while Coulibaly et al. [14] applied transfer learning with VGG16 to identify mildew 

on pearl millet.  

To improve performance and reduce complexity, studies have explored hybrid VGG-based 

models. Thomkaew and Intakosum [2](2022) integrated InceptionV3 modules into VGG16, increasing 

classification accuracy to 99.27%. Thakur and Gandhi [5] incorporated InceptionV7 with Global 

Average Pooling into a VGG16 backbone for tomato leaf disease detection. The role of hyperparameter 

optimization has gained prominence. Snoek et al. [6] introduced Bayesian Optimization as a method 

to improve neural network performance through intelligent hyperparameter tuning. Prabha & Chelliah 

[15] validated this approach in maize and corn disease detection using VGG16. Khan et al. [4] 

implemented a Bayesian-optimized multimodal deep hybrid model that achieved superior results in 

tomato disease classification. Likewise, Mustafa and Khan [16] integrated Bayesian Optimization into 

a hybrid CNN-RNN model for tomato leaf disease classification, further confirming the approach’s 

efficacy. 

Metaheuristic optimization algorithms such as Genetic Algorithms and Ant Colony Optimization 

have also been explored in this context. According to Abade et al. [17], these techniques can serve as 

complementary alternatives to Bayesian approaches in certain problem domains. However, very few 
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studies have combined architectural enhancements with hyperparameter optimization within a single 

framework, especially for VGG16. 

Research trends further indicate a growing interest in deploying lightweight CNN models for 

real-time diagnosis via mobile applications [18], integrating spatial attention [3], and using diverse 

datasets to enhance model robustness [19]. Despite this progress, relatively few studies have combined 

both architectural modifications and hyperparameter optimization within a unified VGG16-based 

framework focused on tomato leaf disease classification, an important gap addressed by this study. 

To address this gap, the present research proposes a structurally improved VGG16 architecture 

integrated with Bayesian optimization for hyperparameter tuning, specifically focused on tomato leaf 

disease classification. The key contributions of this study are as follows: 

1. The development of a lightweight VGG16-based model includes architectural enhancements like 

dropout, batch normalization, and reduced convolutional complexity to improve efficiency 

without sacrificing accuracy. 

2. A systematic application of Bayesian optimization to identify optimal hyperparameter settings, 

including learning rate, input image size, dropout rate, and dense layer configuration. 

3. Comprehensive experimental validation utilizing a publicly available tomato leaf disease dataset 

demonstrates the proposed model’s superiority over the baseline VGG16 in terms of both 

accuracy and computational efficiency. 

3   Research Methods 

This section details the systematic approach adopted in optimizing the VGG16 architecture for 

the classification of tomato leaf diseases. The methodology is composed of three primary stages: 

dataset preprocessing, architectural modification of the VGG16 model, and hyperparameter 

optimization using Bayesian techniques. 

3.1 Dataset and Preprocessing 

The dataset used in this study is the Tomato Leaf Disease Detection dataset, which is publicly 

available on the Kaggle platform. It contains around 11,000 RGB images of tomato leaves, classified 

into ten categories: one representing healthy leaves and the other nine corresponding to specific disease 

types, such as bacterial spot, early blight, late blight, leaf mold, septoria leaf spot, spider mites, target 

spot, tomato mosaic virus, and yellow leaf curl virus. 

To ensure balanced representation and enhance the generalization capability of the model, the 

dataset was randomly split into training (80%) and testing (20%) sets. Several preprocessing steps 

were performed as follows: 

a. Resizing: All images were resized to fixed dimensions of 190×190 pixel. 

b. Data Augmentation: Techniques such as horizontal flipping, random zoom, rotation, and 

shifting were applied to artificially expand the training set and mitigate overfitting. 

c. Normalization: Pixel values were scaled to the [0,1] range by dividing all RGB channel values 

by 255. 

d. Label Encoding: Class labels were one-hot encoded to fit the output format of the softmax 

activation in the final layer. 

Data preprocessing pipeline illustration can be seen at Figure 1. 
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Figure 1 Data preprocessing pipeline illustration 

3.2 Modified VGG16 Architecture 

The original VGG16 architecture, while highly effective in generic image classification tasks, 

presents challenges for agricultural scenarios due to its rigid structure and extensive number of 

parameters. To address these limitations, this study proposes a modified version of the VGG16 model, 

designed to enhance learning efficiency and generalization while minimizing overfitting and 

computational overhead. 

