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Abstract 

Determining criterion weights is a vital step in multi-criteria decision making, yet it often suffers from 

evaluator subjectivity and unstable results when relying on expert judgment. Dependence on human 

perception may also lead to inconsistencies across criteria, underscoring the need for objective, data-

driven approaches to derive rational, measurable weights. This study analyzes and compares six 

objective weighting methods: Entropy, MEREC, RECA, G2M, LOPCOW, and CRITIC, in the selection 

of new store locations. Each method applies distinct mathematical principles but shares a common 

foundation in objective data analysis, free from subjective bias. The findings reveal that criterion S5 

consistently receives the highest weight, emphasizing its dominant role in decision outcomes. Using 

the Simple Additive Weighting (SAW) method, New Store Location 5 ranks first across all weighting 

techniques, followed by Locations 3 and 8. The Spearman correlation test confirms a high level of 

consistency among methods, with coefficients of 1 for RECA, G2M, and LOPCOW, and 0.9879 for 

Entropy, MEREC, and CRITIC. These results demonstrate that objective weighting methods produce 

stable and reliable evaluations, effectively supporting data-based strategic decision making in multi-

criteria contexts. These findings reinforce the view that a data-driven, systematic approach to 

weighting criteria is more effective than a subjective one, as it can yield consistent, measurable, and 

replicable results. 
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1   Introduction 

Decision support systems (DSS) play a very important role in the context of multi-criteria 

decision-making, especially when decisions must be made based on a number of interacting and often 

conflicting factors[1]–[3]. In complex situations such as selecting a business location, evaluating 

supplier performance, or determining investment strategies, relying solely on intuition is no longer 

sufficient because it risks producing biased and inconsistent decisions. DSS enables decision-makers 

to integrate quantitative and qualitative data, process it systematically using analytical methods, and 

present results that are more objective and accountable. In addition, DSS supports the implementation 

of the Multi-criteria decision making (MCDM) method, which can balance various criteria based on 

different importance weights, making decision outcomes more rational and transparent [4]–[7]. The 

presence of DSS also helps reduce uncertainty by providing alternative scenarios and sensitivity 

analyses, offering a more comprehensive view of potential risks. Thus, DSS not only speeds up the 
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decision-making process but also improves the accuracy, efficiency, and legitimacy of decision 

outcomes across various application domains. 

The simple additive weighting (SAW) method plays an important role as one of the most popular 

and widely used MCDM methods due to its simplicity and effectiveness in solving decision-making 

problems[8]–[10]. The basic principle of this method is to normalize the performance values of each 

alternative across all criteria, then multiply them by the predetermined weights for each criterion, 

thereby producing a total score that can be used to rank the alternatives. The main advantage of SAW 

is its ability to deliver results that are easy to understand, transparent, and directly interpretable by 

decision-makers, without requiring complex mathematical calculations. Moreover, this method is 

flexible in accommodating various types of data, both quantitative and qualitative, that have been 

transformed into numerical scales. Its role becomes increasingly significant when used in situations 

that require quick ranking while still maintaining the rationality of evaluation, such as employee 

selection, supplier selection, or project performance evaluation. Thus, SAW not only provides a 

practical solution but also strengthens the foundation of systematic and objective decision-making 

within the MADM framework[11]–[13]. 

Accurate weighting of criteria is highly significant in producing valid alternative rankings within 

the MCDM framework. The weighting process determines the extent to which each criterion 

contributes to the overall evaluation, so errors in assigning weights can lead to distorted results and 

incorrect recommendations[14]–[16]. Accurate weights reflect the relative importance of the criteria, 

whether objective (based on data) or subjective (based on decision-makers' preferences), making the 

final ranking more representative of the decision objectives to be achieved. In addition, proper 

weighting ensures a balance between dominant and supporting factors, so that decisions do not focus 

solely on a single aspect but consider all dimensions comprehensively. In practice, accurate weighting 

also supports transparency and consistency, as each alternative's ranking can be logically explained by 

the measurable contributions of the criteria. Therefore, accurate criteria weighting is not merely a 

technical stage, but a foundation that determines the validity, reliability, and credibility of multi-

criteria decision-making outcomes. 

A common issue in multi-criteria decision-making is the difference in results produced by 

various objective weighting methods, which in turn can affect the final ranking of alternatives. Each 

method, such as Entropy, CRITIC, or LOPCOW, has different calculation principles and focuses in 

assessing data variation and the importance of a criterion, resulting in weight distributions that are not 

always consistent with one another. These differences in weights can lead to changes in the ranking 

order of alternatives, raising questions about the reliability and validity of the decisions produced. The 

situation becomes increasingly critical when decisions are related to strategic areas where the 

consequences of ranking differences can be highly significant. Furthermore, the variability in results 

from objective weighting methods also has the potential to create uncertainty and doubt for decision-

makers in selecting the best alternative. Therefore, understanding the impact of different weighting 

methods on the final outcomes is crucial for enhancing transparency, justification, and reliability in 

the multi-criteria decision-making process. 

Although previous research has extensively discussed the use of objective weighting methods 

and their application to various MCDM techniques such as TOPSIS, VIKOR, and other distance-based 

methods, most of these studies still focus on comparing the performance of ranking methods, rather 

than on a deep comparative analysis of the behaviour of objective weights and their direct impact on 
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changes in alternative ranking results. From this perspective, previous research has not systematically 

explored how differences in statistical principles in objective weighting methods result in different 

patterns of criteria dominance when integrated into a consistent ranking framework. This study 

examines the comparison of various objective weighting methods within the SAW framework, chosen 

not merely for their popularity, but for their linear, transparent, easily interpretable nature, and high 

sensitivity to variations in criterion weights, so that any change in weight can be directly observed on 

the scores and rankings of alternatives. Unlike TOPSIS or VIKOR, which involve ideal solutions and 

compromise mechanisms, SAW allows for a more pure evaluation of the impact of weights, making it 

a superior framework for comparative weighting studies and providing new insights into the 

relationship between objective weighting methods and decision-making outcomes. 

The aim of this study is to analyze the differences arising from the application of various 

objective weighting methods within the SAW framework, which is known as one of the simplest and 

most widely used MCDM methods. This analysis is important because each objective weighting 

method has different principles and calculation mechanisms, which can potentially result in different 

weight distributions and affect the ranking outcomes of alternatives. This study also aims to 

systematically evaluate how these differences in weights impact the ranking order of alternatives, both 

in terms of result consistency and decision validity. The evaluation is conducted by considering the 

reliability of the methods, sensitivity to data, and the extent to which the weights represent the 

importance of the analyzed criteria. Furthermore, this research is aimed at providing recommendations 

regarding a more consistent and suitable objective weighting method aligned with the characteristics 

of SAW applications, thereby strengthening the legitimacy of decision outcomes. The resulting 

recommendations are expected to assist decision-makers in selecting the appropriate weighting 

approach, particularly in cases involving multiple criteria with varying levels of importance. Thus, this 

research not only focuses on the comparative aspect of methods but also offers practical contributions 

in enhancing the reliability and transparency of SAW usage. Ultimately, the main goal of this study is 

to ensure that SAW-based decision-making processes can produce alternative rankings that are more 

valid, objective, and scientifically as well as practically accountable. 

The main contribution of this research is its effort to provide a deeper understanding of how 

various objective weighting methods influence the ranking results of alternatives within the SAW 

framework. This study not only compares weighting methods such as Entropy, CRITIC, MEREC, 

G2M, RECA, and LOPCOW, but also evaluates the sensitivity and stability of the ranking results 

produced by each approach. Thus, this research contributes to identifying the most consistent 

weighting methods that are adaptive to data characteristics and capable of producing more objective 

and representative decisions. Furthermore, this study strengthens the literature on MCDM by providing 

an empirical basis for researchers and practitioners to select the appropriate weighting method for 

various decision-making contexts, whether in management, industry, or data-driven decision support 

systems. 

