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Abstract 

Advancements in technology have made image forgery increasingly difficult to detect, raising the risk 

of misinformation on social media. To address this issue, Error Level Analysis (ELA) feature 

extraction can be utilized to detect error level variations in lossy-formatted images such as JPEG. This 

study evaluates the contribution of ELA features in classifying authentic and forged images using the 

MobileNetV2 model. Two scenarios were tested using the CASIA 2.0 dataset: without ELA and with 

ELA. Fine-tuning was performed to adapt the model to the new problem. Experimental results show 

that incorporating ELA improves model accuracy up to 93.1%, compared to only 76.41% in the 

scenario without ELA. Validation using k-fold cross-validation yielded a high average f1-score of 

96.83%, confirming the effectiveness of ELA in enhancing the classification performance of authentic 

and forged images. 

Keywords : classification, error level analysis, mobilenetv2, fine tuning, k-fold cross validation, pretrained model 

1   Introduction 

Currently, images have become one of the most widely used forms of media for conveying 

information through social media. According to data from Google Search, approximately 14 billion 

photos are shared on social media every day. This massive distribution of images is supported by 

various technological advancements, such as more effective compression methods, faster internet 

connections, and the development of social media platforms [1]. With the increasing number of digital 

interactions, images have become a crucial aspect of digital communication, as they can provide 

important context or evidence regarding the interactions that take place in the digital sphere [2]. 

Unfortunately, this aspect is often misused by certain parties with malicious intent, by altering images 

to spread false information. 

Humans have difficulty detecting visual changes in manipulated images due to a phenomenon 

known as the change blindness cognitive effect, which is the inability to notice changes when they 

occur gradually or when attention is focused elsewhere. This phenomenon hinders the identification 

of manipulated elements within an image. A study by Nightingale et al. in 2017 showed that humans 

were only able to detect 65% of manipulated images, only slightly better than random guessing (50%) 

which indicates a limited ability to recognize image forgeries [3]. Therefore, the development of a fast 

and accurate image forgery detection system is highly needed. 

To overcome the limitations of human ability in classifying real and fake images, machine 

learning and deep learning technologies can be utilized. Convolutional Neural Networks (CNNs) are 

one type of deep learning architecture that can be used for classification tasks. CNN models can be 

built manually or by using available pretrained models. This approach is known as transfer learning. 
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One of the pretrained models that offers simplicity and memory efficiency in its application is 

MobileNetV2 [4]. 

To help the model better capture important features in images to be classified, feature extraction 

methods can be applied. Several feature extraction techniques that can be used in classifying real and 

fake images include Error Level Analysis (ELA), Speed Up Robust Features (SURF), and YCrCb 

patch extraction. ELA is one of the simplest and most effective feature extraction techniques. This 

method works by identifying areas with compression differences across the image’s color channels. A 

study conducted by Choudary showed that ELA combined with a shallow CNN model was quite 

effective in classifying real and fake images, achieving an accuracy of up to 91.70% [5]. 

However, most previous studies have primarily utilized shallow or manually built CNN models, 

which may lack the efficiency and scalability needed for practical deployment. There is limited 

research exploring the integration of lightweight, pretrained deep learning models such as 

MobileNetV2 with ELA for image forgery detection tasks. This research aims to evaluate the 

performance of the MobileNetV2 model combined with ELA feature extraction for classifying real 

and fake images offering a more efficient yet accurate approach that can be potentially implemented 

in real-time or resource-constrained environments. The model’s performance will be evaluated using 

accuracy, precision, recall, and F1-score metrics to provide insights into its capability in distinguishing 

between real and manipulated images.  

 

2   Literature Review 

Based on feature extraction approaches, several studies have been conducted on the classification 

of real and fake images. Rao and Ni [6] used the Spatial Rich Model (SRM) to initialize the weights 

of a CNN as a feature extractor, combined with a patch sampling technique and a Support Vector 

Machine (SVM) classifier. Their model achieved accuracies of 98.04% on the CASIA 1.0 dataset, 

97.83% on CASIA 2.0. and 96.38% on the COLUMBIA DVMM dataset. 

Alsandi et al. [7] implemented the Speed Up Robust Features (SURF) technique to extract 

Regions of Interest (ROI), which were then classified using Mean-Local Binary Pattern (Mean-LBP) 

and an SVM model. This approach achieved accuracies of 97.90% on CASIA TIDE V1.0. 98.20% on 

CASIA TIDE V2.0. and 98.90% on the COLUMBIA dataset. 