Key architectural changes include: 

a. Convolutional Layers: The number of convolutional layers was reduced from 13 in the original 

model to only 6 in the modified version. This simplification reduces computational cost and 

avoids overfitting on domain-specific datasets. 

b. Max Pooling Layers: Unlike the original VGG16 which applied max pooling after stacked 

convolutional blocks, the modified version introduces six max pooling layers, each applied 

after every convolutional layer, to progressively reduce spatial dimensions and computation. 

c. Dropout Layers: Six dropout layers were implemented, each positioned after every max 

pooling layer to mitigate co-adaptation of neurons and enhance generalization. These were not 

present in the original architecture. 

d. Batch Normalization: Six batch normalization layers were added directly after each dropout 

layer. These layers stabilize and accelerate the training process by normalizing the intermediate 

activations, enabling better convergence. 

e. Dense Layers: The fully connected layers were retained as in the original architecture (three 

layers in total, including the softmax output), ensuring compatibility with the classification task 

of 10 tomato disease classes. 

f. Kernel and Activation Settings: Across all convolutional layers, 3×3 kernels and stride size of 

1 were maintained. ReLU was used as the activation function for all convolutional and dense 

layers, consistent with the original configuration. Zero-padding was not applied, leading to 

progressive reduction of image dimensions. 

g. Input Size: The image input size was not fixed to 224×224 as in the original, but made tunable 

and optimized using Bayesian Optimization. This flexibility allows the model to adapt better 

to the specific characteristics of the tomato leaf dataset. 

h. Output Layer: Both the original and modified models use a softmax activation function in the 

final dense layer to classify into 10 disease categories. The reference to 1000-unit output in 

some illustrations pertains to a generalized VGG16 version trained on ImageNet and not 

relevant to the target task in this study. 
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Figure 1 Ilustration of VGG16 Architecture (a) original (b) modified 

Figure 1 illustrates the differences in architecture between the original VGG16 model and the 

modified VGG16 model. This modified architecture was developed alongside a Bayesian Optimization 

strategy that systematically searched for the optimal hyperparameter configuration, including the 

number of filters, dropout rates, and dense layer widths using Keras Tuner. The optimized parameter 

set was then used to train the modified model and benchmark its performance against the original 

VGG16. 

3.3 Bayesian Optimization for Hyperparameter Tuning 

Hyperparameter tuning plays a critical role in determining the performance and generalization 

ability of deep learning models. In this study, Bayesian Optimization was employed to systematically 

search for the optimal combination of hyperparameters for the modified VGG16 model during the 

training process. Unlike traditional search strategies such as grid search or random search, Bayesian 

Optimization uses a probabilistic surrogate model to model the objective function and an acquisition 

function to determine the most promising set of hyperparameters to evaluate next. 

The goal of hyperparameter tuning in this research was to minimize validation loss while 

maximizing classification accuracy. The optimized hyperparameters include the learning rate, batch 
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size, dropout rate, and the number of units in the fully connected layers. The search space for each 

hyperparameter was defined as follows:  

a. Learning rate:  1 × 10-5 to 1 × 10-2  (log scale) 

b. Dropout rate: 0.1 to 0.5 

c. Dense layer size: 128 to 1024 units 

d. Batch size: 16 to 64 

Bayesian Optimization constructs a posterior distribution over the objective function and uses it 

to select the most promising hyperparameters to evaluate, based on the Expected Improvement (EI) 

acquisition function. The optimization process can be expressed as: 

𝑥∗ =  arg 𝑚𝑎𝑥𝑥∈𝑋  𝛼(𝑥; 𝐷1:𝑡)  (1) 

Where 𝛼(𝑥; 𝐷1:𝑡) is the acquisition function conditioned on the data 𝐷1:𝑡 =  {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑡 , and x 

represents a point in the hyperparameter space 𝑋. The objective function f(x) models the validation 

performance (e.g., loss) associated with a particular hyperparameter configuration x. 

