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Abstract

This research presents a Transformer-based encoder-decoder model for medical image captioning
that incorporates semantic medical knowledge through Concept Unique ldentifiers (CUIs) from the
Unified Medical Language System (UMLS). The proposed architecture employs a Swin Transformer
as the visual encoder and GPT-2 as the language decoder, with CUI integration applied during both
caption preprocessing and decoding. Experiments were conducted on the ROCOv2 dataset under two
scenarios. baseline (raw captions) and enhanced (CUI-enriched captions). Quantitative evaluation
using BLEU, ROUGE, CIDEr, and BERT-based metrics demonstrates that the CUI-integrated model
outperforms several baselines, including CNN-LSTM, ViT-BioMedLM, and DeepSeek-VL, achieving
a BLEU-1 score of 0.371, ROUGE-L of 0.305, CIDEy of 0.275, and PubMedBERTScore-F1 of 0.893.
These results represent a 20.1% improvement in BLEU-1 and a 39.9% increase in ROUGE-L
compared to the best-performing model before caption preprocessing (ViT-GPT2 with BLEU-1 =
0.309, ROUGE-L = 0.218). Qualitative assessment by expert radiologists further confirms enhanced
diagnostic accuracy, descriptive completeness, and clinical relevance. This study introduces a novel
integration of medical semantic knowledge into captioning models, offering a scalable solution for
clinical decision support in resource-limited settings such as Indonesia.
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1 Introduction

Radiological imaging has become a cornerstone of modern clinical practice, providing critical
insights for diagnosis, treatment planning, and longitudinal disease monitoring. However, the global
demand for imaging services has surged at an unprecedented rate, far exceeding the availability of
trained radiologists, particularly for modalities requiring complex interpretation, such as CT and MRI.
This imbalance has led to heavier clinical workloads, longer turnaround times, and increased
susceptibility to diagnostic inaccuracies, often exacerbated by cognitive fatigue and environmental
pressures [1].

Recent findings highlight that radiologist burnout, marked by emotional exhaustion and
diminished diagnostic performance is closely linked to the growing volume and complexity of imaging
studies [1]. To address this, leading institutions such as the Radiological Society of North America
(RSNA) have advocated for the integration of artificial intelligence (Al) into radiology workflows.
Supported by empirical evidence [2], Al systems offer a promising solution to mitigate these
challenges by streamlining image analysis, reducing manual workload, and enhancing diagnostic
consistency.
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In particular, deep learning-based approaches have emerged as transformative tools in medical
imaging, with the potential to automate interpretation, reduce inter-observer variability, and highlight
clinically salient findings [2]. Among these, automated medical image captioning systems aim to
generate relevant textual descriptions directly from images, supporting reporting standardization,
reducing radiologist workload, and improving clinical decision support across diverse settings [3, 4].

Historically, CNN-LSTM architectures have dominated image captioning tasks. These models
utilize convolutional neural networks (CNN) to extract visual features, subsequently employing Long
Short-Term Memory (LSTM) networks to sequentially model language generation [5]. While effective
for generalized image captioning tasks, CNN-LSTM models present notable limitations, particularly
regarding their capability to handle long-range textual dependencies and accurately model complex
medical semantics [6]. These models typically struggle with accurately identifying rare pathological
findings or generating semantically precise descriptions for uncommon clinical scenarios.

Recent breakthroughs in deep learning have demonstrated that Transformer architectures, first
proposed by Vaswani et al. [7], outperform traditional CNN and RNN-based approaches due to their
superior ability in capturing global dependencies through self-attention mechanisms. On the vision
side, hierarchical designs such as the Swin Transformer [8], extend Vision Transformers (ViT) [9]
with shifted-window attention, yielding strong performance on high-resolution radiology images while
retaining computational efficiency. For language generation, several decoder-only models are
available. GPT-2 [10], GPT-Neo, LLaMA, BART, and T5 among them. GPT-2 remains attractive in
research settings because its moderate size (= 124 M-774 M parameters) and open licence permit end-
to-end fine-tuning. It excels at producing coherent long-form text but also exhibits well-known
drawbacks: a 1024-token context limit, a generic pre-training corpus that lacks domain-specific
terminology, and a tendency toward factual “hallucination”. These weaknesses motivate coupling
GPT-2 with external biomedical knowledge bases or switching to heavier encoder-decoder alternatives
(BART/TS) that offer stronger factual consistency at the cost of additional compute.

Despite the rapid progress of Transformer-based captioning models, a significant gap remains in
the explicit incorporation of structured medical knowledge into these frameworks. The Unified
Medical Language System (UMLS) provides a robust foundation to bridge this gap through its Concept
Unique Identifiers (CUIs), standardized identifiers linking over 200 biomedical terminologies such as
SNOMED CT and ICD-10 [11]. By anchoring generated terms to canonical medical concepts, CUIs
reduce synonym drift, resolve lexical ambiguity, and ensure consistency with standardized clinical
vocabularies. Prior studies have demonstrated that CUI-based integration enhances both retrieval
accuracy [12], named-entity recognition and linking [13], and even zero-shot medical diagnosis [14].
Empirical results further confirm these advantages: the ACapMed model attained a BLEU score of
42.28 % with CUI augmentation compared to 36.28 % using visual features alone [15], while ontology-
guided approaches by Zahra and Kate [16], and Zhang et al. [17] achieved higher alignment with
domain-standard terminology and improved understanding of clinical intent. This explicit ontology-
driven grounding strengthens clinical fidelity and terminological precision, establishing the core
novelty and semantic robustness of our proposed Transformer-based captioning framework.

This paper presents a novel Transformer-based encoder-decoder model specifically designed for
medical image captioning. The model leverages the Swin Transformer for image encoding and GPT-
2 for text decoding, and incorporates pooled Concept Unique Identifier (CUI) embeddings at the
vision-language fusion stage. Additionally, it is trained jointly with a caption-cleaning pipeline based
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on a large language model (LLM). A key contribution of this approach is the integration of CUIs
derived from the Unified Medical Language System (UMLS), which enhances the semantic accuracy
and clinical relevance of the generated captions. The proposed model is rigorously evaluated against
both a CNN-LSTM baseline and the state-of-the-art ViT-BioMedLM model [18], demonstrating
improved performance across multiple metrics and underscoring its potential clinical applicability.

2 Literature Review

Medical image captioning has evolved through several architectural paradigms, each
contributing to incremental improvements in semantic alignment and textual fluency. Early works
predominantly relied on CNN-RNN architectures, where convolutional neural networks (CNNs)
extract spatial features from images, and recurrent neural networks (RNNSs) or long short-term memory
(LSTM) units generate captions sequentially. Notable examples include the Show-Attend-Tell model
[19], which introduced soft visual attention mechanisms, and the ACapMed system [15], which
tailored CNN-LSTM pipelines to the biomedical domain. While effective in generating syntactically
correct captions, these models struggle to capture complex semantic dependencies and often
underperform in handling rare or clinically nuanced terminologies, limiting their clinical
interpretability.

To improve terminological accuracy and reduce hallucinations, template-based and phrasebook
models were proposed, such as PhraseAug [20], which augment captions using structured medical
vocabularies. Although these models increase precision and domain conformity, they rely heavily on
pre-defined structures, sacrificing flexibility and reducing the ability to generalize to previously unseen
or ambiguous clinical conditions. This rigidity hinders their scalability in real-world applications
involving diverse pathologies.

