


STATISTICAL METHODS
w % Y K 9w 0%

LIBRARY
(?mfm[ A antation ;.’71-9)41 7P2sazrch

ﬂndh’z‘ufe.)-?z;b,z 4 S #irn,
CALICUT-8673D11.



| STATISTICAL

GEORGE W. SNEDECOR

Professor Emeritus of Statistics
and Former Director, Statistical Laboratory
Towa State Unsversity

OXFORD & IBH PUBLISHING CO.



Sixth Edition

WILLIAM G. COCHRAN

Professor of kSmt:}tic;
Harvard Univernity

=
gk

)

Calrutta Bombsay New Delhi



GBORGE W. SNEDECOR is professor emeritus of statistics, lowa State University, where he
taught from 1913 to 1958 and where he was for fourteen years director of the statistical
laboratory, His writings include a body of scientific journal articles, research bulletins,
and books, including Correlation and Machine Calculation (with H. A. Wallace), Caleulation
and Interpretation of Analysts of Variance and Covariance, and Statistical Methods. He holds
a master of science degree from the University of Michigan, and honorary doctor of science
degrees from North Carolina State University and Iowa State University. He is a member
of the International Statistical Institute, past president of the American Statistical Associa-
tion, and an honorary Fellow of the British Royai Statistical Society. He has served aiso as

consultant, Human Factors Division, U.S. Navy Electronics Laboratory, San Diego, Cali-
fornia, where he now lives.

WiLLLaM G, COCHRAN is professor of statistics, Harvard University. He has served formerly
on the faculties of Johns Hopkins University, North Carolina State University, and lowa
State University. He holds master of arts degrees from Gilasgow University and Cambridge
University and an honorary master of arts degree from Harvard University. He is past
president of the American Statistical Association, the Institute of Mathematical Statistics,
and the Biometric Society. His writings include many research papers in the professional
journals of his field; Sampling Techniques, 2nd ed., 1963; and Experimental Designs {with
Gertrude M. Cox), 2nd ed., 1957.

©1937, 1938, 1940, 1946 1956,.1967 The lowa State University Press | -

Ames, lowa, U.S.A. Al rights Feserved
] - l.l -

z Pl ' v l 2]7

Sixth Edition, 1967
Ticte

i
Indian Edition 1968 published by arrangement with the
origing! American publishers The Iowa State University Press, U.S.A.
Second Indian Reprint, 1975 ) :b ‘ \
[ Y

Rs. 20.00 d
For Sale in India, Pakistan, Burma, Ceylon and Indonesia

This book has been published on the paper supplied through
the Govt. of India at concessional rqte

Published by Oxford & IBH Publishing Co. 66 Janpath, New Delhi I
and printed at Skylark Printers, New Delhi 55



reface

In preparing the sixth edition we have kept in mind the two purposes
this book has served during the past thirty years. Prior editions have been
used extensively both as texts for introductory courses in statistics and as
reference sources of statistical techniques helpful to research workers in
the interpretation of their data,

As a text, the book contains ample material for a course extending
throughout the academic year. For a one-term course, a suggested list
of topics is given on the page preceding the Table of Contents. As in
past editions, the mathematical level required involves little more than
elementary algebra. Dependence on mathematical symbols has been
kept to a minimum. We realize, however, that it is hard for the reader to
use a formula with full confidence until he has been given proof of the
formula oritsderivation. Consequently, we have tried to help the reader’s
understanding of important formuias either by giving an algebraic proof
where this is feasible or by explaining on common-sense grounds the roles
played by differedt parts of the formala,

This edition retains also one of the characteristic features of the
book—the extensive use of experimental sampling to familiarize the reader
with the basic sampling distributions that underlie modern statistical
practice. Indeed. with the advent of electronic computers, experimental
sampling in its own right has become much more widely recognized as a
research weapon for solving problems beyond the current skills of the
mathematician.

Some changes have been made in the structure of the chapters, mainly
at the suggestion of teachers who have used the book as a text. The former
chapter 8§ (Large Sample Methods) has disappeared, the retained material
being placed in earlier chapters. The new chapter 8 opens with an intro-
duction to probability, followed by the binomial and Poisson distributions
(formerly in chapter 16). The discussion of multiple regression (chapter
13) now precedes that of covariance and multiple covariance (chapter i3}

Y



vi Preface

Chapter 16 contains two related topics, the analysis of two-way classifica-
tions with unequal numbers of observations in the sub-classes and the
analysis of proportions in two-way classifications. The first of these
topics was formerly at the end of a long chapter on factorial arrangements ;
the second topic is new in this edition. This change seemed advisable for
two reasons. During the past twenty years there has been a marked in-
crease in observational studies in the social sciences, in medicine and public
heaith, and in operations research. In their analyses, these studies often
involve the handling of multiple ciassifications which present complexities
appropriate to the later sections of the book.

Finaily, in response to almost unanimous requests, the statistical
tables in the book have been placed in an Appendix.

A number of topics appear for the first time in this edition. As in
past editions, the selection of topics was based on our judgment as to
those likely to be most useful. In addition to the new material on the
analysis of proportions in chapter 16, other new topics are as follows:

e The analysis of data recorded in scales having only a small number
of distinct values (section 5.8);

* |n linear regression, the prediction of the independent variable
X from the dependent variable Y, sometimes called linear calibration
(section 6.14); _

e Linear regression when X is subject to error (section 6.17);

* The comparison of two correlated estimates of variance (section
7.12);

s An intreduction to probability (section 8.2);

# The analysis of proportions in ordered classifications {section
9.10);

® Testing a linear trend in proportions (section 9.11);

e The analysis of a set of 2 x 2 contingency tables (section 9.14);

® More extensive discussion of the effects of failures in the assump-
tions of the analysis of variance and of remedial measures (sections 11.10-
11.13);

* Recent work on the selection of variates for prediction in multiple
. regression (section 13.13);

¢ The discriminant function (sections 13.14, 13.15);

s The general method of fitting non-linear regression equations and
its application to asymptotic Tegression (sections 15.7-15.8).

Where considerations of space permitted only a brief introduction
to the topic, references were given to more compiete accounts,

Most of the numerical illustrations continue to be from biological
investigations. In adding new material, both in the text and in the exam-
ples to be worked by the student, we have made efforts to breaden the
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range of ficlds represented by data. One of the most exhilarating features
of statistical techniques is the extent to which they are found to apply in
widely different fields of investigation.

High-speed electronic computers are rapidly becoming available as
a routine resource in centers in which a substantial amount of data are
analyzed. Flexible standard programs remove the drudgery of computa-
tion. They give the investigator vastly increased power to fit 2 variety of
mathematical models to his data: to iook at the data from different points
of view ; and to obtain many subsidiary results that aid the interpretation.
In several universities their use in the teaching of introductory courses in
statistics is being tried, and this use is sure to increase.

We believe, however, that in the future it will be just as necessary
that the investigator learn the standard techniques of analysis and under-
stand their meaning as it was in the desk machine age. In one respect,
computers may change the relation of the investigalor to his data in an
unfortunate way. When calculations are handed to a programmer who
translates them into the language understood by the computer, the investi-
gator, on seeing the printed results, may lack the seif-assurance to query
or detect errors that arose because the programmer did not fully under-
stand what was wanted or because the program had not been correctly de-
bugged. When data are being programmed it i3 often wise to include a
similar example from this or another standard book as a check that the
desired calculations are being done correctly.

For their generous permission to reprint tables we are indebted to
the late Sir Ronald Fisher and his publishers, Oliver and Boyd ; to Maxine
Merrington, Catherine M. Thompson, Joyce N. May, E. Lord, and E. S.
Pearson, whose work was published in Biometrika; to C. 1. Bliss, E. L.
Crow, C, White, and the late F. Wilcoxon; and to Bernard Ostle and his
publishers, The Iowa State University Press. Thanks are due also to the
many investigators who made data available to us as illustrative exam-
ples, and to teachers who gave helpful advice arising from their experience
in using prior editions as a text. The work of preparing this edition was
greatly assisted by a contract between the Office of Naval Research.
Navy Department, and the Department of Statistics, Harvard University.
Finally, we wish to thank Marianne Blackwell. Nancy Larson. James
DeGracie and Richard Mensing for typing or proofreading. and especially
Holly Lasewicz for her help at many stages of the work. including the
preparation of the Indexes.

George W, Snedecor
William G. Cochran
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ampling of attributes

1.1—Introduction. The subject matter of the field of statistics has
been described in various ways. According to one definition, statistics
deals with techniques for collecting, analyzing, and drawing conclusions
from data. This description heips 10 explain why an introduction to sta-
tistical methods is useful to students who are preparing themselves for a
career in one of the sciences and to persons working in any branch of
knowledge in which much quantitative research is carmed out. Such re-
search is largely concerned with gathering and summarizing observations
or measurements made by planned experiments, by questionnaire surveys,
by the records of a sample of cases of a particular kind, or by combing
past published work on some problem., From these summaries, the in-
vestigator draws conclusions that he hopes will have broad validity.

The same intellectual activity is invoived in much other work of im-
portance. Samples are extensively used in keeping a contlinuous watch on
the output of production lines in industry, in obtaining national and
regional estimates of crop yields and of busmess and employment condi-
tions, in the auditing of financial statements, in checking for the possible
adulteration of foods, in gauging public opinion and voter preferences, in
learnine how well the mhlice isinfoemed oo cucrent issaes and sooon

Acquaintance with the main ideas in statistical methodology is also
an appropriate part of a general education. In newspapers, books, tele-
vision, radio, and spesches we are all continuously exposed to statements
that draw general conciusions: for instance, that the cost of living rose by
0.3%/ in the last month, that the smoking of cigarettes is injurious to health,
that users of “Blank’s” toothpaste have 23%, fewer cavities, that a tele-
vision program had 18.6 million viewers. When an inference of this kind
is of interest to us, it is helpful to be able to form our own judgment about
the truth of the statement. Statistics has no magic formula for doing this
in all situauons, for much remains to be learned about the problem of
making sound inferences. But the basic ideas in statistics assist us in
thinking clearly about the problem, provide some guidance about the
conditions that must be satisfied if sound inferences are to be made, and
enable us to detect many inferences that have no good logical foundation.

3



4 Chapter 1: Sampling of Atiributes

1.2—Purpose of this chapter. Since statistics deals with the collection,
analysis, and interpretation of data, a book on the subject might be ex-
pected to open with a discussion of methods for collecting data. Instead,
we shall begin with a simple and common type of data already collected,
the replies to a question given by a sample of the farmers in a county, and
discuss the problem of making a statement from this sample that will
apply to all farmers in the county. We begin with this probiem of making
inferences beyond the data because the type of inference that we are try-
ing to make governs the way in which the data must be collected. In
carlier days, and to some extent today also, many workers did not appre-
ciate this fact. It was a common experience for statisticians to be ap-
proached with: Here are my results. What do they show? Too often the
data were incapable of showing anything that would have been of interest
to an investigator, because the method of collecting the data failed to
meet the conditions needed for making reliable inferences beyond the
data.

In this chapter, some of the principal tools used in statistics for mak-
ing inferences will be presented by means of simple illustrations. The
mathematical basis of these tools. which lies in the theory of probability,
will not be discussed until later. Consequently, do not expect to obtain a
full understanding of the techniques at this stage, and do not worry if the
ideas seem at first unfamiliar. Later chapters will give you further study
of the properties of these techniques and enhance your skill in applying
them to a broad range of problems.

1.3—The twin problems of sampling. A sample consists of a small
collection from some larger aggregate about which we wish information.
The sample is examined and the facts about it learned. Based on these
facts, the problem is 10 make correct inferences about the aggregate or
population. 1t is the sample that we observe, but it is the population which
we seek to know.

This would be no problem were it not for ever-present variation. If
all individuals were alike, a sample consisting of a single one would give
complete information about the popuiation. Fortunately, there is end-
less variety among individuals as well as their environments. A conse-
quence is that successive samples are usually different. Clearly, the facts
observed in a sample cannot be taken as facts about the population. Our
job then is to reach appropriate conclusions about the population despite
sampling variation.

' But not every sample contains information about the population
sampled. Suppose the objective of an experimental sampling is to de-
termine the growth rate in a population of young mice fed a new diet. Ten
of the animals are put in a cage for the experiment. But the cage gets
located in a cold draught or in a dark corner. Or an unnoticed infection
spreads amhong the mice in the cage. If such things happen, the growth
rate in the sample may give no worthwhile information about that in the
population of normal mice. Again, suppose an interviewer in an opinion



5

poli picks only families among his friends whom he thinks it will be pleas-
ant to visit. His sample may not at all represent the opinions of the popula-
tion. This brings us to a second problem: 1o collect the sample in such a
way that the sought-for information is contained in it.

So we are confronted with the twin problems of the investigator: to
design and conduct his sampling so that it shall be representative of the
population; then, having studied the sample, to make correct inferences
about the sampled population.

1.4—A sample of farm facts. Point and interval estimates. In 1950
the USDA Division of Cereal and Forage Insect Investigations, cooperat-
ing with the Iowa Agricultural Experiment Station, conducted an exten-
sive sampling in Boone County, Iowa, to learn about the interrelation of
factors affecting control of the European corn borer.* One obijective
of the project was to determine the extent of spraying or dusting for control
of the insects. To this end a random sample of 100 farmers were inter-
viewed; 23 of them said they applied the treatment to their corn fields.
.Such are the facts of the sample.

What inferences can be made about the population of 2,300 Boone
County farmers? There are two of them. The first is described as a poins
estimate, while the second is called an interval estimate.

1. The poinz estimate of the fraction of farmers who sprayed is 23%,,
the same as the sample ratio; that is, an estimated 23% of Boone County
farmers sprayed their corn fields in 1950. This may be looked upon as an
average of the numbers of farmers per hundred who sprayed. From the
actual count of sprayers in a single hundred farmers it is inferred that the
average number of sprayers in all possible samptes of 100 is 23,

"This sample-to-population inference is usually taken for granted.
Most people pass without a thought from the sample fact to this inference
about the population. Logically, the two concepts are distinct. [t is wise
to examine the procedure of the sampling before attributing 1o the popu-
latron the percentage reported in a sample.

2. An inrerval estimate of the point is made by use of table 1.4.1. In
the first part of the table, indicated by 95%, in the heading, look across the
top line to the sample size of 100, then down the left-hand column to the
number (or frequency) observed, 23 farmers. At the intersection of the
column and line you will find the figures 15 and 32, The meaning is this:
one may be confident that the true percentage in the sampled population
lies in the interval from 5%, to 32%,. This interval estimate is called the
confidence interval. The nature of our confidence will be explained later.

In summary: based on a random sample, we said first that our esti-
mate of the percentage of sprayers in Boone County was 23°, but we gave
no indication of the amount by which the estimate might be tn error. Next
we asserted confidently that the true percentage was not farther from our
point estimate, 23%, than 8 percentage points below or 9 above.

