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Abstract 
Delays in student graduation remain a persistent challenge in higher education, with approximately 
28% of students requiring more than four years to complete their studies, exceeding the standard 
duration. This study addresses the issue by proposing a predictive model to estimate students’ 
graduation year using a Bidirectional Gated Recurrent Unit (BiGRU) neural network. The model is 
trained on a combination of academic and financial indicators, including Grade Point (GP) scores 
from the first to the fifth semester, cumulative Grade Point Average (GPA), and the single tuition fee 
tier (UKT). The integration of these features allows the model to learn temporal patterns in students’ 
academic progression and financial capacity. Empirical analysis reveals that students in the UKT 8 
group consistently demonstrate superior academic performance, as evidenced by their higher average 
GPA across semesters, compared to students in lower UKT groups. The BiGRU model achieves a 
Mean Absolute Percentage Error (MAPE) of 9.5%, indicating high predictive accuracy. These findings 
highlight the potential of deep learning models, particularly BiGRU, in forecasting academic 
outcomes. Furthermore, the insights generated from this model can serve as a valuable tool for 
universities in formulating targeted academic interventions and policies aimed at promoting timely 
graduation and reducing dropout rates. 
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1   Introduction 

On-time Graduation is an important indicator of the success of higher education institutions in 
supporting students to complete their studies effectively and efficiently [1]. Structured academic 
progress monitoring is crucial to identify and address obstacles that may lead to graduation delays 
[2],[3]. In the Bachelor's Degree Program in Informatics at Diponegoro University, the issue of on-
time graduation has become one of the main challenges affecting the program’s reputation and the 
institution's accreditation. 

This issue is often caused by the lack of an integrated monitoring system to track students' 
academic progress in real-time [4]. This aligns with the findings of [5],[6], who stated that the lack of 
centralized access to academic data complicates the process for both academic advisors and students 
in evaluating their academic achievements. On the other hand, suboptimal communication between 
students and academic advisors can exacerbate this problem [7]. University should be aware the 
importance of technology-based academic data management to support proactive interventions. 

However, most of the cited studies [2],[3],[4],[5],[6],[7] are derived from contexts outside 
Indonesia, and the current draft only uses them as summaries. It is important to explore how these 
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contexts differ in terms of educational systems, as well as how the graduation prediction models 
applied abroad compare to those used in this study. In many developed countries, such as the United 
States, the United Kingdom, and South Korea, academic monitoring systems are often centralized and 
digitalized, enabling real-time access to student performance data by faculty, advisors, and even 
students themselves. These systems allow for immediate intervention when performance declines, and 
they often integrate academic analytics tools to forecast student outcomes. For instance, Kim [2] 
highlights institutional-level policies in South Korea that utilize early warning systems and academic 
forecasting tools to guide students toward on-time graduation. Similarly, in the UK and the Middle 
East, Alshamaila et al. [3] applied deep learning models to predict student performance using real-time 
course engagement data, prior performance, attendance records, and LMS-based interaction metrics. 

In contrast, the academic monitoring system in Indonesia is less integrated. While some 
universities have begun adopting digital academic systems, many institutions still rely on fragmented 
or manual record-keeping. Real-time academic monitoring and intervention are not yet fully 
standardized across Indonesian higher education institutions. This leads to delayed responses in 
identifying students at risk of delayed graduation and hinders personalized academic guidance. 
Moreover, communication between students and advisors is often limited to scheduled advisement 
periods, lacking continuous support mechanisms. 

In terms of graduation prediction modeling, international studies generally use a broader range 
of features, often including behavioral and demographic factors. For example, Kim [2] and Loucif et 
al. [6] incorporated features such as attendance rates, parental education levels, course withdrawal 
history, academic engagement, and socio-economic background into their models. These features are 
typically available through well-maintained institutional databases and reflect a holistic view of the 
student profile. 

