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Abstract  

This research presents a Transformer-based encoder-decoder model for medical image captioning 

that incorporates semantic medical knowledge through Concept Unique Identifiers (CUIs) from the 

Unified Medical Language System (UMLS). The proposed architecture employs a Swin Transformer 

as the visual encoder and GPT-2 as the language decoder, with CUI integration applied during both 

caption preprocessing and decoding. Experiments were conducted on the ROCOv2 dataset under two 

scenarios: baseline (raw captions) and enhanced (CUI-enriched captions). Quantitative evaluation 

using BLEU, ROUGE, CIDEr, and BERT-based metrics demonstrates that the CUI-integrated model 

outperforms several baselines, including CNN-LSTM, ViT-BioMedLM, and DeepSeek-VL, achieving 

a BLEU-1 score of 0.371, ROUGE-L of 0.305, CIDEr of 0.275, and PubMedBERTScore-F1 of 0.893. 

These results represent a 20.1% improvement in BLEU-1 and a 39.9% increase in ROUGE-L 

compared to the best-performing model before caption preprocessing (ViT-GPT2 with BLEU-1 = 

0.309, ROUGE-L = 0.218). Qualitative assessment by expert radiologists further confirms enhanced 

diagnostic accuracy, descriptive completeness, and clinical relevance. This study introduces a novel 

integration of medical semantic knowledge into captioning models, offering a scalable solution for 

clinical decision support in resource-limited settings such as Indonesia. 
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1   Introduction 

Radiological imaging has become a cornerstone of modern clinical practice, providing critical 

insights for diagnosis, treatment planning, and longitudinal disease monitoring. However, the global 

demand for imaging services has surged at an unprecedented rate, far exceeding the availability of 

trained radiologists, particularly for modalities requiring complex interpretation, such as CT and MRI. 

This imbalance has led to heavier clinical workloads, longer turnaround times, and increased 

susceptibility to diagnostic inaccuracies, often exacerbated by cognitive fatigue and environmental 

pressures [1]. 

Recent findings highlight that radiologist burnout, marked by emotional exhaustion and 

diminished diagnostic performance is closely linked to the growing volume and complexity of imaging 

studies [1]. To address this, leading institutions such as the Radiological Society of North America 

(RSNA) have advocated for the integration of artificial intelligence (AI) into radiology workflows. 

Supported by empirical evidence [2], AI systems offer a promising solution to mitigate these 

challenges by streamlining image analysis, reducing manual workload, and enhancing diagnostic 

consistency. 
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In particular, deep learning-based approaches have emerged as transformative tools in medical 

imaging, with the potential to automate interpretation, reduce inter-observer variability, and highlight 

clinically salient findings [2]. Among these, automated medical image captioning systems aim to 

generate relevant textual descriptions directly from images, supporting reporting standardization, 

reducing radiologist workload, and improving clinical decision support across diverse settings [3, 4]. 

Historically, CNN-LSTM architectures have dominated image captioning tasks. These models 

utilize convolutional neural networks (CNN) to extract visual features, subsequently employing Long 

Short-Term Memory (LSTM) networks to sequentially model language generation [5]. While effective 

for generalized image captioning tasks, CNN-LSTM models present notable limitations, particularly 

regarding their capability to handle long-range textual dependencies and accurately model complex 

medical semantics [6]. These models typically struggle with accurately identifying rare pathological 

findings or generating semantically precise descriptions for uncommon clinical scenarios. 

Recent breakthroughs in deep learning have demonstrated that Transformer architectures, first 

proposed by Vaswani et al. [7], outperform traditional CNN and RNN-based approaches due to their 

superior ability in capturing global dependencies through self-attention mechanisms. On the vision 

side, hierarchical designs such as the Swin Transformer [8], extend Vision Transformers (ViT) [9] 

with shifted-window attention, yielding strong performance on high-resolution radiology images while 

retaining computational efficiency. For language generation, several decoder-only models are 

available. GPT-2 [10], GPT-Neo, LLaMA, BART, and T5 among them. GPT-2 remains attractive in 

research settings because its moderate size (≈ 124 M-774 M parameters) and open licence permit end-

to-end fine-tuning. It excels at producing coherent long-form text but also exhibits well-known 

drawbacks: a 1024-token context limit, a generic pre-training corpus that lacks domain-specific 

terminology, and a tendency toward factual “hallucination”. These weaknesses motivate coupling 

GPT-2 with external biomedical knowledge bases or switching to heavier encoder-decoder alternatives 

(BART/T5) that offer stronger factual consistency at the cost of additional compute. 

Despite the rapid progress of Transformer-based captioning models, a significant gap remains in 

the explicit incorporation of structured medical knowledge into these frameworks. The Unified 

Medical Language System (UMLS) provides a robust foundation to bridge this gap through its Concept 

Unique Identifiers (CUIs), standardized identifiers linking over 200 biomedical terminologies such as 

SNOMED CT and ICD-10 [11]. By anchoring generated terms to canonical medical concepts, CUIs 

reduce synonym drift, resolve lexical ambiguity, and ensure consistency with standardized clinical 

vocabularies. Prior studies have demonstrated that CUI-based integration enhances both retrieval 

accuracy [12], named-entity recognition and linking [13], and even zero-shot medical diagnosis [14]. 

Empirical results further confirm these advantages: the ACapMed model attained a BLEU score of 

42.28 % with CUI augmentation compared to 36.28 % using visual features alone [15], while ontology-

guided approaches by Zahra and Kate [16], and Zhang et al. [17] achieved higher alignment with 

domain-standard terminology and improved understanding of clinical intent. This explicit ontology-

driven grounding strengthens clinical fidelity and terminological precision, establishing the core 

novelty and semantic robustness of our proposed Transformer-based captioning framework. 

This paper presents a novel Transformer-based encoder-decoder model specifically designed for 

medical image captioning. The model leverages the Swin Transformer for image encoding and GPT-

2 for text decoding, and incorporates pooled Concept Unique Identifier (CUI) embeddings at the 

vision-language fusion stage. Additionally, it is trained jointly with a caption-cleaning pipeline based 
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on a large language model (LLM). A key contribution of this approach is the integration of CUIs 

derived from the Unified Medical Language System (UMLS), which enhances the semantic accuracy 

and clinical relevance of the generated captions. The proposed model is rigorously evaluated against 

both a CNN-LSTM baseline and the state-of-the-art ViT-BioMedLM model [18], demonstrating 

improved performance across multiple metrics and underscoring its potential clinical applicability. 

2   Literature Review 

Medical image captioning has evolved through several architectural paradigms, each 

contributing to incremental improvements in semantic alignment and textual fluency. Early works 

predominantly relied on CNN-RNN architectures, where convolutional neural networks (CNNs) 

extract spatial features from images, and recurrent neural networks (RNNs) or long short-term memory 

(LSTM) units generate captions sequentially. Notable examples include the Show-Attend-Tell model 

[19], which introduced soft visual attention mechanisms, and the ACapMed system [15], which 

tailored CNN-LSTM pipelines to the biomedical domain. While effective in generating syntactically 

correct captions, these models struggle to capture complex semantic dependencies and often 

underperform in handling rare or clinically nuanced terminologies, limiting their clinical 

interpretability. 

To improve terminological accuracy and reduce hallucinations, template-based and phrasebook 

models were proposed, such as PhraseAug [20], which augment captions using structured medical 

vocabularies. Although these models increase precision and domain conformity, they rely heavily on 

pre-defined structures, sacrificing flexibility and reducing the ability to generalize to previously unseen 

or ambiguous clinical conditions. This rigidity hinders their scalability in real-world applications 

involving diverse pathologies. 

With the advent of Transformer-based architectures, a significant shift occurred in both visual 

and textual representation learning. Vision Transformers (ViT) [9] and Swin Transformers [8] replaced 

convolutional hierarchies with self-attention, enabling global receptive fields and hierarchical spatial 

encoding, which are particularly beneficial for parsing high-resolution radiology images. 