With the advent of Transformer-based architectures, a significant shift occurred in both visual
and textual representation learning. Vision Transformers (ViT) [9] and Swin Transformers [8] replaced
convolutional hierarchies with self-attention, enabling global receptive fields and hierarchical spatial
encoding, which are particularly beneficial for parsing high-resolution radiology images.
Simultaneously, autoregressive language models such as GPT-2 [10] and encoder-decoder models like
BART and T5 have demonstrated the ability to generate coherent and contextually rich narratives,
thanks to their multi-layer self-attention mechanisms that preserve long-range dependencies. These
models have been applied to radiology report generation, showing improved narrative coherence,
clinical phrasing, and alignment with expert-written summaries [21].

Beyond domain-specific transformer applications, recent advances in large-scale vision—
language pre-training have produced powerful multimodal models capable of unified understanding
and generation. BLIP [37] introduced a unified encoder—decoder framework that bootstraps noisy
image—text pairs for improved captioning and retrieval. DeepSeek-VL [38] extended this paradigm to
real-world multimodal reasoning using a hybrid high-resolution vision encoder and balanced cross-
modal training strategy. Qwen2-VL [36] further enhanced perceptual flexibility through dynamic
resolution processing and multimodal rotary position embeddings, enabling robust comprehension
across diverse image and video tasks. These developments illustrate the transition toward high-
resolution, general-purpose vision—language architectures that inspire domain-specific adaptations
such as the proposed Swin Transformer—GPT2 framework for radiology captioning.
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Despite these advances, most Transformer-based captioning systems remain data-driven, relying
on surface-level co-occurrence patterns rather than grounding output in medical ontologies. This leads
to semantic drift and poor handling of synonyms, abbreviations, or context-specific terminology. To
address this, recent efforts have focused on domain-specific vision-language models (VLMs), such as
BioMedLM [22], SAPBERT [23], and UmlIsBERT [24], which enrich biomedical embeddings using
external knowledge bases like the Unified Medical Language System (UMLS). For example,
UmlsBERT introduces semantic type embeddings to group medically related terms, while SAPBERT
performs self-alignment on synonymous biomedical entities across vocabularies, enhancing NER and
relation extraction tasks.

However, while these models excel in classification, retrieval, and entity linking, their
application to generative tasks such as captioning remains limited. Notably, research by Zhang et al.
[25] demonstrated that integrating UMLS-based graphs can significantly improve zero-shot medical
diagnosis. Similarly, Beam et al. [26] introduced Cui2Vec, an embedding trained on large-scale
multimodal data, showing performance gains in clinical prediction tasks. Yet, few studies have
systematically integrated Concept Unique Identifiers (CUIs) into end-to-end vision-to-text captioning
pipelines. Therefore, the integration of CUI representations within Transformer-based captioning
architectures presents a novel and promising research direction. By anchoring generated captions to
standardized medical concepts, such an approach offers the potential to improve not only lexical
fluency but also clinical correctness, terminological consistency, and semantic interpretability key
factors for real-world deployment in healthcare environments.

2.1 Evaluation Metrics

This study used five widely accepted evaluation metrics to assess the syntactic (BLEU, ROUGE,
CIDEr) and semantic (BERTScore, PubMedBERTScore) quality of generated captions:

1) BLEU

BLEU is a widely used automatic evaluation metric that measures the n-gram precision
between a generated caption and one or more reference captions, while incorporating a brevity
penalty (BP) to discourage overly short outputs that might achieve high precision by omitting
content. By evaluating overlapping n-grams of varying lengths (typically from unigrams to four-
grams), BLEU captures how closely the generated text aligns with reference expressions at the
lexical level. Measures n-gram precision with a brevity penalty [31]. The BLEU score is computed
as defined in equation (11).

BLEU = BP X exp (Xy=1 wy log (py) ) (1)

where BP is the brevity penalty, p, is the modified n-gram precision, and w,, are weights
typically set to uniform distribution.

2) ROUGE-L

ROUGE-L evaluates caption quality by measuring the Longest Common Subsequence (LCS)
between the generated caption and the reference caption. Unlike n-gram-based metrics, ROUGE-L
captures sentence-level structural similarity without requiring the matched words to be contiguous,
making it more robust to variations in phrasing while preserving word order. Evaluates the longest
sequence of words that appear in both captions in the same order [32], though not necessarily
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contiguously. The recall, precision, and F-measure components of ROUGE-L are formally defined
in equations (12 ) — (14).

LCS(c, 9)

Recall (RLCS) = m (12)
Precision (Pycs) = w (13)

2
ROUGE — L (Fygs) = A+F2) % Rics X Pics (14)

Rics + Prcs x B?

where LCS is longest common subsequence of candidate caption (c¢) with length m and
ground-truth caption (g) with length n. To ensuring a balanced trade-off between precision and

P F F
recall, = 25 when £ = L5
Rics Rics Prcs

3) CIDEr

CIDEr is designed to measure the consensus between a generated caption and a set of
reference captions by employing TF-IDF-weighted n-gram representations. Unlike BLEU and
ROUGE, CIDEr emphasizes n-grams that are frequent within a specific caption but relatively rare
across the entire dataset. Measures consensus between the generated caption and a set of reference
captions using TF-IDF weighting of n-grams, which reflects content relevance and diversity [33].
The CIDEr score is computed according to equation (15)

(15)

CIDET Score = IN_; w, <ﬁ21‘“ AT )
)

mep [*][a" |

where the formula represents the TF-IDF vector for the n-grams in the candidate text (g™ (c;))
and reference text (9" (g;;))-

4) BERTScore

BERTScore evaluates caption quality at the semantic level by leveraging contextualized token
embeddings obtained from large pre-trained transformer models, such as microsoft/deberta-xlarge-
mnli. Instead of relying on exact word overlap, BERTScore computes pairwise cosine similarities
between tokens in the generated caption and the reference caption, enabling the capture of
paraphrasing and semantic equivalence [34]. The cosine similarity between token embeddings is
defined in equation (16), while token-level precision, recall, and F1-score are computed using
equations (17) — (19) :

ST

ijl'

Cosine Similarity(X;, x;) = — 16
y(% %) = i (16)
1 T
Pperr = EZ@@? MaXyexXj Xi (17)
_ 1 T
Rpgrr = minEx maxg;ezXi Xj (18)
PBERT ' RBERT
Fpgrr = 2 57— ——— (19)

PBERT+RBERT
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where x denote the reference text and £ the predicted text. The terms [|%;|| and ||x;|| represent
the norms (or lengths) of their respective embedding vectors. Here, x; and £; refer to the embedding
vectors of the i-th and j-th tokens from the reference and predicted texts, respectively, and the
similarity between them is computed using cosine similarity.

5) PubMedBERTScore (F1)

PubMedBERTScore extends BERTScore by employing domain-specific biomedical
embeddings derived from the PubMedBERT model, such as microsoft/BiomedNLP-PubMedBERT-
base-uncased-abstract. While maintaining the same precision, recall, and F1-score formulation defined
in Equations (17)—(19), PubMedBERTScore operates within a biomedical embedding space that more
accurately represents clinical terminology and domain-specific semantics [35], which better captures
clinical semantics.

3 Research Methods

This section describes the proposed methodology for medical image captioning, which integrates
visual feature extraction and language generation within a unified encoder—decoder framework. The
model is designed to effectively capture both hierarchical visual representations from radiology images
and domain-specific semantic information required for generating clinically meaningful captions. The
overall architecture of the proposed model is illustrated in Figure 1, which depicts the integration of a
Swin Transformer as the image encoder and GPT-2 as the autoregressive text decoder, augmented with
Concept Unique Identifier (CUI) embeddings derived from UMLS.