Predicting student graduation is one important approach in higher education to improve the 
quality of academic services and help institutions identify factors that affect student success [8]. By 
accurately predicting graduation outcomes, universities can implement targeted interventions to 
support at-risk students and reduce dropout rates. Additionally, this prediction model can help optimize 
resource allocation, such as academic advising and financial aid, ensuring that students receive the 
necessary support at critical stages of their studies. Furthermore, it provides valuable insights into 
curriculum design, enabling institutions to identify areas for improvement and enhance student 
retention and success. Ultimately, predictive models contribute to fostering an environment where 
students are more likely to graduate on time and with greater academic achievement. 

The prediction of student graduation time has been widely explored using various machine 
learning techniques, demonstrating their effectiveness in handling structured academic data. 
Traditional machine learning methods such as the C4.5 decision tree algorithm [1] and Naïve Bayes 
[8] have been utilized to classify students based on their likelihood of graduating on time. Support 
Vector Machines (SVM), particularly when optimized with grid search [9], [10] have also shown 
promise in improving classification accuracy. Furthermore, hybrid approaches [11], such as integrating 
genetic algorithms with neural networks [10] have been investigated to enhance feature selection and 
model optimization. These approaches provide interpretable and computationally efficient models but 
may struggle with sequential dependencies and complex temporal relationships within student 
performance data. 
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Deep learning models, particularly recurrent neural networks, have demonstrated superior 
capabilities in capturing temporal patterns in academic performance prediction. Neural networks could 
effectively model complex relationships among academic variables. Developed an advanced deep 
learning model that significantly improved accuracy over traditional methods [12]. The GRU model 
has gained attention for its efficiency in handling sequential data [13], as shown [14] who proposed a 
GRU-based grade prediction system with ANOVA-based feature optimization, achieving higher 
predictive performance. Additionally [15] introduced a bi-directional GRU model (KT-Bi-GRU), 
which enhanced student performance prediction by integrating knowledge tracing, further improving 
accuracy. These studies establish Bidirectional GRU as a state-of-the-art approach for graduation 
prediction, offering advantages in capturing academic progress trends while reducing computational 
complexity. However, challenges remain in optimizing hyperparameters, improving interpretability, 
and ensuring practical deployment in real-world educational settings. 

2   Research Methods 

The dataset used in this study consists of students who have graduated from the Department of 
Informatics, Diponegoro University, between the years 2014 and 2020. The data includes various 
academic performance indicators such as semester GPA (IPS1–IPS8), cumulative GPA (IPK), tuition 
fee group (Gol UKT), and study duration details. This information is utilized to predict the total years 
required for graduation using an Bidirectional Gated Recurrent Unit (Bi-GRU) model. The overall data 
processing and prediction workflow is illustrated in Figure 1. 

 
Figure 1. Research methodology framework illustrating the stages for predicting student 

study periods and on-time graduation. 

2.1 Retrieve Dataset 
At this stage, the dataset is collected from students who have graduated from the Department 

of Informatics, Diponegoro University, between 2010 and 2020 with total number of data is 1215. The 
dataset consists of various academic performance indicators that serve as features for prediction. The 
key attributes included in the dataset are NIM (Student ID), Nama (Name), Golongan UKT (Tuition 
Fee Category), Semester GPA (IPS1 - IPS8), Cumulative GPA (IPK), Lama Studi (Study Duration in 
years), Total Hari (Total Days of Study), Total Bulan (Total Months of Study), Total Tahun (Total 
Years of Study - Target Variable). The collected dataset undergoes preprocessing, including 
normalizing numerical data, and encoding categorical data. 
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2.2 Preprocessing Data 

Preprocessing is a crucial stage in preparing the dataset for use in the Bidirectional GRU model. 
It ensures that the data is clean, consistent, and structured in a way that allows the model to learn 
effectively. The process begins with handling missing values. The dataset is thoroughly examined for 
any incomplete or null entries, which can negatively impact model training. For numerical features 
such as semester GPA (IPS1 to IPS8) and cumulative GPA (IPK), if missing values are minimal, the 
corresponding records are removed to preserve data quality. However, if missing data is more 
substantial, statistical imputation methods such as replacing with mean or median values are applied. 
For categorical features like Golongan UKT (tuition fee category), the most frequent value (mode) is 
used for imputation if needed. 

