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Preface 

In preparing the sixth edition we have kept in mind the two purposes 
this book has served during the past thirty years. Prior editions have been 
used extensively both as texts for introductory courses in statistics and as 
reference sources of statistical techniques helpful to research workers in 
the interpretation of their data. 

As a text, the book contains ample material for a course extending 
throughout the academic year. For a one-term course, a suggested list 
of topics is given on the page preceding the Table of Contents. As in 
past editions, the mathematical level required involves little more than 
elementary algebra. Dependence on mathematical symbols has been 
kept to a minimum. We realize, however, that it is hard for the reader to 
use a formula with full confidence until he has been given proof of the 
formula or its derivation. Consequently, we have tried to help the reader's 
understanding of important formulas either by giving an algebraic proof 
where this is feasible or by explaining on common-sense grounds the roles 
pl~yed by different p~rts of (It~ formul". 

This edition retains also one of the characteristic features of the 
book-the extensive use of experimental sampling to familiarize the reader 
with the basic sampling distributions that underlie modern statistical 
practice. Indeed. with the advent of electronic computers, experimental 
sampling in its own right has become much more widely recognized as a 
research weapon for solving problems beyond the current skills of the 
mathematician. 

Some changes have been made in the structure of the chapters, mainly 
al the suggeslion ofleachers who have used Ihe book as a lext. The former 
chapter 8 (Large Sample Methods) has disappeared, the retained material 
being placed in earlier chaplers. The new chapler 8 opens wilh an intro­
duction to probability, followed by the binomial and Poisson distributions 
(formerly in chapter 16). The discussion of mUltiple regression (chapter 
13) now precedes that of covariance and multiple covariance (chapter 1'1). 

v 



vi Preface 

Chapter 16 contains two related topics, the analysi. of two-way classifica­
tions with unequal numbers of observations in the sub-classes and the 
analysis of proportions in two-way classifications. The first of these 
topics was formerly at the end of a long chapter on factorial arrangements; 
the second topic is new in this edition. This change seemed advisable for 
two reasons. During the past twenty years there has been a marked in­
crease in observational studies in the social sciences, in medicine and public 
health, and in operations research. In their a'nalyses, these studies often 
involve the handling of multiple classifications which present complexities 
appropriate to the later sections of the book. 

Finally, in response to almost unanimous requests, the statistical 
tables in the book have been placed in an Appendix. 

A number of topics appear for the first time in this edition. As in 
past editions, the selection of topics was based on our judgment as to 
those likely to be most useful. In addition to the new material on the 
analysis of proportions in chapter 16, other new topics are as follows: 

• The analysis of data recorded in scales having only a small number 
of distinct values (section 5.8); 

• In linear regression, the prediction of the independent variable 
X from the dependent variable y, sometimes called linear calibration 
(section 6.14); 

• Linear regression when X is subject to error (section 6.17); 
• The comparison of two correlated estimates of variance (section 

7.12); 
• An introduction to probability (section 8.2); 
• The analysis of proportions in ordered classifications (section 

9.10); 
• Testing a linear trend in proportions (section 9.11); 
• The analysis ofa set of2 x 2 contingency tables (section 9.14); 
• More extensive discussion of the effects of failures in the assump­

tions of the analysis of variance and of remedial measures (sections 11.10-
11.13); 

• Recent work on the selection of variates for prediction in multiple 
regression (section 13.13); 

• The discriminant function (sections 13.14, 13.15): 
• The general method of fitting non-linear regression equations and 

its application to asymptotic1:egression (sections 15.7-15.8). 
Where considerations of space permitted only a brief introduction 

to the topic, references were given to more complete accounts. 
Most of the numerical illustrations continue to be from biological 

investigations. In adding new material, both in the text and in the exam­
ples to be worked by the student, we have made efforts to broaden the 



range of fields represented by data. One of the most exhilarating features 
of statistical techniques is the extent to which they are found to apply in 
widely different fields of investigation. 

High-speed electronic computers are rapidly becoming available as 
a routine resource in centers in which a substantial amount of data are 
analyzed. Flexible standard programs remove the drudgery of computa­
tion. They give the investigator vastly increased power to fit a variety of 
mathematical models to his data; to look at the data from different points 
of view; and to obtain many subsidiary results that aid the interpretation. 
In several universities their use in the teaching of introductory courses in 
statistics is being tried. and this use is sure to increase. 

We believe, however, that in the future it will be just as necessary 
that the investigator learn the standard techniques of analysis and under­
stand their meaning as it was in the desk machine age. In one respect. 
computers may change the relation of the investigator to his data in an 
unfortunate way. When calculations are handed to a programmer who 
translates them into the language understood by the computer. the investi­
gator, on seeing the printed results, may lack the self-assurance to query 
or detect errors that arose because the programmer did not fully under­
stand what was wanted or because the program had not been correctly de­
bugged. When data are being programmed it is often wise to include a 
similar example from this or another standard book as a check that the 
desired calculations are being done correctly. 