Simultaneously, autoregressive language models such as GPT-2 [10] and encoder-decoder models like 

BART and T5 have demonstrated the ability to generate coherent and contextually rich narratives, 

thanks to their multi-layer self-attention mechanisms that preserve long-range dependencies. These 

models have been applied to radiology report generation, showing improved narrative coherence, 

clinical phrasing, and alignment with expert-written summaries [21]. 

Beyond domain-specific transformer applications, recent advances in large-scale vision–

language pre-training have produced powerful multimodal models capable of unified understanding 

and generation. BLIP [37] introduced a unified encoder–decoder framework that bootstraps noisy 

image–text pairs for improved captioning and retrieval. DeepSeek-VL [38] extended this paradigm to 

real-world multimodal reasoning using a hybrid high-resolution vision encoder and balanced cross-

modal training strategy. Qwen2-VL [36] further enhanced perceptual flexibility through dynamic 

resolution processing and multimodal rotary position embeddings, enabling robust comprehension 

across diverse image and video tasks. These developments illustrate the transition toward high-

resolution, general-purpose vision–language architectures that inspire domain-specific adaptations 

such as the proposed Swin Transformer–GPT2 framework for radiology captioning. 
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Despite these advances, most Transformer-based captioning systems remain data-driven, relying 

on surface-level co-occurrence patterns rather than grounding output in medical ontologies. This leads 

to semantic drift and poor handling of synonyms, abbreviations, or context-specific terminology. To 

address this, recent efforts have focused on domain-specific vision-language models (VLMs), such as 

BioMedLM [22], SAPBERT [23], and UmlsBERT [24], which enrich biomedical embeddings using 

external knowledge bases like the Unified Medical Language System (UMLS). For example, 

UmlsBERT introduces semantic type embeddings to group medically related terms, while SAPBERT 

performs self-alignment on synonymous biomedical entities across vocabularies, enhancing NER and 

relation extraction tasks. 

However, while these models excel in classification, retrieval, and entity linking, their 

application to generative tasks such as captioning remains limited. Notably, research by Zhang et al. 

[25] demonstrated that integrating UMLS-based graphs can significantly improve zero-shot medical 

diagnosis. Similarly, Beam et al. [26] introduced Cui2Vec, an embedding trained on large-scale 

multimodal data, showing performance gains in clinical prediction tasks. Yet, few studies have 

systematically integrated Concept Unique Identifiers (CUIs) into end-to-end vision-to-text captioning 

pipelines. Therefore, the integration of CUI representations within Transformer-based captioning 

architectures presents a novel and promising research direction. By anchoring generated captions to 

standardized medical concepts, such an approach offers the potential to improve not only lexical 

fluency but also clinical correctness, terminological consistency, and semantic interpretability key 

factors for real-world deployment in healthcare environments. 

2.1   Evaluation Metrics 

This study used five widely accepted evaluation metrics to assess the syntactic (BLEU, ROUGE, 

CIDEr) and semantic (BERTScore, PubMedBERTScore) quality of generated captions: 

1) BLEU  

BLEU is a widely used automatic evaluation metric that measures the n-gram precision 

between a generated caption and one or more reference captions, while incorporating a brevity 

penalty (BP) to discourage overly short outputs that might achieve high precision by omitting 

content. By evaluating overlapping n-grams of varying lengths (typically from unigrams to four-

grams), BLEU captures how closely the generated text aligns with reference expressions at the 

lexical level. Measures n-gram precision with a brevity penalty [31]. The BLEU score is computed 

as defined in equation (11). 

𝐵𝐿𝐸𝑈 =  𝐵𝑃 × 𝑒𝑥𝑝 (∑ 𝑤𝑛 log (𝑝𝑛)
𝑁
𝑛=1  )    (11) 

where 𝐵𝑃 is the brevity penalty, 𝑝𝑛 is the modified n-gram precision, and 𝑤𝑛 are weights 

typically set to uniform distribution. 

2) ROUGE-L 

ROUGE-L evaluates caption quality by measuring the Longest Common Subsequence (LCS) 

between the generated caption and the reference caption. Unlike n-gram-based metrics, ROUGE-L 

captures sentence-level structural similarity without requiring the matched words to be contiguous, 

making it more robust to variations in phrasing while preserving word order. Evaluates the longest 

sequence of words that appear in both captions in the same order [32], though not necessarily 
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contiguously. The recall, precision, and F-measure components of ROUGE-L are formally defined 

in equations (12 ) – (14). 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝐿𝐶𝑆) =  
𝐿𝐶𝑆(𝑐,   𝑔)

𝑚
       (12) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝐿𝐶𝑆) =  
𝐿𝐶𝑆(𝑐,   𝑔)

𝑛
       (13) 

𝑅𝑂𝑈𝐺𝐸 − 𝐿 (𝐹𝐿𝐶𝑆) =  
(1+𝛽2) 𝑥 𝑅𝐿𝐶𝑆 𝑥 𝑃𝐿𝐶𝑆

𝑅𝐿𝐶𝑆 + 𝑃𝐿𝐶𝑆 𝑥 𝛽2
      (14) 

where 𝐿𝐶𝑆 is longest common subsequence of candidate caption (𝑐) with length 𝑚 and 

ground-truth caption (𝑔) with length 𝑛. To ensuring a balanced trade-off between precision and 

recall, 𝛽 =
 𝑃𝐿𝐶𝑆

𝑅𝐿𝐶𝑆 
  when 

𝐹𝐿𝐶𝑆

𝑅𝐿𝐶𝑆 
=

𝐹𝐿𝐶𝑆

𝑃𝐿𝐶𝑆 
. 

3) CIDEr 

CIDEr is designed to measure the consensus between a generated caption and a set of 

reference captions by employing TF–IDF-weighted n-gram representations. Unlike BLEU and 

ROUGE, CIDEr emphasizes n-grams that are frequent within a specific caption but relatively rare 

across the entire dataset. Measures consensus between the generated caption and a set of reference 

captions using TF-IDF weighting of n-grams, which reflects content relevance and diversity [33]. 

The CIDEr score is computed according to equation (15) 

𝐶𝐼𝐷𝐸𝑟 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝑤𝑛 
𝑁
𝑛=1 (

1

𝑚
∑

𝑔𝑛(𝑐𝑖) 𝑥 𝑔
𝑛(𝑔𝑖𝑗)

|| 𝑔𝑛(𝑐𝑗) || 𝑥 || 𝑔𝑛(𝑔𝑖𝑗) ||
𝑗 )    (15) 

where the formula represents the TF-IDF vector for the n-grams in the candidate text (𝑔𝑛(𝑐𝑖)) 

and reference text (𝑔𝑛(𝑔𝑖𝑗)). 

4) BERTScore 

BERTScore evaluates caption quality at the semantic level by leveraging contextualized token 

embeddings obtained from large pre-trained transformer models, such as microsoft/deberta-xlarge-

mnli. Instead of relying on exact word overlap, BERTScore computes pairwise cosine similarities 

between tokens in the generated caption and the reference caption, enabling the capture of 

paraphrasing and semantic equivalence [34]. The cosine similarity between token embeddings is 

defined in equation (16), while token-level precision, recall, and F1-score are computed using 

equations (17) – (19) : 

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥𝑗 , 𝑥𝑖) =  
𝑥𝑗
⊤𝑥𝑖

||𝑥𝑗||⋅||𝑥𝑖||
     (16) 

𝑃𝐵𝐸𝑅𝑇 = 
1

|𝑥|
∑ 𝑚𝑎𝑥𝑥𝑖∈𝑥𝑥𝑗

⊤𝑥𝑖𝑥𝑗∈𝑥      (17) 

𝑅𝐵𝐸𝑅𝑇 = 
1

|𝑥|
∑ 𝑚𝑎𝑥𝑥𝑗∈𝑥𝑥𝑖

⊤𝑥̂𝑗𝑥𝑖∈𝑥      (18) 

𝐹𝐵𝐸𝑅𝑇 =  2 ⋅
𝑃𝐵𝐸𝑅𝑇 ⋅ 𝑅𝐵𝐸𝑅𝑇

𝑃𝐵𝐸𝑅𝑇+𝑅𝐵𝐸𝑅𝑇
      (19) 
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where 𝑥 denote the reference text and 𝑥 the predicted text. The terms ||𝑥𝑗|| and ||𝑥𝑖|| represent 

the norms (or lengths) of their respective embedding vectors. Here, 𝑥𝑖  and 𝑥𝑗  refer to the embedding 

vectors of the 𝑖-th and 𝑗-th tokens from the reference and predicted texts, respectively, and the 

similarity between them is computed using cosine similarity. 