The six objective weighting methods used in this study, namely Entropy, MEREC, RECA, G2M, 

LOPCOW, and CRITIC, were chosen because each represents a different statistical and structural 

approach to objectively extracting criterion weights, ranging from measuring information uncertainty 

(Entropy), the impact of criterion removal (MEREC), evaluating relative contribution and balance 

(RECA and G2M), sensitivity to range-based and skewed data changes (LOPCOW), to variability and 

correlations among criteria (CRITIC). This diversity of characteristics makes them highly relevant for 
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comparative analysis within the SAW framework, which is additive, linear, and transparent, so that 

changes in weights across methods can be directly reflected and easily interpreted in alternative scores 

and rankings. Moreover, although previous studies have widely applied objective weighting methods 

in DS, their implementation is generally fragmented and combined with various ranking methods, 

without an integrated analysis of the consistency and relative impact among weighting methods within 

the same calculation framework. This study emphasises the relevance of all six methods and makes a 

new contribution by systematically evaluating their compatibility and effects in SAW-based DSS. 

 

2   Research Methods 

This study uses a quantitative approach based on the MCDM method, focusing on the application 

of SAW to analyze differences in objective weighting methods, as shown in Figure 1. The research 

data were obtained from Gunawan’s study [17], which included several alternatives and criteria 

relevant to the decision-making context. The research stages began with the identification of criteria 

and alternatives to be evaluated, followed by data normalization to ensure uniformity of scales among 

the criteria. After that, the criteria weights were determined using several objective weighting methods, 

such as Entropy, CRITIC, MEREC, G2M, RECA, and LOPCOW, each reflecting a different approach 

to assessing the variation and importance of the criteria. The weights obtained are then integrated into 

the SAW calculation to produce the total score for each alternative, which is subsequently used to rank 

the alternatives. The ranking results are compared to assess consistency and differences arising from 

different weighting methods. Comparison of alternative rankings was also conducted to test the 

stability of the results across the weighting methods used for the criteria. Thus, this research method 

is systematically designed to achieve the research objectives: to evaluate the effects of weighting 

variations on SAW results and to provide recommendations for the most consistent method. 

 
Figure 1 Research stages 

2.1   Entropy Method 

The entropy method is an objective approach to determining the weights of criteria in the 

MCDM. Its basic principle is based on the concept of information theory, where the level of uncertainty 

or variation in data is used as a basis to determine the importance of a criterion[18], [19]. The Entropy 

Method can reduce subjectivity in weighting by determining criterion weights entirely from the 

existing data distribution, resulting in outcomes that are more objective, consistent, and scientifically 

accountable. The main formula used in the entropy method is as follows: 

 𝑘𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑛
𝑗=1

 (1) 
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 𝐸𝑗 = −
1

ln 𝑚
∑ 𝑘𝑖𝑗 ln(𝑘𝑖𝑗)

𝑛
𝑖=1  (2) 

 𝐷𝑗 = 1 − 𝐸𝑗 (3) 

 𝑤𝑗 =
𝐷𝑗

∑ 𝐷𝑗
𝑛
𝑗=1

 (4) 

Where 𝑥𝑖𝑗 is the value of the ii-th alternative with respect to the jth criterion, while 𝑘𝑖𝑗 is the 

normalized ratio that indicates the proportion of an alternative's value contribution to the total value 

for that criterion. The value Ej represents the entropy level or uncertainty of the jth criterion, with k 

being a normalization constant equal to 1/ln(𝑚) so that the calculation results remain within the range 

[0,1]. Furthermore, 𝐷𝑗 is called the degree of divergence, which indicates the variation in the 

information about a criterion. A criterion with a high divergence value plays a more significant role in 

differentiating alternatives. The final weight of each criterion (𝑤𝑗) is obtained by dividing the 

divergence value of a criterion by the total sum of all divergences. In this way, the Entropy method 

ensures that weights are determined solely by the data distribution, thereby guaranteeing greater 

objectivity than traditional subjective approaches. 

2.2   Method Based on the Removal Effects of Criteria (MEREC) 

The MEREC method is one of the objective weighting approaches in MCDM that emphasizes 

analyzing the impact of removing a criterion on the overall evaluation results[20], [21]. Its basic 

concept is that the greater the change in the aggregated value when a criterion is removed, the more 

important that criterion is in the decision-making process. Thus, the criterion weights are determined 

by their actual contributions to the stability and accuracy of the alternative evaluation results. This 

approach is considered fairer and more consistent because the resulting weights do not depend on the 

decision maker's subjective perception, but rather on the sensitivity of the criteria to changes in the 

results. The main advantage of MEREC is its ability to provide a more rational assessment of the 

importance of criteria, especially in cases with many interacting attributes, thereby improving the 

quality and reliability of decision support systems. The main formula used in the MEREC method is 

as follows: 

 𝑛𝑖𝑗 = {

min 𝑥𝑘𝑗

𝑥𝑖𝑗
    (𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎)

𝑥𝑖𝑗

max 𝑥𝑘𝑗
(𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎)

 (5) 

 𝑆𝑖 = ln (1 + (
1

𝑚
∑|ln(𝑛𝑖𝑗)|)) (6) 

 𝑆𝑖𝑗
′ = ln (1 + (

1

𝑚
∑ |ln(𝑛𝑖𝑗)|𝑘,𝑘≠𝑗 )) (7) 

 𝐸𝑗 = ∑|𝑆𝑖𝑗
′ − 𝑆𝑖| (8) 

 𝑤𝑗 =
𝐸𝑗

∑ 𝐸𝑘𝑘
 (9) 

Where 𝑛𝑖𝑗 indicates the normalized value of the ith alternative with respect to the jth criterion, 

which is used to standardize the evaluation scale across criteria. The value 𝑥𝑖𝑗 represents the 
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performance or original value of the ith alternative on the jth criterion, while min(𝑥𝑘𝑗) and max(𝑥𝑘𝑗) 

respectively denote the smallest and largest values among all alternatives for the jth criterion. The 

symbol m represents the total number of alternatives evaluated in the decision-making process. The 

value 𝑆𝑖 represents the overall performance level of the ith alternative after all criteria are considered, 

whereas 𝑆𝑖𝑗
′  indicates the performance value of the ith alternative when the jth criterion is removed from 

the calculation. The symbol 𝐸𝑗 indicates the magnitude of the influence or deletion effect of the jth 

criterion on the total evaluation of alternatives. Finally, 𝑤𝑗 is the final weight of the jth criterion obtained 

through the normalization process of all deletion effect values, thereby representing the relative 

importance level of each criterion objectively in decision-making.  

2.3   Respond to Criteria Weighting (RECA) Method 

The RECA method is an approach to criteria weighting developed to produce more adaptive and 

objective weights based on the responsiveness of data to variations among criteria[22]–[24]. The main 

concept of RECA is to measure the extent to which each criterion significantly contributes to 

differentiating among alternatives in the decision-making process. The higher the level of response or 

sensitivity of a criterion to changes in alternative values, the greater the weight assigned to that 

criterion. The main formula used in the RECA method is as follows: 

 𝑃𝑉𝑖𝑗 =
𝑥𝑖𝑗

√∏ 𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
 (10) 

 𝑅𝑖𝑗 =
𝑃𝑉𝑖𝑗

𝑃𝑉𝑗
𝑚𝑎𝑥 (11) 

 𝑁 =
1

𝑁
∑ 𝑅𝑖𝑗 (12) 

 ∅𝑗 = ∑ [𝑅𝑖𝑗 − 𝑁]
2𝑚

𝑖=1  (13) 

 𝛺𝑗 =|1 − ∅𝑗| (14) 

 𝑤𝑗 =
𝛺𝑗

∑ 𝛺𝑘
𝑛
𝑘=1

 (15) 