For their generous. permission to re'Prtnt tables we are i.ndebted to 
the late Sir Ronald Fisher and his publishers, Oliver and Boyd; to Maxine 
Merrington. Catherine M. Thompson. Joyce It May, E. Lord. and E. S. 
Pearson. whose work was published in Biometrika; to C. I. Bliss. E. L. 
Crow. C. White, and the late F. Wilcoxon; and to Bernard Ostle and his 
publishers, The Iowa State University Press. Thanks are due also to the 
many investigators who made data available to us as illustrative exam­
ples. and to teachers who gave helpful advice arising from their experience 
in using prior editions as a text. The work of preparing this edition was 
greatly assisted by a contract between the Office of Naval Research. 
Navy Department, and the Department of Statistics, Harvard University. 
Finally. we wish to thank Marianne Blackwell. Nancy Larson. James 
DeGracie and Richard Mensing for typing or proofreading. and especially 
Holly Lasewicz for her help at many stages of the work. including the 
preparation of the Indexes. 

George W. Snedecor 
William G. Cochran 
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SamPling of attributes 

l.t-Introduction. The subject matter of the field of statistics has 
been described in various ways. According to one definition, statistics 
deals with techniques for collecting, analyzing, and drawing conclusions 
from data. This description helps to explain why an introduction to sta­
tistical methods is useful to students who are preparing themselves for a 
career in one of the sciences and to persons working in any branch of 
knowledge in which much quanti~ative research is carried out. Such re­
search is largely concerned with gathering and summarizing observations 
or measurements made by planned experiments, by questionnaire surveys, 
by the records of a sample of cases of a particular kind, or by combing 
past published work on some problem. From these summaries, the in­
vestigator draws conclusions that he hopes will have broad validity. 

The same intellectual activity is involved in much other work of im­
portance. Samples are extensively used in keeping a continuous watch on 
the output of production lines in industry, in obtaining national and 
regional estimates of crop yields and of business and employment condi­
tions, in the auditing of financial statements, in checking for the possible 
adulteration of foods, in gauging public opinion and voter preferences, in 
.\M-:niW.Im.., . ..,.,ll,tlu- .JllIhlil'.i.'.in(mnwl J)I' J',mu:nI.i.<;.,,""I .arulJ\I\J)n 

Acquaintance with the main ideas in statistical methodology is also 
an appropriate part of a general education. In newspapers, books, tele­
vision, radio, and speeches we are all continuously exposed to statements 
that draw general conclusions: for instance, that the cost of living rose by 
0.3% in the last month, that the smoking of cigarettes is injurious to health, 
that users of "Blank's" toothpaste have 23% fewer cavities, that a tele­
vision program had 18.6 million viewers. When an inference of this kind 
is of interest to us, it is helpful to be able (0 form our own judgment about 
(he truth of the statement. Statistics has no magic formula for doing this 
in all situations, for much remains to be learned about the problem of 
making sound inferences. But the basic ideas in statistics assist us in 
thinking clearly about the problem, provide some guidance about the 
conditions that must be satisfied if sound inferences are to be made, and 
enable us to detect many inferences that have no good logical foundation. 

3 
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1.2--Purpooe of this chapter. Since statistics deals with the collection, 
analysis, and interpretation of data, a book on the subject might be ex­
pected to open with a discussion of methods for collecting data. Instead, 
we shall begin with a simple and common type of data already collected, 
the replies to a question given by a sample of the farmers in a county, and 
discuss the problem of making a statement from this sample that will 
apply to all farmers in the county. We begin with this problem of making 
inferences beyond the data because the type of inference that we are try­
ing to make governs the way in which the data must be collected. In 
earlier days, and to some extent today also. many workers did not appre­
ciate this fact. It was a common experience for statisticians to be ap­
proached with: Here are my results. What do they show? Too often the 
data were incapable of showing anything that would have been of interest 
to an investigator. because the method of collecting the data failed to 
meet the conditions needed for making reliable inferences beyond the 
data. 

In this chapter, some of the principal tools used in statistics for mak­
ing inferences will be presented by means of simple illustrations. The 
mathematical basis of these tools. which lies in the theory of probability, 
will not be discussed until later. Consequently, do not expect to obtain a 
full understanding of the techniques at this stage, and do not worry if the 
ideas seem at first unfamiliar. Later chapters will give you further study 
of the properties of these techniques and enhance your skill in applying 
them to a broad range of problems. 

1.3-The twin problems of sampling. A sample consists of a small 
collection from some larger aggregate about which we wish information. 
The sample is examined and the facts about it learned, Based on these 
facts, the problem is to make correct inferences about the aggregate or 
papulation. It is the sample that we observe, but it is the population which 
we seek to know. . 

This would be no problem were it not for ever-present variation. If 
all individuals were alike, a sample consisting of a single one would give 
complete information about the population. Fortunately, there is end­
less variety among individuals as well as their environments. A conse­
quence is that successive samples are usually different. Clearly, the facts 
observed in a sample cannot be taken as facts about the population. Our 
job then is to reach appropriate conclusions about the population despite 
sampling variation. 

. But I)ot every sample contains information about the population 
sampled. Suppose the objective of an experimental sampling is to de­
termine the growth rate in a population of young mice fed a new diet. Ten 
of the animals are put in a cage for the experiment. But the cage gets 
located in a cold draught or in a dark corner. Or an unnoticed infection 
spreads among the mice in the cage. If such things happen, the growth 
rate in the sample may give no worthwhile information about that in the 
population of normal mice. Again, suppose an interviewer in an opinion 
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poll picks only families among his friends whom he thinks it will be pleas­
ant to visit. His sample may not at all represent the opinions of the popula­
tion. This brings us to a second problem: to collect the sample in such a 
w~y that the sought-for information is contained in it. 