Let us illustrate these concepts in another fashion. Imagine a bin

* Daia furnished courtesy of Dr. T. A. BRndiey.
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TABLE 1.4.4
95%, CONFIDENCE INTERVAL (PER CENT) FOR BinoanaL DisTriBuTION (1)*
Number Size of Sample, # Fraction |Size of Sample
Observed Observed
J io 15 20 30 50 100 fin 250 | 1000
0 ¢ 27(0 20/ 0 150 10|10 07 O 4 0.00 0 10 0
] 0 4|0 310 230 17|10 11|0 5 01 0 40 2
2 3 612 37(1 301 21|00 140 7 02 1 51 3
] 8 625 45(4 36| 2 25|11 1711 B 03 1 6/ 2 4
4 15 7419 567 4214 N5 191 1D i 2 N3y 5
5 22 18|14 64(10 47( 6 33)3 22|12 1 .05 3 914 7
& 26 85(19 67|14 S4| 9 37| 5 24| 2 12 06 3 105 8
7 38 9219 7i(14 5910 4116 27| 3 14 07 4 1116 9
8 39 97129 BL|20 65|13 4|7 29| 4 |5 08 5 121 6 10
9 60 10033 B1(22 71(16 48(9 31| 4 16 N & 1317 1
10 7310036 86|29 7117 53|10 345 18 10 7 14( 8 12
11 44 91|29 78|20 S56(12 36| 5 19 1 7 1619 13
12 55 95|35 BO|23 80|13 33| 6 20 A2 g8 17|10 14
13 63 98 |41 B6(24 64|15 41| 7 21 A3 9 18[11 15
14 69 10047 B6|29 6B (16 43| 8 22 14 0 19|12 16
15 80 100 53 90(32 6B[1B 44| 9 24 15 0 201 17
I6 S8 93|32 71120 46| 9 25 T |t 2114 18
17 64 96|36 7621 43|10 26 17 12 22|15 19
13 70 99(40 7723 SOl 27 18 13 2316 )
i9 77 100|444 8025 53(12 28 19 14 24|17 22
20 85 100|47 8327 55(13 29 .20 15 26|18 23
| 52 8428 5714 30 21 16 2719 24
22 56 87(30 59(14 31 22 17 28|19 25
23 59 90 (32 6115 32 .23 18 29(20 2
24 s 63 9134 63|16 13 24 19 w21 27
25 67 9436 64|17 35 25 20 31|22 28
26 70 9% (37 66[18 b 26 20 32(23 29
27 75 98(39 6E|19 37 27 2t 33|24 30
28 79 9541 70|19 38 28 22 34|25 31
29 83 100 |43 72120 39 .29 23 35|26 N
30 90 100145 7321 ¥ 3o 24 36|27 13
3] 47 75122 41 1 75 37(8 34
2 50 77123 42 32 26 38129 35
33 52 7924 43 33 27 39|30 36
M S4 30125 44 34 22 4Iln 7
35 56 8226 45 .35 29 41(32 38
36 57 8427 46 ) 30 42|33 39
37 59 B5(28 47 37 31 43|34 40
k] 52 BT|28 48 38 32 4435 41
39 64 BR|29 49 39 33 45(36 42
40 66 90|30 50 4 34 46|37 43
4] 69 91|31 51 4 35 47138 44
42 71 93|32 52 42 36 48(39 45
4] 73 94|33 53 43 37 49 40 46
44 76 95134 54 K ) 8 50041 47
45 78 97135 55 A5 19 51,42 48
46 8l 9836 356 .46 40 52143 49
47 83 9337 57 47 41 53|44 50
43 86 100 38 58 48 42 5445 51
49 89 100 |39 59 49 43 55146 52
50 93 100 |40 6D .50 4 56147 53
+ tt t+

* Reference (1) at end of chapter.

t If f exceeds 50, read 100 — f = number observed and subtract each confidence limit

from 100.

++ If fin exceeds 0.50, read 1.00 — f7n = fraction observed and subtract each confidence

ltmit from 100.



TABLE {.4.1—(Contined)
99°, CoNnFIDENCE INTERVAL (PER CENT) FOR BinomiaL DistrisuTion (1)*

Number Size of Sample, n Fraction |Size of Sample
Observed = Observed
ra 10 15 20 30 50 Ho s 250 | 1000
0 0 38/ 0 28 0 21| D 6/ 0 10/ 0 S 0.00 0 210 1
{ 0 5z 0 38 0 30/ 0 21| 0 14 0 7 0i 0 50 2
2 I 63 1 47/ 0 38| 0 26 0 1770 9 02 1 61 3
3 4 71| 3 54/ 2 43] 1 SlSl 1 20 0 10 03 1 712 4
4 3 790 5 63 4 S/ 72 3§ 1 23t 1 1) 4 1 993 6
5 15 85| 9 68 6 58| 4 39 2 26 1 13 05 2 W03 7
6 21 9113 73] 9 61| 6 43 3 29 2 14 06 3 1|4 8
7 29 96[17 78[12 64| 8 47 4 31| 2 16 .07 1 135 9
8 37 99(22 8316 7i[10 51 & 33| 3 17 08 4 14|6 10
9 48 100|27 87/20 73|12 S4 7T 36 3 18 .09 5 157 12
10 62 100[32 91|20 8L0|15 57 8 38/ 4 19 10 6 16/ 8 13
11 37 95/27 BO(1S 62110 40| 4 20 11 6 1719 14
12 46 97\12¢ 84|19 o8| 11 43 § 21 12 7 18 9 5
13 53 99/36 83|20 68/12 451 6 23 13 8§ 19|10 16
14 62 100/39 91(24 70114 47 6 X4 i4 9 2001t 17
15 73 100(42 94125 78115 49 7 26 15 9 22|12 18
16 50 96|30 76 17 51| B 27 16 10 23|13 19
17 57 9B(32 8018 53| 9 29 17 11 24|14 20
18 62 10034 81|20 55( 9 30 18 12 2515 21
19 70 10038 8521 57(10 3t 19 13 26116 22
20 79 10043 85123 59|11 32 20 14 27(17 23
0 46 88124 6112 33 21 i5 2818 24
22 49 90126 63(12 34 22 16 3019 26
» 1 92128 45|13 135 23 17 31(20 27
24 ST 94/29 67(14 36 24 18 32121 28
2 61 96/31 69(15 38 25 18 33122 29
24 63 98133 7116 39 26 19 3422 30
27 69 9915 72116 40 27 20 3523 31
28 74 100037 74|17 41 28 21 (24 32
29 79 100[ 36 76|18 42 .29 22 37125 33
30 B4 100| 4t 77(19 43 30 23 38({26 34
31 43 75120 44 31 24 39|27 35
32 45 80|21 45 32 25 40(28 36
33 47 82|21 45 33 26 41(29 37
4 49 83(22 47 34 26 42|30 38
35 51 B5i23 48 35 27 A313 39
36 53 85(24 49 36 [28 4432 40
37 55 B8[25 50 37 29 45(33° 41
k) 57 89(26 51 38 30 46(34 42
19 60 90|27 52 -39 31 47135 43
40 62 92128 53 .40 32 48136 44
41 64 9329 54 41 13 50(37 45
4?2 67 94|29 55 .42 34 51(38 46
43 69 96(3 56 43 35 52(39 47
44 n 97131 §7 44 36 53|40 48
45 74 93132 58 45 37 41 49
46 77 99133 59 46 3B 5542 S0
47 80 9934 60 47 39 5543 5i
43 8310035 €1 .48 40 56 44 52
9 86 10036 62 49 41 5745 53
50 90 10037 63 50 42 S8 (46 54
t t il

* Reference (1) at end of chapter.
+ [f fexceeds 50, read 100 — f = number observed and subtract cach confidence fimit

from 100.
t+ I f/n exceeds 0.50. read 1.00 — ffa = fraction observed and subtract each confidence

limit from 100.
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filled with beans, some white and some colored, thoroughly mixed. Dip
out a scoopful of them at random, count the number of each color and
calculate the percentage of white, say 40%. Now this is not only a count
of the percentage of white beans in the sampile but it is an estimate of the
fraction of white beans in the bin. How close an estimate is it? That is
where the second inference comesin. If there were 250 beans in the scoop,
we look dt the table for size of sample 250, fraction observed =0.40. From
the table we say with confidence that the percentage of white beans in the
bin is betweer 34% and 46%;.

So far we have given no measure of the amount of confidence which
can be placed in the second inference. The table heading is **95%, Con-
fidence Interval,” indicating a degree of confidence that can be described
as follows: If the sampling is repeated indefinitely, each sample leading to
a new confidence interval (that is, to a new interval estimate), then in 959/
of the samples the interval will cover the true population percentage. If
one makes a practice of sampling and if for each sample he states that the
population percentage lies within the corresponding confidence interval,
about 95%, of his statements will be correct. Other and briefer descriptions
will be proposed later.

If you feel unsafe in making inferences with the chance of being
wrong in 5%, of your statements, you may use the second part of the table,
*99% Confidence Interval.” For the Boone County sampling the interval
widens to 13%-35%,. If one says that the population percentage lies with-
in these limits, he will be right unless a one-in-a-hundred chance has oc-
curred in the sampling.

If the size of the popuiation is known, as it is in the case of Boone
County farmers, the point and interval estimates can be expanded from
percentages to numbers of individuals, There were 2,300 farmers in the
county. Thus we estimate the number of sprayers in Boone County in
1950 as

(0.23)(2,300) = 529 farmers

In the same way, since the 959, confidence interval extends from 159
to 32% of the farmers, the.95% limits for the number of farmers who
sprayed are )

(0.15)2.300) = 345 farmers: and (0.32)(2,300) = 736 farmers

Two points about interval estimates need emphasis. First, the con-
fidence statement is a statement about the population ratio, nor about
the ratio in other samples that might be drawn. Second, the uncertainty
involved comes from the sampling process. Each sample specifies an
interval estimate. Whether or not the interval happens to include the
fixed population ratio is a hazard of the process. Theoretically, the 95%;
confidence intervals are determined so that 95% of them will cover the
true value.

Before a sample is drawn, one can spécify the probability of the truth
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of his prospective confidence statement. He can say, “I expect to take a
random sample and to make an interval estimate fromit. The probability
is 0.95 that the interval will cover the population fraction.” After the
sample is drawn, however, the confidence statement is either true or it is
faise. Consequently, in reporting the results of the Boone County sam-
pling, it would be incorrect to say, *‘The probability is 0.95 that the number
of sprayers in Boone County in 1950 lies between 345 and 736.” This
logical point is a subtle one, and does not weaken the effectiveness of
confidence interval statements. [n a specific application, we do not know
whether our confidence statement is one of the 955 that are correct or one
of the 5%, that are wrong. There are methods, in particular the method
known as the Bayesian approach, that provide more definite probability
statements about a single specific application, but they require more
assumptions about the nature of the population that is being sampled.

The heading of this chapter is “Sampling of Attributes.” In the
nunierical example the attribute in question was whether the farm had
been sprayed or not. The possession or lack of an attribute distinguishes
the two classes of individuals making up the population. The data from
the sampile consist of the numbers of members of the sample found to have
or to lack the attribute under investigation. The sampling of populations
with two attributes is very common. Examples are Yes or Mo answers to
a question, Success or Failure in some task, patients fmproved or Not
Improved under a medical treatment, and persons who Like or Dislike
some proposal. Later {chapter 9) we shall study the sampling of popula-
tions that have more than two kinds of attributes, such as persons who are
Strongly Favorable, Mildly Favorable, Neutral, Mildly Unfavorable, or
Strongly Unfacorable to some proposal. The theory and methods for
measurement data, such as heights, weights, or ages, will be considered
in chapter 2.

This brief preview displays a goodly portion of the wares thai the
statistician has to offer: the sampling of populations, examination of the
facts turned up by the sample, and, based on these {acts, inferences about
the sampled population. Before going further, you may clarify your
thinking by working a few examples.

Examples form an essential part of our presentation of statistics.
In each list they are graded so that you may start with the easier. It is
suggested that a few in each group be worked after the first reading of the
text, reserving the more difficult until experience is enlarged. Statistics
cannot be mastered without this or similar practice.

EXAMPLE 1.4.1—In controlling the quality ol a mass-produced article in industry, a
random sample of 100 articles from a large lot were each tested for effectiveness. Ninety-
two were found effective. What are the 99% confidenca limits for the percentage of efective
artictes in the whole lot? Ans. 83% and 97%. Hint: look in the table for 100 ~ 92 = 8,

EXAMPLE 1.4.2—1If 1,000 articles in the preceding example had been tesied and only
8% found meﬁccuvg what would be the 99%; limits? Ans. Between 90%, and 94%, are effoc-
tve. Note how the limits have narrowed as a result of the increased sampie size.
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EXAMPLE 1.4.3—A sampler of public opinion asked 50 men to express their prefer-
ences between candidates A and B. Twenty preferred A. Assuming random sampling from
a population of 5,000, the sampler stated that between 1,350 and 2,750 in the pepulation
preferred A. What confidence interval was he using? Ans. 95%;,

EXAMPLE 1.4.4—In a health survey of aduits, 86% stated that they had had measles
at some time in the past. On the basis of this sample the statistician asserted that unless a
1-in-20 chance had occurred, the percentage of adults in the population who had had measfes
was between 817 and 90%;,. Assuming random sampling, what was the size of the sample?
Ans. 250. Note: the statistician’s inference may have been incorrect for other reasons.
Some people have a mild attack of measles without realizing it. Others may have forgotien
that they had it. Consequently, the confidence limits may be underestimates for the per-

cemtage in the population who actually had measles, as distinct {rom the percentage who
would state that they had it.

EXAMPLE 1.4.5—-If in the sample of 100 Boone County farmers none had sprayed,
whar 85% confidehoe statement would you make about the farmers in the county? Ans.
Between none and 4%, sprayed. But suppose that all farmers in the sample were sprayers,
what is the 99%, confidence interval? Ans. 95%-160°;,.

EXAMPLE 1.4.0—If you guess that in a certain population between 259, and 75%, of
the housewives own a specified appliance, and if you wish to draw a sample that will, at the
95% confidence level, yield an estimate differing by not more than & from the correct percent-
age, about how large a sample must you take? Ans. 250,

EXAMPLE 1.4.7—An investigator interviewed 115 women over 40 years of age from
the lower middle economic level in rural areas of middlewestern states. Forty-six of them had
fistened 10 a certain radio program three or more times during the preceding month,  As-
suming random sampling, what statement can be made about the percentage of women
listening in the population, using the 99%; interval? Ans. Approximately, between 28.4%
and 52,5% listen, Y ou will need to interpolate between the resuits for 7 = 100 and n = 250.
Appendix A | (p_541; gives hints on imerpolation.

EXAMPLE 1.4.8—For samples that show 50%; in a certain class, write down the width
of the 95%, confidence interval for n = 10, 20, 30, 50, 100, 250, and 1,000, For each sample
size n, multiply the width of the interval by , /n. Show that the product is always near 200.
This means that the width of the interval is approximately related 1o the sample size by the
formula W = 200/, /n, We say that the width goes down as .

L.5—Random sampling. The confidence intervals in table 1.4.1 were
computed mathematically on the assumption that the data are a random
sample Ivormn the population. In its simplest form, random sampling
means that every member of the population has an equal chance of ap-
pearing in the sample, independently of the other members that happen
to fall in the sample. Suppose that the population has four members,
numbered 1, 2, 3, 4, and that we are drawing samples of size two. There
are ten possible samples that contain two members: namely, (1, 2), (1, 3},
(1, 4), (2, 31, (2, 4), (3, 9, (1, 1), (2, 2), (3, 3), and (4, 4). With simple
random sampling, each of these ten samples has an equal chance of being
the sample that is drawn. Notice two things. Every member appears
once in three samples and twice in one sample, 50 that the sampling shows
no favoritism as between one member and another, Secondly, look at
the four samples in which a I appears, (1, 2), (1, 3), (1. 4). and (1, 1). The
second member is equally likelytobe a 1,2, 3, or 4. Thus, if we are told
that 1 has been drawn as the first member of the sample, we know that
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each member of the population still has an equal chance of being the sec-
ond member of the sample. This is what is meant by the phrase “inde-
pendently of the other members that happen to fall in the sample.”

A common variant of this method of sampling is to allow any mem-
ber of the population to appear only once in the sample. There are then
six possible samples of size two: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), and (3, 4).
This is the kind of sampling that occurs when two numbers are drawn out
of a hat. no number being replaced in the hat. This type of sampling is
called random sampling without replacement, whereas the sampling de-
scribed in the preceding paragraph is random sampling with replacement.
If the sample is a small fraction of the population, the two methods are
practically identical, since the possibility that the same item appears
more than once in a sample is negligible. Throughout most of the book
we shall not distinguish between the two methods. In chapter 17, for-
mulas applicable to sampling without replacement are presented.

