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Abstract 

This research evaluates and compares the performance of five machine learning algorithms (Logistic 

Regression, K-Nearest Neighbors, Decision Tree, Random Forest, and Gradient Boosting) in 

predicting thyroid disease recurrence using patient data. The analysis was conducted on the Thyroid 

Disease Dataset from the UCI Machine Learning Repository. The methodology includes data 

preprocessing, normalization, and class balancing with the Synthetic Minority Over-sampling 

Technique (SMOTE). Additionally, hyperparameter tuning was conducted using GridSearchCV to 

optimize model performance. The results demonstrate that ensemble-based models, specifically 

Random Forest and Gradient Boosting, consistently outperform the other algorithms in terms of 

accuracy and robustness. These models achieve 95–96% accuracy across various scenarios.A key 

finding is that SMOTE significantly improves recall for minority classes, highlighting its value in 

imbalanced medical datasets.  
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1   Introduction 

Thyroid dysfunction is among the most prevalent endocrine disorders worldwide, second only 

to diabetes. An estimated that 300 million cases of thyroid dysfunction are currently present globally 

[1]. A significant aspect of this disorder is the prevalence of undiagnosed cases, with approximately 

50% of affected individuals remaining unaware of their condition [2]. This phenomenon underscores 

the critical nature of thyroid disorders as a public health concern that frequently eludes detection and 

awareness [3]. Early detection is of paramount importance, as the symptoms of thyroid disorders are 

often non-specific and may resemble those of other common conditions, such as fatigue or stress [4]. 

The thyroid gland, the largest endocrine gland in the human body, is located in the neck and 

plays an important role in regulating the body's metabolism [5]. The thyroid gland produces two main 

hormones, T3 (triiodothyronine) and T4 (thyroxine), which regulate the metabolic rate of cells and 

affect nearly all organs of the body [6]. An imbalance in the levels of these hormones can lead to two 

main conditions: hyperthyroidism (excess hormones) and hypothyroidism (deficiency of hormones). 

Each of these conditions can have a significant impact on the quality of life of the sufferer [7]. The 

symptoms associated with this condition can include sleep disturbances, mood swings, chronic fatigue, 

and serious complications in pregnancy [8]. The prevalence of thyroid disorders is notably high, 

particularly among the productive age group, and is more prevalent in women [9]. A multitude of 

factors, including hormonal, genetic, and immunological elements, have been identified as 
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contributing to the development of these disorders [10]. However, delayed diagnosis remains a 

pervasive issue in numerous healthcare facilities, particularly in regions with constrained diagnostic 

resources [11]. It is noteworthy that many patients only become aware of their condition after the 

emergence of significant complications that necessitate additional treatment. Consequently, there is an 

imperative for initiatives aimed at enhancing access to precise and economical diagnostic techniques. 

One of the most frequently employed diagnostic methods in contemporary medicine is the Fine 

Needle Aspiration Biopsy (FNAB), which entails the extraction of thyroid tissue samples for 

subsequent analysis [12]. Despite its notable efficacy, this method is subject to certain limitations, 

including a reported accuracy of approximately 62.2%, which necessitates validation through 

histopathological examination, as the prevailing standard of truth. Furthermore, the procedure is 

considered to be invasive and necessitates the expertise of trained medical professionals, whose 

availability is not guaranteed in all healthcare settings. This underscores the necessity for a more 

pragmatic, effective, and dependable solution, particularly in resource-limited settings [13].In recent 

years, the application of machine learning technology in the medical field has demonstrated 

considerable potential, particularly in the diagnosis of diseases that involve complex data analysis, 

such as thyroid disorders [14]. The utilization of patient medical data, including TSH, T3, T4, age, 

gender, and medical history, enables the training of machine learning algorithms to discern patterns 

that are imperceptible to conventional observation [15]. This model has the capacity to provide precise 

and automated predictions of thyroid function status, even in circumstances where data is incomplete 

or variable, thus making it an optimal solution for supporting the clinical decision-making process 

[16]. 