Where 𝑃𝑉𝑖𝑗 represents the proportional value of the ith alternative with respect to the jth criterion, 

obtained by comparing the initial value 𝑥𝑖𝑗 with the geometric mean of all alternative values across all 

criteria, where 𝑛 denotes the total number of criteria evaluated. The symbol 𝑅𝑖𝑗 is the standardized ratio 

value of each alternative against a specific criterion. It is calculated by dividing 𝑃𝑉𝑖𝑗 by the maximum 

𝑃𝑉𝑗 value for the same criterion to ensure all values are within a comparable range. The symbol 𝑁 

denotes the average 𝑅𝑖𝑗 value of all alternatives, serving as a central measure or reference value of the 

resulting ratio distribution. The symbol ∅𝑗 indicates the variability or dispersion of values in the jth 

criterion, calculated as the sum of the squared differences between 𝑅𝑖𝑗 and its average 𝑁 for all 

alternatives. The value 𝛺𝑗 is a measure of the stability of a criterion, obtained from the absolute 

difference between 1 and ∅𝑗; the larger this value, the more important the criterion because it indicates 

high consistency with the evaluation results. Finally, the symbol 𝑤𝑗 represents the final weight of the 

jth criterion, obtained by normalizing all 𝛺𝑗 values against their total, thereby producing the relative 

importance proportion of each criterion in the decision-making process. 
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2.4   Grey Geometric Mean (G2M) Weighting Method 

The G2M weighting method is an objective weighting approach that integrates grey system 

theory with the concept of geometric mean to address uncertainty and inaccuracy of data in the multi-

criteria decision-making process[25], [26]. This method serves to determine the weights of criteria 

more rationally by considering the grey degree of each criterion, which reflects the level of information 

and data variability available. The main formula used in the G2M weighting method is as follows: 

 𝐺𝑀𝑗 =(∏ 𝑥𝑖𝑗
𝑛
𝑖=1 )

1
𝑛⁄

 (16) 

 𝑅𝑖𝑗 =
𝑥𝑖𝑗

𝐺𝑀𝑗
 (17) 

 𝐺𝑅𝐺𝑗 =
1

𝑛
∑ 𝑅𝑖𝑗

𝑛
𝑗=1  (18) 

 𝑤𝑗 =
𝐺𝑅𝐺𝑗

∑ 𝐺𝑅𝐺𝑘
𝑛
𝑘=1

 (19) 

Where 𝐺𝑀𝑗 represents the geometric mean of the values of the jth criterion, calculated based on 

the product of all alternative values for that criterion, and raised to the power of 1
𝑛⁄ , where n is the 

total number of evaluated alternatives. The symbol 𝑅𝑖𝑗 represents the ratio between the performance 

value of the ith alternative (𝑥𝑖𝑗) and the geometric mean value 𝐺𝑀𝑗, which is used to assess to what 

extent the performance of the alternative compares to the geometric midpoint of the related criterion. 

Furthermore, the symbol 𝐺𝑅𝐺𝑗 represents the grey relational grade of the jth criterion, which is the 

average value of all 𝑅𝑖𝑗 ratios indicating the degree of relationship or relative contribution between 

alternatives and criteria in the decision-making system. Finally, the symbol 𝑤𝑗 represents the final 

weight of the jth criterion, obtained by normalizing the 𝐺𝑅𝐺𝑗 value against the total 𝐺𝑅𝐺𝑘 values of all 

criteria. This weight reflects the relative importance of each criterion based on the strength of the 

relationship indicated by the grey relational grade value. 

2.5   Logarithmic Percentage Change-Driven Objective Weighting (LOPCOW) Method 

The LOPCOW method is an objective weighting approach used to assess the relative importance 

level among criteria based on the logarithmic variation of percentage value changes of attributes for 

each alternative[27]–[29]. This approach is based on the idea that the sensitivity of a criterion to data 

changes can be measured more accurately using a logarithmic function, which can capture nonlinear 

dynamics in the distribution of decision values. In LOPCOW, criterion weights are calculated by 

considering the ratio of normalized value changes and the logarithmic influence of data variability, 

thereby producing a weight distribution that is more stable and better adapted to differences in scale 

among criteria. The main formula used in the LOPCOW method is as follows: 

 𝑛𝑖𝑗 =
𝑥𝑖𝑗

𝑚+∑ 𝑥𝑖𝑗
2𝑚

𝑖=1
 (20) 

 𝑃𝑉𝑗 = 100 ∗ |
√∑ 𝑛𝑖𝑗

2𝑚
𝑖=1

ln
𝑚

𝜎𝑗

| (21) 

 𝑤𝑗 =
𝑃𝑉𝑗

∑ 𝑃𝑉𝑘
𝑛
𝑘=1

 (22) 
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Where 𝑛𝑖𝑗 represents the normalization value of the i-th alternative with respect to the jth criterion, 

obtained by dividing the original value 𝑥𝑖𝑗 by the sum of the total number of alternatives m and the 

total square of all 𝑥𝑖𝑗values for that criterion. This value is used to balance differences in scale across 

the data so that all criteria can be compared proportionally. The symbol 𝑃𝑉𝑗 indicates the parameter 

value or influence value of the jth criterion, which is calculated by multiplying 100 by the absolute 

value of the square root of the sum of 𝑛𝑖𝑗
2 of all alternatives, then divided by the natural logarithm of 

the ratio between the number of alternatives m and the standard deviation 𝜎𝑗. This value represents the 

sensitivity and strength of a criterion's influence within the overall evaluation system. Finally, the 

symbol 𝑤𝑗 denotes the final weight of the j-th criterion, obtained by normalizing the 𝑃𝑉𝑗 value against 

the total of all 𝑃𝑉𝑘 values from all criteria. This weight serves as a proportional measure of each 

criterion's relative importance in the objective decision-making process. 

2.6   Criteria Importance Through Inter-criteria Correlation (CRITIC) Method 

The CRITIC method is an objective weighting approach used to determine the relative 

importance level among criteria based on two main aspects: the level of data variation and the 

correlation among criteria[30]–[32]. The basic concept of this method is that a criterion is considered 

more important if it has a high level of dispersion (standard deviation) and low correlation with other 

criteria, as this indicates a greater ability to provide unique information for the decision-making 

process. The calculation procedure involves data normalization, calculation of standard deviations, 

correlation analysis among criteria, and determination of the final weights based on each criterion's 

total information contribution. The main formula used in the CRITIC method is as follows: 

 𝑑𝑖𝑗 =
𝑥𝑖𝑗−min 𝑥𝑖𝑗

max 𝑥𝑖𝑗−min 𝑥𝑖𝑗
 (23) 

 𝜎𝑗 = √∑ (𝑑𝑖𝑗−𝑑̅𝑗)
2𝑛

𝑖=1

𝑛
 (24) 

 𝑅𝑖𝑗 =
∑ (𝑑𝑖𝑗−𝑑̅𝑗)∗(𝑑𝑖𝑗−𝑑̅ℎ)𝑛

𝑖=1

√∑ (𝑑𝑖𝑗−𝑑̅𝑗)
2𝑛

𝑖=1 ∗√∑ (𝑑𝑖𝑗−𝑑̅ℎ)
2𝑛

𝑖=1

 (25) 

 𝐶𝑗 = 𝜎𝑗 ∑ (1 − 𝑅𝑖𝑗)𝑛
𝑗=1  (26) 

 𝑤𝑗 =
𝑐𝑗

∑ 𝑐𝑘
𝑛
𝑘=1

 (27) 

Where 𝑑𝑖𝑗 represents the normalized value of the ith alternative with respect to the jth criterion, 

calculated by comparing the difference between the actual value 𝑥𝑖𝑗 and the minimum value 𝑥𝑖𝑗 against 

the range of that criterion, which is the difference between the maximum value max xij and the 

minimum value min 𝑥𝑖𝑗. This value is used to convert data into the [0,1] scale so that it can be compared 

fairly. The symbol 𝜎𝑗 denotes the standard deviation of the jth criterion, obtained from the square root 

of the mean of the squared differences between each 𝑑𝑖𝑗 normalization value and the average 𝑑𝑗, with 

n being the number of alternatives. The symbol 𝑅𝑖𝑗 represents the correlation coefficient between the 

jth criterion and the hth criterion, calculated from the ratio of the covariance of the two criteria to the 

product of the standard deviations of each criterion. The value 𝐶𝑗 represents the magnitude of the 

contribution of the jth criterion, obtained by multiplying the standard deviation 𝜎𝑗 by the sum of (1 −
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𝑅𝑖𝑗), which assesses the extent of variation and independence of a criterion from other criteria. Finally, 

the symbol 𝑤𝑗 denotes the final weight of the j-th criterion, calculated by normalizing the value of 𝐶𝑗 

against the total of all 𝐶𝑘. This weight reflects the relative importance of each criterion based on a 

combination of data diversity and inter-criteria relationships. 

