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Abstract

This research evaluates and compares the performance of five machine learning algorithms (Logistic
Regression, K-Nearest Neighbors, Decision Tree, Random Forest, and Gradient Boosting) in
predicting thyroid disease recurrence using patient data. The analysis was conducted on the Thyroid
Disease Dataset from the UCI Machine Learning Repository. The methodology includes data
preprocessing, normalization, and class balancing with the Synthetic Minority Over-sampling
Technique (SMOTE). Additionally, hyperparameter tuning was conducted using GridSearchCV to
optimize model performance. The results demonstrate that ensemble-based models, specifically
Random Forest and Gradient Boosting, consistently outperform the other algorithms in terms of
accuracy and robustness. These models achieve 95-96% accuracy across various scenarios.A key
finding is that SMOTE significantly improves recall for minority classes, highlighting its value in
imbalanced medical datasets.
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1 Introduction

Thyroid dysfunction is among the most prevalent endocrine disorders worldwide, second only
to diabetes. An estimated that 300 million cases of thyroid dysfunction are currently present globally
[1]. A significant aspect of this disorder is the prevalence of undiagnosed cases, with approximately
50% of affected individuals remaining unaware of their condition [2]. This phenomenon underscores
the critical nature of thyroid disorders as a public health concern that frequently eludes detection and
awareness [3]. Early detection is of paramount importance, as the symptoms of thyroid disorders are
often non-specific and may resemble those of other common conditions, such as fatigue or stress [4].

The thyroid gland, the largest endocrine gland in the human body, is located in the neck and
plays an important role in regulating the body's metabolism [5]. The thyroid gland produces two main
hormones, T3 (tritodothyronine) and T4 (thyroxine), which regulate the metabolic rate of cells and
affect nearly all organs of the body [6]. An imbalance in the levels of these hormones can lead to two
main conditions: hyperthyroidism (excess hormones) and hypothyroidism (deficiency of hormones).
Each of these conditions can have a significant impact on the quality of life of the sufferer [7]. The
symptoms associated with this condition can include sleep disturbances, mood swings, chronic fatigue,
and serious complications in pregnancy [8]. The prevalence of thyroid disorders is notably high,
particularly among the productive age group, and is more prevalent in women [9]. A multitude of
factors, including hormonal, genetic, and immunological elements, have been identified as
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contributing to the development of these disorders [10]. However, delayed diagnosis remains a
pervasive issue in numerous healthcare facilities, particularly in regions with constrained diagnostic
resources [11]. It is noteworthy that many patients only become aware of their condition after the
emergence of significant complications that necessitate additional treatment. Consequently, there is an
imperative for initiatives aimed at enhancing access to precise and economical diagnostic techniques.

One of the most frequently employed diagnostic methods in contemporary medicine is the Fine
Needle Aspiration Biopsy (FNAB), which entails the extraction of thyroid tissue samples for
subsequent analysis [12]. Despite its notable efficacy, this method is subject to certain limitations,
including a reported accuracy of approximately 62.2%, which necessitates validation through
histopathological examination, as the prevailing standard of truth. Furthermore, the procedure is
considered to be invasive and necessitates the expertise of trained medical professionals, whose
availability is not guaranteed in all healthcare settings. This underscores the necessity for a more
pragmatic, effective, and dependable solution, particularly in resource-limited settings [13].In recent
years, the application of machine learning technology in the medical field has demonstrated
considerable potential, particularly in the diagnosis of diseases that involve complex data analysis,
such as thyroid disorders [14]. The utilization of patient medical data, including TSH, T3, T4, age,
gender, and medical history, enables the training of machine learning algorithms to discern patterns
that are imperceptible to conventional observation [15]. This model has the capacity to provide precise
and automated predictions of thyroid function status, even in circumstances where data is incomplete
or variable, thus making it an optimal solution for supporting the clinical decision-making process
[16].