The process was repeated for 50 trials, after which the best configuration was selected and used 

in the final training of the optimized VGG16 model. Table 1 shows the hyperparameter search space 

and optimal configuration, while the visualization of the most optimal modified VGG16 architecture 

with the best combination of hyperparameter values is shown in Figure 2. All experiments were 

conducted using a workstation equipped with an Intel Core i7-12700K CPU, 32GB RAM, and an 

NVIDIA RTX 3060 GPU with 12GB VRAM, running on Ubuntu 22.04 and TensorFlow 2.12. 

 

Table 1. Hyperparameter Search Space and Optimal Configuration 

Hyperparameter Search Space Optimal Value 

Image Size 190–240 (stride=1) 190 

Conv-1 Filters {16, 32} 16 

Conv-2 Filters {16, 32, 64} 16 

Conv-3 Filters {16, 32, 64, 128} 128 

Conv-4 Filters {16, 32, 64, 128, 256} 256 

Conv-5 Filters {16, 32, 64, 128, 256, 512} 128 

Conv-6 Filters {16, 32, 64, 128, 256, 512, 1024} 128 

Dropout-1 0.0–0.9 (stride=0.01) 0.0 

Dropout-2 0.0–0.9 (stride=0.01) 0.0 

Dropout-3 0.0–0.9 (stride=0.01) 0.0 

Dropout-4 0.0–0.9 (stride=0.01) 0.0 

Dropout-5 0.0–0.9 (stride=0.01) 0.4 

Dropout-6 0.0–0.9 (stride=0.01) 0.0 

Dense-1 Units {16, 32, ..., 1024} 1024 

Dense-2 Units {16, 32, ..., 1024} 512 
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Figure 2 Visualization of the Modified VGG16 Architecture with the Best Combination of Hyperparameter 

Values 

 

4   Results and Discussion 

This section discusses the experimental results of the original and modified VGG16 models for 

tomato leaf disease classification. Performance metrics such as training/validation accuracy and loss, 

test accuracy, and confusion matrix analysis were used to evaluate the models. Additionally, the 

benefits of using Bayesian Optimization for hyperparameter tuning are explained, followed by a 

reflection on future enhancements.  

 

4.1 Evaluation of Model Performance 

The evaluation of model performance was conducted through a series of experiments comparing 

the original and modified versions of the VGG16 architecture. The models were assessed based on 

their training and validation behavior, test accuracy, loss, and class-wise predictions using the 

confusion matrix. The original VGG16 model was implemented without additional regularization or 

architectural tuning. It achieved a high training accuracy of 99.99%. However, this performance was 

not sustained during validation. Its validation accuracy dropped to 93.8%, and the validation loss rose 

sharply to 30.62%, clearly indicating overfitting. The model memorized training samples but failed to 

generalize on unseen data. 

On the other hand, the modified VGG16 model was improved with architectural enhancements 

such as dropout layers, batch normalization, and Bayesian-tuned dense layers. As a result, it achieved 

a more balanced performance in training and validation. It reached a training accuracy of 99.83% and 

a validation accuracy of 98.3%. The validation loss was significantly lower at 4.86%, highlighting a 

greatly improved generalization capability. These enhancements demonstrate the effectiveness of 

using regularization and structural tuning to adapt CNNs for relatively small, domain-specific datasets 

like tomato leaf disease images. A comparison of the training and validation score history between the 

original VGG16 and modified VGG16 models is shown in Figure 3. 
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Figure 3 Train and Validation Score History on VGG16 Model (a) original (b) modified 

 

The benefits were further validated on the test dataset. The original model achieved a test 

accuracy of 89.0% with a loss of 65.83%, while the optimized model attained an impressive accuracy 

of 97.1% and a significantly reduced test loss of 10.66%. This gap underscores the importance of 

systematic optimization in enhancing predictive robustness. A comparison of the test scores between 

the original VGG16 and modified VGG16 models is shown in Figure 4. 

 

 
Figure 4. Comparison of Test Score 

 

To complement this global performance overview, a detailed class-wise analysis was performed 

using the confusion matrix. The following insights were observed: 

- Tomato Bacterial Spot (Class 0) was classified almost perfectly in both models, with nearly 

no confusion, indicating distinct features easily detected by the CNN. 

- Early Blight (Class 1) and Late Blight (Class 2) were frequently confused in the original 

model. The optimized model significantly reduced this overlap, although minor 

misclassifications remained due to their similar visual patterns. 

- Leaf Mold (Class 3) and Septoria Leaf Spot (Class 4) initially posed classification difficulties. 