There are more complex types of random sampling. 1In all of them,
every member of the population has a known probability of coming into
the sample, but these probabilities may not be equal or they may depend,
in a known way, on the other members that are in the sample. In the
Boone County sampling a book was available showing the location of
every farm in the county. Each farm was numbered so that a random
sample could have been drawn by mixing the numbers thoroughly in a
box, then having a hundred of them drawn by a blindfolded person.
Actually, the samplers used a scheme known as stratified random sampling.
From the farms in each township (a subdivision of the county) they drew
a random sample with a size proportional to the number of farms in that
township. In this example, each farm stili has an equal chance of appear-
ing in the sample. but the sample is constructed to contain a specified
number from every township. The chief advantage is to spread the sam-
ple more uniformly over the county, retaining the principle of random-
ness within each township. Statistical methods for stratified samples
are presented in chapter 17. The conclusions are only slightly altered by
considering the sample completely random. Unless otherwise mentioned,
we will use the phrases “random sample” and “random sampling™ to
denote the simplest type of random sampling with replacement as de-
scribed inthe first paragraph of this section.

An important feature of all random sampling schemes is that the
sampler has no control over the specific choice of the units that appear
in the sample. If he exercises judgment in this selection, by choosing
“typical” members or excluding members that appear ‘‘atypical,” his
results are not amenable to probability theory, and confidence intervals,
which give valuable information about the accuracy of estimates made
from the sample, cannot be constructed.

In some cases the population is thoroughly mixed before the sample
is taken, as illustrated by the mascerating and blending of food or other
chemical products, by a naturally mixed aggregate such as the blood
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stream, or by the sampling of a liquid from a vat that has been repeatedly
stirred. Given an assurance of thorough mixing, the sample can be drawn
from the most accessible part of the population, because any sample
should give closely similar results. But complete mixing in this sense is
often harder to achieve than is realized. With populations that are vari-
able but show no clear pattern of variation, there is a temptation to con-
clude that the population is naturaily mixed in a random fashion, so that
any convenient sample will behave like one randomly drawn. This
assumption is hazardous, and is difficult to verify without a special in-
vestigation.

One way of drawing a random sample is to list the members of the
population in some order and write these numbers on slips of paper,
marbles, beans, or small pieces of cardboard. These are placed in a box or
bag, mixed carefully, and drawn out, with eyes shut, one by one until
the desired size of sample is reached. With small populations this method
is convenient. and was much used in the past for classroom exercises.
It has two disadvantages. With large populations it is slow and unwieldy.
Further, tests sometimes show that if a large number of samples are drawn,
the samples differ from random samples in a noticeable way, for instance
by having certain members of the population present more frequently
than they should be. In other words, the mixing was imperfect.

1.6—Tables of random digits, Nowadays, samples are mostly drawn
by the use of tables of random digits. These iables are produced by a
process-—usually mechanical or electrical--that gives each of the digits
from 0 to 9 an equat chance of appearing at every draw. Before publica-
tion of the tables, the results of the drawings are checked in numerous
ways to ensure that the tables do not depart materially from randomness
in a manner that would vitiate the commonest usages of the tables. Table
A 1 (p. 543) contains 10,000 such digits, arranged in 5 x 5 blocks to facili-
tate reading. There are 100 rows and 100 columns, each numbered from

00 to 99. Tabie 1.6.1 shows the first 100 numbers from this table.

The chaotic appearance of the set of numbers is evident. To illus-
trate how the table is used with attribute data, suppose that 50% of the
members of a population answer “Yes” to some question, We wish to
study how well the proportion answering “*Yes" is estimated from a sam-

TABLE 1.6.1
ONE HunDRED RANDOM DMGHTS From TasLE A L
00-04 05-09 10-14 15-19
L] 54463 22662 65905 70539
01 15389 85205 18850 39226
02 85941 40756 82414 02015
03 61149 69440 11286 88218
04 05219 81619 10651 67079
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ple of size 20. A “Yes” answer can be represented by the appearance
of one of the digits 0, 1, 2,3, 4, or alternatively by the appearance of an
pdd digit. With either choice, the probability of a “Yes” at any draw
in the table is one-haif. We shall choose the digits 0, 1. 2., 3, 4 10 represent
“Yes,” and let each row represent a different sample of size 20. A
count, much quicker than drawing slips of paper from a box, shows
that the successive rows in table 1.6.1 contain 9, 9, 12, 11, and % “Yes”
answers. Thus, the proportions of “'Yes” answers in these five samples
of size 20 are, respectively, 0.45, 0.45, 0.60, 0.55. and 0.45. Continuing
in this way we can produce estimates of the proportion of “Yes” an-
swers given by a large number of separate samples of size 20, and then
examine how close the estimates are to the population value. In count-
ing the row numbered 02, you may notice a run of results that is typical
of random sampiing. The row ends with a succession of eight consecu-
tive “Yes” answers, followed by a single “No.” Observing this phe-
nomenon by itself, one might be inclined {0 conclude that the proportion
in the population must be larger than one-half, or that something is
wrong with the sampling process.

Table A 1 can also be used to investigate sampling in which the pro-
portion in the population is any of the numbers 0.1, 0.2, 0.3,...0.9.
With 0.3, for example. we let the digits 0, 1. or 2 represent the presence of
the attribute and the remaining seven digits its absence. If you are inter-
ested in a population in which the proportionis 0.37, the method is to select
pairs of digits, letting any pair between 00 and 36 denote the presence of
the attribute. Tables of random digits are employed in studying a wide
range of sampling problems. You can probably see how to use them to
answer such questions as: On the average, how many digits must be taken
until a | appears’—or, How frequently does a 3 appear before either a
i or a 9 has appeared? In fact, sampling from tables of random digis
has become an important technique for solving difficult problems in
prebability for which no mathematical solution is known at present.
This technique goes by the not inappropriate name of the Monre Carlo
method. For this reason, modern electronic computing machines huve
programs available for creating their own tables of random digits as they
proceed with their calculations.

To the reader who is using random numbers for his own purposes,
we suggest that he start on the first page and proceed systematically
through the table. At the end of any problem, note the rows and columns
used and the direction taken in counting. This is sometimes needed for
later reference or in communicating the results to others. Since no digit
is used tnore than once, the table may become exhausted, but numerous
tables are available. Reference (2)contains I million digits. Inclassroom
use, when a number of students are working from the same table, obtain-
ing samples whose results will be put together, different students can start
at different parts of the table and also vary the direction in which they
proceed. in order to avoid duplicating the results of others.
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1.7—Confidence interval: verification of theory. One who draws
sampies from a known population is likely to be surprised at the capricious
way in which the items turn up. It is a salutary discipline for a student
or investigator to observe the laws of chance in action lest he become too
confident of his professional samplings. At this point we recommend that
a number of samples be selected from a population in which the propor-
tion of ““Yes™ answers is one-half. Vary the sample sizes, choosing some
of each of the sizes 10, 15, 20, 30, 50, 100, and 250 for which confidence
intervals are given in table 1.4.1 (1,000 is too large). For each sample,
record the sample sizes and the set of rows and columns used in the table
of random digits. From the number of **Yes"” answers and the sample
size, read table 1.4.1 to find the 95%;, and 99%, confidence intervals for the
percentage of “Yes” answers in the population. For each sample, you
can then verify whether the confidence interval actually covers 50%,. If
possible, draw 100-or more samples, since a large number of samples is
necessary for any close verification of the theory, particularly with 99%;
intervals. In a classroom exercise it is wise to arrange for combined
presentation and discusston of the results from the whole class. Preserve
the results (sample sizes and numbers of “*Yes™ answers) since they will
be used again later.

You have now done experimentally what the mathematical statis-
tician does theoretically when he studies the distribution of samples
drawn at random from a specified population.

For illustration, suppose that an odd digit represents a “Yes”
answer, and that the first sample, of size 50, is the first column of table A [.
Counting down the column, you will find 24 odd digits. Fromtable 1.4.1,
the 95%, confidence interval extends from 369 to 64%,, a correct verdict
because it includes the ponulation value of 50%,. But suppose one of your
samples of 250 had started at row 85, column 23, Moving down the suc-
cessive columns you would count only 101 or 40.4% odd and would -
assert that the true value is between 34%; and '46%,. You would be wrong
despite thefact that the sample is randomly drawn from the same popu-
lation as the others. This sample merely happens to be unusually diver-
gent. You should find about five samples in a hundred leading to in-
correct statements, but there will be no occasion for surprise if only three,
or as many as seven, turn up. With confidence probability 99%, you ex-
pect, of course, only about one statement in a hundred to be wrong. We
hope that your results are sufficiently concordant with theory to give
you confidence in it. You will certainty be more aware of the vagaries
of sampling, and this is one of the objectives of the experiment. Another
lesson to be learned is that only broad confidence intervals can be based
on small samples, and that even so the inference can be wrong.

Finally, as is evident in table 1.4.1, you may have observed that the
interval narrows rather slowly with increasing sample size. For samples
of size 100 that show a percentage of “Yes” answers anywhere between
40°%;, and 60%, the 957 confidence interval is consistently of width 20%.
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With a sample ten times as large (7 = 1,000) the width of the interval de-
creases to 6%,. The width goes down roughly as the square root of the
sample size, since 20/6 is 3.3 and /10 is 3.2 (this result was verified in
examglq 1.4.8).

ailure to make correct inferences in a small portion of the samples
is not a fault that can be remedied, but a fault inevitably bound up in the
sampling procedure. Faliibility is in the very nature of such evidence.
The sampler can only take available precautions, then prepare himself for
his share of mistakes. In this he is not alone. The journalist, the judge,
the banker, the weather forecaster—-these along with the rest of us are
subject to the laws of chance, and each makes his own quota of wrong
guesses. The statistician has this advantage: he can, in favorable circum-
stances, know his likelihood of error.

1.8—The sampled population. Thus far we have learned that if we
want to obtain some information about a population that is too large to
be completely studied, one way to do this is to draw a random sample
and construct point and intervai estimates, as in the Boone County exam-
pie. This technique of making inferences from sample to population is
one of the principal tools in the analysis of data. The data, of course,
represent the sample, but the concept of the population requires further
discussion. In many investigations in which data are collected, the pogu-
lation is quite specific, apart possibly from some problems of definition:
the patients in a hospital on a particular day, the payments received by a
firm during the preceding year, and so on. Insuch cases the investigator
often proceeds to select a simple random sample, or one of the more
elaborate methods of sampling to be presented in chapter 17, and makes
inferences directly from his sample to his population.

With a human population, however, the population actuaily sampled
may be narrower than the original population because some persons
drawn into the sample cannot be located, are ill, or refuse to answer the
questions asked. Non-responses of this kind in 5% to 15% of the sample
are not uncommon. The population to which statistical inferences apply
must be regarded as the aggregate of persons who would supply answers
if drawn into the sample.

Further, for reasons of Teasibility or expense, much research is carried
out on populations that are greatly restricted as compared to the popula-
tion about which, ideally, the investigator would like to gain information.
In psychology and education the investigator may concentrate on the
students at a particular university, although he hopes to find results that
apply to all young men in the country of college age. If the measuring
process 1s troublesome to the person being measured. the research worker
may have to depend on paid volunteers. In laboratory rescarch on ani-
mals the sample may be drawn from the latest group of animals'sent from
the supply house. In many of these cases the sampled population, from
the viewpoint of statistical inference, is hard to define concretely. It is the
kind of population of which the data can be regarded as a random sample.
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Confidence inlerval statements apply to the population that was
actually sampled. Claims that such inferences apply to some more exten-
sive population must rest on the judgment of the investigator or on addi-
tional extraneous information that he possesses. Careful investigators -
take pains to describe any relevant characteristics of their data in order
that the reader can envisage the nature of the sampled population. The
investigator may also comment on ways in which his sampied population
appears to differ from some broader popuilation that is of particular
interest. As is not surprising, results soundly established in narrow popu-
lations are sometimes shown to be erroneous in much broader popula-
tions. Fortunately, local studies that claim important results are usually
repeated by investigators in other parts of the country or the world, so
that a more extensive target population is at least partially sampled in
this way.

1.9—The frequency distribution and its graphical representation.
One group of students drew 200 samples, each of size 10. The combined
results are compactly summarized in a frequency distribution, shown in
table 1.9.1. There are only eleven possible resuits for the number of odd
digits in a sample, namely the integers 0, 1, 2, ... 10. Consequently, the
frequency distribution has eleven classes. The number of samples out of
the 200 that fall into a class is the class frequency. The sum of the class
frequencies is, of course, the total number of sampies drawn, 200. The
classes and their frequencies give a complete summary of the drawings.

This type of frequency distribution is called discrere, because the
variable, number of odd digits, can take only a limited number of distinct
values. Later we shall meet contimuous frequency distributions, which are
exiensively used with measurement data.

One striking feature of the sampling distribution is the concentra-

TABLE 1.9.1
FReQUEREY DSTRIBUTION OF NUMBERS OF ODD DIGITS IN 200 SAMPLES OF 1 = 10
Class Class Theoretical

{Number of Odd Digns) Frequency Class Frequency

0 1 0.2

1 1 2.0

2 8 8.3

3 25 24

4 » 41.0

5 45 492

6 348 410

7 25 2.4

B 16 8.8

4 4 2.4

10 0 0.2

Total Frequency 200 200.0
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tion of frequencies near the middle of the table. The greatest frequency
is in the class of five odd digits; that is, half odd and half even. The three
middle classes, 4, 5, 6, contain 39 + 45 + 36 = 120 sampies, more than
haif of the total frequency. This central tendency is the characteristic
that gives us confidence in sampling—most samples furnish close esti-
mates of the population fraction of odds. This should counterbalance the
perhaps discouraging fact that some of the samples are notably divergent.

Another interesting feature is the symmetry of the distribution, the
greatest frequency at the center with a trailing away at each end. This is
because the population fraction is 50%;; if the percentage were nearer zero
" or 100, the frequencies would pile up at or near one end.

The regularity that has appeared in the distribution shows that chance
events follow a definite law. The turning up of odd digits as you counted
them may have seemed wholly erratic: whether an odd or an even would
come next was a purely chance 2vent. But the summary of many such
events reveals a pattern which may be predicted (aside from sampling
variation).

Instead of showing the class frequencies in table 1.9.1, we might have
divided each class frequency by 200, the number of samples, obtaining a
set of relative class frequencies that add to 1. As the number of samples is
increased indefinitely, these relative frequencies tend to certain fixed
values that ¢can be calculated from the theory of probability. The theoreti-
cal distribution computed in this way is known as the binomial distribu-
tion. 1t is one of the commonest distributions in statistical work. In
general terms, the formula for the binomial distribution is as follows.
Suppose that we are drawing samples of size n and that the attribute in
question is held by a proportion p of the members of the population. The
relative frequency of samples containing r members having the attribute,
or in other words the probability that a sample will contain r members
having the attribute, is

nn—Dn-2)...In—r+1)
rir— 1r—2)...0211)

In the numerator the expression a(m — 1) — 2} ... (7 — r + 1) means
“multiply together all the integers from n down to (n — r + 1), inclusive.”
Similarly, the first term in the denominator is a shorthand way of writing
the instruction “‘multiply together all integers from r down to 1.” We
shall study the binomial distribution and its mathematical derivation in
chapter 8.