Recent advances in machine learning enable the development and assessment of that can detect
thyroid dysfunction and recurrence with greater accuracy. However, medical datasets often
characterized by skewed class distributions, with positive cases such as recurrence being significantly
underrepresented. This imbalance can lead to models that are biased and fail to detect critical but rare
cases. To address this issue, synthetic data balancing techniques such as SMOTE (Synthetic Minority
Over-sampling Technique) can be employed to improve minority class recall [17].In addition to class
balancing, optimising the performance of an algorithm requires the systematic tuning of its
hyperparameters. Default hyperparameters are rarely optimal for datasets with different distributions
and noise levels. Techniques such as GridSearchCV enable the systematic exploration of different
hyperparameter combinations to identify the optimal model configuration, which can significantly
impact the accuracy of predictions, especially in sensitive medical fields [18].

Due to the varying capabilities and learning mechanisms of different machine learning
approaches, it is essential to conduct a comprehensive comparative analysis of multiple models to
determine which algorithm exhibits the highest performance, stability, and generalization capacity
when applied to medical datasets. Each model category employs a distinct strategy for learning from
data [19]. Linear models, such as logistic regression, are ideal for problems where the relationship
between features and outcomes is approximately linear. These models offer interpretability and
computational simplicity. In contrast, distance-based methods such as KNN rely on the proximity of
data points in feature space [20]. This can be effective for non-linear relationships, but the method is
often sensitive to noise and computationally expensive in large datasets. Rule-based classifiers, such
as decision trees, provide intuitive if-then decision logic, enabling model transparency and ease of
interpretation; however, they are prone to overfitting, especially when left unpruned. Finally, ensemble
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learning methods, including Random Forest and Gradient Boosting, aggregate multiple weak learners
to form a robust model that can capture complex patterns and interactions among features [21]. These
ensemble techniques are renowned for their ability to mitigate overfitting and enhance predictive
accuracy, rendering them highly suitable for heterogeneous and high-dimensional data, common in
medical diagnostics.

Recent studies have further emphasized the importance of handling class imbalance and
optimization strategies in thyroid disease prediction. Clark et al [22] demonstrated that Random Forest
consistently outperformed other classifiers, with its performance enhanced through SMOTE and
hyperparameter tuning, highlighting the importance of these optimization techniques. Similarly, Atay
et al [23] introduced a hybrid model combining association rule mining with classification algorithms,
which yielded interpretable and highly accurate predictions for differentiated thyroid cancer
recurrence. Reinforcing this point, another investigation by Agarwal et al [24] also applied SMOTE
with conventional classifiers such as SVM, KNN, and Random Forest, reported notable gains in
accuracy and recall, further reinforcing the significance of oversampling in medical datasets.

Despite these advancements, existing work often remains limited to evaluating a single algorithm
or does not systematically compare model performance across different preprocessing and tuning
conditions. This research contributes by conducting a comprehensive comparative evaluation of five
representative algorithms, explicitly analyzing their behavior under both balanced and imbalanced data
conditions, and before and after hyperparameter optimization. In doing so, the study not only
consolidates prior evidence but also clarifies how different algorithms respond to balancing and tuning
strategies, thereby offering methodological insights and practical implications for developing clinical
decision support systems for predicting thyroid disorder recurrence.

2 Research Methods

The methodological framework employed in this research follows a structured, data-centric
strategy that is aimed at effectively addressing the critical issue of data imbalance. As shown in Figure
1, the framework consists of a series of sequential stages, starting with data acquisition and ending
with model evaluation. Each stage is designed to maintain statistical rigor, ensure reproducibility, and
support adaptability across various classification algorithms, particularly when applied to imbalanced
datasets.
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2.1 Dataset

This research utilizes the Thyroid Disease Dataset from the UCI Machine Learning Repository
the Thyroid Disease Dataset [25]. This dataset has been used in many previous research studies,
particularly those focusing on the classification of thyroid disease. It contains the medical information
of 364 patients, with 17 attributes reflecting their clinical condition related to thyroid disorders.