Choudhary et al. [8] proposed the use of a shallow CNN for fake image classification and 

segmentation, using VGG U-Net with Error Level Analysis (ELA) features. Their approach achieved 

an accuracy of 91.70% for classification and an Intersection over Union (IoU) score of 80.80% for 

segmentation tasks [5]. Hebbar and Kunte (2021) compared the performance of various deep learning 

models using transfer learning on the CASIA 2.0 dataset. Their results showed that VGG16 achieved 

an accuracy of 95.90%, VGG19 reached 93.85%, DenseNet121 reached 95.69%, DenseNet169 

reached 97.06%, DenseNet201 reached 97.42%, and ResNet50 achieved 97.58%. 

Shikalgar et al. [9] evaluated the performance of the lightweight MobileNet model without 

additional feature extraction for classifying real and fake images, achieving an accuracy of 98.75% on 

the CASIA 2.0 dataset with 400 validation samples. Meanwhile, Phan-Xuan et al. [10] used 

MobileNetV2 along with patch-based preprocessing in the YCrCb color space, stride modification, 

and bottleneck dimension adjustments, achieving an accuracy of 95.15% on the CASIA 2.0 dataset. 

These studies highlight the promising potential of developing fake image classification models using 

various architectural approaches and feature extraction techniques.  
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3   Research Methods 

The research begins with data collection. The collected data is then filtered to meet specific 

criteria, ensuring it is suitable for further processing. Preprocessing is applied to the data by 

implementing Error Level Analysis (ELA) feature extraction, resizing, and pixel normalization. After 

preprocessing, the data is split into training and validation sets using the k-fold cross-validation 

mechanism. The model is then evaluated using performance metrics to assess its effectiveness. This 

series of research method is shown at Figure 1. Furthermore, the details for each research step are 

described below. 

  

 

Figure 1 Research Method Flow Chart 

3.1   Data Collection 

The dataset used in this research is the CASIA Image Tampering Detection Evaluation Database 

(CASIA ITDE) version 2.0. This dataset was developed by the Chinese Academy of Sciences (CASIA) 

using Adobe Photoshop CS3 and the Windows XP operating system [15]. CASIA 2.0 contains a total 

of 12,323 images divided into two classes: authentic and tampered. The authentic class consists of 

7,200 original, unmanipulated images, while the tampered class includes 5,123 images that have been 

manipulated. The manipulations were performed using techniques such as copy-move and splicing, 

with various image editing sizes. The dataset includes files in multiple formats, comprising both 
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lossless formats such as PNG, BMP, and TIFF, as well as lossy formats such as JPEG. Few of the 

dataset image can be found at Figure 2. 

 
Figure 2 CASIA 2.0 Example Image 

3.2   Data Selection 

This study uses Error Level Analysis (ELA) as a feature extraction method that analyzes 

compression errors in images. As a result, ELA can only be applied to images in lossy formats such as 

JPEG. Therefore, a selection process was carried out so that only JPEG-formatted images were used 

in this research. This study uses Error Level Analysis (ELA) as a feature extraction method that 

analyzes compression errors in images. As a result, ELA can only be applied to images in lossy formats 

such as JPEG. Therefore, a selection process was carried out so that only JPEG-formatted images were 

used in this research. 

Exploration of the dataset revealed that there are 7,437 authentic images and 2,064 tampered 

images in JPEG format, indicating an imbalance between the classes. This imbalance can affect the 

model’s performance in predicting the positive class (tampered), which has fewer instances compared 

to the negative class (authentic). To address this issue, undersampling was performed on the authentic 

class so that the number of samples is balanced across both classes, with 2,064 images in each class. 

This undersampling process is illustrated at Figure 3. 

 

 
Figure 3 Undersampling Process of the Dataset 
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3.3   Dataset Preprocessing 

Preprocessing was carried out to prepare the data before it is used by the model during the 

training process. Several preprocessing steps were performed in this study, including resaving, ELA 

feature extraction, resizing, and normalization through scaling. Figure 4 shows the image 

preprocessing steps of this research. 

 

 
Figure 4 Image Preprocessing Steps 

3.3.1   Resaving 

To perform ELA, lossy-formatted images are first resaved to produce compressed images with 

a specific quality level. The purpose of resaving is to generate a compressed version of the image, 

which can then be compared with the original image to create the ELA image. This resaving process 

involves converting the color space from RGB to YCrCb (YUV). Additionally, a Discrete Cosine 

Transform (DCT) is applied to convert the image from the spatial domain to the frequency domain. 