‘What does this distribution look like for our sampling in table 1.9.1?
We have n = 10 and p = 1/2. The relative {frequency or probability of a
sample having four odd digits is, putting r=4sothat (m—r+ 1) =7,

(10)A)B) T 1\ (1) _ 1\'* 210
(4)(3)(2)(1)(5) ('z") “2"”(5) = 1624

pit—pr—r
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As already mentioned, these relative frequencies add to 1. (This is
not obvious by looking at the formula, but comes from a well-known
result in algebra.) Hence, in our 200 samples of size 10, the number that
should theoretically have four odd digits is

(200)(210)
1024

These theoretical class frequencies are given in the last column of table
1.9.1. The agreement between the actual and theoretical frequencies is
pleasing. -
The graph in figure 1.9.1 brings out the features of the binomial
distribution. On the horizontal axis are marked off the different classes—
the numbers of odd digits. The solid ordinate beside each class number
is the observed class frequency while the dotted ordinate represents the

theoretical frequency. This is the type of graph appropriate for discrete
distributions.
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FiG. 1.9.1-Frequency distribution of number of odd digits in each of 200 samples of size
10. The dotted lines represent the theoretical binomial distribution from which the samples
were drawn.
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EXAMPLE 1.9.1—For the 200 samples of size 10 in table 1.9.1, in how many cases is
(i) the 95% confidence interval statement wrong? (ii) the 99% confidence interval statement
wrong? Ans. (i) 6 times, or 3.0%; (if) 1 ume, or 0.5%,

EXAMPLE 1.9.2—Use the table of random digits to select a random sample of 20
pages of this book, regarding the popuiation as consisting of pages 3-539, Note the number
of pages in your sasnple that do not contain the beginning of a new section, and caiculate
the 95% interval for the proportion of pages-in‘the book on which no new section begins,
Don’t count “References” as a section. The population proportion is 317/537 = 0.59.

EXAMPLE 1.9.3—When the doors of a clinic are opened, twelve patients enter simul-
taneously. Each patient wishes to be handled first. Can you use the random digit table to
arrange the patients in a random order?

EXAMPLE 1.9.4—A sampler of public opinion estimates from a sample the number of
cligible voters in a statwe favoring a certain candidate for governor. Assuming that his esti-
mate was close to the population value at the time the survey was made, suggest two reasons
why the ballot on election day might be quite different.

EXAMPLE 1.9.5—A random sampie of families from a population has been seiecied.
An interviewer calls on each family at its home between the hours of 9 AW, and 5 p.m. If
no one is at home, the interviewer makes no attempt to contact the family at a later time. For
cach of the following attributes, give your opinion whether the sample results are likely to
overestimate, underestimate, or be ar about the correct levei : (i} proportion of families in
which che husband is Tetired, (ii) proportion of families with at least one chifd under 4 years,
{iti} proportion of families in which husband and wife both work. Give your reasons.

EXAMPLE |.9.6—From the formula for the binomial distribution, calculate the prob-
ability of 0, 1, 2**Yes™ answers in a sample of size 2, where p is the proportion of “Yes"
answers in the population. Show that the three probability values add to 1 for any value of p.

EXAMPLE 1.9.7-At birth the probability that a child is a boy is very close Lo one-
half. Show that according to the binomal distribution, half the families of size 2 Should
constst of one boy and one girl. 'Why is the proportion of boy-girl families iikety to be slightly
less than one-half in practice?

EXAMPLE }.9.8Five dice were tossed 100 times. At each toss the number of 1wo's
(deuces) out of five were noted. with these results:

e e

Number [Jeuces  Frequeacy of Theoretical
Per Toss Occurrence Frequency

5 2 0.013

4 i 0.322

3 3 1214

2 1% 16.075

1 42 40.188

0 32 40.188

Total 100 100,000

(i) From the binomiat distribution, verify the resul 16.075 for the theoreucal frequency
of 2deuces. (it) Draw a graph showing the observed and theoretical distributions. (i1} Do
sou think the dice were balanced and fairly tossed? Ans. The binomial probability of 2
deuces is 1250/7776 = 0.1607S. This is multiplied by 100 to give the theoretical frequency.
A later. test (exampie 9.5.1) casts doubt on the throws



1.10—Hypotheses about populations. The investigator often has in
mind a definite hypothesis about the population ratio, the purpose of
the sampling being to get evidence concerning his hypothesis. Thus a
geneticist studying heredity in the tomato bad reason to believe that in
the plant$ produced from a certain cross, fruits with red flesh and yellow
flesh would be in the ratio 3:1. In a sample of 400 he found 310 red toma-
toes instead of the hypothetical 300. With your experience of sampling
variation, would you accept this as verification or refutation of the hy-
pothesis? Again, a physician has the-hypothesis that a certain disease
requiring hospitalization is equally common among men and women.
In a sample of 900 hospital cases he finds 480 men and 420 women. Do
these results support or contradict his hypothesis? (Incidentally, this is
an example in which the sampled population may differ from the target
population. Although good medical practice may prescribe hospitaliza-
tion, there are often cases that for one reason or another do not come to
a hospital and therefore could not be included in his sample.)

To answer such guestions two results are needed, 2 measure of the
deviation of the sample from the hypothetical population ratio, and a
means of judging whether this measureis an amount that would commonly
occur in sampling, or, on the contrary, is so great as to throw doubt upon
the hypothesis. Both results were furnished by Karl Pearson in 1899 (3).
He devised an index of dispersion or test criterion denoted by y* (chi-
square) and obtained the formula for its theoretical frequency distribution
when the hypothesis in question is true. Like the binomial distribution,
the chi-square distribution is another of the basic theoretical distributions
much used in statistical work. Let us first examine the index of dispersion.

1.11—Chi-square, an index of dispersion. Naturally, the deviations
of the observed numbers from those specified by the hypothesis form the
basis of the index. In the medical example, with 900 cases, the numbers
of male and female cases expected on the hypothesis are each 450. The
deviations, then, are

480 — 450 = 430,
and
420 - 450 = - 30,
the sum of the two being zero. The value of chi-square is given by
(+30° (307
2 _
Y= T 10

Each deviation is squared, each square is divided by the hypothetical or
expected number, and the results are added. The expected numbers appear
in the denominators in order to introduce sample size into the quantlty«—
it is the relative size that is important.

The squaring of the deviations in the numerator may puzzle you.

=2+2=4
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It is a common practice in statistics. We shall simply say at present that
indexes constructed in this way have been found to have great flexibility,
being applicable to many different types of statistical data. Note that the
squaring makes the sign of the deviation unimportant, since the square ofa
negative number is the same as that of the corresponding positive number,
It is clear that chi-square would be zero if the sample frequencies were the
same as the hypothetical, and that it will increase with increasing deviation
from the hypothetical. But itis not at all clear whether a chi-square value
of 4 is to be considered large, medium, or small.

To furnish a basis for judgment on this point is our next aim. Pearson
founded his judgment from a study of the theoretical distribution of chi-
square, but we shall investigate the same problem by setting up a sampling
experiment. Before doing this, a useful formula will be given, together
with a few examples to help fix it in mind.

1.12—The formula for chi-square, 1t is convenient to represent by
f1 and f; the sample counts of individuals who do and do not possess the
attribute being investigated, the corresponding hypothetical or expected
frequencies being F; and F,. The two deviations, then, are f; — F, and
f3 — F3, so that chi-square is given by the formula,

=i = FP/F, + (f — FYF,

The formula may be condensed to the more easily remembered as well as
more general one,

x? = E(f - FP/F,

where I denotes summation. In words, “Chi-square is the sum of such
ratios as

(deviatinn squared)/(exnected oumber)”

Let us apply the formula to the counts of red and Yellow tomatoes
in section 1.10. There, f, =310, f;, =400—310=90, F, = 3/4 of
400 = 300, and F, = 1/4 of 400 = 100. Whence,

2 _ (310 — 3001 (90 — 100)* '

X 0 T 10 L
Note. When computing chi-square it is essential to use the actual size
of sample and the actual numbers in the two attribute classes. 1f we know
only the percentages or proportions in the two classes, chi-square cannot
be calculated. Suppose we are told that 80% of the tomato plants in a
sample are red, and asked to compute chi-square. If we guess that the
sample contained 100 plants then

80— 757 (20~257 25 25
: _— + = —_— —_— = .
X 75 25 75 + 35 = 133
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But if the sample actually contained oniy 10 plants, then
2 (8-175?% (@2-25) _ 025 025
* 75 25 75 tas M

If the sample had 1,000 plants, a similar calculation finds x% = 13.33,
For a given percentage red, the value of chi-square can be anything from
almost zero to a very large number.

EXAMPLE 1.12.1-—A student tossed a coin 800 times, getting 440 heads. What is the
value of chi-square in relation to the hypothesis that heads and tails are equally likety?
Ans, 8.

EXAMPLEM.12.2-—1f the count in the preceding example had been 220 heads out of
400 tosses, would chi-square also be hiilf its original value?

EXAMPLE 1.12.3—A manufaciurer of a small mass-produced article claims that 963
of the articles function properly. In an independent test of 1,000 articies, 950 were found fo
function properly. Compute chi-square, Ans. 2.60,

EXAMPLE 1.12.4In the text example about tomatoes the deviation from expectation
was 10. IF the same deviation had occurred in a sample of twice the size (that is, of 00},
what would have been the value of chi-square? Ans. 0.67, half the original value,

1.13—An experiment in sampling chi-square; the sampling distribution.
You have now had some practice in the calculation of chi-square. Its
main function is to enable us to judge whether the sample ratio itseif de-
parts much or little from the hypothetical population value. For that
purpose we must answer the question already proposed: What values of
chi-square are to be considered as indicating unusual deviation, and what
as ordinary sampling variation? Our experimenta) method of answering
the question will be to calculate chi-square for each of many samples
drawn from the table of random numbers, then to observe what values of
chi-square spring from the more unusual samples. If a large number of
samples of various sizes have been drawn and if the value of chi-square is
computed from each, the-distribution of chi-square may be mapped.

The results to be presented here come from 230 samples of sizes vary-
ing from 10 to 250, drawn from the random digits table A 1. We suggest
that the reader use the samples that he drew in section 1.7 when verifying
the confidence interval statements. There is a quick method of calculat-
ing chi-square for all samples of a given size n. Since odd and even digits
are equally likely in the population, the expected numbers of odd and even
digits are F; = F, = n/2. The reciprocals of these numbers are therefore
both equal to 2/n. Remembering that the two deviations are the same in
absolute value and differ only in sign, we may write

= - FI)Z(I/FI + 1/F3)
=d*2/n + 2/n) = 4d*/n

where d is the absolute value of the deviation. For all samples of a fixed

size n, the multiplier 4/n is constant. Once it has been calculated it can be
used again and again.
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To illustrate, suppose that n = 100. The multiplier 4/nis 0.04. If 56
odd digits are found in a sample, d = 6 and

2 = (0.04)62) = 1.44

Proceed to calculate chi-square for each of your samples. To
summarize the results, a frequency distribution is again convenient. There
is one difference, however, from the discrete frequency distribution used
in section 1.9 when studying the binomial distribution. With the binomial
for n = 10, there were only eleven possible values for the numbers of odd
digits, so that the eleven classes in the frequency distribution selected
themselves naturally. On the other hand, with chi-square values calcu-
lated from samples of different sizes. there is a large number of possible
values. Some grouping of the values into classes is necessary. A distribu-
tion of this type is sometimes described as continuous, since conceptually
any positive number is a possible value of chi-square.

When forming frequency distributions from continuous data, decide
first on the classes to be used. For most purposes, somewhere between
8 and 20 classes is satisfactory. Obtain an idea of the range of the data
by looking through them quickly to spot iow and high values. Most of
your chi-squares will be found to lie between 0 and 5. Equal-sized class
intervals of 0.00-0.49, 0.50-0.99, ... will therefore cover most of the
range in 10 classes, although a few values of chi-square greater than 5 may
occur. Our values of ¥* were recorded to 2 decimal places.

Be sure to make the classes non-overlapping, and indicate clearly
what the class intervals are. Class intervais described as “0.00-0.50,"
*0.50-1.00," *“1.00-1.50" are not satisfactory, since the reader does not
know in what classes the values 0,50 and 1.00 have been placed. If the
chi-square values were originally computed to rhree decimal places. re-
ported class intervals of ~0.00-0.49,” *0.50-0.99.” and so on, would be

TABLE i.13.}
SAMPLING DISTRIBUTION OF 230 VALUES OF CHI-SQUARL CALCULATED FROM SAMPLES
) DrRAWN FROM TABLE A 1
Samplie sizes-—10, 15, 20. 30. 50, 100, and 250

Class Interval Frequency Class Iaterval Frequency
0.00-0.49 16 600- 649 .. '
0.50-0.99 39 6.50- 6.99 1
1.00-1.49 13 7.00- 7.4% o
1.50-1.99 22 7 50- 799 0
2,00-2.49 12 R.00- B 49 0
25029 5 £.50- 899 [
3.00-3.49 5 9.00— 9.49 0
150-3.9% 6 9.50- 9.9% ]
4.00-4.49 | 10.00-10.49 |
4.50-4.99 2 i0.50-10.99 0
5.00-5.49 0 11.00-11.49 1
5.50-5.99 0 Total 230
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ambiguous, since it is not clear where a chi-square vatue o' 0.493 is piaced.
Intervals of 0.000-0.494, 0.495-0.999, and so on, could be used.

Having determined the class intervals, go through the data system-
atically, assigning each value of chi-square to its proper class, then
counting the number of values (frequency) in each class. Table 1.13.1
shows the results for our 230 samples.

In computing chi-square, we chose to regard the population as con-
sisting of the 10,000 random digits in table A 1, rather than as an infinite
population of random digits. Since 5,060 of the digits in table A 1 are
odd, we took the probability of an odd digit as 0.506 instead 00.50. The
reader is recommended to use 0.50, as already indicated. The change
makes only minor differences in the distribution of the sample values of
chi-square.

Observe the concentration of sample chi-squares in the smallest class,
practically half of them being less than 0.5, Small deviations (with small
chi-squares) are predominant, this being the foundation of our faith in
sampling. But taking a less optimistic view, one must not overlook the
samples with large deviations and chi-squares. The possibility of getting
one of these makes for caution in drawing conclusions. In this sampling
exercise we know the population ratio and are not led astray by discrepant
samples. In actual investigations, where the hypothesis set up is not
known to be the right one, a large value of chi-square constitutes a dilem-
ma. Shall we say that it denotes only an unusual sample from the hy-
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FiG. 1.13.1-—Histogram representing {requency distribution of the 230 sample
values of chi-square in table 1.13.1.
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pothetical population, or shall we conclude that the hypothesis misrepre-
sents the true population ratio? Statistical theory contains no certain
answer. Instead, it furnishes an evaluation of the probability of possible
sample deviations from the hypothetical population. If chi-square is large,
the investigator is warned that the sample is an improbable one under his
hypothesis. This is evidence to be added to that which he already pos-
sesses, all of it being the basis for his decisions. A more exact determina-
tion of probability will be explained in section 1.15.

The graphical representation of the distribution of our chi-squares
appears in figure 1.13.1. In this kind of graph, called a histogram, the
frequencies are represented by the areas of the rectangular blocks in the
figure. The graph brings out both the concentration of small chi-square
at the left and the comparatively large sizes of a few at the right. It is now
evident that for the med:cal example in section 1.11, y* = 4 1s larger than
a great majority of the chi-squares in this distribution. If this disease were
in fact equally likely to result in male or female hospitalized cases, this
would be an unusually large value of chi-square.