ENCODER yinwuwxsc GPT-2 (Radford dkk., 2019) DECODER OUTPUT

ct x - ray showing bilateral right - sided pleural effusion <eos>

i Swin Transformer Block 332
Swin Transformer Block i

3 A U BIBIRIRINII e |
| Patch Merging || g .8 8 N B § § ) O
".:::::;::Zf-'.’.'.'.::;:'.i%H xviati x40l (Image Shsiier t
. i Embedding) Cl=1948, 128D Linear & Softmax
| |Swin Transformer Block ! x6 '_‘D Y e
‘ : 1| cul €=[107,501, -~ =
A : :_} = Embedding | 882.0.0.0.0.0," ( Add & Layer Norm k_—l\
Patch Merging ' D Lookup 0,0,0, 0] ! : ..
___________________ ] | ain A-ray
_____________________ L VaH x AW x 2C o [:] ec ™ FTN | (1306645
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Patch Merging P Value | ! Pleural
(FN— TS——— 3 D ™M Query (@) I effusion
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Figure 1 The proposed architecture for medical image captioning integrates Swin Transformer as the image encoder and
GPT-2 as the autoregressive decoder, augmented with Concept Unique Identifier (CUI) embeddings from UMLS to
enhance semantic grounding. The encoder extracts hierarchical features from radiology images, while the decoder
generates text using both image embeddings and CUISs via cross-attention.
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This study employs a Transformer-based model with encoder-decoder architecture tailored for
medical image captioning. The encoder utilizes the Swin Transformer, which effectively captures
hierarchical visual features by dividing the input image into non-overlapping patches and progressively
merging them through successive transformer layers. This hierarchical representation allows the model
to extract multi-scale visual context critical for understanding complex medical imagery.

The extracted visual features are then passed to a GPT-2 decoder, an autoregressive language
model capable of generating coherent and semantically rich captions. The encoder and decoder are
integrated using HuggingFace’s VisionEncoderDecoderModel, where cross-attention mechanisms
enable the decoder to attend to relevant visual information during caption generation. This setup
ensures effective fusion of visual and textual modalities for producing accurate and context-aware
medical descriptions.

3.1 Dataset and Preprocessing

The performance of medical image captioning models is strongly influenced by the quality,
diversity, and semantic alignment of the underlying data, particularly in clinical domains where visual
patterns must be accurately mapped to meaningful textual descriptions. The inclusion of standardized
Concept Unique Identifier (CUI) annotations enables explicit semantic grounding of captions in
biomedical knowledge, which is essential for improving clinical relevance and interpretability. An
overview of representative samples from the dataset, illustrating medical images paired with their
corresponding captions and annotated CUIs, is presented in Figure 2 to provide qualitative insight into
the diversity and structure of the data used in this work.

ID: ROCOV2_2023_train_032041

Capt: Computed tomography of the abdomen

and pelvis with intravenous ID: ROCOV2_2023_train_047471
contrast demonstrating cannulation ID: ROCOv2_2023_train_027786
of the right distal ureter with a ID: ROCOV2_2023 _train_057161 Capt: Orthopantamograph showing, missing - -7
Foley catheter extending 1 cm into permanent mandibular right and left Capt: Coronal maximum intensity
the distal ureter. Capt: CT imaging of the head demonstrated ID: ROCOV2 2023 train 001748 lateral incisors and permanent projection reconstruction, showing
brain metastasis. - - - manxillary left lateral incisor the origin of the two anomalous.
CUI: C0040405 ; C0000726 ; CO030797 Capt: Unenhanced BT section showing crypts arteries from the descending aorta
; C0085590 CUI: C0040405 ; C0220650 ossification within a mass located (arrows).
Ref CUI: X-Ray Computed Tomography;  Ref CUI: X-Ray Computed Tomography; in the sellar and suprasellar CUI: C1306645 ; CO037303 ; C0024687
Abdomen; catheter device; Pelvis Metastatic malignant neoplasm to cisterns ; C0447274 ; C0024947 CUI: CO040405 ; CO011666
y brain Ref_CUI: Entire maxillary right Ref_CUI: X-Ray Computed Tomography;

v []
" CUI: C0040405 ; C0230054 |ateral incisor tooth; Bone

Descending aorta

structure of cranium; Mandible;
Plain x-ray; Maxilla \ - ~ i

Ref_CuUI: Structure of suprasellar
region; X-Ray Computed Tomography

N\
\
)
\
'
\
)
|

Figure 2 Sample images and captions from the ROCOvV2 dataset [ 18] with annotated Concept Unique Identifiers (CUIs).
The examples span multiple modalities including CT scan, MRI, X-ray, and ultrasonography, demonstrating the diversity
of anatomical regions and clinical contexts. Each caption is paired with its corresponding CUIs and reference concepts.

This study utilized the ROCOv2 (Radiology objects in context version 2) [ 18] dataset comprising
80.080 samples (60.163 train, 9.945 validation, and 9.972 test) across X-ray, CT, MRI, PET,
Ultrasound, Angiography, Mammography, and Fluoroscopy modalities. Images were resized,
normalized, and segmented into patches compatible with Swin Transformer inputs. MedCAT
facilitated the annotation of CUISs in captions, aligning concepts to token spans. Dataset filtering was
applied to focus on chest and brain anatomical regions, ensuring consistency and relevance in
evaluations.
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3.2 Image Preprocessing

Prior to model training, all medical images were processed through a standardized preprocessing
pipeline to ensure input consistency and improve training stability across diverse imaging modalities.
Images were first resized to a uniform spatial resolution to meet the fixed input requirements of the
vision encoder, thereby minimizing variability introduced by heterogeneous acquisition settings.
Intensity normalization was subsequently applied to harmonize pixel value distributions, facilitating
stable gradient propagation and more efficient model convergence. Following these steps, images were
segmented into non-overlapping patches compatible with the Swin Transformer architecture, enabling
hierarchical feature extraction through localized self-attention and progressive patch merging. This
preprocessing strategy ensures seamless integration with the Swin Transformer while preserving
clinically relevant visual information essential for accurate medical image captioning.

3.3 Caption and CUI Annotation

To enhance semantic grounding and domain-specific understanding, this study incorporate
Concept Unique Identifiers (CUIs) extracted from the captions using MedCAT [27], which annotates
medical concepts based on the Unified Medical Language System (UMLS). Tokenization is applied
to align CUIs with the corresponding textual spans in captions. The CUIs are incorporated using an
early fusion strategy, in which they are appended directly to the caption text during training. This
method reinforces the model’s understanding of medical terminology and contributes to improved
clinical relevance and interpretability of the outputs.

3.4 Caption Cleaning with LLM-based Pre-processing

To ensure that textual inputs are syntactically clean, clinically precise, and semantic consistency,
all raw captions were normalised with a large-language-model (LLM) pipeline based on
google/gemini-2.5-flash-preview-05-20. The detailed prompt is provided in the Appendix.

1) Cleaning Stage Objectives

The cleaning stage pursues three objectives:
a. Noise removal: strip non-ASCII artifacts, figure references, case IDs, and citations.
b. Clinical focus: retain anatomical/pathological findings and quantitative measures while
discarding procedural metadata.
c. Semantic alignment: leverage UMLS CUIs as context so that medically relevant terms are
preserved or clarified.

2) API workflow

For each (image, caption, CUI) triple this study issue a single LLM call with a structured
prompt. The LLM returns a “cleaned caption” that is (i) one-two sentences, (ii) free of irrelevant
tokens, and (iii) still anchored to the supplied CUIs. This study cache the response and fall back to
the original caption if the LLM score fails a simple length/ASCII sanity check.