Recent advances in machine learning enable the development and assessment of that can detect 

thyroid dysfunction and recurrence with greater accuracy. However, medical datasets often 

characterized by skewed class distributions, with positive cases such as recurrence being significantly 

underrepresented. This imbalance can lead to models that are biased and fail to detect critical but rare 

cases. To address this issue, synthetic data balancing techniques such as SMOTE (Synthetic Minority 

Over-sampling Technique) can be employed to improve minority class recall [17].In addition to class 

balancing, optimising the performance of an algorithm requires the systematic tuning of its 

hyperparameters. Default hyperparameters are rarely optimal for datasets with different distributions 

and noise levels. Techniques such as GridSearchCV enable the systematic exploration of different 

hyperparameter combinations to identify the optimal model configuration, which can significantly 

impact the accuracy of predictions, especially in sensitive medical fields [18]. 

Due to the varying capabilities and learning mechanisms of different machine learning 

approaches, it is essential to conduct a comprehensive comparative analysis of multiple models to 

determine which algorithm exhibits the highest performance, stability, and generalization capacity 

when applied to medical datasets. Each model category employs a distinct strategy for learning from 

data [19]. Linear models, such as logistic regression, are ideal for problems where the relationship 

between features and outcomes is approximately linear. These models offer interpretability and 

computational simplicity. In contrast, distance-based methods such as KNN rely on the proximity of 

data points in feature space [20]. This can be effective for non-linear relationships, but the method is 

often sensitive to noise and computationally expensive in large datasets. Rule-based classifiers, such 

as decision trees, provide intuitive if-then decision logic, enabling model transparency and ease of 

interpretation; however, they are prone to overfitting, especially when left unpruned. Finally, ensemble 
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learning methods, including Random Forest and Gradient Boosting, aggregate multiple weak learners 

to form a robust model that can capture complex patterns and interactions among features [21]. These 

ensemble techniques are renowned for their ability to mitigate overfitting and enhance predictive 

accuracy, rendering them highly suitable for heterogeneous and high-dimensional data, common in 

medical diagnostics. 

Recent studies have further emphasized the importance of handling class imbalance and 

optimization strategies in thyroid disease prediction. Clark et al [22] demonstrated that Random Forest 

consistently outperformed other classifiers, with its performance enhanced through SMOTE and 

hyperparameter tuning, highlighting the importance of these optimization techniques. Similarly, Atay 

et al [23] introduced a hybrid model combining association rule mining with classification algorithms, 

which yielded interpretable and highly accurate predictions for differentiated thyroid cancer 

recurrence. Reinforcing this point, another investigation by Agarwal et al [24] also applied SMOTE 

with conventional classifiers such as SVM, KNN, and Random Forest, reported notable gains in 

accuracy and recall, further reinforcing the significance of oversampling in medical datasets. 

Despite these advancements, existing work often remains limited to evaluating a single algorithm 

or does not systematically compare model performance across different preprocessing and tuning 

conditions. This research contributes by conducting a comprehensive comparative evaluation of five 

representative algorithms, explicitly analyzing their behavior under both balanced and imbalanced data 

conditions, and before and after hyperparameter optimization. In doing so, the study not only 

consolidates prior evidence but also clarifies how different algorithms respond to balancing and tuning 

strategies, thereby offering methodological insights and practical implications for developing clinical 

decision support systems for predicting thyroid disorder recurrence. 

 

2   Research Methods 

The methodological framework employed in this research follows a structured, data-centric 

strategy that is aimed at effectively addressing the critical issue of data imbalance. As shown in Figure 

1, the framework consists of a series of sequential stages, starting with data acquisition and ending 

with model evaluation. Each stage is designed to maintain statistical rigor, ensure reproducibility, and 

support adaptability across various classification algorithms, particularly when applied to imbalanced 

datasets. 