1.14—Comparison with the theoretical distribution. Two features of
our chi-square distribution have yet to be examined : (i) How does it com-
pare with the theoretical distribution? and (ii) How can we evaluate more
exactly the probabilities of various chi-square sizes? For these purposes
a rearrangement of the class intervals is advisable. Since our primary
interest is in the relative frequency of high values of chi-square, we used
the set of classintervals defined by column 4 of table 1.14.1. Thefirst three
intervals each contain 25%; of the theoretical distribution. As chi-square
increases, the next four intervals contain respectively 159, 5%, 4%, and

TABLE 1.14.1
COMPARISON OF THE SAMPLE AND THEORETICAL DISTRIBUTIONS OF CHI-SQUARL
Sample Frequency Theoretical Frequency
Distribution Distribution
- T T
Cumulative
Class Interval Per Cent
of Chi-square Actual  Percentage | Percentage | L Greater Than
I 2 3 4 N 4 6
0-0.1015 57 248 25 0 100
0.1015-0.455 59 256 25 0.1015 75
0.455-1.323 62 270 25 0.455 50
1.323-2.706 2 139 15 1.323 25
2.706-3.841 14 6.1 s 2.706 10
3.841-6.635 3 1.3 4 3.841 5
6.635- 3 1.3 H 6.635 1
Total . 230 100.0 100
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1%,. Since the theoretical distribution is known exactly and has been
widely tabulated, the corresponding class intervals for chi-square, shown
incolumn |, are easily obtained. Note that the intervals are quite unequal.

Column 2 of table 1.14.1 shows the actual frequencies obtained from
the 230 samples. In column 3, these have been converted to percentage
frequencies, by multiplying by 100/230, for comparison with the theoreti-
cal pereentage frequencies in column 4. The agreement between columns
3 and 4 is good. If your chi-square values have been computed mostly
from small samples of sizes 10, 15, and 20, your agreement may be poorer.
With small samples there is only a limited number of distinct values of chi-
square, so that your sample distribution goes by discontinuous jumps.

Columns 5 and 6 contain a cumulative frequency distribution of the
percentages in column 4. Beginning at the foot of column 6, each entry
is the sum of ali the preceding ones in column 4, hence the name. The
column is read in this way: the third to the last entry means that 10%
of all samples in the theoretical distribution have chi-squares greater
than the 2.706. Again, 50% of them exceed 0.455; this may be looked
upon as an average value, exceeded as often as not in the sampling. Final-
ty, chi-squares greater than 6.635 are rare, occurring only once per 100
samptes. So in this sampling distribution of chi-square we find a measure
in terms of probability, the measure we have been seeking to enable us
to say exactly which chi-squares are to be considered small and which
large. We are now to learn how this measure can be utilized.

1.15—The test of a null hypothesis or test of significince. Asindicated
in section 1.10, the investigator’s ohjective can often be translated into a
hypothesis about his experimental material. The geneticist, you remem-
ber, knowing that the Mendelian theory of inheritance produced a 3:1
ratio, set up the hypothesis that the tomato population had this ratio of
red to yellow fruits. This is called a null hypothesis, meaning that there
is no difference between the hypothetical ratio and that in the population
of tomato fruits. If this null hypothesis is true, then random samples of
n will have ratios distributed binomially, and chi-squares calculated from
the samples wiil be distributed as in table 1.14.1. To rest the hypothesis,
a sample is taken and its chi-square calculated: in the illustration the
value was 1.33. Reference to the table shows that, if the null hypothesis
is true, 1.33 is not an uncommon chi-square, the probability of a greater
one being about 0.29. As the result of this test, the geneticist would not
likely reject the null hypothesis. He knows, of course, that he may be in
error, that the population ratio among the tomato fruits may not be 3:1.
But the discrepancy, if any, is so small that the sample has given no con-
vincing evidence of it.

Contrasting with the genetic experiment, the medical example turned
up z? = 4. If the null hypothesis (this disease equally likety in men and
women) is true, a Jarger chi-square has a probability of only about 0.05.
This suggests that the null hypothesis is false, so the sampler would likely
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rejectit.  As before, he may be in error because this might be one of those
5 samples per 100 that have chi-squares greater than 3.841 even when the
sampling is from an equally divided population. In rejecting the null
hypothesis, the sampler faces the possibility that he is wrong. Such is the
risk always run by those who test hypotheses and rest decisions on the
tests.

The illustrations show that in testing hypotheses one is liable to
two kinds of error. If his sample leads him to reject the null hypothesis
when it is true, he is said to have committed an error of the first kind, or a
Type | error. If, on the contrary, he is led to accept the hypothesis when
it is false, his error is of the second kind, a Type Il error. The Neyman-
Pearson theory of testing hypotheses emphasizes the relations between
these types. For recent accounts of this theory see references (6, 7, B).

As a matter of practical convenience, probability levels of 5% (0.05)
and 19 (0.01) are commonly used in deciding whether to reject the null
hypothesis. As seen from table 1.14.1, these correspend to y? greater
than 3.841 and x? greater than 6.635, respectively. In the medical exam-
ple we say that the difference in the number of male and female patients
is significant at the 5%, level, because it signifies rejection of the null
hypothesis of equal numbers,

This use of 5% and 1% levels is simply a working convention. There
is merit in the practice, followed by some investigators, of reporting in
parentheses the probability that chi-square exceeds the value found in
their data. For instance, in the counts of red and yellow tomatoes, we
found x? = 1.33, a value exceeded with probability about 0.25. The re-
port might read: “The x? test was consistent with the hypothesis of a
3to 1 ratio of red to yellow tomatoes (P = 0.25).”

The values of x* corresponding to a series of probability levels are’
shown below. This table should be used in working the exercises that
follow.

Probability of a Greater Value

P 050 075 050 025 030 005 0025 000 0.005

e 0.02 0.10 0.45 1.32 2n 384 5.02 6.63 7.88

EXAMPLE {.15.1—Two workers A and B perform a task in which carelessness leads to
minot accidents. In the first 20 accidents, 13 happened to A and 7 to B. Is this evidence
against the hypothesis that the two men are equally liable to accidents? Compute ¥? and
find the significance probability. Ans. y2 = 1.8, P between 0,10 and 0.25.

EXAMPLE 1.15.2--A basebal! player has a lifetime batting average of 0.280. (This
means that the probability that he gets a hit when at bat is 0.280,) Starting a new season, he
gets 1§ hits in his ficst 30 times at bat. Is this evidence that he is having what is called a hot
streak” Compute y* for the null hypothesis that his probability of hitting is still 0.280. Ans.
11 =720. P <001. Null hypothesis is rejected.

EXAMPLE ].15.3"In some experiments on heredity in the tomato, MacArthur {5)
counted 3,629 fruits with red flesh and 1,176 with yellow. This was in the F, generation
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where the theoretical ratio was 3: 1. Computey” = 0.71 and find the significance probability.
MacArthur concluded that *‘the discrepancies between the observed and expected ratios
are not significant.”

EXAMPLE 1.15.4—In a South Dakota farm labor survey of 1943, 480 of the 1,000
reporting farmers were classed as owners (or part owners), the remaining 520 being renters.
It is known that of nearly 7,000 farms in the region, 47%; are owners. Assuming this to be
population percentage, calculate chi-square and P for the sample of 1,000 Ans. =041,
P = 0.50. Does this increase your confidence in the randomness of the sampling? Such
collateral ¢vidence 1s often cited. The assumption is that if the sample is shown to be repre-
sentative for one attribute it is more likely to be representative also of the attribute under
investigation, provided the two are related.

EXAMPLE 1.15.5—James Snedecor (4) tried the effect of injecting poultry eggs with
female sex hormones, In one series 2 norma! males were haiched together with 19 chicks
which were classified as either normal females or as individuals with pronounced female
characteristics. What is the probability of the ratio 2:19, or one more extreme, in sampling
from a population with equal numbers of the sexes in which the hormone has no effect?
Ans. y? = 13.76, P is much less than 0.01.

EXAMPLE 1.15.6—In table 1.14.1, there are 62 + 32 + 14+ 3 + 3 = 114 samples
having chi-squares greater than 0.455, whereas 50%; or 230 were expected. What is the prob-
ability of drawing a more discrepant sample if the sampling is truly random? Ans, y?
= 0.0174, P = 0.90. Make the same test for your own samples.

EXAMPLE 1.15.7—This example illustrates the discontinuity in the distribution of
chi-square when computed from small samples. From 100 samples of size 10 drawn from the
random digits table A 1, the following frequency distribution of the numbers of odd digits in
a sample was obtained.

Number of odd digits | lor9 2or8 ‘ Jor? T4or6 ! 5
Frequency J 2 g8 | 19 1 % |2

i ! _ 4
Compute the sample frequency distribution of x? as in table 1.14.1 and compare it with the
theoretical distribution. Observe that no sample ¥* occurs in the class interval 0.455-1.323,
although 25%, of the theoretical distribution lies in this range.

1.16—Tests of significance in practice. A test of significance is some-
times thought to be an automatic rule for making a decision either to
““accept” or “‘reject” a null hypothesis, This attitude should be avoided.
An investigator rarely rests his decisions wholly on a test of significance.
To the evidence of the test he adds knowledge accumulated from his own
past work and from the work of others. The size of the sample from which
the test of significance is calculated is also important. With a small sam-
ple, the test is likely to produce a significant result only if the null hypothe-
sig is very badly wrong. An investigator’s report on a small sample test
might read as follows: “Although the deviation from the null hypothesis
was not significant, the sample is so small that this result gives only a
weak confirmation of the null hypothesis.” With a large sample, on the
other hand, small departures from the null hypothesis can be detected
as statistically significant. After comparing two proportions in a large
sample, an investigator may write: “Although statistically significant,
the difference between the two proportions was too small to be of practical
importance, and was ignored in the subsequent analysis.”
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In this connection, it is helpful, when testing a binomial proportion
at the 5% level, to look at the 95%, confidence limits for the population p.
Suppose that in the medical example the number of patients was only
n = 10, of whom 4 were female, so that the sample proportion of female
patients was 0.4, If you test the null hypothesis p = 0.5 by ¥2, you will find
y* = 0.4, a small value entirely consistent with the null hypothesis.
Looking now at the 95% confidence limits for p, we find from tabie 1.4.1 (p.
000) that these are 15% and 74%. Any value of the population p lying
between 15%, and 74%, is also consistent with the sample result. Clearly,
the fact that we found a non-significant result when testing the null hy-
pothesis p = 1/2 gives no assurance from these data that the true p is
1/2 or near to 1/2.

1.17—Summary of technical terms. In this chapter you have been
introduced to some of the main ideas in statistics, as well as to a number of
the standard technical terms. As a partial review and an aid to memory,
these terms are described again in this section. Since these descriptions
are not dictionary definitions, some would require qualification from a
more advanced viewpoint, but they are substantially correct.

Statistics deals with techniques for collecting, analyzing, and drawmg
conclusions from data.

A sample is a small collection from some larger aggregate (the
population) about which we wish information.

Statistical inference is concerned with attempts 1o make quantitative
statements about properties of a population from a knowledge of the
results given by a sample.

Attribute data are data that consist of a classification of the members
of the sample into a limited number of classes on the basis of some
property of the members (for instance, hair color). In this chapter, only
samples with two classes have been studied.

Measurement data are data recorded on some numerical scale. They
ate called discrete when only a restricted number of values occurs (for
instance, 0, 1, 2, ... 11 children). Strictly, all measurement data are dis-
crete, since the results of any measuring process are recorded to a limited
number of figures, But measurement data are called continuous if, con-
ceptually, successive values would differ only by tiny amounts.

A point estimate is a single number stated as ah estimate of some quan-
titative property of the population (for instance, 2.7% defective articles,
58,300 children under five years). The quantity being estimated is often
called a population parameter.

An interval estimate is a statement that a population parameter has
a value lying between two specified limits (the population contains be-
tween 56,900 and 60,200 chiidren under five years).

A confidence interval is one type of interval estimate. I has the fea-
ture that in repeated sampling a known proportion (for instance, 95%)
of the intervals computed by this method will include the population
parameter,
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Random sampling, in its simplest form, is a method of drawing a
sample such that any member of the population has an equal chance of
appearing in the sample, independently of the other members that happen
to fall in the sample.

Tables of random digits are tables in which digits 0, 1, 2, ... 9 have
been drawn by some process that gives each digit an equal chance of
being selected at any draw.

The sampled population is the population of which our data are a
random sample. It is an aggregate such that the process by which we
obtained our sample gives every member of the aggregate a known chance
of appearing in the sample, and is the population to which statistical
inferences from the sample apply. In practice, the sampled population is
sometimes hypothetical rather than real, because the only available data
may not have been drawn at random from a known population. In
meteorological research, for instance, the best data might be weather
records for the past 40 years, which are not a randomly selected sample
of years.

The target population is the aggregate about which the investigator
is trying to make inferences from his sample. Although this term is not
in common use, it is sometimes helpful in focussing attention on differ-
ences between the population actually sampled and the population that
we are attempting to study.

In a frequency distribution, the values in the sample are grouped into
a limited number of classes. A table is made showing the class boundaries
and the frequencies (number of members of the sample) in each ciass.
The purpose is to obtain a compact summary of the data.

The binomial distribution gives the probabilities that 0, 1, 2....»n
members of a sample of size n will possess some attribute, when the sample
Is a random sample from a population in which a proportion p of the
members possess this attribute.

A rudl hypothesis 1s a specific hypothesis abont a population that is
being tested by means of the sampie results. In this chapter the only hy-
pothesis considered was that the proportion of the population having some
attribute has a stated numerical value.

A test of significance is, in general terms, a calcuiation by which the
sample results are used to throw light on the truth or falsity of a null
hypothesis. A quantity called a rest criterion is compuied: it measures
the extent to which the sample departs from the null hypothesis in some
relevant aspect. If the value of the test criterion falls beyond certain
limits into a region of refection, the departure is said to be statistically
significant or, more concisely, significant. Tests of significance have the
property that if the null hypothesis is true, the probability of obtaining a
significant result has a known value, most commonly 0.05 or 0.01. This
probability is the significance level of the test.

Chi-square = X (Observed — Expected)?/(Expected) is a test criterion
for the null hypothesis that the proportion with some attribute in the
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population has a specified value. Large values of chi-square are signifi-
cant. The chi-square criterion serves many purposes and will appear
later for testing other null hypotheses.

Errors of the first and second kinds. 1n the Neyman-Pearson theory
of tests of hypotheses, an error of the first kind is the rejection of the null
hypothesis whenitis true, and an error of the second kind is the acceptance
of a null hypothesis that is false. In practice, in deciding whether to re-
ject a null hypothesis or to regard it as provisionally true, all available
evidence should be reviewed as well as the specific result of the test of
significance.
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% CHAPTER TWO

ampling from a normally
distributed population

2.1—Normally distributed population. In the first chapter, sampling
was mostly from a population with only two kinds of individuals: odd or
even, alive or dead, infested or free. Random samples of » from such a
population made up a binomial distribution. The variable, an enumera-
tion of successes, was discrete. Now we turn to another kind of population
whose individuals are measured for some characteristic such as height or
yield or income. The variable flows without a break from one individual
to the next-—-a continuous variable with no limit to the number of indi-
viduals with different measurements. Such variables are distributed in
many ways, but we shall be occupied first with the normal distribution.

Next to the binomial, the normal distribution was the earliest to be
developed. De Moivre published its equation in 1733, twenty years after
Bernoulli had given a comprehensive account of the binomial, That the
two are not unrelated is ciear from figure 2.1.1. On the top is the graph
of a symmetrical binomial distribution similar to that in figure 1.9.1. In
this new figure the sample size is 48 and the population sampled has equal
numbers of the two kinds of individuals. Although discrete, the binomial
is here graphed as a histogram. That is, the ordinate at 25 successes is
represented by a horizontal bar going from 24.5 to 25.5. This facilitates
comparison with the continuous normal curve. An indefinitely great
mumber of samples were drawn so that the frequencies are expressed as
percentages of the total. Successes less than 13 and more than 35 do occur.
but their frequencies are so small that they cannot be shown on the graph.

Imagine now that the size of the sample is increased without limit, the
width of the intervals on the horizontal axis being decreased correspond-
ingly. The steps of the histogram would soon become so small as to look
like the continuous curve at the right, Indeed, De Moivre discovered the
normal distribution when seeking an approximation to the binomial. The
discrete variable has become continuous and the frequencies have merged
into each other without a break.