The dataset comprises both numerical and categorical attributes. One of the main numerical
attributes is age, ranging from 15 and 82 years. The categorical attributes encompass patient
demographic and medical history information, such as gender (M for male, F for female), smoking
status (yes or no), and smoking history. A detailed summary of all attributes, including their respective

data types and values, is presented in Table 1.
Table 1 Dataset Specification

No Column Name Data Type Possible Value
1 Age Integer 15-82

2 Gender Categorical M,F

3 Smoking Categorical No, Yes

4 Hx Smoking Categorical No, Yes

17 Reccured Categorical No, Yes

The main target variable for classification is the 'Recurred' column, which indicates whether or
not the patient has experienced a recurrence of thyroid disease. This attribute is binary coded, where
“Yes’ indicates a recurrence of thyroid disease and ‘No’ indicates no recurrence. In addition to the
attributes shown in the above table, the dataset includes laboratory information relating to thyroid
hormones, such as TSH, T3 and T4. As changes in these hormone levels are often early indicators of
thyroid dysfunction, they are critical predictors in the classification process.

2.2 Preprocessing Data

Data preprocessing was performed to ensure data integrity prior to training the machine learning
model. Duplicate data were removed using the drop duplicates() function, with the objective of
averting potential bias. Rows with missing values were removed using the dropna() function, thereby
ensuring the dataset's integrity and completeness. Subsequently, the categorical features were
converted to numeric values using the LabelEncoder from the scikit-learn library to ensure
compatibility with the machine learning algorithms. These steps are critical to guarantee that the data
utilized possesses a consistent and valid structure during the development of the classification model
[26].

2.3 Data Splitting

Subsequent to the completion of the data cleaning and transformation process, the subsequent
step is to divide the dataset into training data and testing data. The objective of this division is to
distinguish between data utilized for the construction of models and data employed for the objective
evaluation of model performance [27]. In this research, the dataset is divided into two parts using an
80/20 ratio, where 80% of the data is used for training and 20% for testing. The division was performed
using the train_test split function from the scikit-learn library. To maintain equilibrium in the
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proportion of the target class distribution between the training and testing data, the data is divided
through the implementation of a stratification technique based on the target label.

2.4 Feature Normalization

To ensure that all numerical features are on a comparable scale, a normalization process is
performed using the standardization method. This technique is implemented using StandardScaler
from the scikit-learn library, which scales each feature to have a mean of zero and a standard deviation
of one [28]. Mathematically, this standardization process can be expressed as (1).

g=2"F (1)
o

In this context, x denotes the original value of a feature, u signifies the mean value of the feature,
and o represents the standard deviation. The result of this transformation is the z value, which is a
standardized score that represents the extent to which the x value deviates from the mean in standard
deviation units.

2.5 Synthetic Minority Over-Sampling Technique (SMOTE)

The class imbalance in the target variable was addressed using SMOTE. SMOTE is an
oversampling technique that works by generating new synthetic samples in the minority class through
interpolation between existing data points, thereby ensuring a more balanced class distribution [29].
In this research, SMOTE was applied only to the training data, while the test set remained composed
solely of original data. This strategy is essential to prevent data leakage, ensuring that the model is
evaluated only on authentic, unseen data. By applying SMOTE only during training, the model learns
to better recognize the minority class without inflating performance metrics on the test set.

2.6 Data Modelling

In this research, five distinct machine learning algorithms were employed to construct
classification models aimed at predicting the recurrence status of thyroid disease. The selection of
models was based on the diversity of algorithmic approaches, ranging from linear models to tree-based
and ensemble methods. The applied algorithms include logistic regression, a basic linear model that is
efficient for binary data, as well as KNN, which operates based on the proximity of the distance
between samples [30]. Furthermore, a Decision Tree is employed as a tree-based model that can
explicitly capture nonlinear relationships [31]. Finally, to assess the performance of more complex
models known for their high accuracy and robustness to overfitting, two ensemble methods, namely
Random Forest and Gradient Boosting, were implemented [21]. All models were trained using
normalized and balanced data to ensure that the classification performance reflects the generalization
ability of the patterns in the data.

