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Abstract 

The classification of 23 regencies/cities in West Java from 2008 to 2024 was executed using the K-Means algorithm on a 

dataset spanning five variables: production, harvested area, productivity, population, and agricultural workforce. K-

Means was chosen for its efficiency and ease of interpretability when analyzing large-scale multivariate data across time. 

Optimal cluster determination involved evaluating the Elbow Method, Silhouette Score, and the Davies-Bouldin Index 

(DBI). Although K=5 was suggested by the Elbow Method, K=6 was selected because it demonstrated a more stable and 

representative regional separation, supported by the lowest DBI of 0.8221 and a relatively high Silhouette Score of 0.4531. 

Cluster boundaries were further validated through PCA and GIS visualization. The analysis revealed precise regional 

segmentation. Key findings indicate that Indramayu, Karawang, and Subang regencies are stable, high-production centers, 

suitable for intensification and modernization. Conversely, regions like Bandung and Garut regencies exhibited dynamic 

cluster shifts driven by urbanization and climate variability. This segmentation has crucial policy implications: stable 

areas are suitable for intensification, dynamic areas require adaptive risk-mitigation policies, and urban-influenced 

regions (Bandung, Bekasi, and Depok cities) must focus on diversification and agricultural innovation. Despite the 

limitations of K-Means’ inability to capture complex, non-linear clusters, this research highlights the value of integrating 

spatiotemporal clustering for policy insights. Future research should incorporate climate and land-use data with advanced 

clustering methods, such as DBSCAN and HDBSCAN. HDBSCAN is more suitable for modeling clusters with varying 

densities, and time-series approaches should also be integrated. Overall, these results provide an essential, evidence-based 

framework for targeted agricultural planning. 

Keywords : Agricultural Policy, Clustering, Rice Production, Spatiotemporal Analysis, West Java 

1   Introduction 

Rice is the primary source of food for more than 278.16 million Indonesians [1]. As a strategic 

commodity, rice is not only the foundation of food security but also plays a crucial role in national and 

regional economic stability. Java Island contributes approximately 44.47% of the total national rice 

production, and West Java is one of the provinces with the most significant contribution to the total 

national production [2]. 

However, there are significant spatial differences in rice productivity across regions. For 

example, Indramayu Regency records productivity above 7 tons/ha [3], while regencies in the East 

Priangan region, such as Tasikmalaya, tend to be below 6 tons/ha [4]. This disparity is not only caused 

by agroclimatic conditions and irrigation availability [5], but also by demographic factors such as 

population size [6] and labor force in the agricultural sector [7]. This disparity has a direct impact on 

the effectiveness of public policies, such as the distribution of subsidized fertilizers, intensification 

programs, and the distribution of high-quality seeds. In this context, the government requires accurate 

spatial information to determine region-based intervention priorities. However, most previous studies 

have tended to focus on quantitative predictive approaches, such as the use of Support Vector 

Regression (SVR) considering climatic and economic factors to predict rice production [8], and the 

use of linear regression, random forest, and k-nearest neighbor to predict rice production in West Java, 
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which shows a declining trend despite remaining consistent as one of the top three national producers 

[9]. Efforts to enhance food security and sustainability require cross-sectoral collaboration, including 

the integration of technology and the adoption of climate-smart agricultural practices. This also 

emphasizes the strategic role of relevant ministries in promoting sustainable agricultural development 

[10].  

In other studies, clustering approaches have been used to group administrative regions based on 

similarities in production characteristics, such as productivity and harvest area [11]. At the 

international level, Abirami et al. [12] demonstrated that the application of the K-Means algorithm is 

not only practical in grouping rice-producing regions but also contributes to crop yield predictions by 

considering climate and irrigation variables, thereby generating relevant spatial information to enhance 

productivity. However, most previous studies have used clustering approaches within a cross-sectional 

framework, without considering the critical temporal dynamics in agricultural systems. Yet, annual 

fluctuations due to climate variables, changes in agricultural policies, and demographic dynamics 

(such as migration or urbanization) have the potential to shift the cluster structure of regions 

significantly. A spatiotemporal approach that monitors cluster changes over time is necessary to 

understand the resilience of areas to systemic disturbances. 

A study by Wickramasinghe et al. [13] shows that combining time-series data, climate variables, 

and machine learning can provide deeper insights into agricultural dynamics. On the other hand, 

analytical approaches such as Principal Component Analysis (PCA) and the K-Means algorithm have 

proven effective in improving the quality of high-dimensional data clustering, in terms of visualization, 

computational efficiency, and cluster validity, as demonstrated by metrics such as the Silhouette Score 

[14][15], the Elbow method [16], and the Davies–Bouldin Index (DBI) [17]. 