 

Figure 1 Methodological Workflows 
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2.1   Dataset 

This research utilizes the Thyroid Disease Dataset from the UCI Machine Learning Repository 

the Thyroid Disease Dataset [25]. This dataset has been used in many previous research studies, 

particularly those focusing on the classification of thyroid disease. It contains the medical information 

of 364 patients, with 17 attributes reflecting their clinical condition related to thyroid disorders. 

The dataset comprises both numerical and categorical attributes. One of the main numerical 

attributes is age, ranging from 15 and 82 years. The categorical attributes encompass patient 

demographic and medical history information, such as gender (M for male, F for female), smoking 

status (yes or no), and smoking history. A detailed summary of all attributes, including their respective 

data types and values, is presented in Table 1. 

Table 1 Dataset Specification 

No Column Name Data Type Possible Value 

1 Age Integer 15-82 

2 Gender Categorical M , F 

3 Smoking Categorical No , Yes 

4 Hx Smoking Categorical No , Yes 

… … … … 

17 Reccured Categorical No , Yes 

  

The main target variable for classification is the 'Recurred' column, which indicates whether or 

not the patient has experienced a recurrence of thyroid disease. This attribute is binary coded, where 

‘Yes’ indicates a recurrence of thyroid disease and ‘No’ indicates no recurrence. In addition to the 

attributes shown in the above table, the dataset includes laboratory information relating to thyroid 

hormones, such as TSH, T3 and T4. As changes in these hormone levels are often early indicators of 

thyroid dysfunction, they are critical predictors in the classification process. 

2.2   Preprocessing Data 

Data preprocessing was performed to ensure data integrity prior to training the machine learning 

model. Duplicate data were removed using the drop_duplicates() function, with the objective of 

averting potential bias. Rows with missing values were removed using the dropna() function, thereby 

ensuring the dataset's integrity and completeness. Subsequently, the categorical features were 

converted to numeric values using the LabelEncoder from the scikit-learn library to ensure 

compatibility with the machine learning algorithms. These steps are critical to guarantee that the data 

utilized possesses a consistent and valid structure during the development of the classification model 

[26]. 

2.3   Data Splitting 

Subsequent to the completion of the data cleaning and transformation process, the subsequent 

step is to divide the dataset into training data and testing data. The objective of this division is to 

distinguish between data utilized for the construction of models and data employed for the objective 

evaluation of model performance [27]. In this research, the dataset is divided into two parts using an 

80/20 ratio, where 80% of the data is used for training and 20% for testing. The division was performed 

using the train_test_split function from the scikit-learn library. To maintain equilibrium in the 
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proportion of the target class distribution between the training and testing data, the data is divided 

through the implementation of a stratification technique based on the target label. 

2.4   Feature Normalization 

To ensure that all numerical features are on a comparable scale, a normalization process is 

performed using the standardization method. This technique is implemented using StandardScaler 

from the scikit-learn library, which scales each feature to have a mean of zero and a standard deviation 

of one [28]. Mathematically, this standardization process can be expressed as (1). 

𝑧 =
𝑥 − 𝜇

𝜎
 (1) 

In this context, 𝑥 denotes the original value of a feature, 𝜇 signifies the mean value of the feature, 

and 𝜎 represents the standard deviation. The result of this transformation is the 𝑧 value, which is a 

standardized score that represents the extent to which the 𝑥 value deviates from the mean in standard 

deviation units. 

2.5   Synthetic Minority Over-Sampling Technique (SMOTE) 

The class imbalance in the target variable was addressed using SMOTE. SMOTE is an 

oversampling technique that works by generating new synthetic samples in the minority class through 

interpolation between existing data points, thereby ensuring a more balanced class distribution [29]. 

In this research, SMOTE was applied only to the training data, while the test set remained composed 

solely of original data. This strategy is essential to prevent data leakage, ensuring that the model is 

evaluated only on authentic, unseen data. By applying SMOTE only during training, the model learns 

to better recognize the minority class without inflating performance metrics on the test set. 