The formula for the DCT is shown in Equation (1). 

 

𝐹(𝑖, 𝑗) =
2

𝑁
𝐶(𝑖)𝐶(𝑗) ∑ ∑ 𝑝(𝑥, 𝑦) 𝑐𝑜𝑠 [

(2𝑥 + 1)𝑖𝜋

2𝑁
]

𝑁−1

𝑦=0

𝑁−1

𝑥=0

 𝑐𝑜𝑠 [
(2𝑥 + 1)𝑗𝜋

2𝑁
] 

𝐶(𝑖), 𝐶(𝑗) =  {

1

√2
 𝑖𝑓 𝑖, 𝑗 = 0

1 𝑖𝑓 𝑖, 𝑗 > 0
     (1) 

 

On the equation above, F(i, j) represents the DCT coefficient at position (i, j). N denotes the 

block size. C(i) and C(j) are normalization factors for the row and column, respectively. P(x, y) refers 

to the pixel intensity at coordinate (x, y) in the original image block. The resulting frequency domain 

is then quantized using a quantization matrix, producing an image with compressed pixel values. Pixel 

values with higher frequency components are compressed more aggressively, while those with lower 

frequency components are compressed more minimally in order to preserve more important 

information. 

3.3.2   ELA Calculation 

Data preprocessing continues with the calculation of ELA. The resaved image is compared with 

the original image to calculate the error level between the two. This comparison is performed on 8 × 8 

blocks across each color channel. The ELA calculation is shown in Equation (2). 

 

𝐷𝐼𝐹𝐹(𝑖, 𝑗) = 𝑓(𝑖, 𝑗) − 𝑓𝑐𝑜𝑚𝑝(𝑖, 𝑗)    (2) 

 



M. N. Baihaqi et all   Jurnal Masyarakat Informatika, 16(1), 2025 

 

59 
 
 

DIFF(i, j) represents the pixel difference value at position (i, j). f(i, j) refers to the pixel value at 

position (i, j) in the original image, while fcomp(i, j) denotes the pixel value at the same position in the 

compressed image. 

By performing this calculation, a visualization of the compression error in the image is obtained, 

which can help in identifying manipulated areas more easily. Brightness enhancement is applied to 

make the intensity of the error level more visible. Figure 5 visualizes the image produced after ELA 

calculation. This image then scaled using scaling technique.  

 

 
Figure 5 Example of ELA Produced Image 

To apply the scaling, a scaling factor is needed, which is determined by first finding the 

maximum difference value (maxdiff). This maxdiff value is then used to compute the scaling factor by 

dividing it by the maximum color intensity value, which is 255. The formula for determining the 

scaling factor is shown in Equation (3). From the equation below, scale refers to the new pixel intensity 

value after brightness enhancement. max_diff represents the maximum pixel difference value obtained 

from the comparison between the original and compressed images.  

 

𝑠𝑐𝑎𝑙𝑒 =
255.0

max _𝑑𝑖𝑓𝑓
     (3) 

 

To further support the explanation of ELA values, Figure 6 presents a detailed visualization of 

an 8 × 8 pixel block extracted from the green (G) channel of the ELA image shown in Figure 6. 

 

 
Figure 6 ELA Visualization of an 8 × 8 Block (G Channel) 

 Figure 6 provides a comparative visualization of an 8 × 8 pixel block from the green (G) channel, 

illustrating the original image, the resaved (compressed) version, and the resulting ELA image. The 
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leftmost matrix shows the pixel intensity values of the original image, while the middle matrix presents 

the same region after JPEG compression. The rightmost matrix displays the ELA image, which is 

obtained by calculating the absolute difference between the original and compressed images, then 

multiplying it with scaling factor. This error map highlights the compression artifacts, where brighter 

values indicate greater differences and thus potential signs of manipulation. As observed in the ELA 

image, several pixel positions exhibit notably high error values (e.g., 40, 30), suggesting 

inconsistencies in compression typical of altered regions. This visualization effectively demonstrates 

how localized error level differences, especially when viewed at the channel level, can serve as strong 

indicators of image tampering. 