This study aims to cluster regencies/cities in West Java Province based on five leading 

agricultural indicators: rice production, harvested area, productivity, population, and the number of 

workers in the agricultural sector, using the K-Means algorithm. Additionally, this study analyzes the 

spatiotemporal dynamics of clusters during the 2008–2024 period, including the stability of regional 

positions within clusters and annual transition trends. The next objective is to identify extreme 

changes, such as cluster shifts of two levels or more, which may indicate structural instability or 

significant policy influences on the agricultural sector in the region. The novelty of this research lies 

in its integration of spatial and temporal dimensions simultaneously at the regency/city level, which 

previous agricultural clustering studies have rarely addressed. This contribution provides new insights 

into regional disparities, dynamic structural changes, and their policy implications for adaptive 

agricultural development in West Java. 

2   Literature Review 

2.1 Factors Affecting Rice Production 

The interaction of biophysical and socio-economic factors influences rice production. 

Biophysical factors, such as climate (temperature, rainfall, and sunlight intensity), soil conditions, and 

irrigation systems, play a crucial role. Climate change, particularly rising temperatures and increased 

rainfall variability, has been shown to impact global rice production significantly. Therefore, 

adaptation strategies are needed, including the development of climate-resilient varieties, the 

application of precision agriculture technologies, and policy support to ensure the sustainability of 

production and food security [18][19]. Based on research findings, population size has been shown to 
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influence rice production in Tapanuli Selatan Regency [6]. This suggests that demographic factors, 

such as population growth, can impact rice production levels, either through increased consumption 

demands or the availability of labor in the agricultural sector. Suresh et al. [20] demonstrate that labor 

is the most significant input in rice production in Sri Lanka. At the same time, non-climatic factors, 

such as migration, access to training, and seed varieties, also impact farmers' technical efficiency, 

highlighting the importance of increased capacity and farmer involvement in achieving productivity 

improvements. 

A multivariate approach is necessary because various factors are generally interrelated and 

produce simultaneous effects. Therefore, the use of spatiotemporal panel data encompassing 

production and demographic variables provides a more comprehensive basis for data-driven 

spatiotemporal analysis. In a regional context such as West Java, these variables are essential to 

analyze simultaneously because regional differences can create distinctive spatiotemporal patterns in 

rice production.  

2.2 Clustering Methods in Agricultural Studies 

Clustering is an unsupervised learning method that aims to group objects based on feature 

similarities. In agriculture, the K-Means algorithm has become a popular method due to its ease of 

implementation and interpretation of results. A study by Kurniawati et al. [11] categorized 

regencies/cities in Indonesia based on harvest area and productivity, revealing differences in 

characteristics among regional groups. Abirami et al. [12] applied K-Means to regencies in Tamil 

Nadu, India. They showed that regional classification based on rice production variables could serve 

as a basis for more targeted policy decisions, such as fertilizer subsidies or agricultural machinery 

incentives. 

However, most previous studies still rely on a cross-sectional approach and have not 

systematically explored spatiotemporal dynamics in the context of agriculture. This study aims to fill 

this gap by combining spatial and temporal dimensions to produce more informative and relevant 

clustering, providing a basis for data-driven agricultural policy formulation. 

2.3 Spatiotemporal Segmentation and Regional Stability 

In addition to the static clustering approach, the spatiotemporal dimension provides a more 

dynamic perspective in observing changes in the characteristics of agricultural areas over time. Zhu et 

al. [21] proposed a deep learning-based STMA method that utilizes Sentinel-1 time-series imagery for 

crop mapping, combining multi-level spatiotemporal attention to improve the accuracy of crop 

phenology mapping in complex agricultural systems. Supriatna et al. [22] conducted a spatiotemporal 

analysis of rice growth in Karawang Regency using Sentinel-1 imagery. They found that the 

distribution of phenological phases does not always follow the irrigation system, and that there is an 

acceleration of harvest during the dry season. Spatiotemporal analysis expands the scope of clustering 

by considering changes in regional characteristics over time. Cluster stability is an essential indicator 

in the spatiotemporal approach, reflecting the extent to which a region maintains its agricultural profile 

over time. Areas with high stability tend to have stable agricultural conditions. In contrast, areas that 

frequently experience changes in clusters may indicate structural changes or external disturbances, 

such as policy changes, urbanization pressures, natural disasters, or internal dynamics, like shifts in 

primary commodities. Monitoring these dynamics is essential for supporting evidence-based 

agricultural policy formulation that is responsive to change and adaptive to regional challenges. 
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However, most previous studies remain limited to cross-sectional or static perspectives and do not 

systematically integrate both spatial and temporal dimensions. This gap highlights the need for studies, 

such as the present one, that address these limitations and provide more comprehensive and policy-

relevant insights. Future studies are recommended to incorporate climate factors, such as rainfall, 

temperature, and irrigation patterns, potentially utilizing remote sensing data, to refine clustering 

results further and enhance their applicability for agricultural policy planning. 