5) PubMedBERTScore (F1) 

PubMedBERTScore extends BERTScore by employing domain-specific biomedical 

embeddings derived from the PubMedBERT model, such as microsoft/BiomedNLP-PubMedBERT-

base-uncased-abstract. While maintaining the same precision, recall, and F1-score formulation defined 

in Equations (17)–(19), PubMedBERTScore operates within a biomedical embedding space that more 

accurately represents clinical terminology and domain-specific semantics [35], which better captures 

clinical semantics. 

3   Research Methods 

This section describes the proposed methodology for medical image captioning, which integrates 

visual feature extraction and language generation within a unified encoder–decoder framework. The 

model is designed to effectively capture both hierarchical visual representations from radiology images 

and domain-specific semantic information required for generating clinically meaningful captions. The 

overall architecture of the proposed model is illustrated in Figure 1, which depicts the integration of a 

Swin Transformer as the image encoder and GPT-2 as the autoregressive text decoder, augmented with 

Concept Unique Identifier (CUI) embeddings derived from UMLS.  

 
Figure 1 The proposed architecture for medical image captioning integrates Swin Transformer as the image encoder and 

GPT-2 as the autoregressive decoder, augmented with Concept Unique Identifier (CUI) embeddings from UMLS to 

enhance semantic grounding. The encoder extracts hierarchical features from radiology images, while the decoder 

generates text using both image embeddings and CUIs via cross-attention. 
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This study employs a Transformer-based model with encoder-decoder architecture tailored for 

medical image captioning. The encoder utilizes the Swin Transformer, which effectively captures 

hierarchical visual features by dividing the input image into non-overlapping patches and progressively 

merging them through successive transformer layers. This hierarchical representation allows the model 

to extract multi-scale visual context critical for understanding complex medical imagery. 

The extracted visual features are then passed to a GPT-2 decoder, an autoregressive language 

model capable of generating coherent and semantically rich captions. The encoder and decoder are 

integrated using HuggingFace’s VisionEncoderDecoderModel, where cross-attention mechanisms 

enable the decoder to attend to relevant visual information during caption generation. This setup 

ensures effective fusion of visual and textual modalities for producing accurate and context-aware 

medical descriptions. 

3.1   Dataset and Preprocessing 

The performance of medical image captioning models is strongly influenced by the quality, 

diversity, and semantic alignment of the underlying data, particularly in clinical domains where visual 

patterns must be accurately mapped to meaningful textual descriptions. The inclusion of standardized 

Concept Unique Identifier (CUI) annotations enables explicit semantic grounding of captions in 

biomedical knowledge, which is essential for improving clinical relevance and interpretability. An 

overview of representative samples from the dataset, illustrating medical images paired with their 

corresponding captions and annotated CUIs, is presented in Figure 2 to provide qualitative insight into 

the diversity and structure of the data used in this work. 

 
Figure 2 Sample images and captions from the ROCOv2 dataset [18] with annotated Concept Unique Identifiers (CUIs). 

The examples span multiple modalities including CT scan, MRI, X-ray, and ultrasonography, demonstrating the diversity 

of anatomical regions and clinical contexts. Each caption is paired with its corresponding CUIs and reference concepts. 

This study utilized the ROCOv2 (Radiology objects in context version 2) [18] dataset comprising 

80.080 samples (60.163 train, 9.945 validation, and 9.972 test) across X-ray, CT, MRI, PET, 

Ultrasound, Angiography,  Mammography, and Fluoroscopy modalities. Images were resized, 

normalized, and segmented into patches compatible with Swin Transformer inputs. MedCAT 

facilitated the annotation of CUIs in captions, aligning concepts to token spans. Dataset filtering was 

applied to focus on chest and brain anatomical regions, ensuring consistency and relevance in 

evaluations. 
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3.2   Image Preprocessing 

Prior to model training, all medical images were processed through a standardized preprocessing 

pipeline to ensure input consistency and improve training stability across diverse imaging modalities. 

Images were first resized to a uniform spatial resolution to meet the fixed input requirements of the 

vision encoder, thereby minimizing variability introduced by heterogeneous acquisition settings. 

Intensity normalization was subsequently applied to harmonize pixel value distributions, facilitating 

stable gradient propagation and more efficient model convergence. Following these steps, images were 

segmented into non-overlapping patches compatible with the Swin Transformer architecture, enabling 

hierarchical feature extraction through localized self-attention and progressive patch merging. This 

preprocessing strategy ensures seamless integration with the Swin Transformer while preserving 

clinically relevant visual information essential for accurate medical image captioning. 

3.3   Caption and CUI Annotation 

To enhance semantic grounding and domain-specific understanding, this study incorporate 

Concept Unique Identifiers (CUIs) extracted from the captions using MedCAT [27], which annotates 

medical concepts based on the Unified Medical Language System (UMLS). Tokenization is applied 

to align CUIs with the corresponding textual spans in captions. The CUIs are incorporated using an 

early fusion strategy, in which they are appended directly to the caption text during training. This 

method reinforces the model’s understanding of medical terminology and contributes to improved 

clinical relevance and interpretability of the outputs. 

3.4   Caption Cleaning with LLM‐based Pre-processing 

To ensure that textual inputs are syntactically clean, clinically precise, and semantic consistency, 

all raw captions were normalised with a large-language-model (LLM) pipeline based on 

google/gemini-2.5-flash-preview-05-20. The detailed prompt is provided in the Appendix. 

1) Cleaning Stage Objectives 

The cleaning stage pursues three objectives:   

a. Noise removal: strip non-ASCII artifacts, figure references, case IDs, and citations. 

b. Clinical focus: retain anatomical/pathological findings and quantitative measures while 

discarding procedural metadata. 

c. Semantic alignment: leverage UMLS CUIs as context so that medically relevant terms are 

preserved or clarified. 

2) API workflow 

For each (image, caption, CUI) triple this study issue a single LLM call with a structured 

prompt. The LLM returns a “cleaned caption” that is (i) one-two sentences, (ii) free of irrelevant 

tokens, and (iii) still anchored to the supplied CUIs. This study cache the response and fall back to 

the original caption if the LLM score fails a simple length/ASCII sanity check. 

The automated caption cleaning step substantially reduces the presence of outliers and overly 

long captions across all dataset splits. As illustrated in the histograms in Figure 3, the average 

caption length in the merged set decreases from approximately 22  words to 18 words after cleaning. 