The automated caption cleaning step substantially reduces the presence of outliers and overly
long captions across all dataset splits. As illustrated in the histograms in Figure 3, the average
caption length in the merged set decreases from approximately 22 words to 18 words after cleaning.
This corresponds to a reduction of approximately 26% in length variance, effectively producing
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more uniformly distributed caption lengths while preserving essential clinical semantics. The
sharper distribution peak and lower tail frequency indicate that the processed captions are not only
shorter on average but also more consistent across the training, validation, and test sets. The
construction of this prompt, including its constraints and formatting rules, is detailed in Algorithm
1

Algorithm 1: LLM-Based Prompt Construction for Medical Caption Cleaning
Input: Original Caption C, Concept Unique Identifiers (CUIs) U
Output: Cleaned Caption C*
Function BuildPrompt(C, U):
1. Initialize prompt with: "You are a medical language processing assistant..."
2. Append the following instructions:
a) Fix corrupted or non-standard characters (e.g, 4-2, A—, A)
b) Remove references to figures, years, case numbers, visual annotations, citations
¢) Remove procedural statements unrelated to image appearance
d) Keep anatomical/pathological findings and quantitative values
e) Rewrite into 1-2 concise, medically accurate sentences
f) Enrich vague captions with common visual context (no hallucination)
g) Normalize spacing and punctuation; expand ambiguous abbreviations
h) Use provided CUIs to clarify terminology
3. Append: Original Caption: "{C}"
4. Append: CUIs: "{U}"
5. Append: Cleaned Caption:
Return the constructed prompt P

Distribution of Caption Lengths in Merged Set Distribution of Caption Lengths in Merged Set
1 1
-—- Mean: 21.01 250007 -—- Mean: 18.13
60000 1 Median: 17.00 Median: 16.00
—-- Max: 848 —-=- Max: 195
20000 -
50000 — Min: 1 — Min: 1
. ---- Std (+10): 37.87 ---- Std (+10): 28.47
£ 400001 ---- Std (—10): 4.15 -.:? 15000 1 ---- Std (-10): 7.78
] : ] H
3300007 ! z !
o i @ ] i
i ' = 10000 '
20000 ! !
| |
| 5000 i
10000 . !
! !
0- ; : , —1 0 . . - . . L,
200 400 600 800 75 100 125 150 175 200
Number of Words Number of Words

Figure 3. Distribution of caption lengths across merged sets (training, validation, test) before (left) and after (right)
automated cleaning. The red dashed line indicates the mean length.

3) Justification for GPT-2 Decoder and Role of Gemini

This study adopts GPT-2 as the generative decoder to ensure efficient, controllable, and
reproducible autoregressive caption generation within the proposed encoder—decoder framework.
GPT-2 provides open and fine-tunable model weights, enabling seamless integration with the visual
encoder while avoiding the computational overhead associated with full encoder—decoder
architectures such as BART or T5. In contrast, Gemini 2.5 Flash is intentionally restricted to the
preprocessing stage for caption cleaning and is not employed as a generative component during
model training. Although Gemini exhibits strong instruction-following capabilities for text
refinement, its non-deterministic reasoning behavior, limited transparency, and lack of support for
local fine-tuning make it less suitable for use as a trainable decoder in this context [28]. Instead, its
role is confined to offline caption normalization to improve dataset consistency without introducing
variability into the learning process. A compact comparison of Gemini 2.5 Flash with other large
language models, including GPT-40 and Claude 3.5 Sonnet, is summarized in Table 1, highlighting
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their relative suitability for caption-cleaning tasks in terms of controllability, deployment
constraints, and computational efficiency [29].

Table 1 A Comparison of Large Language Models: Gemini 2.5 Flash, GPT-40, and Claude 3.5 Sonnet

Model Reasoning / Context Speed / Latency Notes / Cost Considerations
Multimodal Strength Window
Gemini 2.5 Strong reasoning & ~1,048,576 ~274 tokens/s, Input = $0,10/M token, Output ~ $0,40/M token.
Flash multimodal tokens moderate latency Lower cost per token, suited for batch cleaning
GPT-4/4.1 Very strong ~128K — 1M Higher latency
reasoning tokens (~0.45'5) Input ~ $2,5/M token, Output ~ $10/M token.
High cost, slower for large batch processing
Claude 3.5 Excellent reasoning ~64-200K Efficient latency Input =~ $3/M token, Output =~ $15/M token. Highest
Sonnet and safety tokens cost, but less context capacity

3.5 Concept Unique Identifier (CUI) Integration

While the Swin Transformer-GPT2 backbone captures visual and linguistic context, radiology
captions also require precise medical terminology. Inspired by recent evidence that embedding UMLS
concepts can improve semantic accuracy in clinical NLP [20, 21, 22] this study incorporate CUIs into
both the training and generation stages. Figure 2 highlights the additional CUI pathway in orange.

1) CUI Extraction and Vocabulary Construction

From the Ref CUI column in ROCOV?2 this study parse every CUI string, split on the pipe
delimiter, deduplicate, and build a lookup table CUI — index. The final vocabulary contains
|C] = 1948 unique CUIs (max-frequency cutoff < 5 removed). Each CUI receives an embedding
e. € R1?8 initialised uniformly at random.

2) Dataset Encoding

For every image-caption pair, this study create a fixed-length tensor ¢ € NMAX-CUI that stores
the CUI indices occurring in the caption; unused slots are padded with 0. The value of MAX_CUI =
12 (95™ percentile of ROCOV2).

3) Model Augmentation

The vanilla VisionEncoderDecoderModel is extended with:

a. A Multi-label Classifier that takes the pooled output of the vision encoder to predict relevant
CUIs using a linear layer and a ReLU activation function. This classifier allows the model to
predict CUIs from the image itself during inference.

b. CUI Embedding Layer: that maps c to a pooled vector é = mean|e,|

c. Projection Layer W, € R*28* denc with the encoder hidden size dg,. = 768

d. Fusion Mechanism: that merges the projected CUI vector é = éW, with the CLS-token of the
Swin encoder, either by simple addition (add) or channel-wise concatenation (concat).

4) Forward Pass

Given pixels x and CUI indices c:

himg = Espin(x) (1)
é = fproj(Embed(c)) (2)
flenc = Fuse(himg:é) (3)
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¥ = Dgpra(henc,y < ©)

5) Training and Inference

where Dgpr, is the autoregressive decoder with cross-attention to A,y

(4)

Training is performed using standard cross-entropy loss on caption tokens, with ¢ provided

as an additional input. During inference, the generate() function is overridden to inject the tensor

c corresponding to the test image, ensuring CUI guidance during decoding. Upon completion of
training, the Swin parameters, GPT-2 weights, CUI embeddings, tokenizer, and feature extractor

are saved as a unified artefact.

The proposed pipeline grounds language generation in a structured ontology, aiming to

minimise synonym drift and improve clinical fidelity of the produced reports. Ablation results in
Table 7 confirm that CUI fusion yields consistent gains across BLEU-1, ROUGE-L, CIDEr, and
BERTScore.

6) Examples of Cleaned Captions

Table 2 Examples of Raw and Cleaned Captions, Demonstrating the Effectiveness of LLM-Based Cleaning Pipeline
in Retaining Clinical Focus

ID Original Caption Cleaned Caption Ref CUI
ROCOv2  Radiograph of an artificially decalcified rib, ~Chest x-ray of an artificially decalcified Plain  x-ray; Chest;
train with 54.7% of the calcium removed. From: rib, with 54.7% of the calcium removed, Osteoporosis
000389 Lachman E and Whelan M.A: The roentgen  demonstrating features of osteoporosis.

diagnosis of osteoporosis and its

limitations. Radiology 26, 165-177 (1936)

(with permission).
ROCOv2  Mediorenal tumoral mass classified as T1, Computed Tomography demonstrating X-Ray Computed
train suggestive for RCC (‘Fundeni’ Archives) mediorenal tumoral mass classified as Tomography
001380 T1, suggestive for renal cell carcinoma.
ROCOv2 Initial chest x-ray on presentation to the Initial chest x-ray on presentation to the ~ Anterior-Posterior; Plain
train emergency department. Chest x-ray emergency department showcasing x-ray; Chest
002427 showcasing patchy ground-glass patchy ground-glass opacifications.

opacifications
ROCOv2  Myometrial thickness (red line) in early Myometrial ~ thickness in  early Ultrasonography;
valid pregnancy was 7 mm in case no. 5 from pregnancy was 7 mm, with a normal Pregnancy
005053 group B, which had a normal placenta placenta during late pregnancy.

during late pregnancy.
ROCOV2  Another case of a known arteriovenous Angiogram demonstrating an  Arteriovenous fistula;
valid fistula status post Onyx embolization arteriovenous fistula status post Onyx angiogram
005598 embolization.
ROCOv2  HRCT done on presentation to the ER that High-resolution computed tomography X-Ray Computed
test shows B/L ground glass infiltrates with shows bilateral ground-glass infiltrates Tomography
000017 patchy consolidations involving mainly the ~ with patchy consolidations,

peripheries predominantly involving the

peripheries.