3   Research Method 

3.1 Data, Data Sources, and Study Area  

This study covers 23 regencies/cities in West Java Province from 2008 to 2024. Four regions 

were excluded: Bogor Regency, West Bandung Regency, Pangandaran Regency, and Cimahi City, as 

they lacked consistent production and harvest area data throughout the period. Data were sourced from 

the Central Statistics Agency (BPS) and the Ministry of Agriculture, organized in a panel format 

(combining cross-section and time-series), which enables the simultaneous exploration of spatial and 

temporal aspects. The five variables used include: 

a. Rice production (tons) 

b. Harvested area (ha) 

c. Productivity (quintals/ha) 

d. Population (people) 

e. Agricultural workforce (people) 

3.2 Data Pre-processing and Missing Value Handling 

Missing values were found in the variable for the population working in the agricultural sector 

for all regencies in 2016, as well as for the city of Cirebon in 2011. To address this, linear interpolation 

was performed using the values from the previous and subsequent years at the exact location. Linear 

interpolation is a univariate imputation method that utilizes data before and after the missing point in 

a time series at the exact location, without relying on data from other places [23]. The formula for 

linear interpolation is shown in Eq. (1) where (x_1, y_1) and (x_2, y_2) are known pairs of data points, 

and (𝑥, 𝑦) is the point to be estimated. 

𝑦 = 𝑦0 + (𝑥 − 𝑥0) ⋅
𝑦1−𝑦0

𝑥1−𝑥0
     (1)  

3.3 Data Normalization 

Before the clustering process, data normalization was performed using MinMax Scaling to 

equalize the scale between variables. This step is essential because the K-Means algorithm is sensitive 

to differences in scale between features, and the use of MinMax Scaling has been proven to improve 

the accuracy of clustering results [24]. The formula used is shown in Eq. (2) where X is the original 

value, min(X) is minimum value, dan max(X) is maximum value from all data in that variable. 

𝑋norm =
𝑋−min(𝑋)

max(𝑋)−min(𝑋)
,       (2) 
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3.4 Determination of Cluster Number 

3.4.1 Silhouette Score 

The Silhouette Score is used as an internal evaluation metric to assess the quality of clustering 

based on cohesion and separation between clusters, as efficiently implemented by Gaido [25] on large-

scale datasets. For each data point 𝑖, 𝑎(𝑖) is calculated as the average distance to members within the 

same cluster, and 𝑏(𝑖) as the average distance to the nearest other cluster. The silhouette coefficient is 

calculated using the formula in Eq. (3). 

𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max{𝑎(𝑖), 𝑏(𝑖)}
       (3) 

𝑠(𝑖) value range from –1 to 1, where a value close to 1 indicates good clustering. The higher the 

𝑆 value, the better the cluster structure formed. The overall Silhouette Score is calculated as the average 

of all 𝑠(𝑖) value as in the formula in Eq. (4). 

𝑆 =
1

𝑛
∑ 𝑠(𝑖)𝑛

𝑖=1       (4) 

3.4.2 Elbow Method 

The determination of the optimal number of clusters was performed using the Elbow method, 

which involves observing changes in the within-cluster sum of squares (WCSS) for various values of 

𝑘. This method aims to identify the “elbow” point, i.e., the value of 𝑘 at which adding more clusters 

no longer results in a significant decrease in inertia. Based on the experimental results, the number of 

clusters determined through this approach was found to improve the efficiency of the clustering 

process, with 25% fewer iterations required to achieve convergence compared to using other numbers 

of clusters [16]. 

3.4.3 David-Bouldin Index (DBI) 

DBI is an internal evaluation metric that measures the ratio between intracluster compactness 

and intercluster separation, where lower values indicate better clusters. Recent studies have shown that 

DBI is effective for use on high-density datasets and can provide a quantitative measure of the 

uncertainty in clustering results [26]. A lower DBI value indicates a better cluster structure. 

Mathematically, the DBI is formulated as follows in Eq. (5). 