2.7   Simple Additive Weighting (SAW) Method 

The SAW method is one of the most basic and popular techniques in MCDM, based on the 

principle of weighted summation of each alternative's value across all criteria[33]–[35]. The advantage 

of the SAW method lies in its simplicity, ease of implementation, and its ability to provide results that 

are intuitive and easy to interpret. However, SAW is also sensitive to the determination of weights and 

normalization scales, making the results' accuracy highly dependent on the objectivity of the weighting 

process and the accuracy of the data used. The main formula used in the SAW method is as follows: 

 𝑟𝑖𝑗 {

𝑥𝑖𝑗

max 𝑥𝑖𝑗
 ; 𝑖𝑓 𝑗 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝑚𝑖𝑛 𝑥𝑖𝑗

𝑥𝑖𝑗
; 𝑖𝑓 𝑗 𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

 (28) 

 𝑉𝑖 =  ∑ 𝑤𝑗 . 𝑟𝑖𝑗
𝑛
𝑗=1  (29) 

Where 𝑟𝑖𝑗 represents the normalization value of the ith alternative with respect to the jth criterion, 

which is determined based on the type of criterion. For beneficial criteria, the normalization value is 

obtained by dividing the actual value 𝑥𝑖𝑗 by the maximum value max 𝑥𝑖𝑗, so that the alternative with the 

highest value will have the highest normalization value. Conversely, for cost criteria (non-beneficial 

criteria), normalization is done by comparing the minimum value min 𝑥𝑖𝑗 with the actual value 𝑥𝑖𝑗, so 

that alternatives with lower costs receive higher values. This 𝑟𝑖𝑗 value is used to standardize the scale 

of all criteria so they can be compared objectively. The symbol 𝑉𝑖 represents the total preference value 

or aggregate score of the ith alternative, obtained by summing the results of multiplying the criterion 

weight 𝑤𝑗 by the normalization value 𝑟𝑖𝑗 for all n criteria. The value of 𝑉𝑖 serves as the basis for ranking 

alternatives, with the alternative with the highest value considered the best choice according to the 

evaluation method. 

2.8   Sensitivity Analysis 

Sensitivity analysis is an important stage in the multi-criteria decision-making process, aimed at 

evaluating the extent to which the ranking of alternatives is affected by changes in the weights or 

values of the criteria. Through this analysis, the stability of the decision model can be determined, as 

well as the criteria that most influence the final outcome. The process is carried out by systematically 

varying the weight values or certain parameters, then observing changes in the ranking positions of 

each alternative. If the ranking results remain stable despite changes in the weights, the model is 

considered robust or highly reliable. Conversely, if small changes in weights cause significant shifts 

in rankings, then the model is sensitive, and a reassessment of the weighting or criteria structure is 

necessary. Thus, sensitivity analysis plays an important role in ensuring the validity, consistency, and 

reliability of the decision results produced by a multi-criteria decision support system. 
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3   Results and Discussions 

A comparison of various objective weighting methods within the SAW framework shows that 

differences in approaches to determining criterion weights have a significant impact on the final 

ranking of alternatives. Each method has a different calculation basis for determining the importance 

level of criteria. The Entropy method assigns weights based on the level of uncertainty or information 

in the data, so criteria with greater variation receive higher weights. In contrast, CRITIC considers 

both data dispersion (standard deviation) and criterion correlation, so the resulting weights reflect a 

balance between diversity and independence among factors. The MEREC method measures the impact 

of removing each criterion on the overall outcome, making it more sensitive to changes in the 

contribution of criteria to the performance of alternatives. Meanwhile, G2M uses the geometric mean 

to capture proportional relationships between values, emphasizing the natural balance among data. The 

RECA method evaluates weights based on the effects of correlation and criterion deviation, identifying 

criteria that have a strong influence but are not mutually redundant. On the other hand, LOPCOW uses 

logarithmic percentage changes to assess data sensitivity, resulting in weights that are adaptive to the 

scale and distribution of values. When these six methods are applied to SAW, it is observed that 

although the main ranking patterns tend to be consistent for the extremes (best and worst), there are 

significant differences in the middle positions due to variations in weight distribution. This shows that 

the weighting method directly influences the sensitivity of the final SAW results. 

3.1   Dataset 

The dataset used in this study consists of several alternatives representing the evaluation objects, 

which are assessed against several quantitative and qualitative criteria in the study context. Each 

alternative has numerical values for each criterion that reflect the level of performance or the 

characteristics being measured. The dataset's criteria are divided into two types: beneficial, where 

higher values indicate better performance, and non-beneficial, where lower values are more desirable. 

Table 1 is the dataset used in this study. 

Table 1 Dataset (Source:[17]) 

Alternative 

Criteria  

Rental Cost 
Building 

Area 
Accessibility 

Consumer 

Traffic 

Parking 

Availability 
Infrastructure 

New Store Locations 1 45 120 8 550 10 9 

New Store Locations 2 40 100 7 500 8 8 

New Store Locations 3 55 150 9 600 12 9 

New Store Locations 4 38 90 6 480 6 7 

New Store Locations 5 60 160 8 620 15 10 

New Store Locations 6 42 130 9 570 11 8 

New Store Locations 7 36 110 7 510 9 7 

New Store Locations 8 48 140 8 590 13 9 

 

The data source obtained from Gunawan’s research [17] serves as an important reference as it 

discusses the development of MCDM methods using distance-based weighting approaches to improve 

assessment accuracy. This study modifies the additive ratio assessment (ARAS) method by adding a 

weighting mechanism that accounts for the relative distance between criterion values, thereby reducing 

subjectivity and enhancing the representativeness of evaluation results. The study shows that the 

distance-based approach can produce a more proportional distribution of weights based on data 
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variation and yield more stable alternative ranking results. Thus, this research provides a relevant 

theoretical basis for the application and comparison of various objective weighting methods within the 

SAW framework in this study. 

The dataset of criteria used in this study includes six main criteria designed to represent key 

factors in multi-criteria alternative evaluation. Rental Cost (S1) is a cost criterion that reflects the 

financial expenditure required to use an alternative, so its value is expected to be as low as possible to 

improve budget efficiency. Building Size (S2) is a benefit criterion that reflects the physical capacity 

and flexibility of available space, with larger buildings generally offering better operational and 

business development opportunities. Accessibility (S3) represents the ease with which a location can 

be reached by consumers or suppliers, including proximity to main roads and transportation facilities, 

so the higher its value, the more it supports operational activities. Consumer Traffic (S4) reflects the 

potential level of visits or consumer flow around the location, which directly affects sales opportunities 

and business visibility. Parking Availability (S5) represents the adequacy and convenience of parking 

facilities for consumers, playing a key role in enhancing comfort and visit interest. Meanwhile, 

Infrastructure (S6) assesses the completeness and quality of supporting facilities, such as electricity, 

water, and communication networks, and the condition of the surrounding environment, which, 

overall, determine the smooth operation and sustainability of activities at the evaluated alternative. 