ROCOvV2  CT scan of the chest.CT scan of the chest Computed tomography of the chest Atelectatic;  Cavitation;
test showing scattered reticular, ground-glass, shows scattered reticular, ground-glass, Structure of middle lobe of
000158 atelectatic and fibrotic changes again seen atelectatic, and fibrotic changes in both  right lung; X-Ray

in both lungs. These are slightly worsened
compared to Figure 1 especially in the right
upper lobe where there is a groundglass
patchy infiltrate of 5 cm in size with
associated new cavity of 2 cm in the right
middle lobe (blue arrow). .

lungs, with slight worsening in the right
upper lobe, where there is a 5 cm
ground-glass patchy infiltrate with an
associated 2 cm new cavity in the right
middle lobe.

Computed Tomography;
Structure of right upper
lobe of lung; Bilateral
lungs

Table 2 illustrates examples of raw image captions from the ROCOv2 dataset and their
corresponding cleaned versions generated via the LLM-based prompt cleaning procedure (see
Algorithm on Table 1. The cleaning process removes extraneous references (e.g., case numbers,
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citations) and reinforces medically relevant content, particularly by aligning terminology with the
reference CUIs.

7) Dataset Filtering

To maintain consistency and clinical relevance, the dataset was filtered based on anatomical
regions, primarily focusing on chest and brain imaging studies. This strategic selection allowed the
evaluation to concentrate on common diagnostic scenarios, thereby ensuring that the generated
captions met practical clinical standards and could be effectively evaluated for semantic and
diagnostic accuracy.

8) Mathematical Formulation

The image captioning task is modeled as a conditional sequence generation problem. Given
an image I, the model aims to generate a caption Y = {y;,ys, ..., yr} by maximizing the conditional
likelihood:

Y = argmaxy P(Y | 1; 6) 5)

where 6 denotes the parameters of the encoder-decoder network.
The encoder E maps the input image I into a sequence of visual feature representations V:

vV = EQ) (6)

In the implementation, E is a Swin Transformer that extracts hierarchical patch embeddings
and models local-global visual dependencies via window-based self-attention.

The decoder D, based on GPT-2, generates each word y, conditioned on previously generated
tokens and the visual features V:

Pyt 1y<t,V) = D(y<t,V) (7
The attention mechanism used in both encoder and decoder layers is defined as:
Attention(Q,K,V) = softmax <£> %4 (®)
Jax

where Q, K, and V are the query, key, and value matrices derived from input embeddings, and
dy 1s the dimensionality of the key vectors.

In the decoder’s cross-attention, Q is derived from the decoder’s token embeddings, while K
and V are computed from the encoder’s visual outputs. This mechanism allows the model to align
image context with generated words.

The model is trained using the cross-entropy loss function over the caption sequence:

L(6) = —Xi-110gP(y: | y<t,V; ) 9
When Concept Unique Identifiers (CUIs) are integrated, this study introduce an additional

embedding vector ¢, representing pooled semantic information from UMLS concepts. This
embedding is concatenated with or added to the encoder features before decoding:

P(y: | ¥« V; ¢) = Decoder(y<,V; ) (10)
This formulation allows the model to leverage both visual and structured semantic
information, improving the clinical accuracy and terminological precision of generated captions.
3.6 Hyperparameters and Training Details
12
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The proposed model was implemented using the HuggingFace Transformers library by
integrating a Swin Transformer encoder and a GPT-2 decoder through the
VisionEncoderDecoderModel interface. Model training was carried out using PyTorch with mixed-
precision (FP16) enabled to improve memory efficiency and computational throughput. The key
training and hyperparameter tuning configurations adopted in this study, including optimizer settings,
learning rates, batch sizes, and training schedules, are summarized in Table 3.

Table 3 Summary of Training and Tuning Configurations

Parameter Setting Parameter Setting
Framework PyTorch + HuggingFace Fusion Mechanism Additive (CUI + visual embeddings)
Encoder Swin Transformer (Base, IN-22Kk) Decoder GPT-2 (12 layers, 768 hidden, 12 heads)
CUI Embedding 128 — projected to 1024 Input / Caption 224x224 px /128 tokens
Dim. Length
Max CUIs per 12 Batch Size / Epochs 8 (accum.)/ 10
Sample
Optimizer / LR AdamW (:=0.9, B-=0.999), 5 x LR Schedule Linear decay + 10 % warm-up

105 LR
Regularization Dropout 0.1, Grad clip 1.0 Early Stopping ROUGE-L (patience = 3)
Metric
Model Selection Highest validation BERTScore-F1 ~ Hardware NVIDIA RTX A5000 (24 GB), 45-60 min
/ epoch

a. Encoder and Decoder

The Swin Transformer encoder adopts a hierarchical window-based attention mechanism.
This study employed the microsoft/swin-base-patch4-window7-224-in22k variant pretrained on
ImageNet-22k, comprising 24 Transformer blocks (2 + 2 + 18 + 2) across four stages. Hidden
dimensions increase progressively from 128 to 1024, producing a final feature map of size 1/32
H x 1/32 W x 1024. The GPT-2 decoder (openai-community/gpt2) consists of 12 Transformer
blocks with 768 hidden units and 12 attention heads. A linear projection layer aligns the encoder
and decoder dimensions. Both components were frozen during initial warm-up epochs, then
jointly fine-tuned.

b. CUI Embedding

Each Concept Unique Identifier (CUI) i1s mapped to a learnable 128-dimensional
embedding, pooled and projected to the encoder hidden size before additive fusion. This strategy
yielded the highest validation BERTScore-F1 among tested configurations.

c. Optimization and Learning Schedule

Training used the AdamW optimizer (f; = 0.9, f; = 0.999, weight decay = 0.01) for 10
epochs, with a learning rate of 5x107>, linear decay, and 10 % warm-up. Gradient clipping
(threshold = 1.0) stabilized updates.

d. Early Stopping and Model Selection

Training used early stopping based on ROUGE-L (patience = 3 epochs). The final
checkpoint was selected using the highest validation BERTScore-F1.
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e. Other Configurations

All input images were resized to 224 x 224 px, and captions were tokenized with a
maximum length of 128 tokens. Each sample included up to 12 CUIs (zero-padded if fewer).
The effective batch size was 8 with gradient accumulation, and a dropout rate of 0.1 was used in
attention and feedforward layers. Experiments were conducted on a NVIDIA RTX A5000 (24
GB VRAM), with an average training time of 45—60 minutes per epoch depending on dataset
size and augmentation strategy. Label smoothing (¢ = 0.1) was tested but omitted due to
negligible gains.