𝐷𝐵𝐼 =
1

𝑘
∑ max

𝑗≠𝑖
(

𝑆𝑖+𝑆𝑗

𝑀𝑖𝑗
)𝑘

𝑖=1      (5) 

Where 𝑘 is the number of clusters, 𝑆𝑖 is the average distance between each point in the cluster 𝑖  with 

its cluster center (showing dispersion or cohesion), and 𝑀𝑖𝑗 is the distance between the center of 

cluster 𝑖 and cluster 𝑗 (indicating the separation between clusters). 

3.5 K-Means Clustering Algorithm 

The K-Means algorithm is one of the most commonly used clustering methods due to its 

simplicity in implementation and computational efficiency. This algorithm works iteratively to 

minimize the squared distance between cluster members and their centroids, as first formulated by 

Hartigan and Wong [27]. The objective function (loss function) of K-Means is defined in Eq. (6). 

𝐽 = ∑ ∑ |𝑥𝑥∈𝐶𝑖

𝑘
𝑖=1 − μ𝑖|2     (6) 
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where 𝑘 is the number of clusters, 𝐶𝑖 is the data set in cluster 𝑖, 𝑥 is data point, and μ𝑖 is centroid in 

cluster 𝑖. This function calculates the total square distance between each data point and its cluster 

centroid, so that the smaller the 𝐽 value, the better the separation and compactness of the clusters 

formed. 

3.6 Visualization of Clustering Results 

Visualization of clustering results is essential for understanding the distribution and structure of 

groups in data, especially after dimension reduction. Several studies have shown that integrating the 

K-Means algorithm with techniques such as PCA and cluster-based feature selection can help simplify 

visualization, reduce computational complexity, and maintain the accuracy of clustering results 

[14][15]. Additionally, Geographic Information System (GIS) based visualization was employed to 

map the cluster results across West Java’s administrative boundaries. This approach facilitates the 

identification of spatial patterns, regional similarities, and more contextual policy implications. 

3.7 Research Flow 

The research flow is illustrated in Figure 1 as follows. 

 
Figure 1. Research flow of research 

3.8 Programming Environment 

The entire data processing, visualization, and cluster analysis were conducted in Python using 

Google Colaboratory. Pandas and NumPy were used for data manipulation, while Matplotlib and 

Seaborn were employed for visualization. scikit-learn was utilized for clustering, normalization 

(MinMaxScaler), dimensionality reduction (PCA), and evaluation (Elbow Method, Silhouette Score, 

DBI). Additionally, GeoPandas was used for GIS-based spatial visualization. 

4   Results and Discussion 

4.1 General Data Description 

Figure 2 illustrates the evolution of five key indicators for the agricultural sector at the 

regency/city level. In general, the population has experienced a steady upward trend from around 1.55 

million to nearly 1.8 million, reflecting continued population growth. Meanwhile, rice production 

declined sharply from 2017 to 2019 and has remained stagnant since then. The number of people 

working in agriculture decreased in 2015 and rose again in 2020, indicating a shift of labor to other 

sectors during that period. Harvested area shows a gradual downward trend, which may reflect a 

reduction in agricultural land or changes in cropping patterns. On the other hand, agricultural 

productivity has remained relatively stable without significant increases, which could indicate 
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stagnation in technical innovation or external challenges faced by farmers. Overall, this graph suggests 

pressure on food security due to the increasing population, which is not accompanied by increases in 

production and harvested area. 

 
Figure 2. Trend of Mean Key Variables 

Table 1 presents descriptive statistics that show significant disparities between regions, especially 

between cities and regencies. The average rice production per region reached approximately 427,835 

tons, with a standard deviation of 402,050 tons, reflecting very high variations that ranged from 31 

tons to more than 1.5 million tons. The harvest area also shows a similar pattern, with an average of 

73,364 hectares and a range of 5 to 255,983 hectares. These differences reflect the dominance of 

regencies, which have larger areas and agricultural land compared to cities, which generally have 

limited agricultural land. Productivity is relatively more stable, with an average of 57.36 quintals per 

hectare and a median of 57.63, indicating a reasonably even distribution across regions, both cities and 

regencies. From a demographic perspective, the average population is approximately 1.68 million 

people, with a range of 17,000 to nearly 3.9 million people, reflecting the highly varied characteristics 

of the regions. The number of workers in the agricultural sector also varies significantly, ranging from 

805 to 431,180 people, with an average of 135,241 people. This indicates that regencies are more 

dependent on the farming sector than cities. Overall, this data confirms that regencies tend to make a 

larger contribution to rice production, while cities play a minimal role due to land and labor constraints 

in agriculture. 