So we are confronted with the twin problems of the investigator: to 
design and conduct his sampling so that it shall be representative of the 
population; then, having studied the sample, to make correct inferences 
about the sampled population. 

1.4--A sample offarm facts. Point and interval estimates. In 1950 
the USDA Division of Cereal and Forage Insect Investigations, cooperat· 
ing with the Iowa Agricultural Experiment Station, conducted an exten­
sive sampling in Boone County, Iowa, to learn about the interrelation of 
factors affecting control of the European corn borer.· One objective 
ofthe project was to determine the extent of spraying or dusting for control 
of the insects. To this end a random sample of 100 farmers were inter­
viewed; 23 of them said they applied the treatment to their corn fields . 

. Such are the facts of the sample. 
What i'!!erences can be made about the population of 2,300 Boone 

County farmers? There are two of them. The first is described as a point 
eslimate, while the second is called an interval estimate. 

I. The point estimate of the fraction of farmers who sprayed is 23%, 
the same as the sample ratio; that is, an estimated 23% of Boone County 
farmers sprayed their corn fields in 1950. This may be looked upon as an 
average of the numbers of farmers per hundred who sprayed. From the 
actual count of sprayers in a single hundred farmers it is inferred that the 
average number of sprayers in all possible samples of 100 is 23 . 

. This sample-to1'opulation inference is usually taken for granted. 
Most people pass without a thought from the sample fact to this inference 
about the population. Logically, the two concepts are distinct. It is wise 
to examine the procedure of the sampling before attributing to the popu­
fation the percentage reported in a sample. 

2. An interml estimate ofth. point is made by use of table 1.4.1. [n 
the first part of the table. incticated by·95% in the heading, look across the 
top line to the sample size of 100, then down the left-hand column to the 
number (or frequency) observed. 23 farmers. At the intersection of the 
column and line you will find the figures 15 and 32. The meaning is this: 
one may be confident that the true percentage in the sampled population 
lies in the interval from 15~; to 32~o' This interval estimate is called the 
confident'e interrol. The nature of our confidence will be explained later. 

In summary: based on a random sample. we said first that our esti­
mate oflhe percentage of sprayers in Boone County was 23~o' but we gave 
no indication of the amount by which the estimate might be in error. Next 
we asserted confidently that the true percentage was not farther from our 
point estimate. 23°",. than 8 percentage points below or 9 above. 

Let us illustrate these concepts in another fashion. Imagine a bin 
• Data furni-shl!d courtesy of Dr. T. A. Br-indley. 
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TABLE 1.4.! 
9S% CoNFIDENCE INTU.vAl (Pa CENT) FOR. BINOMIAL DlSTtlIBUTION (1)* 

Number Sizt of Saml)le. " Fraction Size of Sample 
Observed Observed 

f 10 IS 20 30 50 100 fl. 250 1000 

0 0 27 0 20 0 IS 0 10 0 07 0 4 0..00 0. I 0 0 
I 0 40 0 31 0 23 0 17 0 II 0. 5 .01 0 4 0 2 
2 3 61 2 37 I 30 I 21 0 14 0. 7 .0.2 I 5 I 3 
3 8 62 5 45 4 36 2 25 I 17 I 8 ,03 I 6 2 4 
4 15 74 9 56 7 42 4 30 2 19 \ 10 .04 2 7 3 5 
5 22 78 14 64 10 47 6 33 3 22 2 II ,0.5 3 9 4 7 
6 26 85 19 67 14 54 9 37 5 24 2 12 .06 3 10 5 8 
7 38 92 19 71 14 59 to 41 6 27 3 14 ,07 4 II 6 9 
8 39 97 29 81 20. 65 13 44 7 29 4 15 ,0.8 5 12 ~ to 
9 60100 33 81 22 71 16 48 9 31 4 16 ,09 6 13 7 II 