2.7 Model Evaluation

The evaluation of model performance was conducted using four primary metrics: accuracy,
precision, recall, and F1-score. They were chosen because they provide a comprehensive assessment
of the performance of the classification model, particularly for imbalanced datasets [32].
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Accuracy is a metric that quantifies the proportion of correct predictions to the total number of
predictions made. Mathematically, accuracy is expressed by (2).

R ~ TP + TN -
WY = TP ¥ TN + FP + FN

TP (true positive) denotes the number of positive cases that were accurately predicted; TN (true
negative) signifies the number of negative cases that were correctly predicted, FP (false positive)
represents the number of negative cases that were erroneously predicted as positive, and FN (false
negative) indicates the number of positive cases that were inaccurately predicted as negative.

Precision is employed to evaluate the model's accuracy in predicting positive classes, defined as
the proportion of accurate positive predictions out of all positive predictions made. The precise formula
is calculated by (3).

TP

Precision = W (3)

Concurrently, recall measures the sensitivity of the model or its capacity to identify all true
positive cases. This is expressed by (4).

TP

Recall = ——
A= TP+ FN 4)

Given the inherent trade-off between precision and recall in information retrieval, a combined
metric of Fl-score is employed, representing the harmonic mean between precision and recall. In
instances where the distribution of the class is found to be uneven, the Fl-score provides a more
balanced assessment. This calculation can be performed using (5).

Precision - Recall 5
Fl-score = 2 5)

Precision + Recall
2.8 Hyperparameter Tuning

To attain optimal model performance, a hyperparameter was tuned using GridSearchCV. This
approach aims to identify the optimal combination of parameters by exhaustively searching of the
predefined parameter grid. The search process is executed with cross-validation, thereby ensuring that
the tuning results enhance not only the accuracy of the model on the training data but also its capacity
to generalize to data that has not been previously encountered [33]. The application of GridSearchCV
facilitates the calibration of models to enhance efficiency and accuracy, while mitigating the risks of
overfitting or underfitting.

3 Result And Discussion

This section presents the results of the data analysis and modeling, followed by an in-depth
discussion of the findings. The analysis phase began with Exploratory Data Analysis (EDA) to
investigate the characteristics and relationships between variables. Then, several machine learning
algorithms were developed using classification models. The models are evaluated based on their
performance before and after handling class imbalance using the SMOTE technique.

289



D., Ignasius et all Jurnal Masyarakat Informatika, 16(2), 2025

3.1 Feature Correlation Analysis

The analysis began with an exploratory phase to examine the dataset's fundamental
characteristics, encompassing the structure, the quantity of features, and the patterns of relationships
between variables. One method employed is the visualization of correlations between numeric features
in the form of a correlation heatmap, as illustrated in Figure 2. This visualization offers a
comprehensive overview of the degree of linear relationship between pairs of features.
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Figure 2 Correlation Feature

The heatmap revealed several highly correlated feature pairs. This finding suggests the
possibility of multicollinearity, which can compromise the stability and interpretation of the model,
particularly in linear models like logistic regression. Conversely, features that exhibit a strong
correlation with the target variable are strong candidates for predictive modeling. Consequently, this
correlation analysis is an initial basis for feature selection and understanding.

The heatmap analysis highlights potential multicollinearity, which can compromise the stability
and interpretation of the model, particularly when linearity-sensitive algorithms such as logistic
regression are employed. Strong positive correlations were notably observed between Stage and Age
(r=0.53), Stage and M (r = 0.68), T and N (r = 0.45), Response and N (r = 0.57), and Recurred and
Response (r = 0.70). These pairs indicate closely related variables that may convey redundant
information. In terms of their relevance to the prediction task, the 'Recurred' label showed strong
correlations with 'Risk' (r =—-0.73), "T' (r = 0.55), 'N' (r = 0.62), and 'Response' (r = 0.70), suggesting
that these variables play a significant role in determining recurrence. Conversely, several attributes
exhibited weak or negligible correlation with the target variable, including Pathology (r = 0.014),
Adenopathy (r = —0.18), and Physical Examination (r = —0.12). These uncorrelated features may
contribute little to model performance and could potentially be excluded during feature selection to
improve efficiency and reduce noise.