Table 1. Descriptive Statistics of Primary Variables (2008–2024) 

Variable Mean Std Dev Min 25% Median 75% Max 

Production 

(tons) 
427,835.51 402,050.24 31.00 21,846.00 402,620.00 659,052.00 1,540,984.00 

Harvest Area 

(ha) 
73,364.23 67,566.77 5.00 3,527.00 71,635.00 113,697.00 255,983.00 

Productivity 

(quintals/ha) 
57.36 4.62 24.90 54.88 57.63 60.22 70.19 

Population 

(people) 
1,686,306.27 917,363.46 17,201.23 1,049,714.00 1,687,776.00 2,413,398.50 3,899,017.00 

Agricultural 

Workforce 

(people) 

135,241.78 117,321.01 805.00 10,603.00 128,332.00 235,232.50 431,180.00 
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The differences in values between regions, as shown in Table 1, reflect significant spatial 

variations in West Java, particularly between cities and regencies, in terms of rice production and 

supporting factors, including harvest area, productivity, population, and labor in the agricultural sector. 

These disparities are closely related to differences in geographical conditions, land capacity, and 

regional economic structures. Cities generally have limited farmland and make a low contribution to 

production, while regencies dominate agricultural activities. The wide distribution of data provides a 

crucial basis for applying clustering methods to group regions with similar characteristics. 

4.2 Determining the Number of Clusters 

Figure 3 shows that inertia decreases sharply from K = 2 to K = 5 and then flattens after K = 6, 

indicating an elbow point at K = 5. However, further evaluation metrics suggest that K = 6 provides a 

more optimal solution. The lowest DBI value (0.8221) was obtained at K = 6, while the Silhouette 

Score at K = 6 (0.4531) was slightly higher than at K = 5 (0.4462), indicating more coherent clustering. 

Sensitivity tests using different initialization values (n_init = 10, 50, 100) and MinMaxScaler 

normalization consistently confirmed the superiority of K = 6 over K = 5, with lower inertia, higher 

Silhouette scores, and smaller DBI values (Table 2). These results demonstrate that although K = 5 

represents the inertia elbow point, K = 6 offers the most stable, representative, and reliable clustering 

solution to capture the spatiotemporal dynamics of rice production in West Java. 

  
Figure 3. Cluster number evaluation 

Table 2. Sensitivity analysis of clustering evaluation metrics for K=5 and K=6 

n_init K Silhouette DBI Inertia 

10 
5 0.4462 0.8958 21 

6 0.4531 0.8221 16 

50 
5 0.4430 0.9132 21 

6 0.4531 0.8221 16 

100 
5 0.4430 0.9132 21 

6 0.4531 0.8221 16 
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4.3 PCA Cluster Visualization 

Figure 4 is a visualization of clusters in a two-dimensional space resulting from PCA dimension 

reduction, showing a fairly clear separation between clusters. The six clusters formed (ranging from 0 

to 5) are scattered across various positions on the PC1 and PC2 planes, which represent the two primary 

components of data variation. Clusters 1 and 5 are pretty separate from the other clusters, indicating 

distinctive and consistent characteristics. Clusters 3 and 4 also form dense and localized groups, 

indicating good internal compactness. Although there is some overlap between clusters 0, 2, and 3 in 

the central part of the graph, most data points within each cluster still maintain a sufficient distance 

from one another. This indicates that the clustering results not only successfully group regions with 

similar characteristics but also reflect the presence of spatiotemporal structure in the data. 

 
Figure 4. PCA Cluster Visualization 

4.4 GIS-Based Cluster Visualization 

Figure 5 illustrates the GIS-based clustering results for West Java regencies and cities, organized 

into six groups (Clusters 0–5). The spatial distribution is as follows: 

a. Cluster 0: Sukabumi, Cianjur, Garut, and Tasikmalaya Regencies. These southern regions are 

characterized by strong agricultural areas with relatively large land resources. 

b. Cluster 1: Banjar, Bogor, Cirebon, Sukabumi, and Tasikmalaya Cities, along with Purwakarta 

Regency. This cluster is dominated by autonomous cities and areas with relatively small 

contributions to rice production. 

c. Cluster 2: Bandung, Bekasi, and Cirebon Regencies. These regions face high urbanization 

pressures, accompanied by a decline in agricultural engagement. 

d. Cluster 3: Ciamis, Kuningan, Majalengka, and Sumedang Regencies. This group represents 

mid-level agricultural regions with balanced demographic and production characteristics. 

e. Cluster 4: Indramayu, Karawang, and Subang Regencies. This cluster represents the main rice 

production centers in the northern belt. 
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f. Cluster 5: Bandung, Bekasi, and Depok Cities. This cluster consists of large urban cities with 

limited agricultural activity. 