10 73 100 36 86 29 71 17 53 to 34 5 18 ,10. 7 14 8 12 
II 44 91 29 78 20. 56 12 36 5 19 ,II 7 16 9 13 
12 55 95 35 80. 23 60 13 38 6 20 ,12 8 17 to 14 
13 63 98 41 86 24 64 15 41 7 21 ,13 9 18 II 15 
14 69100 47 86 29 68 16 43 8 22 ,14 10 19 12 16 
IS 80100 53 90 32 68 18 44 9 24 ,IS to 20 13 17 
16 58 93 32 71 20. 46 9 25 ,Ijj . II 21 14 18 
17 64 % 36 76 21 48 10. 26 ,17 12 22 15 19 
18 70 99 40 77 23 50. II 27 ,18 13 23 16 21 
19 77100 44 80. 25 53 12 28 .19 14 24 17 22 
20 85 100 47 83 27 55 13 29 ,20 15 26 18 23 
21 52 84 28 57 14 30 ,21 16 27 19 24 
22 56 87 30 59 14 31 ,22 17 28 19 25 
23 I 59 90 32 61 IS 32 ,23 18 29 20. 26 
24 " 63 91 34 63 16 3l ,24 19 30 21 27 
25 67 94 36 64 17 35 ,25 20. 31 22 28 
26 70. 96 37 66 18 36 ,26 20 32 23 29 
27 75 98 39 68 19 37 ,27 21 H 24 30 
28 79 99 41 70. 19 38 ,28 22 34 25 31 
29 83 100 43 72 20 39 ,29 23 35 26 32 
30 90100 45 73 21 40 ,30 24 36 27 33 
31 47 75 22 41 ,31 :IS 37 28 34 
32 50 77 23 42 ,32 26 38 29 35 
33 52 79 24 43 ,33 27 39 30 36 
34 54 80 25 44 ,34 28 40 31 37 
35 56 82 26 45 ,35 29 41 32 38 
)6 57 84 27 46 ,)6 30. 42 33 39 
37 59 85 28 47 ,37 31 43 34 40 
38 62 87 28 48 .38 32 44 35 41 
39 64 88 29 49 ,39 33 45 36 42 
40 66 90. 30. 50. .40 34 46 37 43 
41 69 91 31 51 .41 35 47 38 44 
42 71 93 32 52 .42 36 48 39 45 
43 7J 94 33 53 .43 37 49 40 46 
44 76 95 34 54 ,44 38 50. 41 47 
45 78 97 35 55 .45 39 51 42 48 
46 81 98 36 56 .46 40 52 43 49 
47 83 93 37 57 .47 41 53 44 50 
48 86 100 38 58 ,48 42 54 45 51 
49 89 100 39 59 .49 43 55 46 52 
50. 93 100 40 60 .50 44 56 47 53 

t tt tt 

• Reference (I) at end of chapter. 
t If f exceeds SO, read 100 - f = number observed and subtract each confidence limit 

from 100. 
tt Iffin exceeds 0.50. read 1.00 - fin == fraction observed and subtract each confidence 

limit from 100. 
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TABL.E lA. J --{Continued) 
~/q CO"''FIDENC~ INTEl. V,)L (PER CENT) FOR BINOMIAL DIsTRIBVTJON (J)'" 

Number Size of Sample, n Fraction Size of Sample 
Obsorved Observed 

f 10 15 20 30 50 100 fl· 250 1000 

0 0 38 0 28 0 21 0 16 0 10 0 5 0.00 0 2' 0 I 
I 0 52 0 38 0 30 0 21 0 14 0 7 .01 0 5 0 2 
2 I 63 I 47 0 38 0 26 0 17 0 9 .02 I 6 I 3 
3 4 71 3 54 2 43 I 31 I 20 0 10 .03 I 7 2 4 
4 9 19 S ~~ 4 S\) 1 ~S I l~ \ 11 .(14 1 9 1 ~ 
5 15 85 9 68 6 58 4 39 2 26 I 13 .05 2 10 3 7 
6 21 91 13 73 9 61 6 43 ) 29 2 14 .~ 3 II 4 8 
7 29 96 17 78 J2 b4 8 47 4 31 2 16 .07 3 13 5 9 
8 37 99 22 83 16 71 10 51 6 33 3 17 .08 4 14 6 10 
9 48100 27 87 20 7J 12 54 7 36 3 18 .09 5 IS 7 12 

10 62 100 32 91 20 80 15 57 8 38 4 19 .10 6 16 8 13 
II 37 95 27 80 15 62 10 40 4 20 .11 6 17 9 14 
12 46 97 29 84 19 <>6 II 43 5 21 .12 7 18 9 IS 
13 53 99 )6 88 20 b8 12 45 6 23 .13 8 19 10 16 
14 62 100 39 91 24 70 14 47 6 24 .14 9 20 II 17 
1.1 72 100 42 94 25 75 15 49 7 26 .15 9 22 12 18 
16 SO 96 30 76 17 51 8 27 .16 10 23 13 19 
17 57 98 32 80 18 53 9 29 .17 11 24 14 20 
18 62 100 34 81 20 55 9 30 .18 12 25 15 21 
19 70 100 )S 85 21 57 10 31 .19 13 26 16 22 
20 79 100 43 85 23 59 II 32 .20 14 27 17 23 
21 41' 88 24 61 12 )3 .21 15 28 18 24 
22 49 90 26 63 12 )4 .22 16 30 19 26 
23 53 n 28 65 I) 35 .23 17 31 20 27 
24 57 94 29 67 14 36 .24 IS 32 21 28 
25 61 96 31 69 15 3S .25 18 33 22 29 
26 65 98 JJ 71 16 39 .26 19 34 22 30 
27 69 99 35 72 16 40 .27 20 35 23 31 
28 74 100 37 74 17 41 28 21 36 24 32 
29 79 100 39 76 18 42 .29 22 37 25 33 
30 84 100 41 77 19 43 .30 23 38 26 34 
31 43 79 20 44 .31 24 39 27 35 
32 45 80 21 45 .32 25 40 28 36 
33 47 82 21 46 .33 26 41 29 37 
34 49 83 22 47 .34 26 42 30 38 
35 II 85 23 48 .35 27 43 31 39 
36 53 85 24 49 .36 28 44 32 40 
37 55 88 25 50 .37 29 45 33 41 
38 57 89 26 51 .38 30 46 34 42 
39 60 90 27 52 .39 31 47 35 43 
40 62 92 28 53 .40 32 48 36 44 
41 b4 93 29 54 .41 ]] 50 37 45 
42 67 94 29 55 .42 34 51 38 46 
43 69 96 3r. S6 .43 35 52 39 47 
44 71 97 31 57 .44 36 53 40 48 
45 74 93 32 58 .45 37 54 41 49 
46 77 99 33 59 .46 38 55 42 50 
47 80 99 34 60 .47 ~ ~ 43 51 
48 83 100 35 61 .48 44 52 
49 86 100 36 62 .49 41 57 .5 53 
50 90100 37 63 .50 2 5i 46 54 