This normal distribution is completely determined by two constants
or parameters. First, there is the meun, u, which locates the center of the
distribution. Second. the standard deviution, o, measures the spread or
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To indicate the effect of a change in the mean g, the curve with g = 2,
g = 1 is obtained by lifting the solid curve bodily and centering it at
X = 2 without changing its shape in any other way. This explains why u
1s called the parameter of location.

2.2—Reasons for the use of the normal distribution. You may be
wondering why such 2 model is presented since it obviously cannot de-
scribe any real population. [t is astonishing that this normal distribution
has dominated statisiical practice as well as theory. Briefly, the main
reasons are as follows:

1. Convenience certainly plays a part. The normal distribution has
been extensively and accurately tabulated, inctuding many auxiliary re-
sults that flow from it. Consequently if it seems to apply fairly well to a
problem. the investigator has many time-saving tables ready at hand,

2. The distributions of some variables are approximately normal,
such as heights of men, lengths of ears of comn, and, more generally, many
linear dimensions, for instance those of numerous manufactured articles.

3. With measurements whose distributions are not normal, a simple
transformation of the scale of measurement may induce approximate
normality. The square root, \/X, and the logarithm, log X, are often
used as transformations in this way. The scores made by students in
national examinations are frequently rescaled so that they appear to fol-
low a normal curve.

4. With measurement data, many investigations have as their purpose
the estimation of averages—the average life of a battery, the average in-
come of ptumbers, and so on. Even if the distribution in the original
population is far from normal, the distribution of sample averages tends
to become normal, under a wide variety of conditions, as the size of
sample increases. This is perhaps the single most important reason for the
use of the normal.

5. Finally, many results that are useful in statistical work, although
strictly true only when the population is normal, hold well enough for
rough-and-ready use when samples come from non-normal populations.
When presenting such resuits we shall try to indicate how well they stand
up under non-normality.

2.3—Tables of the normal distribution. Since the normal curve de-
pends on the two parameters u and o, there are a great many different
normal curves. All standard tables of this distribution are for the dis-
tribution with g = 0and ¢ = 1. Consequently if you have a measurement
X with mean g and standard deviation ¢ and wish to use a 1able of the
normal distribution, you must rescale X so that the mean becomes 0 and
the standard deviation becomes 1. The rescaled measurement is given
by relation
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The quantity Z goes by various names—a standard normal variate, a
standard normal deviate, a normal variate in standard measure, or, in educa-
tion and psychology, a standard score (although this term sometimes has
a slightly different meaning). To transform back from the Z scale to the
X scale, the formula is

X=uy+0oZ
There are two principal tables.

Table of ordinates. Table A 2 (p. 547) gives the ordinates or heights of the
standard normal distribution. The formula for the ordinate is

}’=\/—2———n€

These ordinates are used when graphing the normal curve. Since the
curve is symmetrical about the origin, the heights are presented only for
positive values of Z. Here is a worked example.

EXAMPLE { —Suppose that we wish 1o sketch the normal curve for a variate X that
has 4 = 3 and o= 1.6. Whatis the height of this curve at X = 27

Step I Find Z = (2 - W1 .6 = —(.625,

Step 2. Read the ordinate in table A 2 for Z = 0.625. Inthe tabie, the Z entries are given

to two decimal places only. For Z = (.62 the ordinate is 0.3292 and for Z = 0.63 the ordinate
i§0.327]. Hence we take 0.320 for Z = 0.625.

Step 3. Finally, divide the ordinate 0.328 by g, getting 0.328/1.6 = 0.205 as the answer.
This step is needed because i you look back at the formula in section 2.1 lor the ordinate
of the general normal curve, you will see a ¢ in the denominator that does not appear in the

tabulated curve.

Table of the cumulative distribution. Table A 3 (p. 548) is much more
frequently used than Table A 2. This gives, for any positive value of Z,
the area under the curve from the origin up to the point Z. It shows, for
any positive Z, the probability that a variate drawn at random from the
standard normal distribution will have a value lying beiween O and Z.
The word cumulative is used because if we think of the frequency dis-
tribution of a very large sample, with many classes, the area under the
curve represents the total or cumulative frequency in all classes lying be-
tween O and Z, divided by the total sample size so as to give a cumulative
relative frequency. 1n the limit, as the sample size increases indefinitely,
this becomes the probability that a randomly drawn member lies between
Qand Z. ~

As a reminder the area 1abulated in Table A 3is shown in figure 2.3.1.
Since different people have tabulated different types of area under the
normal curve, it is essential, when starting to use any table, to understand
ciearly what area has been tabulated. )

First, a quick look at table A 3. At Z = ( thearea is, of course, zero.
At Z = 3.9 or any larger value, the area is ¢.5000 to four decimal places.
[t foliows that the probability of a value of Z |ying between — 3.9 and






38 Chapter 2: Sampling From o Normally Distribvted Population

EXAMPLE 3--What is the probability that a normal deviate lies between —2.67 and
—0.59? Inthiscase wetake the ares trom —2.67 to 0, namely 0.4972, and subtract fromit the
area from —0.59 100, namely 0.2224, giving 0.2748.

EXAMPLE 4--The heights of a large sample af men were found to be approximately
normally distributed with mean = 67.56 inches and standard deviation = 2,57 inches.
What proportion of the men have heights iess than 5 feet 2 inches” We must first find Z.

X -4 62— 6756
= B T T L2163
= 2.57

A
The probability wanted is the probability of a value less than Z, where Z is negative. We
use formula (5)intable 2.3.). Readingtable A 3at Z = 2,163, we get 4 = (1.4847, interpolat-
ing mentally between Z = 2.16 and Z = 2.17. From formula (5), the answer is 05— 4,
or 0.0153. ‘About 14%, of the men have heights less than 5 1. 2 in.

EXAMPLE 5—What height is exceeded by 5% of the men? The first step is to find Z
¥

we use formula (6) in table 2.3.), writing 0.5 — 4 = (.05, so that 4 = 0.45. We now Jook
in table A 3 for the value of Z such that A = 0.45. The vaiue is Z = 1.645. Hence the actual
height is .

X+ aZ = 67.56 + (2.57K1.645) = 71.79 inches,

just under 6 feet.
Some examples to be worked by the reader follow:

EXAMPLE 2.3.1—Using table A 2, (i} at the origin, what is the height of 2 normal curve
with @ = 27 (ii) for any normal curve, at what value of X is the height of the curve one-tenth
of the height at the origin? Ans. (i) 0.1994; (ii} at the value X = y4 + 2.150.

EXAMPLE 2.3.2—Using table A 3, show that 92, 165 of the items in & normally dis-
tributed population lie between — .76 and + [.76a.

EXAMPLE 2.3.3—Show that 65.24%; of the items in a normal population lie between
p - lLlg and g + 0.8g.

EXAMPLE 2.3.4—Show that 13.597, of the itemns liebetween 2= land Z = 2,

EXAMPLE 2.3.5—Show that half the population lies in the interval from u — 0.6745¢
and u + 0.6745¢. The deviation 0.6745a, formerly much used, is called the probable error
of X. Ans. You will have to use interpolation. You are seeking a value of Z such that the
arca from @ to Zis 0.2500. Z = 0.67 gives 0.2486 and Z = 0.68 gives 0.2517. Since 6.2500
— 0.2486 = 0.0014, and 0.2517 — (1.2486 == 0.0031, we need to go 14/3! of the distance
from 0.67 10 0.68. Since 14/31 = 0.45, the interpolate is Z = 0.6745.

EXAMPLE 2.3.6—Show that 1% of the population lies outside the limits Z = + 2.575.

EXAMPLE 2.3,7—For the heights of men, with 4 = 67.56 inches and o = 2.57 inches,
what percentage of the population has heights lying between § feet S inches and $ feet 10
inches? Compute your Z’s to two decimals only. Ans, 67%,.

EXAMPLE 2.3.8—The specification for a manufactured component is that the pres-
stre at a certain point must not exceed 30 pounds. A manufacturer who would like 1o enter
this market finds that he can make components with a mean pressure u = 28 Ibs., but the
pressure varies from one specimen to another with a standard deviation ¢ = 1.6 Ibs. What
proportion of his specimens will fail to meet the specification? Ans. 10.6%.

EXAMPLE 2.3.9-—By quality control methods it may be poscible to reduce ¢ in the
previous example while keeping i at 28 1bs. If the manufacturer wishes only 29 of his
specimens to be rejected, what muist his s be? Ans. 0.98 [bs.
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2.4—Estimators of u and 0. While u and ¢ are seldom known, they
may be estimated {rom random samples. To illustrate the estimation of
the parameters, we turn to the data reported from a study. In 1936 the
Council on Foods of the American Medical Association sampled the
vitamin C content of commercially canned tomato juice by analyzing a
specimen from each of the 17 brands that displayed the seal of the Council
(1). The vitamin C concentrations in mg. per 100 gm. are as follows
(slightly altered for easier usej:

16,22, 21, 20, 23, 21,19, 15, 13, 23, 17, 20, 29, 18, 22, 16, 25

Estiration of p.  Assuming random sampling from a normal popula-
tion, 4 is estimated by an average called the mean of the sample or, more
briefly, the sample mean. This is calculated by the familiar process of
dividing the sum of the observations, X, by their number. Representing
the sample mean by X,

X = 340/17 = 20 mg. per 100 grams of juice

The symbo!l, X is often called “bar-X" or *X-bar.” We say that this
sainple mean is an estimator of g or that u is estimated by it.

Estimation of . The simplest estimator of ¢ is based on the range of
the sample observations, that is, the difference between the largest and
smallest measurements. For the vitamin C data,

range = 29 — 13 = 16 mg./100 gm.

From the range, sigma is estimated by means of a multiplier which de-
pends on the sample size. The multiplier is shown in the column headed
“o/Range” in table 2.4.1 (2, 3). For # = 17, halfway between 16 and 18,
the multiplier is 0.279, so that

¢ is estimated by {0.279)(16) = 4.46 mg./100 gm.

Looking at table 2.4.1 you will notice that the multiplier decreases as
n becomes larger. This is because the sample range tends to increase as
the sample size increases. although the population ¢ remains unchanged.
Clearly if we start with a sample of size 2 and keep adding to it, the range
must either stay constant or go up with each addition.

Quite easily, then, we have made a poin/ estimate of each parameter of
a normal population: these estimators constitute 2 summary of the infor-
mation contained in the sample. The sample mean cannot be improved
upon as an estimate of u. but we shall learn to estimate ¢ more-efficiently,
Also we shall learn about interval estimates and tests of hypotheses. Be-
fore doing so. it is worthwhile to examine our sample in greater detail.

The first point to be clarified is this: What population was repre-
sented by the sample of 17 determinations of vitamin C? We raised this
question tardily; it is the first one to be considered in analyzing any sam-
pling. The report makes it clear that not all brands were sampled, only
the seventeen allowed to display the seal of the Council. The dates of the
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TABLE 2.4.1 .
RATIO OF ¢ TO RANGE IN SAMFLES OF 1 FROM THE NORMAL DISTRIBUTION. EFFICIENCY
OF RANGE S ESTIMATOR OF 0. NUMBER OF OBSERVATIONS WITH
RANGE To EquaL 100 WITH 5

‘ Relative Number | “ Relative  Number

n Range Efficiency per 100 n Range  Efficiency per 100
2 0.886 1.000 100 i2 0.307 0.8i5 123

3 591 0.992 10% 14 204 783 128
4 486 975 103 16 283 753 133

5 430 955 105 18 275 726 138

6 395 933 107 20 268 700 143

7 370 912 110 30 245 604 166
8 51 890 112 40 231 536 186
9 .37 .869 115 50 222 49 204
10 325 850 18

| I

packs were mostly August and September of 1936, about a year before the
analyses were made. The council report states that the vitamin concentra-
tion *“may be expected to vary according to the variety of the fruit, the
conditions under which the crop has been grown, the degree of ripeness
and other factors.” About all that can be said, then, is that the sampled
population consisied of those year-old containers still available to the 17
selected packers.

2.5-—The array and its graphical representation. Some of the more
intimate features of a sample are shown by arranging the observations in
order of size, from low to high. inan array. The array of vitamin contents
is like this;

13,15, 16, 16, 17, 18, 19, 20, 20, 21, 21, 22, 22, 23, 23,-25, 29

For a small sample the array setves some of the same purposes as the fre-
quency distribution of a large one. i

The range, from 13to 29, is now obvious. Also, attention is attracted
to the concentration of the measures near the center of the array and to
their thinning out at the extremes. In this way the sample may reflect the
distribution of the ngrmal population from which it was drawn. But the
smaller the sample, the more erratic its reflection may be.

Inlooking through the vitamin C contents of the several brands, one is
struck by their variation. What are the causes of this variation? Different
processes of manufacture. perhaps. and different sources of the fruit.
Doubtless. also, the specimens examined. being themselves samples of
their brands, differed from the brand means. Finally, the laboratory
technique of evaluation is never perfectly accurate. Vanation is the
essence of statistical data.

Figure 2.51 is a graphical representation of the foregoing array of 17
vitamin determinations. A dot represents each item. The distance of the
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VITAMIN-C MILLIGRAMS PER 100 GRAMS

FiG. 2.5.1—Graphical representation of an array. Vitamin C data.

dot from the vertical line at the left, proportional to the concentration
of ascorbic acid in a brand specimen, is read in milligrams per 100 grams
on the horizontal scale.

The diagram brings out vividly not only the variation and the con-
centration in the sample, but also two other characteristics: (i} the rather
symmétrical occurrence of the values above and below the mean, and
(i1) the scarcity of both extremely small and extremely large vitamin C
contents, the bulk of the items being near the middle of the set. These
features recur with notable persistence in samples from normal distriba-
tions. For many variables associated with living organisms there are
averages and ranges peculiar to each, reflecting the manner in which each
seems to express itself most successfully. These norms persist despite the
fact that individuals enjoy a considerable freedom in development. A
large part of our thinking is built around ideas corresponding to such
statistics. Each of the words, pig, daisy, mdn,. raises an image which is
quaniitatively described by summary numbers, It is difficult to conceive
of progress in thought until memories of individuals are collected into
concepts like averages and ranges of distributions.

2.6—Algebraic notation. The items in any set may be represented by
X, Xy, Xy oL X

where the subseripts 1, 2, . . . n, may specify position in the set of # items
(not necessarily an array). The three dots accompanying these symbols
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areread “andsoon.” Matching the symbols with the values in section 2.4,
X, =16, X, =22,... X;7 =25mg./100 gm,
The sample mean is represented by X, so that
X=X+ X,4+...X)n
This Is condensed into the form,

X = (ZX)/n,

where X stands for every item successively. The symbol, £X, is read
“summation X"’ or “'sum of the X.”” Applying this formula to the vitamin
C concentrations,

IX = 340, and X = 340/17 = 20 mg./100 gm.

2.7—Deviations from sample mean. The individual variations of
the items in a set of data may be well expressed by the deviations of these
items from some centrally located number such as the sample mean.
For example, the deviation-from-mean of the first X-value is

16 — 20 = —4 mg. per 100 gm.

That is, this specimen falls short of X by 4 mg./100 gm. Of special interest
is the whole set of deviations calculated from the array in section 2.5:

"‘"7, ""‘5, ‘_4, _4, ""'3, _25 ‘—1,0, 01 l; ls 2’ 23 3! 3! 5’9

These deviations are represented graphically in figure 2.5.1 by the dis-
tances of the dots from the vertical line drawn through the sample mean.

Deviations are almost as fundamental in our thinking as are averages.
“What a whale of a pig” is a metaphor expressing astonishment at the
deviation of an individual’s size from the speaker’s concept of the normal.
Gossip and news are concerned chiefly with deviations from accepted
standards of behavior. Curiously, interest is apt to center in departures
from norm, rather than in that background of averages against which the
departures achieve prominence. Statistically, freaks are freaks only
because of their large deviations.