3.2   Results 

The analysis of the application of various objective weighting methods within the SAW 

framework indicates that variations in the criteria weights directly affect the aggregate values and the 

final ranking of the alternatives. The weight calculation process is carried out systematically based on 

the characteristics of the data obtained from the decision matrix, and these weights are then used to 

calculate the total scores for each alternative. The calculation results show differences in sensitivity 

levels across alternatives to changes in criterion weights, indicating that the composition of the weights 

plays an important role in determining the stability of the evaluation results. The final ranking from 

SAW reflects the alternatives' performance across all criteria in a measurable, objective manner. 

3.2.1   Comparison Results of Criterion Weights 

The results of the comparative analysis of the criteria weights obtained from various objective 

weighting methods are based on the same data. This process aims to identify the extent to which each 

method produces different weight distributions and how these differences reflect sensitivity to the 

characteristics of each criterion's data. The calculation results show that each criterion has varying 

levels of relative importance, depending on its information contribution to the decision matrix. The 

resulting weight values are then analyzed to observe patterns of criteria dominance, uniformity, and 

the balance among factors that influence alternative assessments. Through this comparison, the general 

characteristics of the weight distributions produced by each objective approach, along with their 

implications for evaluation processes based on the SAW method, can be understood. 

This analysis was conducted using six objective weighting methods, namely Entropy, MEREC, 

RECA, G2M, LOPCOW, and CRITIC, to observe how each method provides different weight 

distributions for each criterion based on data variation and the structure of relationships between 

parameters in the decision matrix. The calculation results indicate that although all methods employ 

different mathematical approaches, the resulting weight patterns remain consistent in highlighting 
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criteria with significant levels of variation and data influence. Differences in weight values across 

methods also reflect the sensitivity of each approach in capturing data characteristics such as 

dispersion, correlation, and the impact of each criterion's contribution to the final result. Thus, this 

section serves as a basis for understanding how the weight variations produced by these six methods 

can affect evaluation outcomes and alternative rankings in the subsequent stage. 

The Entropy Method is an objective approach used in determining the weights of criteria in the 

multi-criteria decision-making process. This approach is based on the principles of information theory, 

where the level of uncertainty or dispersion of data for each criterion serves as a basis for assessing its 

relative importance. The greater the variation in the values of a criterion among alternatives, the higher 

the information it contains and the greater the weight assigned. Thus, the Entropy Method allows for 

weight determination free of evaluators' subjectivity, as the weights are entirely based on the actual 

data distribution of the evaluated alternatives. This approach is often used in decision support systems 

due to its ability to produce objective, consistent, and representative weights for the analyzed data. 

Table 2 presents the results of the criteria weights, calculated using the entropy method and based on 

the data from the dataset in Table 1, employing equations (1) to (4). 

Table 2 Results of the Entropy Method Calculation 

Entropy Components 

Criteria  

Rental Cost 
Building 

Area 
Accessibility 

Consumer 

Traffic 

Parking 

Availability 
Infrastructure 

Entropy Value 0.9930 0.9918 0.9962 0.9982 0.9838 0.9966 

Dispersion Value 0.0070 0.0082 0.0038 0.0018 0.0162 0.0034 

Entropy Weight Result 0.1734 0.2019 0.0946 0.0450 0.4011 0.0840 

 

The calculation results using the entropy method show that the entropy values for each criterion 

are as follows: the weight for criterion S1 is 0.9930, the weight for criterion S2 is 0.9918, the weight 

for criterion S3 is 0.9962, the weight for criterion S4 is 0.9982, the weight for criterion S5 is 0.9838, 

and the weight for criterion S6 is 0.9966. From these results, criterion S5 emerges as the most dominant 

factor in the evaluation process, as it has the highest weight. S2 and S1 follow this, while S4 has the 

lowest weight, so its influence on the final result is relatively small compared to the other criteria. 

The MEREC method is an objective weighting approach that determines the relative importance 

of each criterion based on its influence on the overall evaluation results. The basic concept of this 

method is to assess the extent to which changes or the elimination of a criterion affect the total 

performance of all alternatives. Criteria that significantly impact changes in evaluation values are 

considered more important and assigned higher weights. Thus, the MEREC method can objectively 

reflect each criterion's actual contribution to the final result, without involving the decision maker's 

subjective preferences. This approach is widely used in decision support systems because it effectively 

produces weights that are consistent, rational, and sensitive to changes in the criteria. 

Table 3 Results of the MEREC Method Calculation 

MEREC Components 

Criteria  

Rental 

Cost 

Building 

Area 
Accessibility 

Consumer 

Traffic 

Parking 

Availability 
Infrastructure 

Effect Value of Criterion Removal 0.2604 0.2807 0.1658 0.1245 0.4221 0.1969 

MEREC Weight Result 0.1795 0.1936 0.1143 0.0859 0.2910 0.1357 
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The results of the calculations using the MEREC method obtained the effect value of criterion 

removal for each criterion, namely the weight for criterion S1 is 0.2604, the weight for criterion S2 is 

0.2807, the weight for criterion S3 is 0.1658, the weight for criterion S4 is 0.1245, the weight for 

criterion S5 is 0.4221, and the weight for criterion S6 is 0.1969. These values indicate the extent to 

which the overall performance changes if a criterion is removed from the analysis. From these results, 

criterion S5 has the most dominant influence on the decision results due to its highest weight, followed 

by S2 and S1. In contrast, S4 has the lowest weight, thus contributing the least to the evaluation 

process. 

The RECA method is an objective weighting approach developed to assess the relative 

importance of each criterion based on evaluation data responses to changes in values among 

alternatives. The basic principle of this method is that criteria exhibiting high variation or sensitivity 

to differences in alternative performance are considered to play a more significant role in the decision-

making process. Thus, RECA focuses on the dynamic relationship between criteria and alternatives, 

where the strength of data responses serves as the primary basis for determining weights. This approach 

provides weighting results that are more adaptive and representative of the actual data characteristics, 

thereby enhancing objectivity and accuracy in the multi-criteria evaluation process. Table 4 presents 

the results of the criterion weights, calculated using the RECA method and based on the data in Table 

1, employing equations (10) to (15). 

Table 4 Results of the RECA Method Calculation 

RECA Components 

Criteria  

Rental Cost 
Building 

Area 
Accessibility 

Consumer 

Traffic 

Parking 

Availability 
Infrastructure 

Variability Value 0.1378 0.1641 0.0926 0.0477 0.2578 0.0788 

Stability Measure Value 0.8622 0.8359 0.9074 0.9523 0.7422 0.9213 

RECA Weight Result 0.1651 0.1601 0.1738 0.1824 0.1422 0.1764 

 

The weighting results using the RECA method indicate that the weights for each criterion are as 

follows: the weight for criterion S1 is 0.1651, for S2 is 0.1601, for S3 is 0.1738, for S4 is 0.1824, for 

S5 is 0.1422, and for S6 is 0.1764. Based on these results, criterion S4 has the highest weight, 

indicating its most dominant role in the assessment process. S6 and S3 follow this, while S5 has the 

lowest weight, meaning its contribution to the final result is the smallest. These results show that S4 

has the greatest influence on the evaluation process, followed by S6 and S3. In contrast, S5 has the 

lowest weight, indicating its relatively small contribution to the final decision. 

The G2M method is an objective weighting approach that uses concepts from grey set theory 

and the geometric mean to determine the relative importance of each criterion. This method is designed 

to comprehensively capture the uncertainty and variation in the alternative assessment data. By 

combining the strengths of geometric analysis and the flexibility of grey theory, G2M can produce 

weights that reflect a balance among criteria based on the characteristics of uncertain data distribution. 