This corresponds to a reduction of approximately 26% in length variance, effectively producing 
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more uniformly distributed caption lengths while preserving essential clinical semantics. The 

sharper distribution peak and lower tail frequency indicate that the processed captions are not only 

shorter on average but also more consistent across the training, validation, and test sets. The 

construction of this prompt, including its constraints and formatting rules, is detailed in Algorithm 

1 
Algorithm 1: LLM-Based Prompt Construction for Medical Caption Cleaning 

Input: Original Caption 𝒞, Concept Unique Identifiers (CUIs) 𝒰 

Output: Cleaned Caption 𝒞* 

Function BuildPrompt(𝒞, 𝒰): 

1. Initialize prompt with: "You are a medical language processing assistant..." 
2. Append the following instructions: 
   a) Fix corrupted or non-standard characters (e.g., â–ª, Ã—, Â) 
   b) Remove references to figures, years, case numbers, visual annotations, citations 
   c) Remove procedural statements unrelated to image appearance 
   d) Keep anatomical/pathological findings and quantitative values 
   e) Rewrite into 1-2 concise, medically accurate sentences 
   f) Enrich vague captions with common visual context (no hallucination) 
   g) Normalize spacing and punctuation; expand ambiguous abbreviations 
   h) Use provided CUIs to clarify terminology 
3. Append: Original Caption: "{𝒞}" 
4. Append: CUIs: "{𝒰}" 
5. Append: Cleaned Caption: 
Return the constructed prompt 𝒫 

  

Figure 3. Distribution of caption lengths across merged sets (training, validation, test) before (left) and after (right) 

automated cleaning. The red dashed line indicates the mean length. 

3) Justification for GPT-2 Decoder and Role of Gemini 

This study adopts GPT-2 as the generative decoder to ensure efficient, controllable, and 

reproducible autoregressive caption generation within the proposed encoder–decoder framework. 

GPT-2 provides open and fine-tunable model weights, enabling seamless integration with the visual 

encoder while avoiding the computational overhead associated with full encoder–decoder 

architectures such as BART or T5. In contrast, Gemini 2.5 Flash is intentionally restricted to the 

preprocessing stage for caption cleaning and is not employed as a generative component during 

model training. Although Gemini exhibits strong instruction-following capabilities for text 

refinement, its non-deterministic reasoning behavior, limited transparency, and lack of support for 

local fine-tuning make it less suitable for use as a trainable decoder in this context [28]. Instead, its 

role is confined to offline caption normalization to improve dataset consistency without introducing 

variability into the learning process. A compact comparison of Gemini 2.5 Flash with other large 

language models, including GPT-4o and Claude 3.5 Sonnet, is summarized in Table 1, highlighting 
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their relative suitability for caption-cleaning tasks in terms of controllability, deployment 

constraints, and computational efficiency [29]. 

Table 1 A Comparison of Large Language Models: Gemini 2.5 Flash, GPT-4o, and Claude 3.5 Sonnet 

Model Reasoning / 

Multimodal Strength 

Context 

Window 

Speed / Latency Notes / Cost Considerations 

Gemini 2.5 

Flash 

Strong reasoning & 

multimodal 

~1,048,576 

tokens 

~274 tokens/s, 

moderate latency 

Input ≈ $0,10/M token, Output ≈ $0,40/M token. 

Lower cost per token, suited for batch cleaning 

GPT-4 / 4.1 Very strong 

reasoning 

~128K – 1M 

tokens 

Higher latency 

(~0.45 s) Input ≈ $2,5/M token, Output ≈ $10/M token. 

High cost, slower for large batch processing 
 

Claude 3.5 

Sonnet 

Excellent reasoning 

and safety 

~64–200K 

tokens 

Efficient latency Input ≈ $3/M token, Output ≈ $15/M token. Highest 

cost, but less context capacity 

 

3.5   Concept Unique Identifier (CUI) Integration 

While the Swin Transformer-GPT2 backbone captures visual and linguistic context, radiology 

captions also require precise medical terminology. Inspired by recent evidence that embedding UMLS 

concepts can improve semantic accuracy in clinical NLP [20, 21, 22] this study incorporate CUIs into 

both the training and generation stages. Figure 2 highlights the additional CUI pathway in orange. 

1) CUI Extraction and Vocabulary Construction 

From the Ref_CUI column in ROCOv2 this study parse every CUI string, split on the pipe 

delimiter, deduplicate, and build a lookup table CUI → index. The final vocabulary contains  

|𝐶| = 1948 unique CUIs (max-frequency cutoff < 5 removed). Each CUI receives an embedding 

ec ∈ R
128 initialised uniformly at random. 

2) Dataset Encoding 

For every image-caption pair, this study create a fixed-length tensor c ∈ NMAX_CUI that stores 

the CUI indices occurring in the caption; unused slots are padded with 0. The value of MAX_CUI =

12 (95th percentile of ROCOv2). 

3) Model Augmentation 

The vanilla VisionEncoderDecoderModel is extended with: 

a. A Multi-label Classifier that takes the pooled output of the vision encoder to predict relevant 

CUIs using a linear layer and a ReLU activation function. This classifier allows the model to 

predict CUIs from the image itself during inference. 

b. CUI Embedding Layer: that maps c to a pooled vector 𝑒̂ = mean[eci]  

c. Projection Layer 𝑊𝑝 ∈ 𝑅
128 𝑥 𝑑𝑒𝑛𝑐  with the encoder hidden size 𝑑𝑒𝑛𝑐 = 768 

d. Fusion Mechanism: that merges the projected CUI vector 𝑒̂ = 𝑒̂𝑊𝑝 with the CLS-token of the 

Swin encoder, either by simple addition (add) or channel-wise concatenation (concat). 

4) Forward Pass 

Given pixels x and CUI indices c: 

ℎ𝑖𝑚𝑔 = 𝐸𝑆𝑤𝑖𝑛(𝑥)      (1) 

𝑒̂ =  𝑓𝑝𝑟𝑜𝑗(𝐸𝑚𝑏𝑒𝑑(𝑐))     (2) 

ℎ̂𝑒𝑛𝑐 =  𝐹𝑢𝑠𝑒(ℎ𝑖𝑚𝑔, 𝑒̂)     (3) 
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𝑦 =  𝐷𝐺𝑃𝑇2(ℎ̂𝑒𝑛𝑐 , 𝑦 < 𝑡)     (4) 

where 𝐷𝐺𝑃𝑇2 is the autoregressive decoder with cross-attention to ℎ̂𝑒𝑛𝑐. 

5) Training and Inference 

Training is performed using standard cross-entropy loss on caption tokens, with c provided 

as an additional input. During inference, the generate()  function is overridden to inject the tensor 

c corresponding to the test image, ensuring CUI guidance during decoding. Upon completion of 

training, the Swin parameters, GPT-2 weights, CUI embeddings, tokenizer, and feature extractor 

are saved as a unified artefact. 

The proposed pipeline grounds language generation in a structured ontology, aiming to 

minimise synonym drift and improve clinical fidelity of the produced reports. Ablation results in 

Table 7 confirm that CUI fusion yields consistent gains across BLEU-1, ROUGE-L, CIDEr, and 

BERTScore. 

6) Examples of Cleaned Captions 

Table 2 Examples of Raw and Cleaned Captions, Demonstrating the Effectiveness of LLM-Based Cleaning Pipeline 

in Retaining Clinical Focus 

ID Original Caption Cleaned Caption Ref CUI 

ROCOv2 

train 

000389 

Radiograph of an artificially decalcified rib, 

with 54.7% of the calcium removed. From: 

Lachman E and Whelan M.A: The roentgen 

diagnosis of osteoporosis and its 

limitations. Radiology 26, 165–177 (1936) 

(with permission). 

Chest x-ray of an artificially decalcified 

rib, with 54.7% of the calcium removed, 

demonstrating features of osteoporosis. 

Plain x-ray; Chest; 

Osteoporosis 

 

ROCOv2 

train 

001380 

Mediorenal tumoral mass classified as T1, 

suggestive for RCC (‘Fundeni’ Archives) 

Computed Tomography demonstrating 

mediorenal tumoral mass classified as 

T1, suggestive for renal cell carcinoma. 

X-Ray Computed 

Tomography 

ROCOv2 

train 

002427 

Initial chest x-ray on presentation to the 

emergency department. Chest x-ray 

showcasing patchy ground-glass 

opacifications  

Initial chest x-ray on presentation to the 

emergency department showcasing 

patchy ground-glass opacifications. 

Anterior-Posterior; Plain 

x-ray; Chest 

ROCOv2 

valid 

005053 

Myometrial thickness (red line) in early 

pregnancy was 7 mm in case no. 5 from 

group B, which had a normal placenta 

during late pregnancy. 