These spatial patterns reveal distinct differences between agricultural-dominated regions 

(southern and northern areas) and more urbanized areas (central and major cities). The clustering also 

reveals that autonomous cities are predominantly concentrated in Clusters 1 and 5, with limited 

agricultural contributions, while northern regencies dominate Cluster 4 as the primary rice production 

centers. 

 
Figure 5. GIS Based Cluster Visualization 

4.5 Characteristics of Each Cluster 

The boxplot visualization in Figure 6 clearly shows differences in characteristics between 

clusters, indicating that the clustering successfully groups regions with distinct agricultural profiles. 

Cluster 4 consistently shows the highest values for production, harvest area, and productivity variables, 

indicating regions with large-scale farming operations. Cluster 5, on the other hand, has extremely low 

values for almost all variables, indicating regions with minimal agricultural activity. Clusters 1 and 3 

tend to have relatively low production and harvest area values, but with different distributions in terms 

of population size and the number of people working in the agricultural sector. A high population 

characterizes cluster 2, but production and productivity are not particularly prominent, suggesting a 

potential disparity between population and production output. 

Meanwhile, productivity shows a relatively even distribution across clusters, with values that are 

not significantly different. This suggests that differences in land productivity are not as significant as 

differences in total production volume, which are likely more influenced by harvest scale (area) and 

the number of agricultural workforce. Overall, this pattern suggests that clustering can effectively 
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distinguish regions based on a combination of structural agricultural characteristics, rather than relying 

on a single variable. 

 
Figure 6. Variable Distribution in Each Cluster  

4.6 Spatiotemporal Dynamics of Clusters 

The spatiotemporal dynamics of rice production clusters in West Java were analyzed through 

multiple dimensions, including changes in cluster membership, transition patterns, regional stability, 

temporal heatmaps, and extreme changes. This analysis provides an overview of the consistency and 

significant changes in the characteristics of rice production in each region, offering insights into both 

regional stability and vulnerability. 

4.6.1 Number of Regencies per Cluster from Year to Year 

Figure 7 shows the dynamics of the number of regencies/cities in each cluster during the period 

2008 to 2024. The fluctuation pattern reflects shifts in regional characteristics over time based on the 

agricultural indicators analyzed. 

Cluster 1 dominated throughout the period, with a stable number of regencies in the range of 6 

to 7 regions. This suggests that most areas exhibit similar and relatively stable characteristics, aligning 

with the profile of cluster 1. Clusters 0 and 3 show greater fluctuations. Cluster 0 experienced a 

significant decline after 2010, while Cluster 3 increased rapidly until 2013 before finally declining and 

stabilizing. Clusters 2 and 4 tend to have fewer and more fluctuating regencies, indicating 

characteristics that are less common but still relevant during specific periods. Cluster 5 shows high 

consistency, maintaining the number of regencies at three since 2010, indicating the presence of a 

group of regions with a particular and essentially unchanged profile. 

The stability of the number of regencies in some clusters (such as Clusters 1 and 5) reflects 

consistent spatiotemporal characteristics. In contrast, fluctuations in other clusters reflect agricultural 
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dynamics, such as changes in policy, agricultural technology, or socio-economic conditions that 

influence production, harvested area, and the number of people in the agricultural workforce. 

 
Figure 7. Number of Regencies per Cluster (2008–2024) 

4.6.2 Transition Patterns Between Clusters 

Figure 8 is a year-on-year cluster transition heatmap illustrating the proportion of regencies/cities 

that transitioned or remained in the same cluster from one year to the next. High central diagonal values 

indicate strong cluster stability, with Cluster 5 exhibiting perfect stability (1.00), followed by Cluster 

1 (0.99), Cluster 4 (0.98), Cluster 3 (0.94), Cluster 2 (0.93), and Cluster 0 (0.88). This indicates that 

most regions have relatively consistent agricultural characteristics over time. Meanwhile, the small 

off-diagonal proportions, such as the 8% transition from Cluster 0 to Cluster 3 and the 5% transition 

from Cluster 2 to Cluster 0, indicate spatiotemporal dynamics in certain regions. Although most areas 

show stability, these inter-cluster movements suggest structural changes or external influences 

affecting the agricultural sector in specific areas. 