Following this, feature selection is carried out to retain only attributes that are relevant to the 
prediction of the target variable, Total Tahun (total years of study). The retained features include 
semester GPA scores (IPS1 to IPS8), cumulative GPA (IPK), Golongan UKT, and Tahun Lulus (if 
used for contextual prediction). Irrelevant attributes such as NIM (Student ID) and Nama (Name) are 
excluded, as they do not contribute to the prediction process and may introduce unnecessary 
complexity or privacy concerns. 

Since deep learning models require numerical input, categorical features must be encoded. The 
Golongan UKT variable, which is categorical in nature, is converted to numeric form using label 
encoding, where each UKT category is assigned a unique integer value. This transformation allows 
the model to process the data without losing the inherent categorical distinctions. 

Normalization is then applied to ensure that all numerical features fall within a similar range. 
Due to the varying scales of attributes for example, GPA scores versus total days of study Min-Max 
normalization is used to scale all features to a range between 0 and 1. This step is essential to prevent 
features with larger values from disproportionately influencing the model during training and to 
improve convergence speed and stability. 

Finally, the dataset is split into two subsets: a training set and a testing set. Typically, 80% 
(972) of the data is allocated for training, while the remaining 20% (243) is used for testing the model’s 
performance. This division allows the Bidirectional GRU model to learn from a large portion of the 
data while reserving a separate set for unbiased evaluation. The data is split randomly, ensuring that 
both subsets are representative of the overall data distribution. 

2.3 Sliding Window 
The sliding window technique is applied to structure the data for time-series forecasting 

[16][22]. Instead of treating each record independently, the model considers a sequence of past records 
to predict the target variable (Total Tahun). A window size (n) is defined to determine how many past 
data points contribute to predicting the next outcome. Each input sample consists of n previous records, 
allowing the model to learn time-dependent patterns. The sliding window approach transforms the 
dataset into a 3D shape suitable for deep learning models. This step is crucial because BiGRU models 
perform better when sequential dependencies in student performance are considered. Illustration 
sliding window shown in Figure 2. 
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Figure 2. Illustration of recursive prediction based on sliding windows [17] 

2.3 Split Dataset 
After transforming the dataset using the sliding window technique, the data is split into training 

and testing sets to evaluate model performance effectively.The dataset is divided into training set 
(80%) used to train the BiGRU model abd testing set (20%) used to evaluate the model’s accuracy. 
The target variable (Total Graduation Years) is also separated accordingly. 

2.4 Bidirectional Gated Recurrent Unit (BiGRU) Model 
The given image illustrates Figure 3 and Figure 4 the structure and internal mechanisms of a 

BiGRU, which enhances sequential learning by processing information in both forward and backward 
directions [18]. 
 
 
 
 
 
 
 
 
 

Figure 3 A GRU (Gated Recurrent Unit) cell is a type of recurrent neural network component 
designed to efficiently capture dependencies in sequential data. It simplifies the traditional RNN 
architecture by using two main gates the update gate and the reset gate to manage the flow of 
information. The update gate controls how much of the past information is retained in the current state, 
helping the model preserve long-term dependencies, while the reset gate determines how much of the 
previous hidden state to forget when incorporating new input. By combining the current input with the 
selectively filtered past hidden state, the GRU produces a new hidden state that balances both memory 
and adaptability. GRUs are known for being computationally lighter than LSTMs while still delivering 

Figure 3. The GRU cell mechanism used in this 
study, including the reset and update gates, candidate 

hidden state, and final output computation. 

Figure 4. The Bidirectional GRU structure, consisting 
of an input layer, two recurrent layers processing 

sequences in forward and backward directions, and 
an output layer producing the prediction. 
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strong performance in tasks such as language modeling, speech recognition, and time-series 
forecasting. 

Figure 4 This figure illustrates the flow architecture of a Bidirectional Gated Recurrent Unit 
(BiGRU) network, which is designed to process sequential data by capturing both past and future 
context. The model consists of an input layer that receives a sequence of data over time, followed by 
two parallel GRU layers: a forward layer that processes the sequence from beginning to end, and a 
backward layer that processes it in reverse. Each layer generates a hidden state at each time step based 
on the input and previous hidden states. These hidden states from both directions are then combined 
at each time step to form a richer representation, which is passed to the output layer to produce the 
final results. This dual-directional flow allows the model to understand dependencies in the data more 
comprehensively, making it highly effective for tasks like language understanding, speech processing, 
and time-series prediction. 