2.6   Data Modelling 

In this research, five distinct machine learning algorithms were employed to construct 

classification models aimed at predicting the recurrence status of thyroid disease. The selection of 

models was based on the diversity of algorithmic approaches, ranging from linear models to tree-based 

and ensemble methods. The applied algorithms include logistic regression, a basic linear model that is 

efficient for binary data, as well as KNN, which operates based on the proximity of the distance 

between samples [30]. Furthermore, a Decision Tree is employed as a tree-based model that can 

explicitly capture nonlinear relationships [31]. Finally, to assess the performance of more complex 

models known for their high accuracy and robustness to overfitting, two ensemble methods, namely 

Random Forest and Gradient Boosting, were implemented [21]. All models were trained using 

normalized and balanced data to ensure that the classification performance reflects the generalization 

ability of the patterns in the data. 

2.7   Model Evaluation 

The evaluation of model performance was conducted using four primary metrics: accuracy, 

precision, recall, and F1-score. They were chosen because they provide a comprehensive assessment 

of the performance of the classification model, particularly for imbalanced datasets [32]. 
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Accuracy is a metric that quantifies the proportion of correct predictions to the total number of 

predictions made. Mathematically, accuracy is expressed by (2). 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

TP (true positive) denotes the number of positive cases that were accurately predicted; TN (true 

negative) signifies the number of negative cases that were correctly predicted, FP (false positive) 

represents the number of negative cases that were erroneously predicted as positive, and FN (false 

negative) indicates the number of positive cases that were inaccurately predicted as negative. 

Precision is employed to evaluate the model's accuracy in predicting positive classes, defined as 

the proportion of accurate positive predictions out of all positive predictions made. The precise formula 

is calculated by (3). 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(3) 

Concurrently, recall measures the sensitivity of the model or its capacity to identify all true 

positive cases. This is expressed by (4). 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4) 

Given the inherent trade-off between precision and recall in information retrieval, a combined 

metric of F1-score is employed, representing the harmonic mean between precision and recall. In 

instances where the distribution of the class is found to be uneven, the F1-score provides a more 

balanced assessment. This calculation can be performed using (5). 

F1-score = 2 ⋅
Precision ⋅ Recall

Precision + Recall
 (5) 

2.8   Hyperparameter Tuning 

To attain optimal model performance, a hyperparameter was tuned using GridSearchCV. This 

approach aims to identify the optimal combination of parameters by exhaustively searching of the 

predefined parameter grid. The search process is executed with cross-validation, thereby ensuring that 

the tuning results enhance not only the accuracy of the model on the training data but also its capacity 

to generalize to data that has not been previously encountered [33]. The application of GridSearchCV 

facilitates the calibration of models to enhance efficiency and accuracy, while mitigating the risks of 

overfitting or underfitting. 

 

3   Result And Discussion 

This section presents the results of the data analysis and modeling, followed by an in-depth 

discussion of the findings. The analysis phase began with Exploratory Data Analysis (EDA) to 

investigate the characteristics and relationships between variables. Then, several machine learning 

algorithms were developed using classification models. The models are evaluated based on their 

performance before and after handling class imbalance using the SMOTE technique. 
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3.1   Feature Correlation Analysis 

The analysis began with an exploratory phase to examine the dataset's fundamental 

characteristics, encompassing the structure, the quantity of features, and the patterns of relationships 

between variables. One method employed is the visualization of correlations between numeric features 

in the form of a correlation heatmap, as illustrated in Figure 2. This visualization offers a 

comprehensive overview of the degree of linear relationship between pairs of features. 

 
Figure 2 Correlation Feature 

The heatmap revealed several highly correlated feature pairs. This finding suggests the 

possibility of multicollinearity, which can compromise the stability and interpretation of the model, 

particularly in linear models like logistic regression. Conversely, features that exhibit a strong 

correlation with the target variable are strong candidates for predictive modeling. Consequently, this 

correlation analysis is an initial basis for feature selection and understanding. 