3.3.3   Resizing 

The Error Level Analysis (ELA) images are resized to a resolution of 224 × 224 pixels to align 

with the standard input size required by the MobileNetV2 convolutional neural network. MobileNetV2 

is specifically designed to accept input images of this fixed dimension, and adhering to this requirement 

is essential for the model to function correctly. Resizing the ELA images ensures that each image 

maintains a consistent format suitable for feature extraction and classification. This step also helps 

preserve the spatial and structural integrity of the visual content, minimizing distortion or the loss of 

subtle compression artifacts that are crucial for effective analysis. By standardizing the input size, the 

model can leverage its pre-trained weights more effectively, leading to better performance during 

training and inference. 

3.3.4   Normalization 

After resizing, the ELA images undergo a normalization process to prepare the pixel values for 

input into the MobileNetV2 model. This normalization involves scaling the original pixel values, 

which typically range from 0 to 255, down to a standardized range. Specifically, each pixel value is 

divided by 255, resulting in values that fall within the [0, 1] range. 

However, the MobileNetV2 architecture, when implemented using the Keras library, expects 

input values to be in the range of [-1, 1] for optimal performance, particularly when using pre-trained 

weights. To meet this requirement, an additional step is often applied to convert the scaled [0, 1] values 

to the [-1, 1] range. This is usually achieved by multiplying the [0, 1] values by 2 and subtracting 1 

from each result. This transformation helps ensure that the input data distribution is consistent with the 

conditions under which the original model was trained, thereby improving convergence, reducing 

training time, and enhancing model accuracy.  

3.4   K-Fold Cross Validation 

A k-fold cross-validation approach was used for training the model and splitting the dataset into 

training and testing sets. In this approach, the dataset is divided into k parts, referred to as folds. The 

training and testing processes are repeated k times, with each part of the dataset taking turns as the 

testing set while the remaining parts are used for training. The proportion of training and testing data 

is determined by the value of k. In this study, k was set to 5, resulting in an 80% training and 20% 

testing data split. With k = 5 and a total of 4,128 images, each fold consists of 826 test samples and 

3,302 training samples. This step is visualized at Figure 7 below. 
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Figure 7 K-Fold Cross Validation Mechanism 

3.5   Model Building 

In this study, the pre-trained MobileNetV2 model from the Tensorflow/Keras version 2.18.0 was 

used. To build this model, the pre-trained network was loaded without the default top layer. A new top 

layer was constructed by adding several layers, including a global average pooling layer, a dense (fully 

connected) layer with 512 neurons, and a dropout layer with values varied according to the testing 

scenarios. The final dense layer uses an activation function to map the output values into the range of 

0 to 1. The output from this last layer is interpreted as the classification result for the binary 

classification task, using a threshold of 0.5. A detailed visualization of the complete model architecture, 

including all added layers, is presented in Figure 8. 

 
Figure 8 Model Architecture 

As part of the testing scenarios, the unfreeze method was also employed. This method allows 

some of the frozen layers in the pre-trained model to be retrained. This process, called fine-tuning, is 

used to maximize the model’s performance. 
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3.6   Model Evaluation 

The final stage involves evaluating the model using several performance metrics derived from 

the confusion matrix. The metrics used include accuracy, precision, recall, and F1-score. The formulas 

for these metrics are shown in Equations (4) through (7). 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (6) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
      (7) 

 

4   Results and Discussion 

4.1   Research Scenario 

Table 1 Research Scenario 

No 

 

Scenario 
Feature 

Extraction 

Hyperparameter 

Unfreeze 

Start 
Dropout Optimizer 

1 Scenario 1 - 
0. 100 0.3, 0.5 

Adam, 

SGD, 

RMSprop 2 Scenario 2 ELA 

 

The training scenarios consist of two main setups as shown in Table 1: without ELA feature 

extraction and with ELA feature extraction. Both scenarios were tested with combinations of 

hyperparameters including the unfreeze value, dropout rate, and optimizer. The unfreeze value controls 

how many pre-trained layers are retrained, with variations of 100 (only the final layers retrained) and 

0 (all layers retrained). The dropout rate was varied between 0.3 and 0.5 to prevent overfitting. Three 

types of optimizers were used: RMSprop, Adam, and SGD. As a control variable, an adaptive learning 

rate was applied so that the model can automatically adjust the learning speed. This was intended to 

reduce the number of hyperparameters that need manual tuning, allowing the experiments to focus 

more on architecture design and feature extraction techniques. 

4.2   Scenario 1 Result (Without ELA) 

The test results of MobileNetV2 without ELA feature extraction showed that the model’s 

performance varied greatly depending on the combination of hyperparameters used. Overall, the 

RMSprop and Adam optimizers tended to yield better results compared to the SGD optimizer. The 

best result was observed in experiment number 1, which combined the RMSprop optimizer, a dropout 
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rate of 0.3, and unfreezing all layers. This experiment achieved an accuracy of 0.7641 and an F1-score 

of 0.7693. Table 2 shows the entire evaluation result of scenario 1. 