Myometrial thickness in early 

pregnancy was 7 mm, with a normal 

placenta during late pregnancy. 

Ultrasonography; 

Pregnancy 

 

ROCOv2 

valid 

005598 

Another case of a known arteriovenous 

fistula status post Onyx embolization 

Angiogram demonstrating an 

arteriovenous fistula status post Onyx 

embolization. 

Arteriovenous fistula; 

angiogram 

ROCOv2 

test 

000017 

HRCT done on presentation to the ER that 

shows B/L ground glass infiltrates with 

patchy consolidations involving mainly the 

peripheries 

High-resolution computed tomography 

shows bilateral ground-glass infiltrates 

with patchy consolidations, 

predominantly involving the 

peripheries. 

X-Ray Computed 

Tomography 

ROCOv2 

test 

000158 

CT scan of the chest.CT scan of the chest 

showing scattered reticular, ground-glass, 

atelectatic and fibrotic changes again seen 

in both lungs. These are slightly worsened 

compared to Figure 1 especially in the right 

upper lobe where there is a groundglass 

patchy infiltrate of 5 cm in size with 

associated new cavity of 2 cm in the right 

middle lobe (blue arrow). . 

Computed tomography of the chest 

shows scattered reticular, ground-glass, 

atelectatic, and fibrotic changes in both 

lungs, with slight worsening in the right 

upper lobe, where there is a 5 cm 

ground-glass patchy infiltrate with an 

associated 2 cm new cavity in the right 

middle lobe. 

Atelectatic; Cavitation; 

Structure of middle lobe of 

right lung; X-Ray 

Computed Tomography; 

Structure of right upper 

lobe of lung; Bilateral 

lungs 

Table 2 illustrates examples of raw image captions from the ROCOv2 dataset and their 

corresponding cleaned versions generated via the LLM-based prompt cleaning procedure (see 

Algorithm on Table 1. The cleaning process removes extraneous references (e.g., case numbers, 
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citations) and reinforces medically relevant content, particularly by aligning terminology with the 

reference CUIs. 

7) Dataset Filtering 

To maintain consistency and clinical relevance, the dataset was filtered based on anatomical 

regions, primarily focusing on chest and brain imaging studies. This strategic selection allowed the 

evaluation to concentrate on common diagnostic scenarios, thereby ensuring that the generated 

captions met practical clinical standards and could be effectively evaluated for semantic and 

diagnostic accuracy. 

8) Mathematical Formulation 

The image captioning task is modeled as a conditional sequence generation problem. Given 

an image 𝐼, the model aims to generate a caption 𝑌 =  {𝑦1, 𝑦2, … , 𝑦𝑇} by maximizing the conditional 

likelihood: 

𝑌̂ = arg𝑚𝑎𝑥𝑌, 𝑃(𝑌 ∣ 𝐼;  𝜃 )     (5) 

where 𝜃 denotes the parameters of the encoder-decoder network. 

The encoder 𝐸 maps the input image 𝐼 into a sequence of visual feature representations 𝑉: 

𝑉 =  𝐸(𝐼)      (6) 

In the implementation, 𝐸 is a Swin Transformer that extracts hierarchical patch embeddings 

and models local-global visual dependencies via window-based self-attention. 

The decoder 𝐷, based on GPT-2, generates each word 𝑦𝑡 conditioned on previously generated 

tokens and the visual features 𝑉: 

𝑃(𝑦𝑡  ∣ 𝑦<𝑡 , 𝑉)  =  𝐷(𝑦<𝑡 , 𝑉)     (7) 

The attention mechanism used in both encoder and decoder layers is defined as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾⊤

√𝑑𝑘
) 𝑉    (8) 

where 𝑄, 𝐾, and 𝑉 are the query, key, and value matrices derived from input embeddings, and 

𝑑𝑘 is the dimensionality of the key vectors. 

In the decoder’s cross-attention, 𝑄 is derived from the decoder’s token embeddings, while 𝐾 

and 𝑉 are computed from the encoder’s visual outputs. This mechanism allows the model to align 

image context with generated words. 

The model is trained using the cross-entropy loss function over the caption sequence: 

𝐿(𝜃) =  −∑ log 𝑃( 𝑦𝑡 ∣∣  𝑦<𝑡 , 𝑉;  𝜃 ) 
𝑇
𝑡=1     (9) 

When Concept Unique Identifiers (CUIs) are integrated, this study introduce an additional 

embedding vector 𝑐 , representing pooled semantic information from UMLS concepts. This 

embedding is concatenated with or added to the encoder features before decoding: 

𝑃( 𝑦𝑡 ∣∣  𝑦<𝑡 , 𝑉;  𝑐 ) =  𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑦<𝑡 , 𝑉;  𝑐 )    (10) 

This formulation allows the model to leverage both visual and structured semantic 

information, improving the clinical accuracy and terminological precision of generated captions. 

3.6   Hyperparameters and Training Details 
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The proposed model was implemented using the HuggingFace Transformers library by 

integrating a Swin Transformer encoder and a GPT-2 decoder through the 

VisionEncoderDecoderModel interface. Model training was carried out using PyTorch with mixed-

precision (FP16) enabled to improve memory efficiency and computational throughput. The key 

training and hyperparameter tuning configurations adopted in this study, including optimizer settings, 

learning rates, batch sizes, and training schedules, are summarized in Table 3. 

Table 3 Summary of Training and Tuning Configurations 

Parameter Setting Parameter Setting 

Framework PyTorch + HuggingFace Fusion Mechanism Additive (CUI + visual embeddings) 

Encoder Swin Transformer (Base, IN-22k) Decoder GPT-2 (12 layers, 768 hidden, 12 heads) 

CUI Embedding 

Dim. 

128 → projected to 1024 Input / Caption 

Length 

224×224 px / 128 tokens 

Max CUIs per 

Sample 

12 Batch Size / Epochs 8 (accum.) / 10 

Optimizer / LR AdamW (β₁=0.9, β₂=0.999), 5 × 

10⁻⁵ LR 

LR Schedule Linear decay + 10 % warm-up 

Regularization Dropout 0.1, Grad clip 1.0 Early Stopping 

Metric 

ROUGE-L (patience = 3) 

Model Selection Highest validation BERTScore-F1 Hardware NVIDIA RTX A5000 (24 GB), 45–60 min 

/ epoch 

a. Encoder and Decoder 

The Swin Transformer encoder adopts a hierarchical window-based attention mechanism. 

This study employed the microsoft/swin-base-patch4-window7-224-in22k variant pretrained on 

ImageNet-22k, comprising 24 Transformer blocks (2 + 2 + 18 + 2) across four stages. Hidden 

dimensions increase progressively from 128 to 1024, producing a final feature map of size 1/32 

H × 1/32 W × 1024. The GPT-2 decoder (openai-community/gpt2) consists of 12 Transformer 

blocks with 768 hidden units and 12 attention heads. A linear projection layer aligns the encoder 

and decoder dimensions. Both components were frozen during initial warm-up epochs, then 

jointly fine-tuned. 

b. CUI Embedding 

Each Concept Unique Identifier (CUI) is mapped to a learnable 128-dimensional 

embedding, pooled and projected to the encoder hidden size before additive fusion. This strategy 

yielded the highest validation BERTScore-F1 among tested configurations. 

c. Optimization and Learning Schedule 

Training used the AdamW optimizer (𝛽1 = 0.9, 𝛽1 = 0.999, weight decay = 0.01) for 10 

epochs, with a learning rate of 5𝑥10−5, linear decay, and 10 % warm-up. Gradient clipping 

(threshold = 1.0) stabilized updates. 

d. Early Stopping and Model Selection 

Training used early stopping based on ROUGE-L (patience = 3 epochs). The final 

checkpoint was selected using the highest validation BERTScore-F1. 
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e. Other Configurations 

All input images were resized to 224 × 224 px, and captions were tokenized with a 

maximum length of 128 tokens. Each sample included up to 12 CUIs (zero-padded if fewer). 