Deviations are represented symbolically by lower case letters. That
is: - :

x1=X|_X
.\'2=X2_X
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Just as X may represent any of the items in a set, or all of them in succes-
sion, so x represents deviations from sample mean. In general,

sz—f

It is easy to prove the algebraic result that the sum of a set of de-
viations from the mean is zero: that is, Lx = 0. Look at the set of de-
viations x, = X, — X, and so on (foot of p. 42). Instead of adding the col-
umn of values x; we can obtain the same result by adding the column of
values X; and subtracting the sum of the column of values X. The sum of
the column of values X; is the expression ZX. Further, since there are »n
items in a column, the sum of the column of values X is just nX. Thus we
have the result : :

Ix=XIX-nX

But the mean X = I X/n, so that nX = £X, and the right-hand side is
zero. It follows from this theorem that the mean of the deviations is also
zZero.

This result is useful in proving several standard statistical formulas.
When it is applied to a specific sample of data. there is a slight snag. If
the sampile mean X does not come out exactly, we have to round it. Asa
result of this rounding, the numerical sum of the deviations will not be
exactly zero. Consider a sample with the values 1. 7, 8. The mean is
16/3, which we might round to 5.3. The deviations are then —4.3, 4 1.7
and +2.7, adding to +0.1. Thus in practice the sum of the daviations is
zero, apart from rounding errors,

EXAMPLE 2.7.1—The weights of 12 staminate hemp plants in early April at College
Station, Texas (9). were approximately:

13.11,16. 5.3, 18,9, 9, 8,6, 27, and 7 grams

Array the weights and represent them graphically. Calculate the sample mean. 11 grams,
and the deviations therefrom. Verify the fact that Zx = 0. Show that o is estimated by 7.4
grams,

EXAMPLE 2.7.2—The heights of 11 men are 64, 70, 65, 69, 68, 67, 68, 67, 66, 72 and
61 inches. Compute the sample mean and verify it by summing the deviations. Are the
numbers of positive and negative deviations equal, or only their sums?

EXAMPLE 2.7.3—The weights of 11 forty-year-old~men were 148, 154, 158, 160, 161,
162, 166, 170, 182, 195, and 236 pounds. Notice the fact that only three of the weights
exceed the sample mean. Would you expect weights of men to be normally distributed?

EXAMPLE 2.7.4—1In a sample of 48 observations you are told that the standard devia-
tion has been computed and is 4.0 units. Glancing through the data. you notice that the
lowest observation is 39 and the highest 76. Does the reporied standard deviation ook
reasonable?

EXAMPLE 2.7.5— Ten patients troubled with sleeplessness cach received a nightly
dose of a scdative for one period. while in another period they received no sedative (4), The
average hours of sleep per night for each patient during each two-week penod are as follows:
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Patient 1 2 3 4 5 6 7 8 9 10
Sedative 1.3 1.1 6.2 16 49 14 6.6 4.5 4.3 6.1
None 0.6 1.1 2.5 28 29 30 3.2 4.7 5.5 6.2

Calculate the 10 differences (Sedative — None). Might these differences be a sample from
a normal population of differences? How would you deseribe this population®: (Y ou might
want to ask for more informatron.) Assumung that the differences are normally distributed,
estimate u and o for the population of differences. Ans. +0.75 hours and 1.72 hours,

EXAMPLE 2.7.6—If you have two sets of data that are paired as in the preceding
example, and if you have calculated the resulting set of differences, prove algebraically that
the sample mean of the differences is equal 1o the difference between the sample means of the
two sets.  Verify this result for the data in exampie 2.7.5,

2.8—Another estimator of o; the sample standard deviation. The
range, dependent as it is on only the two extremes in a sample, usually has
a more variable sampling distribution than an estimator based on the
whole set of deviations-from-mean in a sample, not just the largest and
smallest. What kind of average is appropriate to summarize these devia-
tions, and to estimate o with the least sampling variation?

Clearly, the sample mean of the deviations is useless as an estimator
because it 1s always zero. But a natural suggestion is to ignore the signs,
calculating the sample mean of the absoiute values of the deviations. The
resulting measure of variation, the mean absolute deviation, had a consider-
able vogue in times past. _Now. howesver, we use another estimator, niore
effictent and more fexible.

The sumple standard deviation. This estimator, denoted by s. is the most
widely used in statistical work. The formula defining s is

TX - X)? FEy?
' N on-1 N =1
s

First. each deviationis squared. Next, the sum of squares, Zx*, is divided
by (# — 1}. one less than the sample size. The result is the mean square
ot sample rariunce. s*. Finally. the extraction of the square root reeovers
the ortginal scale of measurement. For the vitamin C concentrations. the
calculations are set out in the right-hand part of table 2.8.1. Since the
sum of squares of the deviations is 254 and n is 17. we have

Fad

522

54/16 = 15.88 )

s = /1

Before further discussion of s is given. its calculation should be fixed
in mind by working a couple of examples. Tablc A 18 is.a tahle of square
roots. Hints on finding square roots are given on p. 541.

|

L,,
e
20

= 3.98 mg./100 gm.
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TABLE 2.8 1
CALCULATION (F THE Sampt F STANDARD DEvIATION
Observation Vitamin C Concentration Deviation Deviation
Numbser Mz. Per 104 gm. From Mean Squared
n X x=X-X x2
1 16 - 4 16
2 2 + 2 4
3 2] + 1 1
4 0 0 0
5 23 + 3 9
6 21 + 1 1
7 19 -1 1
8 15 -3 25
9 13 -7 49
10 ] 23 + 3 9
il 17 -3 9
12 20 0 0
13 29 + 9 B1
14 18 -2 4
15 ' 2 + 2 4
16 16 - 4 6
17 25 + 5 25
Totals 340 —~26 +26 154

EXAMPLE 2.8.1—In five patients with pneumonia, treated with sodium penicillin G,
the numbers of days required to bring the temperature down to normal were 1.4 5, 7, 3.
Compute s for these data and compare it with the estimate based on the range. Ans.s=2.24
days. Range estimate = 2.58 days,

EXAMPLE 28.2- Caleulate s for the hemp plant weights in example 2.7.7. Ans. 67
grams, Compare with your first estimate of o.

The appearance of the divisor (n — 1) instead of n in computing s*
and s is puzzling at first sight, The reason cannot be explained fully at
this stage, being related to the computation of s from data of more com-
plex structure. The quantity (# — 1) is called the number of degrees of
freedom in 5. Later in the book we shall meet situations in which the
number of degrees of freedam is neither n nor (u — 1}, but some other
quantity, If the practice of using the degrees of freedom as divisor is fol-
lowed, there is the considerable advantage thay the same statistical tables,
needed in important applications, serve for a wide variety of types of data.

Division by (n — 1) has one standard property that is often cited. If
random samples ase drawn {rom any indefinitely large population (not
justa normally distributed one) that has a finite value of g, then the average
value of 52, taken over all random samples. is exactly equal to ¢, Any
estimate whose average value over all possible random samples is equal
o the population parameter being estimated is called wnbiused. Thus,
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5% is an unbiased estimate of o2. This property, which says that on the
average the estimate gives the correct answer, seems a desirable one for an
estimate to possess. The property, however, is not as fundamental as
one might think, because s is not an unbiased estimaie of ¢. I{ we want
5 to be an unbiased estimate of ¢ in normal populations, we must use a
divisor that is neither (n — 1) nor n.

2.9-—Comparison of the two estimaters of 6. You now have two esti-
mators of o, one of them easier to calculate than the other, but less efficient.
You need to know what is meant by '‘less efficient’’ and what governs the
choice of estimate. Suppose that we draw a large number of random
samples of size 10 from a normal population. For each sample we can
compute the estimate of ¢ obtained from the range, and the estimate s.
Thus we can form two frequency distributions, one showing the distribu-
tion of the range estimate, the other showing the distribution of . The
distribution of s is found to be more closely grouped about ¢ ; that is. s
usually gives a more accurate estimate of 6. Going a step further, it can
be shown that the range estimate, computad from normal samples of size
12, has roughty the same frequency distribution as that of s in samples of
size 10. We say that in samples of size 10 the relative efficiency of the range
estimator to s is about 10/12, or more accurately 0.850. The relative
efficiencies and the relative sample sizes appear in the third and fourth
columns of table 2.4.1 (p. 40). In making a choice we have to weigh the
cost of more observations. If observations are costly, it is cheaper to
compule s.

Actually, both estimators are extensively used. Note that the rela-
tive efficiency of the range estimator remains high up to samples of sizes
8 to 10. In many operations, ¢ is estimated in practice by combining the
estimates from a substantial number of small sampies. For instance, in
contralling the quality of an industrial process, small samples of the manu-
factured product are taken out and tested frequently. say every 15 min-
utes or every hour. Samples of size 5 are often used. the range estimator
being computed from each sample and plotted on a time-chart. The
efficiency of a single range estimate in a sample of size 315 0.955, and the
average of a series of ranges has the same efficiency.

The estimate from the range is an easy approximate check on the
computation of 5. In these days, electronic computing machines are used
more and moré for routine computations. Unless the investigator has
learned how to program, one consequence is that the details of his com-
putations are taken out of his hands. Errors in making the programmers
understand what is wanted and errors in giving instructions to the ma-
chines are common. There is therefore an increasing need for quick
approximate checks on all the standard statistical computations, which the
investipator can apply when his results are handed 10 him. If a table of
d/Range is not at hand. two rough rules may help For samples up to size
10. divide the range by /r to estimate 6. Remember also:
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If n is near Then e is roughly estimated
this number by dividing range by
5 2
10 3
25 4
100 5

The range estimator and s are both sensitive to gross errors, because
a gross error is likely to produce a highest or lowest sample membe that is
entirely false.

EXAMPLE 2.9.1-—In a sample of size 2, with measurements X, and X;, show that s is
(X, — X,[/ 2 = 0.707{X, — X,|. and that the cange cstimator is 0.886|X, — X;|, where the
vertical lines denote the absolute valve. The reason for the different multipliers is that the

range estimator is constructed to be an unbiased estimator of ¢, while s is not, as already
mentioned.

EXAMPLE 2.9.2—The birth weights of 20 guinea pigs were: 30, 30, 26, 32, 30, 23, 29,
31, 36, 30, 25, 34, 32, 24, 28, 27, 38, 31, 34, 30 grams. Estimate ¢ in 3 ways: (i) by the rough
approximation, one-fourth of 1he range (Ans. 3.8 gm.}; (ii) by use of the fraction, 0.268, in
table 2.4.1 (Ans. 4.0 gm.); (iii) by calculating s (Ans. 3.85gm.). N.B : Observe the time re-
quired to calculate s.

EXAMPLE 2.9.3—In the preceding example, how many birth weights would be re-
quired to yield the same precision if the range were used instead of 57 Ans. about 29 weights

EXAMPLE 2.9.4—Suppose you lined up according to height 16 freshmen, then mea-
sured the height of the shortest, 64 inches, and the tallest, 72 inches. Would you accept the
midpeint of the range, (64 + 72)/2 = 68 inches a5 a rough estimate of g, and 8/3 =27
inches as a quick-and-easy estimate of ¢?

EXAMPLE 2.9.5—In a sample of 3 the values are, increasing order, X, X;, and X,.
The range estimate of o 1s 0.591(X; ~ X,) [ you are ingenious at algebra, show that s
always lies between (X, — X,)/2 = 0.5(X, — X,), and (X; — X,)/\/3, = 0.578(X; — X,).
Verify the two extreme cases from the samples 0, 3, 6, in which s = 0.5(X, — X,) and 0, 0, 6,
in which 5 = 0.578(X, — X,).

2.10—Hints on the computation of s. Two results in algebra help to
shorten the calculation of 5. Both give quicker ways of finding Zx?,
(ris any number, there is an algebraic identity to the effect that

Ix? =LK - X) = Z(X - G —(ZX — nG)/n
An equivalent alternative form is .
Ix'= XX - X) = L(X - G = (X - G)?

These expressions are useful when s has to be computed without the aid of
a calculating machine (a task probably confined mainly to students nowa-
days). Suppose the sample total is X = 350 and n = 17. The mean X
15 350/17 = 20.59. H'the X’s arc whole numbers, it is troublesome to take
deviations from a number like 20.59, and sull more so to square the
nunmbers without a machine. The trick is to take & (sometimes called the
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guessed or working mean) equal to 20. Find the deviations of the A7s
from 20 and the sum of squares of these deviations, T(X — G)*. To
get Xx?. you have only to subtract n times the square of the difference
between X and G, or, in this case. 1 7(0.59)2 = 5.92.

Prouf of the identity. We shall denote a 1ypical value in the sample by
X, where the subscript / goes from | ton. Write

Squaring both sides. we have
(X, —GY = (X, = XY + HX; — XHX — G) + (X - G)?

We now add over the » members of the sample. In the middle term on
the right. the term 2(X — &) is a constant multiplier throughout this
addition. since this term does not contain the subscript / that changes from
one member of the.sample to another. Hence

TAUX, - X)X - G) = AKX — GIZ(X, — X) = 0.

since as we have seen previgusly, the sum of the deviations from the sam-
ple mean ig always zero. This gives

(X, -Gy = Z(X,— X + nX - GY

noting that the sum of the constant term (X — G)? over the sample is
mX — G)*. Moving this term to the other side. we get

(X, — G - (X - G)? = £(X, - X)

This completes the proof.

Incidentally. the result shows that for any value of G. (X, - ¥)?
is always smaller than L(X; - G)*. unless G = X. The sample mean has
the property that the sum of squares of deviations from it is « minimum.

The second aigebraic result. a particutar case of the first, is used
when a calculating machine is avalJable. Put G = 0 in the first result
in this section. We get -

T =X(h ~ K) =X - (EX)Vin

This result enables us to find T x? without computing any of the deviations.
For a set of positive numbers .Y,. most calculating machines will compute
the sum of squares, TX?. and the sum, ZX. simultaneously, without
writing down any intermediate figures. To get Zx?. we square the sum,
dividing by #. to give (X X)?/n, and subtract this from the original sum of
squares. TX?  The computation will be illustrated for the 17 vitamin C
concentrations. Earlier. as mentioned. these data waere altered slightly to
simphfy the presentation. The actual determinations were as follows.

16.22.21.20,23.22. 17,15, 13,22, 17, 18. 29,17, 22, 16, 23

The only figures that need be written down are shown in table 2.1C.1.



49

TABLE 2.10.1
COMPUTING THE SAMPLE MFAN AND SUM OF SQUARES OF DEVIATIONS
WITH A CALCULATING MACHINE

n=17 £X?1= 6,773
IY =133 (ZX)/n=06.512.88
X = 19.6 mg. per 100 gm. Ix?= 250.12

s? = 250.12/16 = 15.63
5= /15,63 = 1.95

When using this method, remember that any constant number can
be subtracted from all the X; without changing 5. Thus if your data are
numbers like 1032, 1017, 1005, and so on, they can be read as 32, 17, 5,
and so on, when following the method in table 2.10.1

EXAMPLE 2.10.1--For those who need practice in using a guessed mean, here is a set
of numbers for easy computation:

15,12, 10,10, 10, 8,7, 7, 4,4, 1

First calculate X = § and s = 4 by finding deviations from the sample mean. Then try
various guessed means, such as 5, 10, and I. Continue until you convince yourself that the
answers, X = 8 and s = 4, can be reached regardless of the value chosen for . Finally,

try G = 0. Note: With a guessed mean, X can be found without having to add the X,. by
the relation

X=G+ [Z(X - Gn
where the quantity Z{X — G} is the sum of your deviations from the guessed mean G.

EXAMPLE 2.10.2—For the ten patients in a previous example, the average differences
m hours of sleep per nighi between sedative and no sedative were (in hours): 0.7, 0.0, 3.7,
08,20, —1.6.34, 0.2, ~ 1.2, —0.]. With a calculating machine, compute s bv the short-
cut method in table 2.10.5. Ans. s = 1.79 hrs. The range method gave 1.72 hry.