 
Figure 8. Year-to-Year Cluster Transition Heatmap 
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4.6.3 Regencies Cluster Stability 

The histogram in Figure 9 shows that most regencies have a very high level of stability, with 16 

regencies (the majority) falling within the 100% stability range, meaning they never changed clusters 

during the observation period. Several other regencies showed stability between 90% and 95%, and 

only a small number fell below 90%, with some even having stability of only around 70–75%. This 

distribution indicates that the majority of regions maintain consistent agricultural characteristics from 

year to year. At the same time, a small portion of areas experience more dynamic changes, which may 

be attributed to variations in production factors, policy changes, or local socio-economic conditions. 

 
Figure 9. Histogram of Cluster Stability Distribution by Regency 

 

 
Figure 10. Heatmap of Regencies/Cities Clusters by Year 
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4.6.4 Heatmap of Regencies/Cites Clusters by Year 

Figure 10 shows the dynamics of cluster membership, with each row representing one 

regency/city and each column representing the year of observation. Different colors represent six 

clusters (from 0 to 5), and color changes indicate the movement of regencies/cities from one cluster to 

another. 

Most regencies/cities, such as Sukabumi Regency, Kuningan Regency, Indramayu Regency, 

Bekasi Regency, Bogor City, and Bandung City, exhibit consistent colors over time, indicating that 

their membership in a single cluster remains relatively stable. Conversely, some regencies, such as 

Tasikmalaya and Cirebon, exhibit more varied color patterns, reflecting more frequent transitions 

between clusters, which significant changes in production factors, harvest areas, or local socio-

economic conditions may cause. This pattern reinforces previous findings that the majority of areas in 

West Java exhibit high spatiotemporal stability, while others exhibit dynamics that warrant further 

attention.  

4.6.5 Extreme Cluster Changes: Case Studies of Bandung and Garut Regencies 

Bandung and Garut Regencies showed striking spatiotemporal dynamics in terms of changes in 

extreme clusters between clusters 0 and 2 during the observation period. Bandung Regency moved 

from cluster 2 to cluster 0 in 2010, then returned to cluster 2 in 2011. Meanwhile, Garut Regency 

shifted from cluster 0 to 2 in 2018 and returned to cluster 0 in 2019. These significant changes indicate 

instability in regional characteristics, which may be caused by external factors such as climate 

fluctuations, agricultural policies, or disruptions to infrastructure. Both regencies warrant further 

analysis to understand the causes of these fluctuations and to formulate data-driven strategies for 

managing agricultural risks. 

Overall, the findings suggest that while most regencies in West Java exhibit relatively stable 

agricultural characteristics over time, specific regions, such as Bandung and Garut Regencies, 

experience substantial fluctuations that may signal structural vulnerabilities. This highlights the need 

to translate clustering outcomes into concrete policy recommendations, ensuring that interventions are 

both targeted and adaptive to regional conditions. 

4.7 Policy Implications of Clustering Results 

Building upon the clustering analysis and spatiotemporal dynamics presented in the previous 

sections, this subsection translates the empirical findings into actionable policy directions. Each cluster 

represents distinct agricultural characteristics that necessitate tailored strategies to enhance 

productivity, ensure regional stability, and strengthen resilience. Table 3 summarizes suggested 

intervention strategies for each cluster type. 

4.8 Discussion 

4.8.1 Regional Segmentation and Cluster Representation 

The clustering results successfully mapped significant spatial variations among regencies/cities 

in West Java. Cluster 4, for example, includes areas such as Indramayu and Karawang, which 

consistently rank high in terms of production, harvest area, and population working in the agricultural 

sector. This reflects the characteristics of national rice production centers, which are supported by 

technical irrigation infrastructure and efficient distribution. Conversely, Cluster 5 encompasses regions 

with significant limitations, both in terms of production and harvested area, including the cities of 

Bandung and Bekasi. The relatively uniform distribution of productivity variables across clusters 
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indicates that land efficiency is not the primary differentiator, and production variations are more 

influenced by harvest scale and labor capacity. The resulting segmentation not only identifies absolute 

patterns in production figures but also highlights the balance between population, labor input, and 

agricultural production output. 