t tt tt 

• Reference (1) at end of chapter. 
t Iff exceeds SO, read 100 - f = number observed and subtract each confideno.;: limit 

from 100. 
tt If/In exceeds 0.50, read 1.00 - /In = fraction observed and subtract each confidtnce 

limit from 100. 



8 Chapter I: Sompling of AHrihufe. 

filled with beans, some white and some colored, thoroughly mixed. Dip 
out a scoopful of them at random, count the number of each color and 
calculate the percentage of white, say 40%. Now this is not only a count 
of the percentage of white beans in the sample but it is an estimate of the 
fraction of white beans in the bin. How close an estimate is it? That is 
where the second'inference comes in. If there were 250 beans in the scoop, 
we look at the table for size of sample 250, fraction'observed = 0,40. From 
the table we say with confidence tbat the percentage of white beans in the 
bin is betweed 34% and 46%. 

So far we have given no measure of the amount of confidence which 
can be placed in the second inference. The table heading is "95% Con­
fidence Interval," indicating a degree of confidence that can be described 
as follows: If the sampling is repeated indefinitely, each sample leading to 
a new confidence interval (that is, to a new interval estimate), then in 95% 
of the samples the interval will cover the true population percentage. If 
one makes a practice of sampling and if for each sample he states that the 
population percentage lies within the corresponding confidence interval, 
about 95% of his statements will be correct. Otber and briefer deSCriptions 
will be proposed later. 

If you feel unsafe in making inferences with the chance of being 
wrong in 5% of your statements, you may use the second part of the table, 
"99"10 Confidence Interval." For the Boone County sampling the interval 
widens to 13%-35%. If one says that the population percentage lies with­
in these limits, he will be right unless a one-in-a-hundred chance has oc­
curred in the sampling. 

If the size of the popUlation is known, as it is in the case of Boone 
County farmers, the point and interval estimates can be expanded from 
percentages to numbers of individuals. There were 2,300 farmers in the 
county. Thus we estimate the number of sprayers in Boone County in 
1950 as 

(0.23)(2,300) = 529 farmers 

In the same way, since the 95% confidence interval extends from 15% 
to 32% of the farmers, the.95% limits for the number of farmers who 
sprayed are ' 

(0.15)(2.300) = 345 farmers: and (0.32)(2,300) = 736 farmers 

Two points about interval estimates need emphasis. First, the con­
fidence statement is a statement about the population ratio, nol aboul 
the ralio in other samples that mighl be drawn. Second, the uncertainty 
involved comes from the sampling process. Each sample specifies an 
interval estimate. Whether or not the interval happens to include the 
fixed population ratio is a hazard of the process. Theoretically, the 95~~ 
confidence intervals are determined SO that 95% of them will COver the 
true value. 

Before a sample is drawn, one can specify the probability of the truth 
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of his prospective confidence statement. He can say, "I expect to take a 
random sample and to make an interval estimate from it. The probability 
is 0.95 that the inteLVal will cover the population fraction." After the 
sample is drawn, however, the confidence statement is either true or it is 
false. Consequently, in reporting the results of the Boone County sam­
pling, it would be incorrect to say, "The probability is 0.95 that the number 
of sprayers in Boone County in 1950 lies between 345 and 736." This 
logical point is a subtle one, and does not weaken the effectiveness of 
confidence interval statements. In a specific application, we do not know 
whether our confidence statement is one of the 95% that are correct or one 
of the 5% that are wrong. There are methods, in particular the method 
known as the Bayesian approach, that provide more definite probability 
statements about a single specific application, but they require more 
assumptions about the nature of the population that is being sampled. 

The heading of this chapter is "Sampling of Attributes." In the 
numerical example the attribute in question was whether the farm had 
been sprayed or not. The possession or lack of an attribute distinguishes 
the two classes of individuals making up the popUlation. The data from 
the sample consist of the numbers of members of the sample found to have 
or to lack the attribute under investigation. The sampling of populations 
with two attributes is very common. ExampJes are Yes or No answers to 
a question, Success or Failure in some task, patients Improved or Not 
Improced under a medical treatment, and persons who Like or Dislike 
some proposal. Later (chapter 9) we shall study the sampling of popula­
tions that have more than two kinds ofattributes, such as persons who are 
Strongly Farorable, Mildly Favorable, Neutral, Mildly UnJavorable. or 
Strongly Un(awrable to some proposal. The theory and methods for 
measurement data. such as heights, weights, or ages, will be considered 
in chapter 2. 