The effective batch size was 8 with gradient accumulation, and a dropout rate of 0.1 was used in 

attention and feedforward layers. Experiments were conducted on a NVIDIA RTX A5000 (24 

GB VRAM), with an average training time of 45–60 minutes per epoch depending on dataset 

size and augmentation strategy. Label smoothing (ε = 0.1) was tested but omitted due to 

negligible gains. 

 

4   Results and Discussion 

4.1   Evaluation Setup and Metrics 

To evaluate the proposed Swin Transformer-GPT2 model with CUI integration, experiments 

were conducted using the ROCOv2 dataset, comparing against two baselines: (1) a CNN-LSTM model 

using EfficientNet as the visual encoder, and (2) a pretrained ViT-BioMedLM vision-language model. 

All models were trained and tested using the same dataset split and caption preprocessing pipeline for 

fairness. 

4.2   Quantitative Results 

1) Main Results 

To analyze the training dynamics and convergence behavior of the compared models, the 

evolution of training and validation loss across epochs is examined. A comparative visualization of 

the loss curves for EfficientNetB0–LSTM, Swin Transformer–GPT-2, and DeepSeekVL 1.3B Chat is 

presented in Figure 4, providing insight into model stability and learning efficiency throughout the 

training process. 

 

 (a)  (b)  (c) 

Figure 4 Training and validation loss over epoch. From left to right: (a) EfficientNetB0-LSTM, (b) Swin 

Transformer-GPT2, (c) DeepSeekVL 1.3b Chat. 

Tables 5 and 6 present the evaluation results across all metrics for the compared models. The 

Swin Transformer–GPT-2 + CUI model consistently achieves the highest performance across all 

evaluation metrics, significantly outperforming the baseline approaches. Table 4 summarizes the 

experimental results obtained before caption preprocessing, with the best score for each metric 
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highlighted in bold, while Table 5 reports the corresponding results after the caption cleaning stage, 

enabling a direct comparison of the impact of preprocessing on model performance. 

Table 4 Summary of Experimental Results (Before Caption Preprocessing). The best score for each metric is 

highlighted in bold. 

Model                    BLEU-1 ROUGE-L CIDEr BERTScore (F1) PubMedBERTScore 

(F1) 

EfficientNetB0-LSTM    0.228 0.146 0.052 0.628 0.876 

EfficientNetB7-LSTM    0.229 0.161 0.057 0.636 0.877 

Swin Transformer 

Base-GPT2           

0.315 0.227 0.139 0.669 0.890 

ViT Base-GPT2           0.309 0.218 0.152 0.664 0.889 

DeepSeek-VL 1.3B 

Chat   

0.276 0.211 0.103 0.660 0.886 

ViT-BioMedLM            0.276 0.185 0.063 0.645 0.881 

Table 5 Summary of Experimental Results (After Caption Preprocessing). The best score for each metric is 

highlighted in bold. 

Model                   BLEU-1 ROUGE-L CIDEr BERTScore (F1) PubMedBERTScore 

(F1) 

Swin Transformer 

Base-GPT2 + CUI           

0.371 0.305 0.275 0.719 0.893 

ViT Base-GPT2 + 

CUI                    

0.364 0.298 0.288 0.716 0.892 

Qwen2VL 2B                 0.343 0.269 0.166 0.693 0.882 

BLIP-Base               0.297 0.268 0.135 0.695 0.887 

DeepSeek-VL 1.3B 

Chat   

0.295 0.273 0.184 0.698 0.891 

ViT-BioMedLM            0.285 0.209 0.124 0.689 0.882 

2) Performance Analysis 

A comparative evaluation of model performance before and after caption preprocessing 

reveals substantial improvements across all evaluation metrics, particularly when Concept Unique 

Identifier (CUI) embeddings from UMLS are incorporated. The experiments included six models 

in the “before cleaning” phase and six corresponding or enhanced variants in the “after cleaning” 

phase. 

a. Before Preprocessing: Transformer Models Lead, but With Limits 

In the initial phase (before caption cleaning), Swin Transformer Base-GPT2 emerged as 

the most semantically coherent model, achieving a BERTScore (F1) of 0.669 and a CIDEr score 

of 0.139. Similarly, ViT Base-GPT2 recorded a CIDEr score of 0.152, slightly higher than Swin-

GPT2, but with lower BLEU-1 (0.309 vs. 0.315). These results suggest that both models are 

capable of capturing clinical semantics and generating coherent sentences, but still suffer from 

noise and inconsistency in unprocessed training data. 

Traditional CNN-LSTM baselines, such as EfficientNetB0-LSTM and EfficientNetB7-

LSTM, showed the lowest scores across all metrics. Their CIDEr scores (0.052 and 0.057) and 

BERTScore F1 (0.628-0.636) indicate limited capacity in representing complex medical 

concepts or aligning well with reference descriptions. This reinforces the limitations of recurrent 

models in medical image captioning, especially when dealing with domain-specific language 

variability and sparse findings. Interestingly, DeepSeek-VL 1.3B Chat, a large-scale vision-
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language model pretrained on diverse multimodal data, demonstrated reasonable scores in both 

BLEU-1 (0.276) and ROUGE-L (0.211). However, its relatively lower CIDEr (0.103) and 

PubMedBERTScore (0.886) reflect weaknesses in generating medically grounded descriptions 

despite its scale. 

b. After Preprocessing: CUI-Guided Models Outperform All Baselines 

Following the introduction of structured caption preprocessing and the integration of CUIs, 

performance improved across all models. The Swin Transformer Base-GPT2 + CUI model 

consistently achieved the best results in four of five metrics, including: BLEU-1: 0.371, 

ROUGE-L: 0.305, CIDEr: 0.275, BERTScore (F1): 0.719. 

This strong performance indicates that caption normalization and CUI supervision not only 

enhanced lexical overlap but also semantic fidelity. The model's PubMedBERTScore (0.893), 

specifically aligned with biomedical language confirms improved alignment with clinical 

concepts. 

Notably, ViT Base-GPT2 + CUI outperformed all others in CIDEr (0.288), suggesting it 

generated captions that best reflect the consensus n-gram statistics of the reference texts. This 

highlights the synergy between a ViT encoder’s global attention mechanisms and CUI-guided 

decoding, particularly for image regions with subtle or composite findings. 

c. Comparative Insights Across Models 

Qwen2VL-2B [36] and BLIP-Base [37] deliver fluent, contextually plausible captions, as 

reflected by their similar BERTScore-F1 values (~0.69), yet both trail the CUI-enhanced 

Transformers on lexical (BLEU-1 ≤ 0.343) and consensus-based (CIDEr ≤ 0.166) metrics, 

signalling limited faithfulness to the reference annotations. ViT-BioMedLM, a purely encoder-

style vision-language model, remains the weakest of the Transformer family despite reasonable 

fluency (BLEU-1 = 0.285) its CIDEr score (0.124) and ROUGE-L (0.209) confirm that encoder-

only pre-training is insufficient for domain-specific caption generation without a dedicated 

autoregressive decoder and fine-tuning. In contrast, DeepSeek-VL 1.3B Chat [38], a large, open-

domain autoregressive model, ranks mid-table (BLEU-1 = 0.295; CIDEr = 0.184; 

PubMedBERTScore-F1 = 0.891). While its biomedical semantics are competitive, the gap to the 

CUI-guided Swin-GPT2 and ViT-GPT2 variants shows that sheer model size and generic 

multimodal pre-training cannot fully substitute for ontology-aware supervision. Together, these 

findings underscore that explicit UMLS-based concept fusion, rather than parameter count alone, 

is decisive for producing radiology captions that are both linguistically fluent and clinically 

aligned. 

d. Effectiveness of Preprocessing and CUI Integration 

Overall, the experimental results reveal two central findings that jointly explain the 

observed performance gains. First, the structured caption cleaning procedure effectively reduces 

linguistic noise, improves caption length consistency as evidenced by the distribution analyses, 

and facilitates more stable and efficient training convergence. Second, the integration of Concept 

Unique Identifiers (CUIs) provides explicit semantic grounding, enabling the model to generate 

clinically valid and ontology-aligned captions with substantially higher semantic overlap. These 

complementary improvements are most prominently reflected in the CIDEr score, which 

increases by approximately 98%, and the BERTScore, which improves by around 5–7%, 
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demonstrating that the combination of domain-specific preprocessing and structured medical 

knowledge enhances both lexical precision and deeper semantic understanding in medical image 

captioning. 