Post-optimization, the model learned better feature representations, leading to improved 

accuracy and reduced misclassification with Target Spot (Class 6). 
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- Two-Spotted Spider Mites (Class 5) showed major improvement. The model initially 

struggled to recognize pest damage patterns, but after optimization, accuracy increased 

markedly, indicating better sensitivity to subtle texture disruptions. 

- Target Spot (Class 6) was the most challenging class. It was frequently misclassified as 

Septoria or Leaf Mold. The optimized model improved performance but some confusion 

persisted, suggesting that further enhancement may be needed. 

- Yellow Leaf Curl Virus (Class 7) and Tomato Mosaic Virus (Class 8) were classified with 

high accuracy due to their distinctive patterns (e.g., leaf curling, mottling), with the latter 

achieving nearly perfect results. 

- Healthy leaves (Class 9) were occasionally confused with early disease symptoms, but the 

optimized model successfully distinguished them, reducing false positives to a minimum. 

Figure 5 illustrates the side-by-side confusion matrices for both models, while Table 2 provides 

the corresponding label encoding. Overall, these results validate the effectiveness of the architectural 

refinements and Bayesian hyperparameter optimization strategy. They not only improved general 

accuracy but also enhanced the model’s class-wise discrimination, particularly for diseases with 

overlapping visual symptoms. 

 

 
Figure 5. Comparison of Test Confusion Matrix 

 

Table 2. Label Encoding 

Label Class 

0 Tomato Bacterial Spot 

1 Tomato Early Blight 

2 Tomato Late Blight 

3 Tomato Leaf Mold 

4 Tomato Septoria Leaf Spot 

5 Tomato Two-Spotted Spider Mites  

6 Tomato Target Spot 

7 Tomato Yellow Leaf Curl Virus 

8 Tomato Mosaic Virus 

9 Tomato Healthy 
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4.2 Impact of Bayesian Hyperparameter Optimization 

Bayesian Optimization significantly contributed to the final model's performance by effectively 

identifying the best hyperparameter configurations. The optimal setup included an input size of 

190×190 pixels, a dropout rate of 0.3, and fully connected layers with 1024 and 512 units. This 

configuration provided a balance between model capacity and regularization. Compared to manual 

tuning or exhaustive grid search, Bayesian Optimization reduced the number of training iterations 

needed to converge while maintaining high accuracy. Its strategic exploration of the hyperparameter 

space resulted in faster and more effective training, which is especially valuable in deep learning tasks 

with costly evaluations functions. 

 

4.3 Limitations and Future Work 

Despite its success, the model still exhibited occasional confusion between visually similar 

diseases, such as Early Blight and Late Blight. This indicates a need for more discriminative feature 

extraction or attention mechanisms. In future work, integrating attention layers or contextual metadata 

may further enhance classification performance. Additionally, deploying and testing the model in real-

world conditions is essential to validate its robustness beyond controlled datasets. Future research may 

also explore integrating ensemble learning or multi-modal inputs to improve diagnostic accuracy 

further. Furthermore, this study did not explicitly measure computational performance, which may be 

important for real-time or resource-constrained applications. Future work should include a more 

comprehensive computational evaluation to assess deployment feasibility in embedded systems or 

mobile devices. 

 

5   Conclusion 

This research presents a robust and efficient deep learning framework for tomato leaf disease 

classification by optimizing the VGG16 architecture through Bayesian hyperparameter tuning. The 

proposed modifications, including architectural simplification, the integration of dropout and batch 

normalization, and data-driven tuning of hyperparameters, led to significant performance 

improvements over the baseline VGG16 model. By systematically evaluating multiple configurations, 

the modified VGG16 model achieved a test accuracy of 97.1% and reduced test loss to 10.66%, 

outperforming the original model in both accuracy and generalization capability. Utilizing Bayesian 

Optimization enabled the efficient exploration of a complex hyperparameter space, yielding 

configurations that balanced model complexity and predictive power. Additionally, analyzing the 

confusion matrices provided insights into the interpretability and robustness of the model. In 

conclusion, this study validates the synergy of architectural simplification and Bayesian Optimization 

in designing deep learning models for agricultural disease classification. It opens avenues for 

deploying reliable and efficient AI solutions in smart farming systems, contributing meaningfully to 

global efforts in sustainable agriculture and food security. 
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