This brief preview displays a goodly portion of the wares that the 
statistician has to offer: the sampling of populations. examination of the 
facts turned up by the sample. and, based on these facts. inferences about 
the sampled popUlation. Before going further,. you may clarify your 
thinking by working a few examples. 

Examples form an essential part of our presentation of statistics. 
In each list they are graded so that you may start with the easier. It is 
suggested that a rew in each group be worked after the first reading of the 
text. reserving the more difficult until experience is enlarged. Statistics 
cannot he mastered without this or similar practice. 

EXAMPLE 1.4.1-In controlling the quality of a mass-produced article in ind_ustry. a 
random sample of l~ articles from a large lot were ~ch tested for effectiveness. Ninety­
tw~ wer.e found effective. What are the 99% confidencd limits for the percentage of effective 
articles In the whole lot? Ans. 83% and 97%. Hint: look: in the table for 100 - 92 ... 8. 

o EXA~PLE ~ .4.2-lf 1,000 articles in (he preceding example had been tested and only 
~% found lOeffectlve: w.hat would be the 99% limits? Ans. Bet~een 90% and 94% are effec­
tIVe. Note how the hums have nanowed as a result of the increased sample size. 
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EXAMPLE 1.4.3-A sampler of public opinion asked 50 men to express their prefer­
ences between candidates A aod 8. Twenty preferred A. Assuming random sampling from 
a population of 5,000. the sampler stated that between 1,350 and 2,750 in the population 
preferred A. What confidence interval was he using'? Ans. 95'j~. 

EXAMPLE 1.4.4------10 a health survey of adults. 86~~ stated that they had had measles 
at some time in the past. On the basis of this sample the statistician asserted that unless a 
l·in~20 chance had oCCurred, the percentage of adults in the population who had had measles 
was between 81% and 90~~. Assuming random sampling. what was the size of the sample? 
Ans. ~50. Note: the statistician's inference may have been incorrect for other reasons. 
Some people have a mild attack of measles without realizing it. Others may have forgotten 
that they had it. Consequently, the confidence limits may be underestimates for the per­
centage in the population who actuaUy had measles, as distinct from the percentage who 
would state that they had it. 

EXAMPLE 1.4.5---If in the sample of 100 Boone County farmers none had sprayed, 
wbat 95~~ conliddu:c- statement would fOU make about the farmers in tire county? Ans. 
Between none and 4~·~ sprayed. But suppose that all fanners in the sample were sprayers, 
what 'is the 99'\, confidence interval? Ans. 95%~lOO~{,. 

EXAMPLE J .4.t).-----If you guess that in a certain population between 25~·~ and 75~~ of 
the housewives own a specified appliance, and if you wish to draw a sample that will, at the 
95~"; confidence level, yield an estimate differing by not more than 6 from the correct percent­
age. about how large a sample must you take':' Ans. 250. 

EXAMPLE 1.4.?-An investigator interviewed 115 women over 40 years of age from 
the lower middle economic level in rural areas of mid die we stern slates. Forty-six of them had 
listened to a certain radio program three Ot more times during the preceding month. As­
suming random sampling, what statement can be made about the- percentage of women 
listening in the population. using the 99% interval':', __ Ans: Approximately. between 28.4~/~ 
and 52,5% listen. You will need to interpolate between the results for n >: 100 and n == 250. 
Appendix A 1 (p. 541, gives hints on interpolation. 

EXAMPLE l.4.g-For samples that show 50% in a certain class. write down the width 
of the 95%oonfidence interval for n = 10,20,30,50, 100,250, and 1.000. For each sample 
size n. multiply the width of the interval by yin. Show that rhl:: product is always near 200. 
This means that the wtdth 'of the interval is approximately related to the sample size by the 
formula W = 200/-.. '/n. We say Ihat the width goes down as J/.'/n. 

1.S-Random sampling. The ~onfidence intervals in table 1.4.1 were 
computed mathematically on the assumption that the data are a random 
sample lrom the population. In its simplest form, random sampling 
means that every member of the \)0pulation has an equal chance of ap­
pearing in the sample, independently of the other members that happen 
to fan in the sample. Suppose that the population has four members, 
numbered 1,2,3,4, and that we ate drawing samples of size two. There 
are ten possible samples that contain two members: namely, (I, 2), (I, J), 
(1,4), (2, 3), (2, 4), (3, 4), (I, 1), (2, 2), (3, 3), and (4, 4). With simple 
random sampling, each of these ten samples has an equal chance of being 
the sample that is drawn. Notice two things. Every member appears 
once in three samples and twice in one sample, so that the sampling shows 
no favoritism as between one member and another. Secondly, look at 
the four samples in which a I appears, (1,2), (I, 3), (I, 4), and (I, I). The 
second member is equally likely to be a 1. 2. 3, or 4. Thus. if we are told 
that 1 has been drawn as the first member of the sample, we know that 
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each member of the population still has an equal chance of being the sec­
ond member of the sample. This is what is meant by the phrase "inde­
pendently of the other members that happen to fan in the sample." 