This approach offers advantages in generating more stable, accurate, and adaptive weighting results 

under complex data conditions, making it highly suitable for use in multi-criteria decision support 

systems. Table 5 presents the results of the criterion weights, calculated using the G2M method and 

based on the data in Table 1, employing equations (16) to (19). 
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Table 5 Results of the G2M Method Calculation 

G2M Components 

Criteria  

Rental 

Cost 

Building 

Area 
Accessibility 

Consumer 

Traffic 

Parking 

Availability 
Infrastructure 

Grey Relational Value 1.0144 1.0175 1.0082 1.0038 1.0362 1.0072 

G2M Weight Result 0.1666 0.1671 0.1656 0.1649 0.1702 0.1655 

 

The calculations using the G2M method yielded weights for each criterion, indicating their 

relative importance in the decision-making process. The weight values for each criterion are as follows: 

criterion S1 is 0.1666, criterion S2 is 0.1671, criterion S3 is 0.1656, criterion S4 is 0.1649, criterion 

S5 is 0.1702, and criterion S6 is 0.1655. The differences in weight among the criteria appear relatively 

small, indicating that all criteria have a nearly equal level of influence on the evaluation results. 

Nevertheless, criterion S5 has the highest weight of 0.1702, indicating that it contributes most 

significantly to the decision-making process, followed by S2 and S1. Meanwhile, criterion S4 received 

the lowest weight of 0.1649, indicating that its influence on the overall result is the smallest among 

the criteria. This weighting result indicates that the G2M method can reveal subtle yet meaningful 

differences in the level of importance among criteria, thereby helping produce a more proportional and 

objective evaluation based on the relationships among the analyzed data. 

The LOPCOW method is an objective weighting approach that determines the importance level 

of each criterion based on logarithmic changes in data values across alternatives. This approach focuses 

on data sensitivity to variations in alternative performance, using logarithmic percentage changes to 

assess the extent to which a criterion influences overall decision outcomes. By integrating the 

principles of relative change and logarithmic transformation, LOPCOW can produce weights that are 

more closely aligned with the actual data dynamics. The advantage of this method lies in its ability to 

reduce scale bias and provide stable, objective, and responsive weighting that accounts for value 

fluctuations among criteria in the multicriteria decision-making process. Table 6 presents the results 

of the criterion weights, calculated using the LOPCOW method and based on the data in Table 1, 

employing equations (20) to (22). 

Table 6 Results of the LOPCOW Method Calculation 

LOPCOW Components 

Criteria  

Rental 

Cost 

Building 

Area 
Accessibility 

Consumer 

Traffic 

Parking 

Availability 
Infrastructure 

Preference Value 0.0784 0.0260 0.5354 0.0049 0.4072 0.4895 

LOPCOW Weight Result 0.0509 0.0168 0.3474 0.0032 0.2641 0.3176 

 

The LOPCOW method calculates weights for each criterion, reflecting their relative importance 

in the evaluation process. The weight values for each criterion are: criterion S1 at 0.0509, criterion S2 

at 0.0168, criterion S3 at 0.3474, criterion S4 at 0.0032, criterion S5 at 0.2641, and criterion S6 at 

0.3176. These results show a significant variation between the criteria, with criterion S3 having the 

highest weight, indicating a dominant influence on the decision outcome. This is followed by S6 and 

S5, which also play important roles in the assessment process. Conversely, criterion S4 has the lowest 

weight, indicating the smallest contribution to the final result. The weight distribution from the 

LOPCOW method illustrates that most of the information and decision influence is concentrated on 

criteria with high rates of logarithmic preference change. This makes the method effective in 

highlighting the criteria most sensitive to data variations and relevant to the evaluation objectives. 
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The CRITIC method is an objective weighting approach that determines the relative importance 

of each criterion based on two main aspects: the degree of data variability and the level of correlation 

among criteria. This method assumes that criteria with high data dispersion and low correlation with 

other criteria provide more information for decision-making. Thus, CRITIC allows for weighting that 

considers both the diversity of information and the independence among criteria, ensuring that the 

resulting weights are objective and proportionally reflect each criterion's contribution to the 

information. This approach is widely used in decision support systems because it produces weights 

that are rational, unbiased, and aligned with the characteristics of the analyzed data. Table 7 presents 

the results of the criterion weights, calculated using the CRITIC method and based on the data in Table 

1, employing equations (23) to (27). 

Table 7 Results of the CRITIC Method Calculation 

CRITICS Components 

Criteria  

Rental 

Cost 

Building 

Area 
Accessibility 

Consumer 

Traffic 

Parking 

Availability 
Infrastructure 

Correlation Value 0.2711 0.1597 0.4717 0.1532 0.1833 0.2875 

CRITIC Weight Result 0.1776 0.1046 0.3090 0.1004 0.1201 0.1883 

 

The CRITIC method yielded weights that reflect the relative importance of each criterion, based 

on a combination of data variation and criterion correlations. The weights generated for each criterion 

are: criterion S1 at 0.1776, criterion S2 at 0.1046, criterion S3 at 0.3090, criterion S4 at 0.1004, 

criterion S5 at 0.1201, and criterion S6 at 0.1883. These results indicate that criterion S3 has the highest 

weight, suggesting that it contributes most to the decision-making process because it provides the most 

information and is the least dependent on other criteria. Criteria S6 and S1 rank next in terms of 

influence on the assessment results. In contrast, criterion S4 has the lowest weight, followed by S2, 

indicating that both have the least influence on the final results. Overall, the weighting results from the 

CRITIC method illustrate a balance between data variability and the interrelation among criteria, 

yielding objective weights that empirically reflect the significant role of each criterion in the evaluation 

process. 

A comparison of the weighting results from six objective weighting methods: Entropy, MEREC, 

RECA, G2M, LOPCOW, and CRITIC, was conducted to gain a comprehensive understanding of the 

characteristics, sensitivity, and consistency of each approach in determining the relative importance of 

criteria. Each method has a unique computational basis and highlights particular aspects in the 

weighting process: the Entropy method emphasizes the level of data dispersion to measure the 

information contained in each criterion; MEREC evaluates the impact of removing a criterion on the 

aggregation results; RECA assesses data responses to variations among alternatives; G2M integrates 

grey theory with geometric mean to handle data uncertainty; LOPCOW utilizes logarithmic changes 

in values to assess sensitivity among criteria; while CRITIC combines data variability and correlations 

among criteria to determine weights objectively. Through this comparison, it is possible to analyze 

how differences in these mathematical approaches affect the resulting weight distribution and the 

extent to which each method provides stable, proportional, and representative results, given the 

characteristics of the data used. This comparison aims to identify how differences in these 

mathematical approaches affect the weighting results and to examine the consistency of the resulting 

weight distributions. This analysis is an important step in understanding the characteristics of each 
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method and assessing the stability and objectivity of the weighting results before they are used in the 

process of ranking alternatives. The results of the criteria weight comparison are shown in Figure 2. 

 
Figure 2 Comparison Results of Criterion Weights 

The results of the comparison of criterion weights obtained from six objective weighting 

methods, namely Entropy, MEREC, RECA, G2M, LOPCOW, and CRITIC. In general, each method 

provides a different weight distribution for the six criteria (S1 to S6), indicating variation in the 

sensitivity and approach of each method in assessing the importance level of the criteria. In the Entropy 

method, criterion S5 has the highest weight of 0.4011, followed by S2 and S1, while S4 has the lowest 

weight. A similar pattern is also observed in the MEREC method, where S5 again holds a dominant 

position with a weight of 0.2910. However, the RECA method yields different results, with the highest 

weight on S4 of 0.1824, followed by S6 and S3, indicating that it places greater emphasis on the 

stability of the criteria. Meanwhile, the G2M results show a relatively even distribution of weights 

among all criteria, with S5 slightly leading at 0.1702. In the LOPCOW method, a significant difference 

occurs, with S3 having the highest weight of 0.3474, indicating high sensitivity to changes in 

logarithmic preferences. Meanwhile, the CRITIC method ranks S3 as the most influential criterion 

(0.3090), followed by S6 and S1, with S4 having the lowest weight. Overall, these results show that 

criteria S5 and S3 tend to emerge as dominant factors across most methods, indicating that both make 

a significant and stable contribution to the evaluation process based on the objective approaches used. 