The heatmap analysis highlights potential multicollinearity, which can compromise the stability 

and interpretation of the model, particularly when linearity-sensitive algorithms such as logistic 

regression are employed. Strong positive correlations were notably observed between Stage and Age 

(r = 0.53), Stage and M (r = 0.68), T and N (r = 0.45), Response and N (r = 0.57), and Recurred and 

Response (r = 0.70). These pairs indicate closely related variables that may convey redundant 

information. In terms of their relevance to the prediction task, the 'Recurred' label showed strong 

correlations with 'Risk' (r = –0.73), 'T' (r = 0.55), 'N' (r = 0.62), and 'Response' (r = 0.70), suggesting 

that these variables play a significant role in determining recurrence. Conversely, several attributes 

exhibited weak or negligible correlation with the target variable, including Pathology (r = 0.014), 

Adenopathy (r = −0.18), and Physical Examination (r = −0.12). These uncorrelated features may 

contribute little to model performance and could potentially be excluded during feature selection to 

improve efficiency and reduce noise. 

3.2   Result of Baseline Model 

Next, the analysis focused on the class distribution of the target variable. As illustrated in Figure 

3, there is a significant imbalance between the majority and minority classes. This imbalance is a 
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common challenge in classification problems, as models tend to adopt a cautious approach by 

predicting the majority class, which is statistically more dominant. Consequently, models frequently 

fail to identify patterns within the minority class, which is frequently the class of interest. This 

challenge is common in real-world applications, such as rare disease detection or fraud identification.  

 
Figure 3 Class distribution of the baseline model  

This imbalance can lead to misleading performance metrics. For example, a model may achieve 

high overall accuracy simply by predicting the majority class, while its recall for the minority class 

remains extremely poor. This necessitates specialized strategies to address the imbalance, such as the 

SMOTE oversampling technique, which is detailed in the following section. 

Table 2 Baseline model performance (without SMOTE) 

Model Accuracy 

Random Forest 96 % 

Logistic Regression 85 % 

Decision Tree 92 % 

Gradient Boosting 93 % 

KNN 82 % 

To establish a baseline, an initial evaluation was conducted on the original, imbalanced dataset 

without any hyperparameter tuning. Five classification models were tested under these conditions to 

measure their out-of-the-box performance. The algorithms evaluated were Random Forest, Logistic 

Regression, Decision Tree, Gradient Boosting, and KNN. All models were executed using default 

parameters to establish an initial baseline before optimization. 

Table 2 presents the accuracy results of each model when trained on the original data with default 

parameters. The Random Forest algorithm achieved the highest performance, with an accuracy of 96%. 

This was followed by the Gradient Boosting algorithm, which achieved an accuracy of 93%, and the 

Decision Tree algorithm, which achieved an accuracy of 92%. The two models under consideration, 

logistic regression and KNN, achieved lower accuracies of 85% and 82%, respectively. Random 

Forests and Gradient Boosting tend to perform better than linear or distance-based models. This 

phenomenon could be attributed to the ensemble's capacity to manage data complexity and variation 

effectively. However, it should be noted that these results remain provisional, as they have not yet 

accounted for factors such as parameter optimization or class imbalance management. 
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Table 3 Result of Gridsearch CV on the baseline model 

Model Result Parameter Tuning Accuracy 

Random Forest 'bootstrap': False, 'max_depth': None, 'min_samples_leaf': 1, 

'min_samples_split': 5, 'n_estimators': 50 

96 % 

Logistic Regression 'C': 0.1, 

'max_iter': 1000, 'solver': 'lbfgs' 

84 % 

Decision Tree 'criterion': 'entropy', 'max_depth': None, 'min_samples_leaf': 2, 

'min_samples_split': 10 

96 % 

Gradient Boosting 'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 50 93 % 

KNN 'metric': 'manhattan', 'n_neighbors': 15, 'p': 1, 'weights': 'distance' 90 % 

 