Table 2 Scenario 1 Evaluation Results 

No 
Unfreeze 

Start 
Dropout Optimizer 

Evaluation Metrics  

Accuracy Precision Recall F1-Score 

1 

0 

0.3 

RMSprop 0.7641 0.7546 0.7839 0.7682 

2 Adam 0.7597 0.7559 0.7670 0.7609 

3 SGD 0.5421 0.5133 0.5280 0.4560 

4 

0.5 

RMSprop 0.7597 0.7559 0.7670 0.7609 

5 Adam 0.7641 0.7522 0.7889 0.7693 

6 SGD 0.5196 0.5224 0.4898 0.5041 

7 

100 

0.3 

RMSprop 0.7556 0.7468 0.7727 0.7594 

8 Adam 0.7490 0.7393 0.7698 0.7538 

9 SGD 0.5196 0.5224 0.4898 0.5041 

10 

0.5 

RMSprop 0.7459 0.7392 0.7623 0.7497 

11 Adam 0.7510 0.7384 0.7780 0.7527 

12 SGD 0.5380 0.5223 0.4891 0.4320 

 

With the same dropout and unfreeze values, the Adam optimizer produced results slightly below 

the best performance mentioned earlier. On the other hand, the SGD optimizer was unable to optimize 

the model effectively, resulting in poorer performance compared to both Adam and RMSprop 

optimizers. Based on the dropout value analysis, it was found that a dropout rate of 0.5 was more 

effective when used with the Adam optimizer.  

This is evident from the model performance results using Adam at different dropout values. In 

this scenario, the Adam optimizer requires stronger regularization to prevent overfitting. 

From the tests, the model without ELA requires more fine-tuning. Models trained by unfreezing all 

layers achieved better performance. By training more neurons, the model has the opportunity to adjust 

weights across all layers, which can lead to improved performance. To examine the model’s 

performance in greater detail, an analysis was conducted on the best-performing model in this scenario 

using loss and accuracy graphs per epoch. 
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Figure 9 Loss Per Epoch and Accuracy Per Epoch Graph (Scenario 1) 

Based on the loss and accuracy per epoch graphs shown in Figure 9, the training loss decreases 

rapidly before eventually leveling off. However, the validation loss does not decrease significantly. 

This indicates the presence of overfitting in the model, meaning it is unable to generalize well to the 

validation data. 

4.3   Scenario 2 Result (With ELA) 

Table 3 Scenario 2 Evaluation Results 

No 
Unfreeze 

Start 
Dropout Optimizer 

Evaluation Metrics  

Accuracy Precision Recall F1-Score 

1 

0 

0.3 

RMSprop 0.9259 0.8931 0.9674 0.9287 

2 Adam 0.9293 0.8995 0.9664 0.9317 

3 SGD 0.6565 0.6860 0.5816 0.6265 

4 

0.5 

RMSProp 0.9261 0.8938 0.9669 0.9289 

5 Adam 0.9273 0.8964 0.9666 0.9301 

6 SGD 0.6235 0.6255 0.7270 0.6595 

7 

100 

0.3 

RMSprop 0.9310 0.9008 0.9683 0.9334 

8 Adam 0.9297 0.8980 0.9699 0.9325 

9 SGD 0.7219 0.7682 0.6560 0.6974 

10 

0.5 

RMSProp 0.9235 0.8884 0.9684 0.9267 

11 Adam 0.9273 0.8961 0.9670 0.9301 

12 SGD 0.7185 0.7680 0.6414 0.6863 

 

The testing of MobileNetV2 using the ELA technique in scenario 2, shown in Table 3, yielded 

consistently high model performance across all experiments. The best-performing model achieved an 

accuracy of 0.9310 and an F1-score of 0.9334. These results were obtained in experiment number 7, 

with a model configured using the RMSprop optimizer, a dropout rate of 0.3, and an unfreeze start 

value of 100. 

In this scenario, the model using the SGD optimizer performed the worst among all models. 

Additionally, within this scenario, using a smaller dropout rate resulted in better model performance. 
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For example, with the same unfreeze start value, experiments 7, 8, and 9 achieved higher performance 

compared to experiments 10. 11, and 12. 