The most notable result from the weighting data shows a strong methodological character difference 

among the methods. The dominance of S5 in Entropy and MEREC occurs because these criteria have 

the highest level of variation and information uncertainty compared to other criteria, thereby increasing 

the weight in Entropy as a representation of the greatest information content, while in MEREC S5 

shows the most significant impact on changes in evaluation results when the criteria are eliminated. In 

contrast, the G2M method produces nearly identical weights for all criteria because its approach 

emphasises balanced contributions and global proportion-based normalisation, which dampens the 

extreme influence of any particular criterion and results in a very uniform weight distribution. Different 

patterns are also apparent in LOPCOW and CRITIC, where S3, S5, and S6 become dominant due to a 

combination of wide value ranges, sensitivity to changes, and low correlation with other criteria, while 

RECA is in a middle position with a relatively balanced weight distribution, reflecting its ability to 
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maintain stability and fairness among the criteria. Overall, these findings confirm that criteria that 

appear dominant are not merely due to subjective importance, but rather to the mathematical response 

of each method to the structure and characteristics of the data. 

3.2.2   Comparison of Rankings Using the SAW Method 

A comparison of rankings using the SAW method was conducted to analyze how differences in 

criterion weights from various objective approaches can affect the outcome in the multi-criteria 

decision-making process. The SAW method was chosen for its simplicity in aggregating the 

performance values of alternatives against the criterion weights, making it easier to clearly see even 

small changes in weighting reflected in the resulting ranking. In this context, the preference value of 

each alternative is calculated based on a linear combination of the normalized criterion values and the 

assigned weights, producing a final score that reflects the relative feasibility or performance among 

alternatives. Through this approach, each weighting method, such as Entropy, MEREC, RECA, G2M, 

LOPCOW, and CRITIC, can be tested for its effectiveness in providing consistent and logical results 

in the evaluation process. This comparative analysis also provides an understanding of the extent to 

which different weighting methods can maintain the stability of ranking results when applied to the 

same dataset. 

In addition, comparing rankings using the SAW method helps identify the potential sensitivity 

of results to variations in weights generated by each weighting method. Different ranking results reflect 

that each approach has specific characteristics in interpreting the relative contribution of each criterion 

to the overall value of alternatives. Thus, this analysis not only highlights differences in final results 

but also provides insights into the reliability, objectivity, and degree of influence of each weighting 

method on the decision-making process. This understanding is crucial for decision support system 

developers to determine the most appropriate weighting method based on data characteristics and 

analysis objectives, and to ensure that the ranking results truly reflect empirically relevant conditions 

and preferences. Table 8 shows the final scores of each alternative from the SAW method combined 

with the criteria weights. 

Table 8 Final Score Results of Each Alternative 

Alternative 
SAW Final Score 

Entropy MEREC RECA G2M LOPCOW CRITIC 

New Store Locations 1 0.7572 0.7827 0.8220 0.8145 0.8269 0.8338 

New Store Locations 2 0.6732 0.7045 0.7479 0.7393 0.7240 0.7612 

New Store Locations 3 0.8374 0.8513 0.8810 0.8760 0.8967 0.8860 

New Store Locations 4 0.5950 0.6330 0.6839 0.6738 0.6197 0.6907 

New Store Locations 5 0.9201 0.9155 0.9146 0.9149 0.9410 0.8946 

New Store Locations 6 0.8100 0.8264 0.8585 0.8530 0.8554 0.8772 

New Store Locations 7 0.7223 0.7417 0.7692 0.7639 0.7161 0.7763 

New Store Locations 8 0.8568 0.8617 0.8740 0.8717 0.8794 0.8685 

 

Ranking using the SAW method is one of the most basic and popular approaches in multi-criteria 

decision support systems due to its simplicity and transparency in processing alternative evaluation 

data. In this method, each alternative is evaluated based on several criteria, each weighted according 

to its level of importance. The values of each criterion are normalized to ensure scale equivalence 

across attributes, then multiplied by their respective weights to obtain an aggregate score. The final 

value reflects each alternative's preference level, with the alternative with the highest value considered 

to have the best performance. This process allows for easily understandable analysis while providing 
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intuitive results for decision-making. Thus, the SAW method can provide a comprehensive overview 

of the relative performance of alternatives by combining criterion values with applied weights. 

Meanwhile, applying weighting methods to the final SAW scores deepens the analysis of each 

criterion's relative influence on the overall ranking results. This approach not only focuses on obtaining 

the final score but also evaluates the contribution and sensitivity of the weights to changes in the 

ranking results. By relating the final SAW scores to objective weighting methods such as Entropy, 

MEREC, RECA, G2M, LOPCOW, and CRITIC, it is possible to determine the extent to which 

differences in weighting strategies affect the ranking positions of alternatives. This analysis is 

important for testing the consistency and stability of decision results and assessing whether specific 

weighting methods produce a weight distribution that better represents the actual data. In other words, 

the combination of SAW and objective weighting methods provides a comprehensive analytical 

framework for producing decisions that are accurate, rational, and scientifically accountable. Figure 3 

shows the results of the comparison of alternative rankings. 

 
Figure 3 Comparison Results of Alternative Rankings 

The comparison results of the final rankings of alternatives show high consistency among all 

objective weighting methods, namely Entropy, MEREC, RECA, G2M, LOPCOW, and CRITIC. New 

Store Location 5 consistently occupies the top position (rank 1) across all methods, indicating that this 

location is the most optimal alternative. New Store Location 3 and New Store Location 8 occupy the 

following positions with slight variations, particularly in the RECA and CRITIC methods, where 

Location 8’s position declines slightly. Meanwhile, New Store Locations 6, 1, 7, and 2 show ranking 

stability, ranging from fourth to seventh across all methods, reflecting consistent relative performance 
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among the alternatives. The New Store 4 location consistently ranked last (rank 8), indicating the 

lowest level of feasibility. Overall, this line graph shows a similar pattern of results across all objective 

methods, indicating that each method produces a similar decision tendency in determining the best 

store location. 

3.3   Sensitivity Analysis 

Sensitivity analysis in the ranking of alternatives is an evaluation process that assesses the extent 

to which changes in parameters, particularly the weights of criteria, can affect the final ranking results 

in a multi-criteria decision-making system. This approach is important because, in practice, weight 

values are often obtained through estimation, objective calculation, or subjective consideration, which 

are inherently subject to uncertainty and variation. By conducting sensitivity analysis, it is possible to 

determine how stable and reliable the ranking outcomes are against minor changes in weights or the 

evaluation values of alternatives. If the ranking results remain consistent despite changes in criteria 

weights, the decision-making system is considered to have a high level of stability and reliability. 

Conversely, if changes in weights cause significant shifts in the positions of alternatives, it indicates 

that the decision outcomes are highly sensitive to the weighting assumptions used. 

In addition to testing the stability of decision outcomes, sensitivity analysis also serves as a 

validation tool for the weighting methods and decision-making models applied. By comparing the 

responses to rank changes across weighting methods such as Entropy, MEREC, RECA, G2M, 

LOPCOW, and CRITIC, it is possible to identify which method produces the most stable and 

representative results relative to the actual data. This analysis helps decision-makers understand which 

criteria have the most significant influence on the outcome. It also allows strategic adjustments to the 

weights or models, ensuring more accurate, rational decisions. In the context of modern decision 

support systems, sensitivity analysis is crucial to ensure that decisions are not based solely on 

mathematical calculations but are also evaluated for the model's robustness and reliability under 

various possible changes in data and conditions. 