To enhance performance, a hyperparameter tuning procedure was performed on all five models 

using GridSearchCV with cross-validation. As illustrated in Table 3, the optimal parameters for each 

model are enumerated, along with the accuracy achieved after tuning on the original dataset. The 

tuning results demonstrate substantial performance improvements across several models, particularly 

KNN, which increased accuracy from 82% to 90%. Decision Tree also achieved 96% accuracy, a result 

that aligns with Random Forest, which demonstrated consistent accuracy. Logistic regression showed 

a modest decline in accuracy to 84%, while gradient boosting maintained its superior performance at 

93%. The table provides details on optimized parameters, such as 'n_estimators' and 'max_depth' for 

tree-based models, 'C' for Logistic Regression, and 'n_neighbors' and 'metric' for KNN. 

The accuracy comparison after tuning is shown in Figure 4. The results clearly show that the 

tree-based models, Random Forest and Decision Tree, achieved the highest performance on the 

original, imbalanced dataset. This finding highlights the significant impact of parameter optimization, 

which is crucial for maximizing a model's predictive capabilities and minimizing the risks of 

overfitting or underfitting. 

 
Figure 4 Comparison of the Accuracy of the baseline model before and after Hyperparameter Tuning 

To better understand the model's predictive performance, the confusion matrices and 

classification reports for the two top-performing models, Random Forest and Decision Tree, were 

analyzed. Although both models achieved an identical accuracy of 96%, this metric alone can be 

misleading on imbalanced datasets. Therefore, it was essential to evaluate their effectiveness in 

identifying the minority class by examining additional metrics, namely precision, recall, and the F1-

score. 
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Figure 5 Confusion Matrix of Random Forest model and 

hyperparameter tuning on baseline model 

 

Figure 6 Confusion Matrix of the Decision Tree model 

and hyperparameter tuning on the baseline model 

The confusion matrices for the Random Forest and Decision Tree models are presented in 

Figures 5 and 6, respectively. These matrices display the distribution of correct and incorrect 

predictions for each class. This information is crucial for identifying the types of errors that the model 

frequently makes, such as the tendency to misclassify minority classes as majority high False Negative 

Rate. 

 

Figure 7 Classification Report of the Random Forest model 

and hyperparameter tuning on the baseline model 

 

Figure 8 Classification Report of the Decision Tree 

model and hyperparameter tuning on the baseline model 

Additionally, the classification report in Figures 7 and 8 provides a more detailed evaluation. 

These reports break down the precision, recall, and F1-score for each class. In the context of 

imbalanced data, the recall for minority classes serves as a critical performance metric. The evaluation 

results indicate that, while the overall accuracy is high, the recall for minority classes can be further 

enhanced. 

3.3   Result of SMOTE SMOTE-based Model 

Figure 9 illustrates the effect of applying the SMOTE technique to the training data. It is evident 

that the proportion of minority class samples has increased, resulting in a balanced distribution between 

the two classes. rebalancing is expected to enhance the model's ability to learn the patterns of the 

previously underrepresented minority class, thereby improving its predictive performance. 
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Figure 9 Distribution class of training data on SMOTE based model 

After rebalancing the training data with SMOTE, the five models were re-evaluated using their 

original default hyperparameters. This step was performed to isolate the impact of class balancing on 

model performance, independent of hyperparameter tuning. The resulting accuracies for each model 

are presented in Table 3. 

Table 4 Testing result on SMOTE based model 

Model Accuracy 

Random Forest 95 % 

Logistic Regression 84 % 

Decision Tree 92 % 

Gradient Boosting 95 % 

KNN 85 % 

 

After retraining on the SMOTE-balanced data with default parameters, the ensemble models 

maintained strong performance. Random Forest and Gradient Boosting both achieved 95% accuracy. 