3.2 Result of Baseline Model

Next, the analysis focused on the class distribution of the target variable. As illustrated in Figure
3, there is a significant imbalance between the majority and minority classes. This imbalance is a
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common challenge in classification problems, as models tend to adopt a cautious approach by
predicting the majority class, which is statistically more dominant. Consequently, models frequently
fail to identify patterns within the minority class, which is frequently the class of interest. This
challenge is common in real-world applications, such as rare disease detection or fraud identification.

Distribution Class wihout Smote
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Figure 3 Class distribution of the baseline model

This imbalance can lead to misleading performance metrics. For example, a model may achieve
high overall accuracy simply by predicting the majority class, while its recall for the minority class
remains extremely poor. This necessitates specialized strategies to address the imbalance, such as the
SMOTE oversampling technique, which is detailed in the following section.

Table 2 Baseline model performance (without SMOTE)

Model Accuracy
Random Forest 96 %
Logistic Regression 85 %
Decision Tree 92 %
Gradient Boosting 93 %
KNN 82 %

To establish a baseline, an initial evaluation was conducted on the original, imbalanced dataset
without any hyperparameter tuning. Five classification models were tested under these conditions to
measure their out-of-the-box performance. The algorithms evaluated were Random Forest, Logistic
Regression, Decision Tree, Gradient Boosting, and KNN. All models were executed using default
parameters to establish an initial baseline before optimization.

Table 2 presents the accuracy results of each model when trained on the original data with default
parameters. The Random Forest algorithm achieved the highest performance, with an accuracy of 96%.
This was followed by the Gradient Boosting algorithm, which achieved an accuracy of 93%, and the
Decision Tree algorithm, which achieved an accuracy of 92%. The two models under consideration,
logistic regression and KNN, achieved lower accuracies of 85% and 82%, respectively. Random
Forests and Gradient Boosting tend to perform better than linear or distance-based models. This
phenomenon could be attributed to the ensemble's capacity to manage data complexity and variation
effectively. However, it should be noted that these results remain provisional, as they have not yet
accounted for factors such as parameter optimization or class imbalance management.
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Table 3 Result of Gridsearch CV on the baseline model

Model Result Parameter Tuning Accuracy

Random Forest 'bootstrap: False, 'max_depth': None, 'min_samples leaf': 1, 96 %
'min_samples_split": 5, 'n_estimators'": 50

Logistic Regression 'C': 0.1, 84 %
'max_iter': 1000, 'solver": 'Ibfgs'

Decision Tree 'criterion”: 'entropy', 'max_depth': None, 'min_samples_leaf": 2, 96 %
'min_samples_split": 10

Gradient Boosting 'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 50 93 %

KNN 'metric': 'manhattan’, 'n_neighbors": 15, 'p': 1, 'weights": 'distance’ 90 %

To enhance performance, a hyperparameter tuning procedure was performed on all five models
using GridSearchCV with cross-validation. As illustrated in Table 3, the optimal parameters for each
model are enumerated, along with the accuracy achieved after tuning on the original dataset. The
tuning results demonstrate substantial performance improvements across several models, particularly
KNN, which increased accuracy from 82% to 90%. Decision Tree also achieved 96% accuracy, a result
that aligns with Random Forest, which demonstrated consistent accuracy. Logistic regression showed
a modest decline in accuracy to 84%, while gradient boosting maintained its superior performance at
93%. The table provides details on optimized parameters, such as 'n_estimators' and 'max_depth' for
tree-based models, 'C' for Logistic Regression, and 'n_neighbors' and 'metric' for KNN.