A common variant of this method of sampling is to allow any mem­
ber of the population to appear only once in the sample. There are then 
six possible samples of size two: (1, 2), (1, 3), (I, 4), (2, 3), (2, 4), and (3, 4). 
This is the kind of sampling that occurs when two numbers are drawn out 
of a hat. no number being replaced in the hat. This type of sampling is 
called random sampling without replacement, whereas the sampling de­
scribed in the preceding paragraph is random sampling with replacement. 
If the sample is a small fraction of the population, the two methods are 
practically identical, since the possibility that the same item appears 
more than once in a sample is negligible. Throughout most of the book 
we shall not distinguish between the two methods. In chapter 17, for­
mulas applicable to sampling without replacement are presented. 

There are more complex types of random sampling. In all of them, 
every member of the population has a known probability of coming into 
the sample, but these probabilities may not be equal or they may depend, 
in a known way, on the other members that are in the sample. In the 
Boone County sampling a book was available showing the location of 
every farm in the county. Each farm was numbered so that a random 
sample could have been drawn by mixing the numbers thoroughly in a 
box, then having a hundred of them drawn by a blindfolded person. 
Actually, the samplers used a scheme known as stratified random sampling. 
From the farms in each township (a subdivision of tho. county) they drew 
a random sample with a size proportional to the number of farms in that 
township. In this example, each farm still has an equal chance of appear' 
ing in the sample. but the sample is constructed to contain a specified 
number from every township. The chief advantage is to spread the sam­
ple more uniformly over the county, retaining the principle of random­
ness within each township. Statistical methods for stratified samples 
are presented in chapter 17. The conclusions are only slightly altered by 
considering the sample completely random. Unless otherwise mentioned, 
we will use the phrases "random sample" and "random sampling" to 
denote the simplest type of random sampling with replacement as de­
scribed in the first paragraph of this section. 

An important feature of all random sampling schemes is that the 
sampler has no control over the specific choice of the units that appear 
in the sample. If he exercises judgment in this selection, by choosing 
"typical" members or excluding members that appear "atypical," his 
results are not amenable to probability theory, and confidence intervals, 
which give valuable information about the accuracy of estimates made 
from the sample, cannot be constructed. 

In some cases the population is thoroughly mixed before the sample 
is taken, as illustrated by the mascerating and blending of food or other 
chemical products. by a naturally mixed aggregate such as the blood 
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stream, or by the sampling of a liquid from a vat that has been repeatedly 
stirred. Given an assurance of thorough mixing, the sample can be drawn 
from the most accessible part of the population, because any sample 
should give closely similar results. But complete mixing in this sense is 
often harder to achieve than is realized. With populations that are vari­
able but show no clear pattern of variation, there is a temptation to con­
dude that the population is naturally mixed in a random fashion, so that 
any convenient sample will behave like one randomly drawn. This 
assumption is hazardous, and is difficult to verify without a special in­
vestigation. 

One way of drawing a random sample is to list the members of the 
population in some order and write these numbers on slips of paper, 
marbles, beans, or small pieces of cardboard. These are placed in a box or 
bag, mixed carefully, and drawn out, with eyes shut, one by one until 
the desired size of sample is reached. With small populations this method 
is convenient. and was much used in the past for cJassroom exercises. 
It has two disadvantages. With large populations it is slow and unwieldy. 
Further, tests sometimes show that if a large number of samples are drawn, 
the samples differ from random samples in a noticeable way, for instance 
by having certain members of the popUlation present more frequently 
thaD they should be. In other words, the mixing was imperfect. 

1.6-Tables of random digits. Nowadays, samples are mostly drawn 
by the us< of tables of random digits. These tables are produced by a 
process-usually mechanical or electrical-that gives each of the digits 
from 0 to 9 an equal chance of appearing at every draw. Before publica­
tion of the tables, the results of the drawings are checked in numerous 
ways to ensure that the tables do not depart materially from randomness 
in a manner that would vitiate the commonest usages of the tables. Table 
A I (p.543) contains 10,000 such digits, arranged in 5 x 5 blocks to facili­
tate reading. There are 100 rows and 100 columns, each numbered from 

·00 to 99. Table 1.6.1 shows the first 100 numbers from this table. 
The chaotic appearance of the set of numbers is evident. To illus­

trate how the table is used with attribute data, suppose that 50~1, of the 
members of a popUlation answer "Yes" to some question. We wish to 
study how well the proportion answering "Yes" is estimated from a sam-

TABLE 1.6.1 
ONE HUNDilED RANDOM DiGiTS FROM T"BLE A I 

0041 05-<)9 10-14 15-19 

00 54463 22662 65905 1Il639 
01 15389 85205 18850 39226 
02 85941 40756 82414 02015 
03 61149 69440 11286 88218 
04 05219 SI619 10651 67079 
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pie of size 20. A "Yes" answer can be repre,ented by the appearance 
of one of the digits 0, 1, 2, '3, 4, or alternatively by the appearance of an 
odd digit. With either choice, the probability of a "Yes" at any draw 
in the table is one-half. We shall choose the digits 0, I. 2. 3, 4 to represent 
"Yes," and let each row represent a different sample of size 20. A 
count, much quicker than drawing slips of paper from a box, shows 
that the successive rows in table 1.6.1 contain 9, 9, 12, 11, and 9 "Yes" 
answers. Thus, the proportions of "Yes" answers in these five samples 
of size 20 are, respectively, 0.45, 0.45, 0.60, 0.55, and 0.45. Continuing 
in this way we can produce estimates of the proportion of "Yes" an­
swers given by a large number of separate samples of size 20. and then 
examine how close the estimates are to the population value. In count­
ing the row numbered 02, you may notice a run of results that is typical 
of random sampling. The row ends with a succession of eight consecu­
tive "Yes" answers, followed by a single "No." Observing this phe­
nomenon by itself, one might be inclined to conclude that the proportion 
in the population must be larger than one-half, or that something is 
wrong with the sampling process. 