In contrast, the single Decision Tree's accuracy decreased from its previous high of 96% to 92%, while 

Logistic Regression and KNN showed marginal improvements but still lagged behind the ensemble 

methods. These results suggest that while ensembles are robust, the performance of simpler models 

like Decision Tree can be sensitive to the synthetic data introduced by SMOTE. The application of 

SMOTE fundamentally alters the distribution and characteristics of the training data. Consequently, 

the hyperparameters that were optimal for the original, imbalanced dataset may no longer be effective 

for the new, balanced dataset. Therefore, to ensure each model is fully optimized for the new data 

structure, a final round of hyperparameter tuning is required. This re-tuning process is detailed in the 

subsequent section. 

Table 5 presents the final performance of each model after hyperparameter tuning on the 

SMOTE-balanced dataset. The Random Forest and Gradient Boosting algorithms continue to 

demonstrate high performance, with both achieving 95% accuracy. The KNN model demonstrates 

enhanced performance following tuning, attaining 88% accuracy. Conversely, Decision Tree 

demonstrated a decline in performance, from 96% (without SMOTE) to 92%. Logistic Regression 

remained stable, showing only a marginal increase to 85%. 
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Table 5 Gridsearch CV result on SMOTE SMOTE-based model 

Model Result Parameter Tuning Accuracy 

Random Forest 'bootstrap': True, 'max_depth': None, 'min_samples_leaf': 1, 

'min_samples_split': 2, 'n_estimators': 100 

95 % 

Logistic Regression 'C': 0.1, 

'max_iter': 1000, 'solver': 'lbfgs' 

85 % 

Decision Tree 'criterion': gini, 

'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2 

92 % 

Gradient Boosting 'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 100 95 % 

KNN 'metric': 'manhattan', 'n_neighbors': 3, 'p': 1, 'weights': 'distance' 88 % 

 

The efficacy of the SMOTE and tuning algorithms can be observed in Figure 10. Overall, this 

two-step optimization process successfully maintained the high accuracy of the ensemble models while 

significantly improving the performance of the KNN model. 

 
Figure 10 Comparison result of before and after tuning on SMOTE based model 

 

Figure 11 Confusion Matrix on Random Forest model 

and hyperparameter tuning on SMOTE-based model 

 

 
Figure 12 Confusion Matrix on the Decision Tree model 

and hyperparameter tuning on SMOTE-based model 

 

The confusion matrices for Random Forest (Figure 11) and Decision Tree (Figure 12) show that 

both models perform well in classifying both classes. However, a key difference emerges in their 

misclassification patterns, particularly in their ability to correctly predict the minority class. 

The classification reports (Figures 11 and 12) detail the precision, recall, and F1-score for each 

model. This finding suggests that SMOTE effectively enhanced the models' ability to identify the 

minority class while maintaining strong performance on the majority class. 
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Figure 13 Classification Report on Random Forest model 

and hyperparameter tuning on SMOTE-based model 

 
Figure 14 Classification Report on Decision Tree model 

and hyperparameter tuning on SMOTE-based model 

The classification reports for each model in Figures 13 and 14 provide a comprehensive account 

of precision, recall, and F1 scores. The reports reveal a substantial increase in recall for the minority 

class compared to the pre-SMOTE results. This finding suggests that SMOTE effectively enhanced 

the models' ability to identify the minority class while maintaining strong performance on the majority 

class. 

Despite a slight decrease in overall decision tree accuracy, the increase in minority class recall 

indicates that the trade-off improves the class-balanced prediction. This outcome aligns perfectly with 

the primary goal of SMOTE, which is to enhance the representation and detection of infrequent classes. 

Table 6 The accuracy results of tuning before and after SMOTE  

Model Accuracy Tuning Accuracy Tuning + Smote 

Random Forest 96 % 95 % 

Logistic Regression 84 % 85 % 

Decision Tree 96 % 92 % 

Gradient Boosting 93 % 95 % 

KNN 90 % 88 % 

To provide a comprehensive overview, a comparative analysis was conducted between the pre- 

and post-SMOTE conditions, utilizing both the tuned and untuned models. The summary of these 

results is presented in Table 6. 