The accuracy comparison after tuning is shown in Figure 4. The results clearly show that the
tree-based models, Random Forest and Decision Tree, achieved the highest performance on the
original, imbalanced dataset. This finding highlights the significant impact of parameter optimization,
which is crucial for maximizing a model's predictive capabilities and minimizing the risks of
overfitting or underfitting.

Comparison of Model Accuracy: Before vs After Hyperparameter Tuning

Before Tuning
After Tuning

Model

Figure 4 Comparison of the Accuracy of the baseline model before and after Hyperparameter Tuning

To better understand the model's predictive performance, the confusion matrices and
classification reports for the two top-performing models, Random Forest and Decision Tree, were
analyzed. Although both models achieved an identical accuracy of 96%, this metric alone can be
misleading on imbalanced datasets. Therefore, it was essential to evaluate their effectiveness in
identifying the minority class by examining additional metrics, namely precision, recall, and the F1-
score.
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Confusion Matrix - Random Forest Confusion Matrix - Decision Tree
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Figure 5 Confusion Matrix of Random Forest model and Figure 6 Confusion Matrix of the Decision Tree model
hyperparameter tuning on baseline model and hyperparameter tuning on the baseline model

The confusion matrices for the Random Forest and Decision Tree models are presented in
Figures 5 and 6, respectively. These matrices display the distribution of correct and incorrect
predictions for each class. This information is crucial for identifying the types of errors that the model
frequently makes, such as the tendency to misclassify minority classes as majority high False Negative
Rate.

Classification Report: Decision Tree

Classification Report: Random Forest
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accuracy .9589 73
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Figure 7 Classification Report of the Random Forest model Figure 8 Classification Report of the Decision Tree
and hyperparameter tuning on the baseline model model and hyperparameter tuning on the baseline model

Additionally, the classification report in Figures 7 and 8 provides a more detailed evaluation.
These reports break down the precision, recall, and Fl-score for each class. In the context of
imbalanced data, the recall for minority classes serves as a critical performance metric. The evaluation
results indicate that, while the overall accuracy is high, the recall for minority classes can be further
enhanced.

3.3 Result of SMOTE SMOTE-based Model

Figure 9 illustrates the effect of applying the SMOTE technique to the training data. It is evident
that the proportion of minority class samples has increased, resulting in a balanced distribution between
the two classes. rebalancing is expected to enhance the model's ability to learn the patterns of the
previously underrepresented minority class, thereby improving its predictive performance.
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Figure 9 Distribution class of training data on SMOTE based model

After rebalancing the training data with SMOTE, the five models were re-evaluated using their
original default hyperparameters. This step was performed to isolate the impact of class balancing on
model performance, independent of hyperparameter tuning. The resulting accuracies for each model

are presented in Table 3.
Table 4 Testing result on SMOTE based model

Model Accuracy
Random Forest 95 %
Logistic Regression 84 %
Decision Tree 92 %
Gradient Boosting 95 %
KNN 85 %

After retraining on the SMOTE-balanced data with default parameters, the ensemble models
maintained strong performance. Random Forest and Gradient Boosting both achieved 95% accuracy.
In contrast, the single Decision Tree's accuracy decreased from its previous high of 96% to 92%, while
Logistic Regression and KNN showed marginal improvements but still lagged behind the ensemble
methods. These results suggest that while ensembles are robust, the performance of simpler models
like Decision Tree can be sensitive to the synthetic data introduced by SMOTE. The application of
SMOTE fundamentally alters the distribution and characteristics of the training data. Consequently,
the hyperparameters that were optimal for the original, imbalanced dataset may no longer be effective
for the new, balanced dataset. Therefore, to ensure each model is fully optimized for the new data
structure, a final round of hyperparameter tuning is required. This re-tuning process is detailed in the
subsequent section.