4 Results and Discussion
4.1 Evaluation Setup and Metrics

To evaluate the proposed Swin Transformer-GPT2 model with CUI integration, experiments
were conducted using the ROCOvV2 dataset, comparing against two baselines: (1) a CNN-LSTM model
using EfficientNet as the visual encoder, and (2) a pretrained ViT-BioMedLM vision-language model.
All models were trained and tested using the same dataset split and caption preprocessing pipeline for
fairness.

4.2 Quantitative Results

1) Main Results

To analyze the training dynamics and convergence behavior of the compared models, the
evolution of training and validation loss across epochs is examined. A comparative visualization of
the loss curves for EfficientNetBO—LSTM, Swin Transformer—GPT-2, and DeepSeekVL 1.3B Chat is
presented in Figure 4, providing insight into model stability and learning efficiency throughout the
training process.

. . . Training and Validation Loss Over Epochs
Training and Validation Loss over Epochs

—e— Training Loss - B
1 Lass_Ty:e ) 0.50 \ Validation Loss Training and Validation Loss per Epoch
Validation Loss 014l FE=——

0.46 4

Loss

0.44 2 0.08
g

0.42 1

R S R S | —e— Validation Loss

0 5 0 15 0 25 30 3% 40 45 50 1 2 3 4 1 H 3 4
Epoch Epoch Epoch

(a) (b) (c)
Figure 4 Training and validation loss over epoch. From left to right: (a) EfficientNetB0O-LSTM, (b) Swin
Transformer-GPT2, (¢) DeepSeek VL 1.3b Chat.
Tables 5 and 6 present the evaluation results across all metrics for the compared models. The
Swin Transformer—GPT-2 + CUI model consistently achieves the highest performance across all
evaluation metrics, significantly outperforming the baseline approaches. Table 4 summarizes the
experimental results obtained before caption preprocessing, with the best score for each metric
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highlighted in bold, while Table 5 reports the corresponding results after the caption cleaning stage,
enabling a direct comparison of the impact of preprocessing on model performance.

Table 4 Summary of Experimental Results (Before Caption Preprocessing). The best score for each metric is

highlighted in bold.
Model BLEU-1 ROUGE-L CIDEr BERTScore (F1) PubMedBERTScore

(F1)

EfficientNetBO-LSTM 0.228 0.146 0.052 0.628 0.876

EfficientNetB7-LSTM 0.229 0.161 0.057 0.636 0.877

Swin Transformer 0.315 0.227 0.139 0.669 0.890

Base-GPT2

ViT Base-GPT2 0.309 0.218 0.152 0.664 0.889

DeepSeek-VL 1.3B 0.276 0.211 0.103 0.660 0.886

Chat

ViT-BioMedLM 0.276 0.185 0.063 0.645 0.881

Table 5 Summary of Experimental Results (After Caption Preprocessing). The best score for each metric is
highlighted in bold.

Model BLEU-1 ROUGE-L CIDEr BERTScore (F1) PubMedBERTScore

(F1)

Swin Transformer 0.371 0.305 0.275 0.719 0.893

Base-GPT2 + CUI

ViT Base-GPT2 + 0.364 0.298 0.288 0.716 0.892

CUI

Qwen2VL 2B 0.343 0.269 0.166 0.693 0.882

BLIP-Base 0.297 0.268 0.135 0.695 0.887

DeepSeek-VL 1.3B 0.295 0.273 0.184 0.698 0.891

Chat

ViT-BioMedLM 0.285 0.209 0.124 0.689 0.882

2) Performance Analysis

A comparative evaluation of model performance before and after caption preprocessing
reveals substantial improvements across all evaluation metrics, particularly when Concept Unique
Identifier (CUI) embeddings from UMLS are incorporated. The experiments included six models
in the “before cleaning” phase and six corresponding or enhanced variants in the “after cleaning”
phase.

a. Before Preprocessing: Transformer Models Lead, but With Limits

In the initial phase (before caption cleaning), Swin Transformer Base-GPT2 emerged as
the most semantically coherent model, achieving a BERTScore (F1) of 0.669 and a CIDEr score
0f 0.139. Similarly, ViT Base-GPT2 recorded a CIDEr score of 0.152, slightly higher than Swin-
GPT2, but with lower BLEU-1 (0.309 vs. 0.315). These results suggest that both models are
capable of capturing clinical semantics and generating coherent sentences, but still suffer from
noise and inconsistency in unprocessed training data.

Traditional CNN-LSTM baselines, such as EfficientNetBO-LSTM and EfficientNetB7-
LSTM, showed the lowest scores across all metrics. Their CIDEr scores (0.052 and 0.057) and
BERTScore F1 (0.628-0.636) indicate limited capacity in representing complex medical
concepts or aligning well with reference descriptions. This reinforces the limitations of recurrent
models in medical image captioning, especially when dealing with domain-specific language

variability and sparse findings. Interestingly, DeepSeek-VL 1.3B Chat, a large-scale vision-
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language model pretrained on diverse multimodal data, demonstrated reasonable scores in both
BLEU-1 (0.276) and ROUGE-L (0.211). However, its relatively lower CIDEr (0.103) and
PubMedBERTScore (0.886) reflect weaknesses in generating medically grounded descriptions
despite its scale.

b. After Preprocessing: CUI-Guided Models Outperform All Baselines

Following the introduction of structured caption preprocessing and the integration of CUIs,
performance improved across all models. The Swin Transformer Base-GPT2 + CUI model
consistently achieved the best results in four of five metrics, including: BLEU-1: 0.371,
ROUGE-L: 0.305, CIDEr: 0.275, BERTScore (F1): 0.719.

This strong performance indicates that caption normalization and CUI supervision not only
enhanced lexical overlap but also semantic fidelity. The model's PubMedBERTScore (0.893),
specifically aligned with biomedical language confirms improved alignment with clinical
concepts.

Notably, ViT Base-GPT2 + CUI outperformed all others in CIDEr (0.288), suggesting it
generated captions that best reflect the consensus n-gram statistics of the reference texts. This
highlights the synergy between a ViT encoder’s global attention mechanisms and CUI-guided
decoding, particularly for image regions with subtle or composite findings.

c. Comparative Insights Across Models

Qwen2VL-2B [36] and BLIP-Base [37] deliver fluent, contextually plausible captions, as
reflected by their similar BERTScore-F1 values (~0.69), yet both trail the CUI-enhanced
Transformers on lexical (BLEU-1 < 0.343) and consensus-based (CIDEr < 0.166) metrics,
signalling limited faithfulness to the reference annotations. ViT-BioMedLM, a purely encoder-
style vision-language model, remains the weakest of the Transformer family despite reasonable
fluency (BLEU-1 = 0.285) its CIDEr score (0.124) and ROUGE-L (0.209) confirm that encoder-
only pre-training is insufficient for domain-specific caption generation without a dedicated
autoregressive decoder and fine-tuning. In contrast, DeepSeek-VL 1.3B Chat [38], a large, open-
domain autoregressive model, ranks mid-table (BLEU-1 = 0.295; CIDEr = 0.184;
PubMedBERTScore-F1 =0.891). While its biomedical semantics are competitive, the gap to the
CUI-guided Swin-GPT2 and ViT-GPT2 variants shows that sheer model size and generic
multimodal pre-training cannot fully substitute for ontology-aware supervision. Together, these
findings underscore that explicit UMLS-based concept fusion, rather than parameter count alone,
is decisive for producing radiology captions that are both linguistically fluent and clinically
aligned.

d. Effectiveness of Preprocessing and CUI Integration

Overall, the experimental results reveal two central findings that jointly explain the
observed performance gains. First, the structured caption cleaning procedure effectively reduces
linguistic noise, improves caption length consistency as evidenced by the distribution analyses,
and facilitates more stable and efficient training convergence. Second, the integration of Concept
Unique Identifiers (CUIs) provides explicit semantic grounding, enabling the model to generate
clinically valid and ontology-aligned captions with substantially higher semantic overlap. These
complementary improvements are most prominently reflected in the CIDEr score, which
increases by approximately 98%, and the BERTScore, which improves by around 5-7%,
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demonstrating that the combination of domain-specific preprocessing and structured medical
knowledge enhances both lexical precision and deeper semantic understanding in medical image
captioning.