EXAMPLE 2.10.3—Without finding deviations from X and without using a calculating

machine, compute Zx? for the lollowing measurements: 961, 953, 970, 958. 950, 951. 957.
Ans. 286.9.

2.11--The standard deviation of sample means. With measurement
data, as mentioned previously, the purpose of an investigation is often to
estimate an average or total over a population (average selling price of
houses in a town, total wheat crop in a region). If the data are a random
sample from a population. the sample mean X is used to estimate the cor-
responding average over the population, - Lurther, if the number of items
Nin the population is known, the guantity NX is an estimator of the popu-
lation total of the X’s. This brings up the question: How accurate is a
sample mean as an estimator of the population mean?

As usual. a question of this type can be examined either experimental-
ly or mathematically. With the experimental approach. we first find or
construct a population that seems typical of the type of population en-
countered in our work. Suppose that we are particularly interesied in
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samples of size 100. We draw a large number of random samples of size
100, computing the sample mean X for each sample. In this way we form
a frequency distribution of the sample means, or graph the frequencies
in a histogram. Since the mean of the population is known, we can find
out how often the sample mean is satisfactorily close to the popuiation
mean, and how often it gives a poor estimate,

Much mathematical work has been done on this problem and it
has produced two of the most exciting and useful resuits in the whole of
statistical theory. These results, which are part of every statistician’s
stock in trade, will be stated first. Some experimental verification will
then be presented for illustration. The first result gives the mean and
standard deviation of X in repeated sampling ; the second gives the shape
of the frequency distribution of X.

Mean and standard deviation of X. 1f repeated random samples of size n
are drawn from any population (not necessarily normal) that has mean u
and standard deviation ¢, the frequency distribution of the sample means
X in these repeated samples has mean g and standard deviation O’/JH.

This result says that under random sampling the sample mean X is
an unbiased estimator of u: onthe average, in repeated sampling, it will be
neither too high nor too low. Further, the sampie means have less varia-
tion about u than the original observations. The larger the sample size,
the smaller this variation becomes.

Students sometimes find it difficult to reach the point at which the
phrase ““the standard deviation ol X has a concrete meaning for them,
Having been introduced to the idea of a standard deviation, it is not too
hard to feel at home with a phrase like “the standard deviation of a man’s
height.” because every day we see tall men and shart men, and realize
that this standard deviation is a measure of the exient to which heights
vary from one man 1o another. But usually when we have a sample, we
calculate 2 sing/e mean. Where does the variation come from? It is the
variation that would arise if we drew repeated samples from the popula-
tion that we are studying and computed the mean of each sample. The
experimental samplings presented in this chapter and 1n chapter 3 may
make this concept more realistic.

The standard deviation of X, a/\/n, is often called, alternatively, the
standard error of X. ™ The terms “standard deviation” and “standard
error’ are synonymous. When we are studying the frequency distribution
of an estimator tike X, its standard deviation supplies information about
the amount of error in X when used to estimate u. Hence, the term
*standard error” is rather natural. Normally, we would not speak of the
standard error of a man’s height, because if a man is unusuaily tail. this
does not imply that he has made a mistake in his height.

The quantity NX. often used 1o estimate a total over the population,
is also an unbiased estimator under random sampling. Since N is simply
a fixed number. the mean of NX in repeated sampling is Nu. which, by
the definition of y, is the correct popuiation total. The standard error of



NX is No//n. Another frequently used result is that the sample total,
ZX = nX, has a standard deviation ne/,/n, or a./n.

2.12—The frequency distribution of sample means. The second major
result from statistical theory is that, whatever the shape of the frequency
distribution of the original population of X7s, the frequency distribution
of X in repeated random samples of size » tends to become normat as n
increases. To put the result more specifically, recall that if we wish tp
express a variable X in standard measure, so that its mean is zero and its
standard deviation is 1, we change the variable from X to (X — u)/o.
For X, the corresponding expression in standard measure (sm) is

_X-n
o afyn

As n increases, the probability that X, lies between any two limits L,
and L, becomes more and more equal to the probability that the standard
normal deviate Z lies between L, and L,. By expressing X in standard
measure, table A 3 (the cumulative normal distribution) can be used to
approximate the probability that X itself lies between any two limits.
This result, known as the Central Limit Theorem (5), explains why the
normal distribution and results derived from it are so commonly used
with sample means, even when the original population is not normal.
Apart from the condition of random sampling, the theorem requires
very few assumptions: it is sufficient that o is finite and that the sample
is a random sample from the population.

To the practical worker, a key question is: how large must # be in
order to use the normal distribution for X¥? Unfortunately, no simple
general answer is available. With variates like the heights of men, the
original distribution is near enough normal so that normality may be as-
sumed for most purposes. 1n this case a sample with # = 1is large enough.
There are also populations, at first sight quite different from the normal,
in which # = 4 or 5 will do. At the other extreme, some populations re-
quire sample sizes well over 100 before the distribution of X becomes at all
near to the normal distribution.

As illustrations of the Central Limit Theorem, the results of two
sampling experiments will be presented. In the first, the population is the
population of random digits 0, 1, 2, .. .9 which we met in chapter 1.
This is a discrete population. The variable X has ten possible vaiues
0,1,2,...9, and has an equal probability 0.1 of taking any of these
values. The frequency distribution of X is represented in the upper part of
figure 2.12.1. Clearly, the distribution does not look like a normal dis-
tribution. Distributions of this type are sometimes called uniform, since
every value is equally likely.

Four hundred random samples of size 5 were drawn from the table
of random digits {(p. 543), each samplc being a group of five consecutive

4
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and standard deviation a/.,/n = 2.872/\!’5 = [.284.
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numbers in a column. The frequency distribution of the sample means
appears in the lower half of figure 2.12.1. A normal distribution with
mean u and standard deviation ¢/,/5 is also shown. The agreement is
surprisingly good, considering that the samples are only of size 5.

Calculation of u and o. In fitting this normal distribution, the quantities
u and o were the mean and standard deviation of the original population
of random digits. Although the calculation of X and s for a sample has
been discussed, we have not explained how to calculate g and o for a
population. In a discrete population, denote the distinct values of the
measurement X by X, X,....X,. In the population of random digits,
k = 10, and each value has an equal probability, one-tenth. Ina more gen-
eral discrete population, the value X; may appear with probability or
relative frequency P;. We couid, for example, have a population of
digits in which a 0 is 20 times as frequent as a 1. Since the probabilities

- must add to I, we have

i
EP|=1
i=1

The expression on the left is read “the sum of the P; from i equals 1 to k.”

The population mean u is defined as

&
H= E PX;
i=1

Like X in a sample, the quantity u is the average or mean of the values of
X, in the population, noting, however, that each X; is weighted by its rela-
tive frequency of occurrence.,

For the random digits, every P, = 0.1. Thus

p=ODO+1+2+3+4+5+6+7+8+9)=(01)45) =45,

The population o comes from the deviations X; — u. With the
random digits, the first deviation is 0 — 4.5 = —4.5, and the successive
deviations are —3.5, —2.5, —1.5, =05, +0.5 +1.5, +2.5 +3.5, and
+4.5. The population variance, ¢2, is defined as
~

k
ot = ¥ PUX; ~ 4

i=1

Thus, o? is the weighted average of the squared deviations of the values
in the population from the population mean. Numerically,

o? = (0.2){(4.5P + (3.7 + (2.5 + (1.5)* + (0.5)*} = 8.25

This gives 0 = ,/8.25 = 2.872; so that o/,/5 = 1.284.
There is a shortcut method of finding o? without computing any
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deviations: it is similar to the corresponding shortcut formula for Zx2.
The formula is:

k
ol = ¥ PX} -
i=1

With the normal distribution, u is, as above, the average of the values
of X, and o2 is the average of the squared deviations from the population
mean. Since the normal population is continuous, having an infinite
number of values, formulas from the integral calculus are necessary in
writing down these definitions.

As a student or classroom exercise, drawing samples of stze 5 from
the random digit tables is recommended as an easy way of seeing the
Central Limit Theorem at work. The total of each sample is quickly
obtained mentally. Fo avoid divisions by 5, work with sample totals
instead of means. The sample total, 5X, has mean (5)(4.5) = 22.5 and
standard deviation (5)(1.284) = 6.420 in repeated sampling. In forming
the frequency distribution, put the totals 20, 21, 22, 23 in the central class,
each class containing four consecutive totals. Although rather broad,
this grouping is adequate unless, say, 500 samples have been drawn.

The second sampling experiment illustrates the case in which a large
sample size must be drawn if X is to be nearly normal. This happens with
populations that are markedly skew, particularly if there are a few values
very far from the mean. The population chosen consisted of the sizes
(number of inhabitants) of U.S. cities having over 50,000 inhabitants in
1950 (6}, excluding the four largest cities. All except one have sizes rang-
ing between 50,000 and 1,000,000. The exception, the largest city in the
population, contained 1,850,000 inhabitants. The frequency distribution
is shown at the top of figure 2.12.2. Note how asymmetrical the distri-
bution is, the smallest class having much the highest frequency. The city
with 1,850,000 inhabjtants is not shown on this histogram: it would ap-
pear about 4 inches to the right of the largest class.

A set of 500 random samples with n = 25 and another set withn = 100
were drawn. The frequency distributions of the sample means appear
in the middle and lower parts of figure 2.12.2. With n = 25, the distribu-
tion has moved towards the normal shape but is still noticeably asymmetri-
cal. There is some further improvement towards symmetry with n = 100,
but a normal curve would still be a poor fit. Evidently, samples of 400-
500 would be necessary to use the normal approximation with any as-
surance. Part of the trouble is caused by the 1,850,000 city: the means
for n = 100 would be more nearly normal if this city had been excluded
from the population. On the other hand, the situation wouid be worse if
the four largest cities had been included.

Combining the theorems in this and the previous section, we now
have the very useful result that in samples of reasonable size, X is approxi-
mately normally distributed about u, with standard deviation or standard
erroro/\/n.
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EXAMPLE 2.12.1—A population of heights of men has a standard deviation o = 2.6
inches. What is the standard error of the mean of a random sampie of (i) 25 men, (i) 100
men? Ans, (i) 0.52in. (ii) 0.26 in.

EXAMPLE 2.12.2—In order to estimate the total weight of a batch of 196 bags that
are to be shipped, each of a random sample of 36 bags is weighed, giving X = 40 lbs, As-
suming ¢ = 3 |bs., estimate the total weight of the 196 bags and give the standard error of
your estimate.  Ans. 7,840 lbs.; standard error, 98 1bs.

EXAMPLE 2.12.3—In estimating the mean height of a large group of boys with

e = 1.5 in., how large a sample must be taken if the standard error of the mean height is to
be0.2in.? Ans. 56 boys.

EXAMPLE 2.12.4—If perfect dice are thrown repeatedly, the probability is 1/6 that
eachof thefaces 1,2, 3,4, 5, 6 turns up. Compute y and o for this population. Ans, p= 3.5,
=17

EXAMPLE 2.12.5—If boys and girls are equally likely, the probabilitics that a family of
size two conlains 0, 1, 2 boys are, respectively, 1/4, 1/2, and 1/4 Find u and o for this
population. Ans. uy=1,0=1//2 =071

EXAMPLE 2.12.6—The following sampling experiment shows how the Central Limit
Theorem performs with a population simulating what is called a u-shaped distribution. In
the random digits table, score 0, 1,2, 3as0;4, 5as 1; and 6, 7,8,9 as 2. In this population,
the probabilities of score of 0, 1, 2 and 0.4, 0.2, and 0.4, respectively. This is a discrete dis-
tribution in which the central ordinate, 0.2, is lower than the two outside ordinates, 0.4.
Draw a number of samples of size 5, using the random digits table. Record the total score
for each sample. The distribution of total scores will be found fairly similar to the bell-
shaped normai curve. The theoretical distribution of the total scores is as follows;

Score Qor 10 lor9 2or8 Jor7 doré 5
Prob. 010 026 077 115 .82 179

That is, the probability of a 0 and that of & 10 are both 0.010.

2.13—Confidence intervals for 4 when ¢ is known. Given a2 random
sampie of size »# from a population, where n is large enough so that X can
be assumed normally distributed, we are now in a position to make an
interval estimate of . For simplicity, we assume in this section that
o is known. This is not commonly so in practice. In some situations,
however, previous populations similar to the one now being investigated
all have about the same standard deviation, which is known from these
previous results. Further, the value of ¢ can sometimes be found from
theoretical considerations about the nature of the population.

We first show how to find a 95% confidence interval, In section 2.1
it was pointed out that if a variate X js drawn from a normal distribution,
the probability is about 0.95 that X lies between g — 2¢ and u + 2.
More exactly, the limits corresponding to a probability 0.95 are u — 1,964
and u + 1.960. Apply this result to X, remembering that in repeated
sampling X has a standard deviation a//n. Thus, uniess an unlucky 5%,
chance has come off, X will lie between y — 1.96a/./n and pt + 1.96a/./n.
Expressing this as a pair of inequalities, we write

p— 1960//n < X <y + 1.960//n
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apart from a 5% chance. These inequalities can be rewritten so that they
provide limits for 4 when we know X. The left-hand inequality is equiva-
lent to the statement that

1 < X + 1960/ /n
In the same way, the right-hand inequality implies that

#2X — 196¢/\/n

Putting the two together, we reach the statement that unless an unlucky
5% chance occurred in drawing the sample,

X — 1960/ Jn < u < X + 1.96a//n

This is the 95% confidence interval for p.
Similarly, the 99%, confidence interval for g is

X - 258a/\/n < u < X + 2580/ /n

because the probability is 0.99 that a normal deviate Z lies between the
limits —2.58 and + 2.58.

To find the confidence interva) corresponding to any confidence prob-
ability P, read from the cumulative normal table (table A 3) a value Zp,
say, such that the area given in the table is P/2. Then the probability that
a normal deviate lies between — Zp and +Z, will be P. The confidence
interval is

X — Zpo/{yn<u< X+ Zewo/yn

One-sided confidence fimits. Sometimes we want to find only an upper
limit or a lower limit for g, but not both. A company making large
batches of a chemical product might have, as part of its quality control
program, a regulation that each batch be tested to ensure that it does not
contain more than 25 parts per miilion of a certain impurity, apart from
alin100chance. The test consists of drawing out » amounts of the prod-
uct from the batch, and determining the concentration of impurity in
each amount. If the batch is to pass the test, the 99% upper confidence
limit for 4 must be not more than 25 parts per million. Similarly, certain
roots of tropical trees are a source of a potent insetticide whose concen-
tration varies considerably from root to root. The buyer of 2 large ship-
ment of these roots wants a guarantee that the concentration of the active
ingredient in the shipment exceeds some stated value. It may be agreed
between buyer and seller that the shipment is acceptable if, say, the 95°,
lower confidence limit for the average concentration u exceeds the desired
minimum.

To find & one-sided or one-railed limit with confidence probability
'95%;, we want a normal deviate Z such that the area beyond Z in one tail
is 0.05. Intable A 3, the area from 0 to Z will be 0,43, and the value of Z
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is 1.645. Apart from a 5%, chance in drawing the sample,

X < p+ 16450/ /n

This gives, as the lower 95%;, confidence limit for p,
u=X — 16455/ /n

The upper limit is X + 1.6455/,/n. For 99%; limit the value of Z is 2.326.
For a one-sided limit with confidence probability P (expressed as a pro-
portion), read table A 3 to find the Z that corresponds to probability
(P — 0.5).

2.14—Size of sample. The question: How large a sample must I
take? is frequently asked by investigators. The question is not easy to
answer. But if the purpose of the investigation is to estimate the mean
of a population from the results of a sampl