Table 5 presents the final performance of each model after hyperparameter tuning on the
SMOTE-balanced dataset. The Random Forest and Gradient Boosting algorithms continue to
demonstrate high performance, with both achieving 95% accuracy. The KNN model demonstrates
enhanced performance following tuning, attaining 88% accuracy. Conversely, Decision Tree
demonstrated a decline in performance, from 96% (without SMOTE) to 92%. Logistic Regression
remained stable, showing only a marginal increase to 85%.
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Table 5 Gridsearch CV result on SMOTE SMOTE-based model

Model Result Parameter Tuning Accuracy

Random Forest 'bootstrap”: True, 'max_depth'": None, 'min_samples_leaf': 1, 95 %
'min_samples_split": 2, 'n_estimators': 100

Logistic Regression 'C: 0.1, 85 %
'max_iter': 1000, 'solver": 'lbfgs'

Decision Tree 'criterion': gini, 92 %
'max_depth': None, 'min_samples leaf’: 1, 'min_samples_split': 2

Gradient Boosting 'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 100 95 %

KNN 'metric’: 'manhattan’, 'n_neighbors'": 3, 'p": 1, 'weights': 'distance’ 88 %

The efficacy of the SMOTE and tuning algorithms can be observed in Figure 10. Overall, this
two-step optimization process successfully maintained the high accuracy of the ensemble models while
significantly improving the performance of the KNN model.

Comparison of Model Accuracy: Before vs After Hyperparameter Tuning

Before Tuning
After Tuning
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Figure 10 Comparison result of before and after tuning on SMOTE based model
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Figure 11 Confusion Matrix on Random Forest model Figure 12 Confusion Matrix on the Decision Tree model
and hyperparameter tuning on SMOTE-based model and hyperparameter tuning on SMOTE-based model

The confusion matrices for Random Forest (Figure 11) and Decision Tree (Figure 12) show that
both models perform well in classifying both classes. However, a key difference emerges in their
misclassification patterns, particularly in their ability to correctly predict the minority class.

The classification reports (Figures 11 and 12) detail the precision, recall, and F1-score for each
model. This finding suggests that SMOTE effectively enhanced the models' ability to identify the
minority class while maintaining strong performance on the majority class.
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Classification Report: Decision Tree after SMOTE

Classification Report: Random Forest after SMOTE
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Figure 13 Classification Report on Random Forest model ~ Figure 14 Classification Report on Decision Tree model
and hyperparameter tuning on SMOTE-based model and hyperparameter tuning on SMOTE-based model

The classification reports for each model in Figures 13 and 14 provide a comprehensive account
of precision, recall, and F1 scores. The reports reveal a substantial increase in recall for the minority
class compared to the pre-SMOTE results. This finding suggests that SMOTE effectively enhanced
the models' ability to identify the minority class while maintaining strong performance on the majority
class.

Despite a slight decrease in overall decision tree accuracy, the increase in minority class recall
indicates that the trade-off improves the class-balanced prediction. This outcome aligns perfectly with
the primary goal of SMOTE, which is to enhance the representation and detection of infrequent classes.

Table 6 The accuracy results of tuning before and after SMOTE

Model Accuracy Tuning Accuracy Tuning + Smote
Random Forest 96 % 95 %
Logistic Regression 84 % 85%
Decision Tree 96 % 92 %
Gradient Boosting 93 % 95 %
KNN 90 % 88 %

To provide a comprehensive overview, a comparative analysis was conducted between the pre-
and post-SMOTE conditions, utilizing both the tuned and untuned models. The summary of these
results is presented in Table 6.

Figure 15 shows the changes in accuracy across all conditions. The findings indicate that while
certain models may exhibit a modest decline in accuracy following SMOTE, this is an acceptable
trade-off for the crucial gain in recall for the minority class. In both scenarios (with and without
SMOTE), Random Forest and Gradient Boosting consistently performed best.