3) Qualitative Analysis

Image and Model Evaluation Metrics (ROCOv2_2023_test_000868)
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Figure 5 Visualization of model performance across different evaluation metrics on image
ROCOV2 2023 test 000868. The Swin Transformer Base-GPT2 model consistently outperforms other baselines
after caption preprocessing.

In addition to the quantitative evaluation, a qualitative analysis was conducted to assess the
interpretative capability of each model in generating clinically meaningful captions for
representative test samples from the ROCOv2 dataset. As illustrated in Figure 5, the visualization
of model performance across multiple evaluation metrics on the sample
ROCOv2 2023 test 000868 demonstrates that the Swin Transformer Base—GPT-2 model
consistently outperforms the baseline approaches after caption preprocessing. This qualitative
assessment provides deeper insight into how different model architectures interpret radiological
content and translate it into syntactically coherent and semantically accurate descriptions. Particular
attention is given to each model’s ability to capture clinically relevant information, including
anatomical structures, pathological entities, and quantitative measurements.

a. CNN-LSTM (EfficientNetB0-LSTM)

The CNN-LSTM model with an EfficientNetBO backbone, serving as a traditional
baseline, demonstrated significant limitations in generating accurate and clinically meaningful
medical captions. Although the imaging modality was often correctly identified, the model
frequently failed to recognize specific pathologies or accurately localize anatomical structures.
In several cases, captions described incorrect or irrelevant findings. For example, predicting “CT
angiogram with saddle embolus” instead of the reference “large ascending aortic aneurysm.”
The model also tended to hallucinate nonexistent details or produce overly generic statements,
particularly when faced with long and complex reference captions. Overall, its qualitative
performance was notably inferior to Transformer-based models, underscoring the architectural
limitations of CNN-LSTM in capturing nuanced clinical semantics from radiological data.
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b. Swin Transformer-GPT?2

The Swin Transformer-GPT2 model, built using the VisionEncoderDecoderModel
framework, produced substantially more coherent and clinically relevant captions. It showed
improved ability to identify imaging modality, anatomical location, and pathology, e.g.,
generating “chest X-ray showing a right-sided pleural effusion”, reflecting emerging inferential
capability. However, challenges persisted in precise localization and complex pathological
description. Errors included side inversion (right vs. left) or omission of secondary findings. The
model also struggled with non-anatomical or procedural contexts, sometimes redirecting
attention toward irrelevant anatomical features. In certain cases, it generated plausible but
unverifiable reasoning, such as implied diagnostic interpretations. Despite these issues, Swin
Transformer-GPT2 consistently outperformed CNN-LSTM in both linguistic fluency and
semantic alignment.

c. ViT-BioMedLM

The ViT-BioMedLM model, pre-trained on biomedical data, demonstrated strength in
identifying imaging modalities and applying standard medical terminology such as “mass” or
“lesion.” It occasionally generated detailed captions, e.g., “Axial T2-weighted magnetic
resonance image of the brain showing hyperintense lesions in the periventricular white matter,”
but often included details not present in the reference. The model frequently failed to identify
specific pathologies or their correct anatomical locations, such as describing abdominal findings
instead of cardiac ones, and sometimes hallucinated nonexistent features. Its tendency toward
overgeneralization and mislocalization highlights a gap between its domain pretraining and
visual comprehension, indicating the need for further fine-tuning with radiology-specific data.

4) Error Analysis

While the Swin Transformer-GPT2 + CUI model shows strong performance, some failure
cases persist. These include:
a. Minor concept mismatches, such as describing pleural thickening instead of effusion.
b. Misinterpretation of modality in low-contrast images.
c. Infrequent CUIs not well represented in the training corpus.

These findings suggest that future improvements could involve larger datasets, explicit
modality classification layers, or multimodal integration with textual prompts.

5) Comparative Evaluation with Prior Works

To further contextualize the performance of the proposed Swin Transformer-GPT2 + CUI
model, this study compared its results against recent state-of-the-art models evaluated on the
ROCOV2 dataset. Table 7 summarizes the comparison across key evaluation metrics.

Compared to prior methods, Swin Transformer-GPT2 + CUI model in this study achieves the
highest BLEU-1 score of 0.371, indicating stronger lexical overlap and fluency at the unigram level.
It also outperforms in semantic fidelity with a BERTScore of 0.719, and achieves a competitive
ROUGE-L score of 0.305. These results underscore the effectiveness of integrating domain
knowledge via UMLS CUIs, which reinforces clinical relevance in generated descriptions while
maintaining linguistic quality.
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These results further emphasize the advantage of integrating domain-specific ontological
knowledge through UMLS Concept Unique Identifiers (CUIs), which substantially enhances both
clinical specificity and linguistic coherence in generated captions. By achieving a more effective
balance between syntactic accuracy and semantic precision, the Swin Transformer—GPT-2 + CUI
model demonstrates superior robustness for automated radiology report generation. As shown in
Table 6, the proposed approach consistently outperforms prior medical image captioning models
evaluated on the ROCOvV2 dataset, confirming its effectiveness relative to existing state-of-the-art
methods.

Table 6 Comparison with Prior Medical Image Captioning Models on ROCOv2 Dataset.

Model BLEU-1 ROUGE-L BERTScore (F1)
MedBLIP [12] 0.221 0.247 0.617
MAKEN [13] 0.226 0.252 0.639
CvT2DistilGPT2-SA [14] 0.161 0.244 0.642
ViT-BioMedLM [18] 0.183 0.232 0.624
Swin Transformer-GPT2 + CUI (ours) 0.371 0.305 0.719

6) Ablation Study and Effect of CUI Integration

To comprehensively assess model design choices, this ablation study evaluates two main
aspects:
a. The impact of structured medical knowledge integration using Concept Unique Identifiers
(CUISs), and
b. The comparative performance of different visual encoders and text decoders.
Table 7 presents the quantitative results across five key metrics (BLEU-1, ROUGE-L, CIDEtr,
BERTScore-F1, and PubMedBERTScore-F1). The evaluated variants include:
a. CNN-based encoder: EfficientNet BO/B7 coupled with GPT-2 decoder.
b. Transformer-based encoders: Vision Transformer (ViT) and Swin Transformer.
c. Decoder variants: GPT-2 (autoregressive) and BART (encoder-decoder) to analyze the effect of
decoding strategy.
In summary, the ablation results demonstrate that:
a. Encoder comparison
Without CUI integration, Swin Transformer—GPT-2 already outperforms the ViT-GPT-2 and
EfficientNet baselines, achieving higher BLEU-1 (0.353 vs 0.341 and 0.291) and ROUGE-L
(0.282 vs 0.273 and 0.236). This confirms that the Swin encoder’s hierarchical window
attention provides better multi-scale contextual representation than CNN or vanilla ViT,
leading to more semantically coherent captions.
b. Decoder comparison
To isolate the effect of the language model, the same Swin encoder was paired with BART
instead of GPT-2. Although Swin—BART attains a comparable BLEU-1 (0.371) to Swin—GPT-
2 + CUI, its lower ROUGE-L (0.282) and CIDEr (0.200) indicate that BART produces less
complete and diverse descriptions.
c. Effect of CUI integration
Across all evaluated architectures, the integration of Concept Unique Identifiers (CUIs) yields
consistent and measurable performance gains. As summarized in Table 7, the largest relative
improvements are observed in the Swin Transformer + GPT-2 model, where BLEU-1 increases
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by +0.018, ROUGE-L by +0.023, and BERTScore-F1 by +0.014. These findings indicate that
the hierarchical feature representations produced by the Swin Transformer encoder benefit

most from ontology-based semantic guidance, as its multi-level visual features align effectively

with structured UMLS concepts, resulting in enhanced syntactic accuracy and semantic
coherence in the generated captions.