Table 3. Policy Recommendations Based on Cluster Characteristics 

Cluster Regencies/Cities Characteristics Policy Recommendations 

0 Sukabumi, Cianjur, 

Garut, Tasikmalaya 

Vulnerable to production 

fluctuations, relatively lower 

stability 

Climate risk mitigation, adaptive 

subsidies, farmer capacity building, 

regular monitoring 

1 Banjar City, Bogor 

City, Cirebon City, 

Sukabumi City, 

Tasikmalaya City, 

Purwakarta 

Small-scale, semi-urban, 

low agricultural land 

Support for urban farming, optimize 

urban–rural linkages, promote 

alternative livelihoods 

2 Bandung, Bekasi, 

Cirebon 

Medium-scale, relatively 

stable, moderate 

contribution 

Balanced interventions: sustainable 

intensification and diversification 

programs 

3 Ciamis, Kuningan, 

Majalengka, 

Sumedang 

Moderate productivity, 

unstable dynamics 

Diversification of commodities, 

improved irrigation management, 

strengthened farmer cooperatives 

4 Indramayu, 

Karawang, Subang 

Stable high-production 

centers 

Focus on intensification, modernization 

(mechanization, precision agriculture), 

supply chain strengthening 

5 Bandung City, 

Bekasi City, Depok 

City 

Highly urbanized, minimal 

direct agricultural activity 

Urban food security programs, agri-

tech innovation (vertical farming, 

hydroponics), urban–rural integration 

policies 

4.8.2 Spatiotemporal Dynamics and Regional Instability 

Temporal analysis reveals that most regions exhibit high stability, as indicated by the transition 

heatmap and stability histogram. Cluster 5 maintained perfect stability during 17 years of observation, 

and cluster 1 approached a similar value (0.99). This indicates that many regions in West Java have 

consistent agricultural profiles over time. However, some regions exhibit extreme dynamics, such as 

Bandung and Garut Regencies, which have moved between clusters 0 and 2 in a short period. This 

phenomenon suggests potential sensitivity to external factors, such as land conversion in urban areas 

(Bandung Regency) or variability in planting seasons and climate (Garut Regency). 

4.8.3 Policy Implications and Recommendations 

Spatiotemporal segmentation enables a more contextual approach to intervention. Areas with 

high stability can be focused on for location-specific technology development and production 

intensification. Conversely, dynamic regions require adaptive strategies and regular monitoring, such 

as planning for fertilizer distribution and mitigating climate change risks. Policy recommendations can 

also be directed toward developing cluster-based budgets that take regional dynamics into account, 

thereby improving the efficiency and accuracy of interventions. 
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4.8.4 Limitations and Further Study 

Although interpolation was used to address data gaps (e.g., 2016 for all regencies and 2011 for 

Cirebon City), the estimates remain uncertain. This method assumes a linear trend and may introduce 

potential bias. Alternative approaches, such as multiple imputation or time-series-specific methods 

(e.g., ARIMA-based or seasonal decomposition), could provide more robust imputations. These 

methods were not applied in this study due to computational and data limitations, but they are 

acknowledged as possible directions for future work. 

In addition, the use of K-Means is limited in recognizing non-linear cluster shapes and complex 

distributions; therefore, further studies are recommended to adopt alternative methods, such as 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) or Hierarchical DBSCAN, 

which are more robust to uneven cluster shapes and densities. The development of time-series 

clustering models or the integration of spatial environmental data, such as climate and topography, 

will also enrich the approach to agricultural area segmentation in the future. 

5   Conclusion 

This research classified 23 regencies and cities in West Java (2008–2024) using K-Means 

clustering based on five variables: production, harvested area, productivity, population, and 

agricultural workforce. Evaluation metrics (Elbow, Silhouette, and DBI) confirmed six optimal 

clusters, which PCA and GIS-based visualization supported. 

Results show precise regional segmentation: Indramayu, Karawang, and Subang regencies 

remain stable high-production centers; Bandung and Garut regencies display dynamic shifts driven by 

urbanization and climate variability; while urban cities such as Bandung, Bekasi, and Depok contribute 

minimally, requiring urban–rural food security strategies. Most regions demonstrated long-term 

stability, making them suitable for intensification and modernization, while more dynamic areas 

require adaptive risk-mitigation measures. Urban regions should focus on agricultural innovation. 

Despite limitations in data interpolation and K-Means' inability to capture non-linear clusters, 

this research highlights the value of integrating spatiotemporal clustering and GIS for policy-relevant 

insights in agriculture. Future research should incorporate climate, topography, and land-use data with 

more advanced clustering methods. These include algorithms like DBSCAN and its extension, 

HDBSCAN, the latter being superior for modeling clusters with varying densities and capturing 

irregular, non-linear relationships. 

Overall, the findings provide an evidence-based framework to support adaptive and targeted 

agricultural policies, strengthening regional and national food security. 
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