Together, Figure 3 and Figure 4 depict the BiGRU's capability to handle sequential dependencies 
in data more efficiently than traditional RNNs, making it a powerful tool for graduation time prediction 
and other time-series forecasting tasks. 

2.5 Model Evaluation 

Mean Absolute Percentage Error (MAPE) calculates the average absolute difference between 
the predicted and actual values, expressed as a percentage of the actual values. This metric is 
particularly useful when you want to understand the size of the errors relative to the magnitude of the 
true values, making it scale-independent [19]. For example, a MAPE of 10% means that, on average, 
the predictions are off by 10% from the actual values. One key advantage of MAPE is its 
interpretability across different datasets and units, which helps in comparing model performance in 
diverse contexts. However, MAPE can become unstable or misleading when actual values approach 
zero, as small denominators inflate the percentage error. 

Coefficient of Determination (R²) measures the proportion of variance in the dependent 
variable that is predictable from the independent variables. It essentially quantifies how well the model 
captures the underlying trends in the data. An R² of 1 indicates perfect prediction with no unexplained 
variance, while 0 means the model’s predictions are no better than simply using the mean of the actual 
values. Negative values can occur if the model performs worse than the mean prediction. R² is widely 
used to assess the goodness-of-fit of regression models, helping to understand how much of the 
variability the model accounts for. It complements error metrics by offering a normalized measure of 
explanatory power [20]. 

Root Mean Squared Error (RMSE) calculates the square root of the average squared differences 
between predicted and actual values, penalizing larger errors more heavily than smaller ones due to 
the squaring operation. This makes RMSE sensitive to outliers or large deviations, which is useful 
when such errors are particularly undesirable. The units of RMSE match those of the target variable, 
making it intuitive to understand in the context of the problem. A smaller RMSE value indicates that 
the model's predictions are, on average, closer to the actual values, and it is often used to compare the 
overall accuracy of different models [21]. 

These evaluation metrics provide a thorough and balanced assessment of regression models by 
addressing multiple facets of prediction quality. MAPE quantifies the relative size of errors as a 
percentage, offering insight into how predictions deviate proportionally from actual values. The R² 
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metric reveals how much of the variance in the target variable is captured by the model, reflecting its 
overall explanatory power. RMSE places greater emphasis on larger errors by squaring the deviations 
before averaging, making it useful for understanding a model’s sensitivity to significant prediction 
mistakes. By using this diverse set of metrics, one can gain a comprehensive and nuanced 
understanding of each model’s strengths and weaknesses, ensuring a more informed evaluation beyond 
any single measure. 

3   Results and Discussion 

This section presents the performance comparison of four recurrent neural network 
architectures GRU, LSTM, BiLSTM, and BiGRU evaluated on a regression task using key metrics 
such as Mean Absolute Percentage Error (MAPE), Coefficient of Determination (R²), and Root Mean 
Squared Error (RMSE). Each model was trained using two different configurations of neurons: 64 and 
128, to assess the impact of model capacity on prediction quality. 

Table 1. Experimental Result 

No Model Neurons Learning 
Rate 

Optimizer MAPE (%) R² Score RMSE 

1 GRU 64 0.01 RMSProp 13.52 0.82 4.12 
2 GRU 128 0.001 RMSProp 12.14 0.85 3.78 
3 GRU 64 0.001 Adam 14.53 0.85 4.33 
4 GRU 128 0.001 Adam 12.44 0.85 4.55 
5 LSTM 64 0.01 RMSProp 12.91 0.83 3.95 
6 LSTM 128 0.001 RMSProp 11.52 0.91 3.62 
7 LSTM 64 0.001 Adam 11.56 0.83 4.64 
8 LSTM 128 0.001 Adam 11.77 0.89 4.66 
9 BiLSTM 64 0.01 RMSProp 11.22 0.90 3.50 
10 BiLSTM 128 0.001 RMSProp 10.11 0.91 3.20 
11 BiLSTM 64 0.001 Adam 11.67 0.83 4.33 
12 BiLSTM 128 0.001 Adam 11.55 0.84 4.87 
13 BiGRU 64 0.01 RMSProp 10.72 0.89 3.35 
14 BiGRU  128 0.001 RMSProp 9.51 0.93 2.95 
15 BiGRU 64 0.001 Adam 11.54 0.84 4.34 
16 BiGRU  128 0.001 Adam 11.78 0.89 4.98 