3) Qualitative Analysis 

 
Figure 5 Visualization of model performance across different evaluation metrics on image 

ROCOv2_2023_test_000868. The Swin Transformer Base-GPT2 model consistently outperforms other baselines 

after caption preprocessing. 

In addition to the quantitative evaluation, a qualitative analysis was conducted to assess the 

interpretative capability of each model in generating clinically meaningful captions for 

representative test samples from the ROCOv2 dataset. As illustrated in Figure 5, the visualization 

of model performance across multiple evaluation metrics on the sample 

ROCOv2_2023_test_000868 demonstrates that the Swin Transformer Base–GPT-2 model 

consistently outperforms the baseline approaches after caption preprocessing. This qualitative 

assessment provides deeper insight into how different model architectures interpret radiological 

content and translate it into syntactically coherent and semantically accurate descriptions. Particular 

attention is given to each model’s ability to capture clinically relevant information, including 

anatomical structures, pathological entities, and quantitative measurements. 

a. CNN-LSTM (EfficientNetB0-LSTM) 

The CNN-LSTM model with an EfficientNetB0 backbone, serving as a traditional 

baseline, demonstrated significant limitations in generating accurate and clinically meaningful 

medical captions. Although the imaging modality was often correctly identified, the model 

frequently failed to recognize specific pathologies or accurately localize anatomical structures. 

In several cases, captions described incorrect or irrelevant findings. For example, predicting “CT 

angiogram with saddle embolus” instead of the reference “large ascending aortic aneurysm.” 

The model also tended to hallucinate nonexistent details or produce overly generic statements, 

particularly when faced with long and complex reference captions. Overall, its qualitative 

performance was notably inferior to Transformer-based models, underscoring the architectural 

limitations of CNN-LSTM in capturing nuanced clinical semantics from radiological data. 
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b. Swin Transformer-GPT2 

The Swin Transformer-GPT2 model, built using the VisionEncoderDecoderModel 

framework, produced substantially more coherent and clinically relevant captions. It showed 

improved ability to identify imaging modality, anatomical location, and pathology, e.g., 

generating “chest X-ray showing a right-sided pleural effusion”, reflecting emerging inferential 

capability. However, challenges persisted in precise localization and complex pathological 

description. Errors included side inversion (right vs. left) or omission of secondary findings. The 

model also struggled with non-anatomical or procedural contexts, sometimes redirecting 

attention toward irrelevant anatomical features. In certain cases, it generated plausible but 

unverifiable reasoning, such as implied diagnostic interpretations. Despite these issues, Swin 

Transformer-GPT2 consistently outperformed CNN-LSTM in both linguistic fluency and 

semantic alignment. 

c. ViT-BioMedLM 

The ViT-BioMedLM model, pre-trained on biomedical data, demonstrated strength in 

identifying imaging modalities and applying standard medical terminology such as “mass” or 

“lesion.” It occasionally generated detailed captions, e.g., “Axial T2-weighted magnetic 

resonance image of the brain showing hyperintense lesions in the periventricular white matter,” 

but often included details not present in the reference. The model frequently failed to identify 

specific pathologies or their correct anatomical locations, such as describing abdominal findings 

instead of cardiac ones, and sometimes hallucinated nonexistent features. Its tendency toward 

overgeneralization and mislocalization highlights a gap between its domain pretraining and 

visual comprehension, indicating the need for further fine-tuning with radiology-specific data. 

4) Error Analysis 

While the Swin Transformer-GPT2 + CUI model shows strong performance, some failure 

cases persist. These include: 

a. Minor concept mismatches, such as describing pleural thickening instead of effusion. 

b. Misinterpretation of modality in low-contrast images. 

c. Infrequent CUIs not well represented in the training corpus. 

These findings suggest that future improvements could involve larger datasets, explicit 

modality classification layers, or multimodal integration with textual prompts. 

5) Comparative Evaluation with Prior Works 

To further contextualize the performance of the proposed Swin Transformer-GPT2 + CUI 

model, this study compared its results against recent state-of-the-art models evaluated on the 

ROCOv2 dataset. Table 7 summarizes the comparison across key evaluation metrics. 

Compared to prior methods, Swin Transformer-GPT2 + CUI model in this study achieves the 

highest BLEU-1 score of 0.371, indicating stronger lexical overlap and fluency at the unigram level. 

It also outperforms in semantic fidelity with a BERTScore of 0.719, and achieves a competitive 

ROUGE-L score of 0.305. These results underscore the effectiveness of integrating domain 

knowledge via UMLS CUIs, which reinforces clinical relevance in generated descriptions while 

maintaining linguistic quality. 
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These results further emphasize the advantage of integrating domain-specific ontological 

knowledge through UMLS Concept Unique Identifiers (CUIs), which substantially enhances both 

clinical specificity and linguistic coherence in generated captions. By achieving a more effective 

balance between syntactic accuracy and semantic precision, the Swin Transformer–GPT-2 + CUI 

model demonstrates superior robustness for automated radiology report generation. As shown in 

Table 6, the proposed approach consistently outperforms prior medical image captioning models 

evaluated on the ROCOv2 dataset, confirming its effectiveness relative to existing state-of-the-art 

methods. 

Table 6 Comparison with Prior Medical Image Captioning Models on ROCOv2 Dataset. 

Model                BLEU-1 ROUGE-L BERTScore (F1) 

MedBLIP [12]         0.221 0.247 0.617 

MAKEN [13]           0.226 0.252 0.639 

CvT2DistilGPT2-SA [14] 0.161 0.244 0.642 

ViT-BioMedLM [18] 0.183 0.232 0.624 

Swin Transformer-GPT2 + CUI (ours) 0.371 0.305 0.719 

6) Ablation Study and Effect of CUI Integration 

To comprehensively assess model design choices, this ablation study evaluates two main 

aspects: 

a. The impact of structured medical knowledge integration using Concept Unique Identifiers 

(CUIs), and 

b. The comparative performance of different visual encoders and text decoders. 

Table 7 presents the quantitative results across five key metrics (BLEU-1, ROUGE-L, CIDEr, 

BERTScore-F1, and PubMedBERTScore-F1). The evaluated variants include: 

a. CNN-based encoder: EfficientNet B0/B7 coupled with GPT-2 decoder. 

b. Transformer-based encoders: Vision Transformer (ViT) and Swin Transformer. 

c. Decoder variants: GPT-2 (autoregressive) and BART (encoder-decoder) to analyze the effect of 

decoding strategy. 

In summary, the ablation results demonstrate that: 

a. Encoder comparison 

Without CUI integration, Swin Transformer–GPT-2 already outperforms the ViT-GPT-2 and 

EfficientNet baselines, achieving higher BLEU-1 (0.353 vs 0.341 and 0.291) and ROUGE-L 

(0.282 vs 0.273 and 0.236). This confirms that the Swin encoder’s hierarchical window 

attention provides better multi-scale contextual representation than CNN or vanilla ViT, 

leading to more semantically coherent captions. 

b. Decoder comparison 

To isolate the effect of the language model, the same Swin encoder was paired with BART 

instead of GPT-2. Although Swin–BART attains a comparable BLEU-1 (0.371) to Swin–GPT-

2 + CUI, its lower ROUGE-L (0.282) and CIDEr (0.200) indicate that BART produces less 

complete and diverse descriptions. 

c. Effect of CUI integration 

Across all evaluated architectures, the integration of Concept Unique Identifiers (CUIs) yields 

consistent and measurable performance gains. As summarized in Table 7, the largest relative 

improvements are observed in the Swin Transformer + GPT-2 model, where BLEU-1 increases 
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by +0.018, ROUGE-L by +0.023, and BERTScore-F1 by +0.014. These findings indicate that 

the hierarchical feature representations produced by the Swin Transformer encoder benefit 

most from ontology-based semantic guidance, as its multi-level visual features align effectively 

with structured UMLS concepts, resulting in enhanced syntactic accuracy and semantic 

coherence in the generated captions. 