Sensitivity analysis using Spearman's correlation is an approach for assessing the stability of 

alternative rankings under changes in weights or weighting methods in a multi-criteria decision-

making system. Spearman correlation, which is based on the monotonic relationship between two sets 

of rankings, allows measurement of the extent to which the order of alternatives produced by one 

method is consistent with the order produced by another method. The correlation coefficient values 

range from -1 to 1. A value close to 1 indicates a high degree of similarity or consistency between the 

two ranking results. In contrast, a value close to -1 indicates significant differences or ranking 

inversions. Through this approach, sensitivity analysis not only highlights changes in numerical values 

but also evaluates the stability of alternative ranking structures under varying weightings. The use of 

Spearman correlation in sensitivity analysis provides a clear quantitative picture of the reliability and 

robustness of the decision-making model and helps determine which weighting method produces the 

most consistent and rational results when comparing alternative rankings. The comparison of 

correlation values for each weighting method is presented in Figure 4. 

The comparison of correlation values using the Spearman correlation test shows a very high level 

of agreement among the objective weighting methods in producing the final ranking of alternatives. 

The correlation values for the RECA, G2M, and LOPCOW methods reach a perfect score of 1, 

indicating complete alignment between the ranking results of these three methods and the comparison 
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method. Meanwhile, the Entropy, MEREC, and CRITIC methods show a correlation value of 0.9879, 

reflecting a powerful and nearly identical relationship with the other methods. Overall, these results 

confirm that all applied objective methods have a high level of consistency in determining the priority 

of alternatives, with minimal variation among methods. This consistency leads to the conclusion that 

the approach used provides stable and reliable results in the context of multi-criteria decision making. 

 

 
Figure 4 Comparison Results of Correlation Values 

The correlation values indicate that the RECA, G2M, and LOPCOW methods exhibit the most 

consistent performance, achieving a perfect correlation score of 1, reflecting a complete alignment 

between the generated criteria weights and the variation patterns of the analysed data. These results 

suggest that these three methods are highly stable in representing the objective information in the data 

and can optimally capture differences in performance across criteria. In contrast, the Entropy, MEREC, 

and CRITIC methods yielded identical correlation values of 0.9879, which, although slightly lower 

than the maximum value, still indicate a very high level of correspondence. The similarity of 

correlation values across these three methods indicates that calculation mechanisms based on variation 

and criterion conflicts produce almost equivalent weighting patterns in the context of the data used. 

Overall, these results confirm that all methods have strong reliability, yet RECA, G2M, and LOPCOW 

show marginal advantages in maintaining consistency and sensitivity to data structure, making them 

more suitable for decision-making that demands high accuracy and stability of criterion weights. 

3.4   Discussion 

The results of the criteria weighting analysis show a variation in weight distribution that reflects 

the differences in each method's sensitivity to the data characteristics. The Entropy method gives the 

highest weight to criterion S5 at 0.4011, indicating that the information variability in this criterion is 

the most significant in influencing decisions. Similar results are observed with the MEREC method, 

where S5 also receives a dominant weight of 0.2910, indicating that removing this criterion would 

have the greatest impact on changes in the aggregate alternative values. Conversely, methods such as 

LOPCOW and CRITIC show a more balanced weighting pattern, yet still maintain the dominance of 
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criteria S5 and S3. This indicates that most objective methods confirm the importance of these criteria 

as key factors in the alternative evaluation process, although the mathematical approaches used to 

determine the weights differ. 

The consistency of the ranking results across the six objective weighting methods reinforces the 

validity of the evaluation model used in this study. Based on the final results using the SAW method, 

New Store Location 5 consistently ranks first across all weighting methods, followed by New Store 

Location 3 and New Store Location 8 in second and third place, respectively. This consistency 

indicates that differences do not significantly influence the best alternative in the weighting 

determination algorithms; rather, the quality of the attributes possessed by the alternative does. 

Furthermore, New Store Location 4, which consistently ranks last, indicates that this option performs 

poorly across almost all criteria, making the decision not to choose it justifiable on quantitative 

grounds. Thus, these results demonstrate that the objective weighting method provides consistent 

guidance for decision-making and can serve as a reliable basis for strategic recommendations. 

Spearman's correlation analysis reinforces this conclusion by showing a strong relationship 

among the rankings obtained from each weighting method. The correlation value of 1 achieved by the 

RECA, G2M, and LOPCOW methods confirms that all three produce identical rankings, despite their 

differing weight calculation mechanisms. Meanwhile, the correlation value of 0.9879 for the Entropy, 

MEREC, and CRITIC methods also indicates an almost perfect relationship, meaning that the 

differences in results between the methods are only minor and do not change the main order of 

alternative rankings. These findings indicate that the six objective methods exhibit high convergence, 

leading to the conclusion that the objective weighting approach remains stable and consistent across 

changes in the mathematical model. Empirically, this reinforces the reliability of the objective 

approach as a basis for decision-making with minimal subjective bias. 

Overall, this study's results confirm that using multiple objective methods in the criteria 

weighting process not only provides a comprehensive perspective but also increases confidence in the 

final results. With a very high level of correlation between methods, the process of determining new 

store locations is based on strong decision-making, both mathematically and empirically. Although 

each method has a different formulation, such as information entropy in Entropy, the effect of criteria 

elimination in MEREC, and the relationship between criteria in CRITIC, the final results still show a 

consistent decision pattern. These findings reinforce the view that a data-driven, systematic approach 

to weighting criteria is more effective than a subjective one, as it can yield consistent, measurable, and 

replicable results. Thus, the application of objective weighting methods, as used in this study, 

contributes to improving the quality of multi-criteria decision-making in business location planning 

and other strategic evaluation contexts. 

The practical implication of the study, Comparison of Objective Weighting Methods in SAW 

and Their Effect on Alternative Ranking Results, is that decision-makers in the real world can make 

more conscious and informed choices when selecting objective weighting methods that suit the 

characteristics of the data and decision objectives. The study's results confirm that differences in 

weighting methods can lead to dominance patterns in criteria and significant changes in alternative 

rankings, even when the same ranking framework, namely SAW, is used. Therefore, DSS practitioners 

in areas such as supplier selection, employee performance evaluation, business partner selection, or 

project prioritisation are advised not to use default weighting, but rather to consider whether the 

decision requires emphasis on information variation (Entropy, MEREC), balance of contribution 
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(G2M, RECA), or criteria discriminative power (LOPCOW, CRITIC). With SAW's transparent, easily 

interpretable nature, these findings help decision-makers understand the direct impact of weights on 

final results, thereby enhancing trust, accountability, and decision quality in the implementation of 

decision support systems in real operational environments. 

 

4   Conclusion 

The results of the comparative analysis of the six objective weighting methods: Entropy, 

MEREC, RECA, G2M, LOPCOW, and CRITIC, provide consistent and mutually supportive outcomes 

in determining the criteria weights and alternative rankings. Overall, criterion S5 has the highest 

weight in most methods, indicating that it has the greatest influence on the decision-making process. 

Meanwhile, the ranking results using the SAW method show that New Store Location 5 consistently 

ranks first across all weighting approaches, followed by Location 3 and Location 8. The Spearman 

correlation test results show very high correlations: the RECA, G2M, and LOPCOW methods achieve 

a perfect correlation of 1, while Entropy, MEREC, and CRITIC show a correlation of 0.9879. This 

indicates that all methods produce almost identical ranking patterns, suggesting that the objective 

weighting approach is highly stable and reliable. This study demonstrates that applying objective 

weighting methods can reduce subjectivity and improve accuracy in the multi-criteria decision-making 

process. The comparative use of several methods also provides stronger validation of the results 

obtained. Thus, this approach can serve as a reference for research and decision-making practices 

across various fields, particularly for selecting strategic locations or evaluating alternatives involving 

multiple criteria in a quantitative, objective manner. 
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