Based on the fine-tuning analysis, it was found that the model’s performance improves when 

only a small number of neurons in the final layer are retrained. It can be seen that with the same dropout 

and optimizer values, the SGD model with the lowest accuracy of 0.6235 was able to reach an accuracy 

of 0.7219 when trained with minimal fine-tuning. 

This scenario also shows that the model only requires a small dropout rate to achieve optimal 

performance. The model does not need much regularization because the data patterns are already 

effectively captured. Further analysis of the best-performing model in this scenario is presented below. 

 

 
Figure 10 Loss Per Epoch and Accuracy Per Epoch Graph (Scenario 2) 

The loss graph in Figure 10 shows a stable decrease in training loss values approaching zero. 

This indicates that the model training successfully learned the patterns contained in the data. For the 

validation loss, there is an increase during the initial epochs. However, the validation loss then 

continues to decrease until reaching a stable point. The accuracy graph in Figure 10 shows that despite 

the initial increase in loss, accuracy also improves, indicating that the learning process proceeds well 

without overfitting. This trend, along with the steadily decreasing validation loss, confirms that the 

model is not underfitting. Underfitting typically occurs when both training and validation performance 

remain poor due to the model's inability to capture underlying patterns. In contrast, the results 

presented in figure 8 show that the model still achieves high accuracy and low loss, both in training 

and validation sets, indicating a well trained model. 

4.4   Experiment Results Comparison 

Table 4 Best Result from Each Scenario  

Scenario 
Feature 

Extractor 

Unfreeze 

Start 
Dropout Optimizer 

Evaluation Metrics  

Accuracy Precision Recall 
F1-

Score 

Scenario 1 

Number 1 
- 0 0.3 RMSprop 0.7641 0.7546 0.7839 0.7682 

Scenario 2 

Number 7 
ELA 100 0.3 RMSprop 0.9310 0.9008 0.9683 0.9334 
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The experiment results comparison on Table 4 shown that scenario 2 with ELA feature extraction 

performs significantly better than scenario 1 without ELA. In scenario 2, the model achieved an 

accuracy of 93.10% and an F1-score of 93.34%, whereas scenario 1 only reached an accuracy of 

76.41% and an F1-score of 76.82%. This difference indicates that ELA helps the model capture 

important patterns in the form of error levels that are not present in the original images. The results 

also demonstrate that MobileNetV2 combined with ELA has superior capability in classifying 

authentic and tampered images, with a high recall value (96.83%) and balanced overall performance. 

Furthermore, the experiments show that the RMSprop optimizer is the most suitable for MobileNetV2 

in this classification task, with an optimal dropout rate of 0.3 to reduce the risk of overfitting. 

4.5   Qualitative Prediction Results Using ELA Technique 

In this research, the Error Level Analysis (ELA) technique was employed as a feature extractor 

during the data preprocessing stage. Based on the approach, authentic images, which are uniformly 

compressed, tend to have consistent error levels throughout visually. In contrast, tampered or fake 

images typically exhibit uneven error levels, especially in manipulated regions which appear either 

brighter or darker than the rest of the image under ELA visualization. However, visually analyzing 

ELA images can be challenging, particularly in cases where the manipulation is subtle or the image 

quality is low. The interpretation of ELA results is inherently subjective and may vary depending on 

the observer’s experience. Therefore, in this study, ELA images were further processed and fed into a 

classification model to automate and enhance the accuracy of forgery detection.  

 
Figure 11 Visualization of ELA of Real and Fake Images 
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In this experiment, image samples were analyzed using ELA as feature extraction technique and 

MobileNetV2 model. The prediction results, as illustrated in Figure 11, show a difference between 

original and tampered images. For instance, in an original image, the ELA result displayed uniform 

brightness levels across the entire image. Conversely, in a tampered image, the manipulated object 

exhibited noticeably different error levels, thereby serving as visual proof of alteration. 

 

5   Conclusion 

Based on the results of this study, it can be concluded that the use of the ELA feature extraction 

technique on the MobileNetV2 architecture for authentic and tampered image classification performs 

better compared to the model without ELA feature extraction. The model with ELA feature extraction 

achieved an accuracy of 93.10% and an F1-score of 93.34%. The best model was obtained by setting 

the unfreeze hyperparameter starting from the 100th layer, using a dropout rate of 0.3, and employing 

the RMSprop optimizer. Overall, the combination of the MobileNetV2 model with the ELA feature 

extraction technique provides good results in the task of authentic and tampered image classification. 
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