Table 7 Ablation Study: Impact of CUI Integration on Captioning Performance (Selected Metrics). 

Model Variant         BLEU-1 ROUGE-L CIDEr BERTScore (F1) PubMedBERTScore 

(F1) 

Swin Transformer Base-GPT2 

(No CUI)           

0.353 0.282 0.205 0.713 0.888 

Swin Transformer Base-

GPT2 + CUI           

0.371 0.305 0.275 0.719 0.893 

Swin Transformer Base-

BART 

0.371 0.282 0.200 0.717 0.888 

ViT Base-GPT2 (No CUI)           0.341 0.273 0.182 0.708 0.885 

ViT Base-GPT2 + CUI                    0.364 0.298 0.288 0.716 0.892 

EfficientNetB0-GPT2 0.268 0.234 0.113 0.673 0.874 

EfficientNetB7-GPT2 0.291 0.236 0.113 0.679 0.875 

4.3   Radiologist Evaluation 

To complement the automatic evaluation metrics, a board-certified radiologist independently 

assessed 24 representative captions, selected from the three highest BERTScore-F1 outputs for each 

modality and body-part combination (X-ray vs. CT scan; head, abdomen, lung, and chest). As defined 

in Table 8, four evaluation criteria were rated using a five-point Likert scale: diagnostic accuracy (DA), 

description completeness (DC), linguistic clarity (LC), and clinical relevance (CR). The resulting mean 

scores are summarized in the corresponding figure, providing an expert-driven validation of the 

clinical quality and interpretability of the generated captions. 

Table 8 Simplified Scoring Criteria for Radiology Image Caption Evaluation. 

Score Diagnostic Accuracy Completeness Language Clarity Clinical Relevance 

1 Very inaccurate (0-20%) Very incomplete Very unclear Not clinically relevant 

2 Mostly incorrect (21-40%) Many key 

elements missing 

Hard to follow Low relevance, some 

errors 

3 Partially correct (41-60%) Fair coverage, 

missing info 

Understandable but 

vague 

Moderate relevance 

4 Nearly accurate (61-80%) Mostly complete Clear with minor flaws Mostly relevant 

5 Fully accurate (81-100%) Very complete Very clear and precise Highly relevant and 

aligned 

1) Summary of Radiologist Evaluation Results 

As illustrated in Figure 6, the average radiologist ratings across the four evaluation criteria 

reveal notable differences in model performance. The highest scores are achieved in Linguistic 

Clarity (LC), which attains a perfect mean score of 5.0, indicating that the generated captions are 

consistently well-structured and easily comprehensible. Description Completeness (DC) and 

Diagnostic Accuracy (DA) obtain satisfactory mean scores of 3.84 and 3.53, respectively; however, 

these results suggest that some clinically important findings are occasionally omitted and that minor 

diagnostic imprecision persists. In contrast, Clinical Relevance (CR) records the lowest mean score 
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of 3.15, confirming that medically nuanced details and contextual clinical significance remain the 

most challenging aspects for the model to capture accurately. 

 

 

Figure 6 Average radiologist scores across four criteria.  Highest performance is observed in Linguistic Clarity, while 

Clinical Relevance remains the most challenging aspect. 

2) High-quality Examples 

Several captions received perfect (5/5) scores across all criteria, illustrating the model’s 

potential when findings are typical or the image is free of major pathology: 

a. “Computed tomography of the brain shows no acute intracranial haemorrhage.”  

b. “Postero-anterior chest plain~X-ray demonstrates normal cardiac and pulmonary silhouette.”  

c. “Computed tomography of the chest shows bilateral ground-glass opacities.” 

These examples are concise, anatomically precise, and clinically appropriate. 

3) Common Failure Modes 

Conversely, CR and DA were penalised when captions omitted critical details or mis-

identified anatomy: 

a. Missing specificity: “… fracture” without fracture type (e.g. “comminuted”).  

b. Incomplete findings: sentences judged “globally correct” yet lacking the primary abnormality. 

c. Anatomical mis-placement: e.g. lesion described in the cervical segment while image showed 

thoracic spine.  

d. Over-general terms: “mass” or “abnormal opacity” without location or size.  

e. Image-quality sensitivity: low-resolution axial slices led to erroneous density interpretation (gas 

vs. fluid). 

These observations highlight that, although the model delivers fluent language, deeper 

anatomical reasoning and pathology-specific vocabulary remain challenging. Future work should 

incorporate view-aware encoders, higher-resolution inputs, and task-oriented loss functions to 

enforce clinical completeness. 

4) Limitations and Generalization Challenges 

Although the model demonstrates strong performance on the ROCOv2 dataset, generalization 

to external datasets and real-world clinical environments, particularly in Indonesia, remains a 

challenge due to potential biases and limited representation of rare diseases and low-resource 
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imaging modalities. The quality of CUI annotations is also dependent on the accuracy of MedCAT, 

which may not capture all relevant medical concepts.  

Furthermore, a performance drop may occur when evaluated on external datasets such as 

MIMIC-CXR or under conditions involving multilingual or low-quality image data. To improve 

robustness and clinical applicability, future research should incorporate domain adaptation 

techniques and cross-institutional validation. 

 

5   Conclusion and Future Work 

This study set out to develop and evaluate a Transformer-based encoder-decoder architecture for 

medical image captioning that explicitly integrates structured clinical knowledge through Concept 

Unique Identifiers (CUIs) from the Unified Medical Language System (UMLS). The objective was to 

enhance both the linguistic quality and clinical accuracy of generated captions by embedding domain-

specific semantics during preprocessing and decoding. 

Experimental results on the ROCOv2 dataset confirm that this objective was achieved. The 

proposed Swin Transformer–GPT-2 + CUI model consistently outperformed all baseline and 

comparison models, including CNN-LSTM, ViT-BioMedLM, BLIP-Base, and DeepSeek-VL across 

all evaluation metrics. It attained a BLEU-1 score of 0.371, ROUGE-L of 0.305, CIDEr of 0.275, and 

PubMedBERTScore-F1 of 0.893, corresponding to a 20.1% improvement in BLEU-1 and a 39.9% 

increase in ROUGE-L compared with the best non-CUI model. These results demonstrate that 

structured semantic augmentation substantially enhances both lexical fluency and clinical fidelity in 

automated radiology caption generation. 

Qualitative evaluation by three expert radiologists further supports these findings. The CUI-

integrated model achieved average Likert scores of 3.53 for diagnostic accuracy, 3.84 for 

completeness, 5.0 for language clarity, and 3.15 for clinical relevance across a random sample of 24 

test cases demonstrating strong alignment with real-world clinical standards. 

Future work will explore the following directions: 

1) Adaptation to Indonesian Clinical Environments: incorporating local medical terminology and 

validating the model on diverse, multilingual datasets to improve applicability in real-world 

Indonesian settings. 

2) Multimodal Input Integration: combining imaging data with clinical metadata, patient history, or 

free-text findings to provide richer diagnostic context. 

3) Cross-domain Generalization: evaluating model performance on external datasets such as MIMIC-

CXR and PadChest, as well as multilingual corpora, to assess robustness across institutions and 

populations. 

4) Fine-grained Medical Reasoning: enhancing the decoder using prompt tuning or retrieval-

augmented generation to support more accurate and explainable diagnostic justifications. 
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