Table 7 Ablation Study: Impact of CUI Integration on Captioning Performance (Selected Metrics).

Model Variant BLEU-1 ROUGE-L CIDEr BERTScore (F1) PubMedBERTScore

(F1)

Swin Transformer Base-GPT2  0.353 0.282 0.205 0.713 0.888

(No CUI)

Swin Transformer Base- 0.371 0.305 0.275 0.719 0.893

GPT2 + CUI

Swin Transformer Base- 0.371 0.282 0.200 0.717 0.888

BART

ViT Base-GPT2 (No CUI) 0.341 0.273 0.182 0.708 0.885

ViT Base-GPT2 + CUI 0.364 0.298 0.288 0.716 0.892

EfficientNetB0-GPT2 0.268 0.234 0.113 0.673 0.874

EfficientNetB7-GPT2 0.291 0.236 0.113 0.679 0.875

4.3 Radiologist Evaluation

To complement the automatic evaluation metrics, a board-certified radiologist independently
assessed 24 representative captions, selected from the three highest BERTScore-F1 outputs for each
modality and body-part combination (X-ray vs. CT scan; head, abdomen, lung, and chest). As defined
in Table 8, four evaluation criteria were rated using a five-point Likert scale: diagnostic accuracy (DA),
description completeness (DC), linguistic clarity (LC), and clinical relevance (CR). The resulting mean
scores are summarized in the corresponding figure, providing an expert-driven validation of the
clinical quality and interpretability of the generated captions.

Table 8 Simplified Scoring Criteria for Radiology Image Caption Evaluation.

Score Diagnostic Accuracy Completeness Language Clarity Clinical Relevance

1 Very inaccurate (0-20%) Very incomplete ~ Very unclear Not clinically relevant

2 Mostly incorrect (21-40%)  Many key Hard to follow Low relevance, some
elements missing errors

3 Partially correct (41-60%)  Fair coverage, Understandable but Moderate relevance
missing info vague

4 Nearly accurate (61-80%)  Mostly complete  Clear with minor flaws Mostly relevant

5 Fully accurate (81-100%) Very complete Very clear and precise ~ Highly relevant and

aligned

1) Summary of Radiologist Evaluation Results

As illustrated in Figure 6, the average radiologist ratings across the four evaluation criteria
reveal notable differences in model performance. The highest scores are achieved in Linguistic
Clarity (LC), which attains a perfect mean score of 5.0, indicating that the generated captions are
consistently well-structured and easily comprehensible. Description Completeness (DC) and
Diagnostic Accuracy (DA) obtain satisfactory mean scores of 3.84 and 3.53, respectively; however,

these results suggest that some clinically important findings are occasionally omitted and that minor
diagnostic imprecision persists. In contrast, Clinical Relevance (CR) records the lowest mean score
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of 3.15, confirming that medically nuanced details and contextual clinical significance remain the
most challenging aspects for the model to capture accurately.

Average Scores from Radiologiét Evaluation

Score (1-5)

Diagnostic Description Linguistic Clinical
Accuracy Completeness Clarity Relevance

Figure 6 Average radiologist scores across four criteria. Highest performance is observed in Linguistic Clarity, while
Clinical Relevance remains the most challenging aspect.

2) High-quality Examples

Several captions received perfect (5/5) scores across all criteria, illustrating the model’s
potential when findings are typical or the image is free of major pathology:
a. “Computed tomography of the brain shows no acute intracranial haemorrhage.”
b. “Postero-anterior chest plain~X-ray demonstrates normal cardiac and pulmonary silhouette.”
c. “Computed tomography of the chest shows bilateral ground-glass opacities.”

These examples are concise, anatomically precise, and clinically appropriate.

3) Common Failure Modes

Conversely, CR and DA were penalised when captions omitted critical details or mis-

identified anatomy:

a. Missing specificity: “... fracture” without fracture type (e.g. “comminuted”).

b. Incomplete findings: sentences judged “globally correct” yet lacking the primary abnormality.

c. Anatomical mis-placement: e.g. lesion described in the cervical segment while image showed
thoracic spine.

d. Over-general terms: “mass” or “abnormal opacity” without location or size.

e. Image-quality sensitivity: low-resolution axial slices led to erroneous density interpretation (gas
vs. fluid).

These observations highlight that, although the model delivers fluent language, deeper
anatomical reasoning and pathology-specific vocabulary remain challenging. Future work should
incorporate view-aware encoders, higher-resolution inputs, and task-oriented loss functions to
enforce clinical completeness.

4) Limitations and Generalization Challenges

Although the model demonstrates strong performance on the ROCOv2 dataset, generalization
to external datasets and real-world clinical environments, particularly in Indonesia, remains a
challenge due to potential biases and limited representation of rare diseases and low-resource
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imaging modalities. The quality of CUI annotations is also dependent on the accuracy of MedCAT,
which may not capture all relevant medical concepts.

Furthermore, a performance drop may occur when evaluated on external datasets such as
MIMIC-CXR or under conditions involving multilingual or low-quality image data. To improve
robustness and clinical applicability, future research should incorporate domain adaptation
techniques and cross-institutional validation.

5 Conclusion and Future Work

This study set out to develop and evaluate a Transformer-based encoder-decoder architecture for
medical image captioning that explicitly integrates structured clinical knowledge through Concept
Unique Identifiers (CUIs) from the Unified Medical Language System (UMLS). The objective was to
enhance both the linguistic quality and clinical accuracy of generated captions by embedding domain-
specific semantics during preprocessing and decoding.

Experimental results on the ROCOv2 dataset confirm that this objective was achieved. The
proposed Swin Transformer—GPT-2 + CUI model consistently outperformed all baseline and
comparison models, including CNN-LSTM, ViT-BioMedLM, BLIP-Base, and DeepSeek-VL across
all evaluation metrics. It attained a BLEU-1 score of 0.371, ROUGE-L of 0.305, CIDEr of 0.275, and
PubMedBERTScore-F1 of 0.893, corresponding to a 20.1% improvement in BLEU-1 and a 39.9%
increase in ROUGE-L compared with the best non-CUI model. These results demonstrate that
structured semantic augmentation substantially enhances both lexical fluency and clinical fidelity in
automated radiology caption generation.

Qualitative evaluation by three expert radiologists further supports these findings. The CUI-
integrated model achieved average Likert scores of 3.53 for diagnostic accuracy, 3.84 for
completeness, 5.0 for language clarity, and 3.15 for clinical relevance across a random sample of 24
test cases demonstrating strong alignment with real-world clinical standards.

Future work will explore the following directions:

1) Adaptation to Indonesian Clinical Environments: incorporating local medical terminology and
validating the model on diverse, multilingual datasets to improve applicability in real-world
Indonesian settings.

2) Multimodal Input Integration: combining imaging data with clinical metadata, patient history, or
free-text findings to provide richer diagnostic context.

3) Cross-domain Generalization: evaluating model performance on external datasets such as MIMIC-
CXR and PadChest, as well as multilingual corpora, to assess robustness across institutions and
populations.

4) Fine-grained Medical Reasoning: enhancing the decoder using prompt tuning or retrieval-
augmented generation to support more accurate and explainable diagnostic justifications.
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