Model Accuracy Comparison: Before Tuning vs After Tuning vs After SMOTE

10

0.8

0.6

Accuracy

04

Condition

0.2 Basic Model
Accuracy_after_SMOTE
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0.0
& (}.o"" {S\t\ &

Model

Figure 15 Overall accuracy comparison
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3.4 Discussion

Although some models, such as Logistic Regression, demonstrated a slight decline in accuracy
following the implementation of SMOTE, this is an acceptable trade-off in a clinical context. In clinical
prediction tasks, the primary concern is recall, since missing a recurrence case (false negative) could
delay intervention and lead to severe consequences. Therefore, an improvement in recall for the
minority class justifies the minor reduction in overall accuracy, highlighting the importance of
prioritizing sensitivity over general performance metrics in medical applications.

Top 10 Feature Importance - Random Forest

Response

Risk

Age

Feature

Adenopathy

Stage

Focality

Gender

Thyrond Function

0.00 0.05 0.10 0.15 0.20 0.25 0.30
|mpﬂ|’tance Score

Figure 16 Top 10 Feature importance of the Random Forest model

The Random Forest and Gradient Boosting models consistently demonstrated superior
performance across all scenarios. These algorithms not only achieved high accuracy on the original
dataset but also remained stable after SMOTE and hyperparameter tuning, confirming their robustness
and generalizability. Their ability to capture complex patterns, including subtle variations in minority
class data, reinforces their suitability for supporting clinical decision-making systems.

From a practical standpoint, integrating such models into clinical workflows could facilitate
early screening and risk stratification. For example, patients predicted as high risk for recurrence could
be prioritized for follow-up imaging or laboratory testing, even in hospitals with limited specialist
availability. Moreover, since the models provide interpretable outputs such as feature importance
rankings, clinicians could better understand which variables, such as TSH, T3, and T4 levels, most
influence recurrence predictions. This interpretability increases the likelihood of adoption in clinical
environments, where transparency and explainability are critical for trust and confidence
accountability.

To enhance model interpretability, feature importance analysis was conducted using the top-
performing Random Forest algorithm. As illustrated in Figure 16, the sequence of features is
determined by their impact on model decision-making.
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The feature with the highest importance value is regarded as the leading indicator in
classification. This analysis facilitates understanding of the model's internal processes or model
transparency and provides practical insights applicable to real decision-making scenarios, such as
feature selection or expert system development.

4 Conclusion

This research highlights the effectiveness of machine learning, particularly ensemble models, in
predicting thyroid disorder recurrence. It demonstrates that the predictive performance of imbalanced
medical datasets can be substantially enhanced by adopting a structured experimental approach that
incorporates SMOTE-based resampling to address class imbalance and GridSearchCV for
hyperparameter optimisation. Of the five algorithms evaluated, Logistic Regression, K-Nearest
Neighbours, Decision Tree, Random Forest, and Gradient Boosting, the ensemble methods performed
consistently better than the others, achieving accuracy rates above 93% across different conditions.
These models also demonstrated superior sensitivity to the minority class, a critical factor in medical
applications. Furthermore, feature importance analysis revealed which clinical attributes contributed
most to prediction outcomes, thereby supporting both model interpretability and clinical relevance.

The findings, however, are based on a single publicly available dataset, which may limit the
generalizability of the results to different patient populations or clinical settings. The retrospective
nature of the dataset also means that potential confounding variables or unmeasured risk factors were
not included. In addition, although SMOTE improved class balance, synthetic oversampling may
introduce artifacts or patterns that are not representative of the true patient population.

To enhance the generalizability of these findings, future research should use larger, multi-center
datasets that more accurately reflect diverse patient demographics and clinical conditions.
Additionally, exploring deep learning or hybrid approaches that combine multimodal data, such as
structured data with imaging or genomic results, could lead to further improvements in predictive
performance accuracy. From a clinical perspective, the proposed models hold promise for integration
into decision-support systems, enabling earlier identification of high-risk patients and supporting
follow-up protocols more efficiently, especially in hospitals with limited resources.
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