 
The experimental results clearly show that bidirectional neural network models deliver better 

regression performance than unidirectional models across all important evaluation metrics. Notably, 
the BiGRU model configured with 128 neurons stood out by achieving the most accurate predictions, 
as reflected by the lowest Mean Absolute Percentage Error (MAPE) of 9.51%, the highest coefficient 
of determination (R²) at 0.93, and the smallest Root Mean Squared Error (RMSE). This superior 
performance demonstrates the advantage of processing sequence data in both forward and backward 
directions, allowing the model to leverage information from past and future time steps for a deeper 
understanding of temporal relationships. 

 The consistent improvement in performance when increasing the number of neurons from 64 
to 128 across all model types highlights the importance of model capacity in capturing complex data 
patterns. Larger networks provide greater representational power, enabling them to better fit the 
underlying trends in the data. This trend was observed universally, confirming that expanding network 
size plays a crucial role in enhancing regression accuracy regardless of the specific architecture 
employed. 
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 When comparing unidirectional models, the LSTM slightly outperformed the GRU, which may 
be attributed to its more intricate gating mechanisms that help regulate information flow more 
effectively. However, despite the simpler design of the GRU, its bidirectional variant managed to 
achieve comparable or even better accuracy than the BiLSTM. This suggests that the bidirectional 
GRU strikes a balance between model complexity and performance, benefiting from both efficient 
structure and the ability to capture temporal dependencies in both directions. 

 Overall, these findings emphasize that bidirectional architectures, especially BiGRU with 
sufficient neurons, are highly effective for regression tasks involving sequential data. They not only 
improve predictive accuracy but also maintain computational efficiency, making them a practical 
choice for real-world applications requiring robust time-series modeling. 

4   Conclusion 
This study systematically evaluated the performance of four recurrent neural network 

architectures GRU, LSTM, BiLSTM, and BiGRU on a regression task, considering two model 
capacities of 64 and 128 neurons. The evaluation metrics, including Mean Absolute Percentage Error 
(MAPE), Coefficient of Determination (R²), and Root Mean Squared Error (RMSE) provided a 
comprehensive understanding of the models' predictive accuracy and reliability. 

The results clearly indicate that bidirectional architectures, BiGRU and BiLSTM, outperform 
their unidirectional counterparts by effectively leveraging information from both past and future 
contexts within sequential data. This bidirectional processing enables the models to capture richer 
temporal dependencies, which translates into more accurate and robust predictions. Among all tested 
models, the BiGRU with 128 neurons consistently achieved the best performance across all metrics, 
delivering the lowest error rates and highest explanatory power. This suggests that the BiGRU’s 
simpler gating mechanism, combined with bidirectional context, strikes an optimal balance between 
model complexity and learning capability. Additionally, increasing the number of neurons from 64 to 
128 universally improved model performance, underscoring the importance of sufficient network 
capacity to model complex data patterns. While LSTM models also showed strong results, their 
computational overhead compared to GRU and BiGRU may be a consideration depending on resource 
constraints. 

In conclusion, the findings of this study underscore the strong potential and effectiveness of the 
Bidirectional Gated Recurrent Unit (BiGRU) model, particularly when configured with a higher 
number of neurons, in addressing regression tasks that involve sequential or time-dependent data. The 
results suggest that this architecture not only offers robust predictive capabilities but also maintains 
computational efficiency, making it well-suited for complex temporal modeling. Looking ahead, future 
research directions may include the incorporation of advanced components such as attention 
mechanisms or the development of hybrid architectures that combine the strengths of multiple models, 
with the aim of further improving the model’s predictive performance and enhancing its interpretability 
in real-world applications. 
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