Figure 15 shows the changes in accuracy across all conditions. The findings indicate that while 

certain models may exhibit a modest decline in accuracy following SMOTE, this is an acceptable 

trade-off for the crucial gain in recall for the minority class. In both scenarios (with and without 

SMOTE), Random Forest and Gradient Boosting consistently performed best. 

 
Figure 15 Overall accuracy comparison 
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3.4   Discussion 

Although some models, such as Logistic Regression, demonstrated a slight decline in accuracy 

following the implementation of SMOTE, this is an acceptable trade-off in a clinical context. In clinical 

prediction tasks, the primary concern is recall, since missing a recurrence case (false negative) could 

delay intervention and lead to severe consequences. Therefore, an improvement in recall for the 

minority class justifies the minor reduction in overall accuracy, highlighting the importance of 

prioritizing sensitivity over general performance metrics in medical applications. 

 
Figure 16 Top 10 Feature importance of the Random Forest model 

The Random Forest and Gradient Boosting models consistently demonstrated superior 

performance across all scenarios. These algorithms not only achieved high accuracy on the original 

dataset but also remained stable after SMOTE and hyperparameter tuning, confirming their robustness 

and generalizability. Their ability to capture complex patterns, including subtle variations in minority 

class data, reinforces their suitability for supporting clinical decision-making systems. 

From a practical standpoint, integrating such models into clinical workflows could facilitate 

early screening and risk stratification. For example, patients predicted as high risk for recurrence could 

be prioritized for follow-up imaging or laboratory testing, even in hospitals with limited specialist 

availability. Moreover, since the models provide interpretable outputs such as feature importance 

rankings, clinicians could better understand which variables, such as TSH, T3, and T4 levels, most 

influence recurrence predictions. This interpretability increases the likelihood of adoption in clinical 

environments, where transparency and explainability are critical for trust and confidence 

accountability. 

To enhance model interpretability, feature importance analysis was conducted using the top-

performing Random Forest algorithm. As illustrated in Figure 16, the sequence of features is 

determined by their impact on model decision-making. 
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The feature with the highest importance value is regarded as the leading indicator in 

classification. This analysis facilitates understanding of the model's internal processes or model 

transparency and provides practical insights applicable to real decision-making scenarios, such as 

feature selection or expert system development. 

 

4   Conclusion 

This research highlights the effectiveness of machine learning, particularly ensemble models, in 

predicting thyroid disorder recurrence. It demonstrates that the predictive performance of imbalanced 

medical datasets can be substantially enhanced by adopting a structured experimental approach that 

incorporates SMOTE-based resampling to address class imbalance and GridSearchCV for 

hyperparameter optimisation. Of the five algorithms evaluated, Logistic Regression, K-Nearest 

Neighbours, Decision Tree, Random Forest, and Gradient Boosting, the ensemble methods performed 

consistently better than the others, achieving accuracy rates above 93% across different conditions. 

These models also demonstrated superior sensitivity to the minority class, a critical factor in medical 

applications. Furthermore, feature importance analysis revealed which clinical attributes contributed 

most to prediction outcomes, thereby supporting both model interpretability and clinical relevance. 

The findings, however, are based on a single publicly available dataset, which may limit the 

generalizability of the results to different patient populations or clinical settings. The retrospective 

nature of the dataset also means that potential confounding variables or unmeasured risk factors were 

not included. In addition, although SMOTE improved class balance, synthetic oversampling may 

introduce artifacts or patterns that are not representative of the true patient population. 

To enhance the generalizability of these findings, future research should use larger, multi-center 

datasets that more accurately reflect diverse patient demographics and clinical conditions. 

Additionally, exploring deep learning or hybrid approaches that combine multimodal data, such as 

structured data with imaging or genomic results, could lead to further improvements in predictive 

performance accuracy. From a clinical perspective, the proposed models hold promise for integration 

into decision-support systems, enabling earlier identification of high-risk patients and supporting 

follow-up protocols more efficiently, especially in hospitals with limited resources. 
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