Table A I can also be used 10 investigate sampling in which the pro­
portion in the population is any of the numbers 0.1, 0.2, 0.3, ... 0.9. 
With 0.3. for example. we let the digits O. I. or 2 represent the presence of 
the attribute and the remaining seven digits its ifbsence. If you are inter­
ested in a population in which the proportion is 0.37. the method is to select 
pairs of digits, letting any pair between 00 and 36 denote the presence of 
the attribute. Tables of random digits are employed in studying a wide 
range of sampling problems. You can probably see how to use them to 
answer such questions as: On the average, how many digits must be taken 
until a 1 appears °-or, How frequently does a 3 appear before either a 
I or a 9 has appeared 0 In fact, sampling from tables of random digits 
has become an important technique for solving difficult problems in 
probability for which no mathematical solution is known at present. 
This technique goes by the not inappropriate name of the Monte Carlo 
method. For this reason, modern electronic computing machines have 
programs available for creating their own tables of random digits as they 
proceed with their calculations. 

To the reader who is using random numbers for his own pu'poses, 
we suggest that he start on the first page and proceed systematically 
through the table. At the end of any problem, note the rows and columns 
used and the direction taken in counting. This is sometimes needed for 
later reference or in communicating the results to others. Since no digit 
is used more than once, the table may become exhausted, but numerous 
tables are available. Reference (2) contains 1 million digits. In classroom 
use, when a number of students are working from the same table, obtain­
ing samples whose results will be put together. different students can start· 
at different parts of the table and also vary the direction in which they 
proceed, in order to avoid duplicating the results of others. 
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I. 7-Confidence interval: verification of theory. One who draws 
samples from a known population is likely to be surprised at the capricious 
way in which the items turn up. It is a salutary discipline for a student 
or investigator to observe the laws of chance in action lest he become too 
confident of his professional samplings. At this point we recommend that 
a number of samples be selected from a population in which the propor­
tion of "Yes" answers is one-half. Vary the sample sizes. choosing some 
of eac\!. of the sizes 10, 15,20,30,50, 100. and 250 for which confidence 
intervals are given in table 104.1 (1,000 is too large). For each sample, 
record the sample sizes and the set of rows and columns used in the table 
of random digits. From the number of "Yes" answers and the sample 
size, read table 1.4.1 to find the 95% and 99~~ confidence intervals for the 
percentage of "Yes" answers in the popUlation. For each sample, you 
can then verify whether the confidence interval actually covers 50%. If 
possible, draw 100-or more samples, since a large number of~amples is 
necessary tor any close verification of the theory, particularly with 99~~ 
intervals. In a classroom exercise it is wise to arrange for combined 
presentation and discussion of the results from the whole class. Preserve 
the results (sample sizes and numbers of "Yes" answers) since they Will 
be used again later. 

You have now done experimentally what the mathematical statis­
tician does theoretically when he studies the distribution of samples 
drawn at random from a specified population. 

For illustration, suppose that an odd digit represents a "Yes" 
answer, and that the first sample, of size 50, is the first column of table A I. 
Counting down the column, you will find 24 odd digits. From table 1.4.1, 
the 95'1, confidence interval extends from 36% to 64%, a correct verdict 
because it includes the population value of 50'1.. But suppose one of your 
samples of 250 had started at row 85. column 23. Moving down the suc­
cessive columns you would count only 101 or 40.4,%; odd and would 
assert that the true value is between 34% and '46~/~. You would be wrong 
despite the'fa~t that the sample is randomly drawn from the same popu­
lation as the others. This sample merely happens to be unusually diver­
gent. You should find about five samples in a hundred leading to in­
correct statements, but there will be no occasion for surprise if only three, 
or as many as seven, turn up. With confidence probability 99% you ex­
pect, of course, only about one statement in a hundred to be wrong. We 
hope that your results are sufficiently concordant with theory to give 
you confidence in it. You will certainly be more aware of the vagaries 
of sampling, and this is one of the objectives of the experiment. Another 
lesson to be learned is that only broad confidence intervals can be based 
on small samples, and that even so the inference can be wrong. 

Finally, as is evident in table 1.4.1, you may have observed that the 
interval narrows rather slowly with increasing sample size. For samples 
of size 100 that show a percentage of "Yes" answers anywhere between 
40% and 60%, the 95% confidence interval is consistently of width 20%. 
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With a sample ten times as large (n = 1,000) the width of the interval de­
creases to 6%. The width goes down roughly as the square root of the 
sample size, since 20/6 is 3.3 and .JIO is 3.2 (this result was verified in 
example 1.4.8). 

Failure to make correct inferences in a small portion of the samples 
is not a fault that can be remedied, but a fault inevitably bound up in the 
sampling procedure. Fallibility is in the very nature of such evidence. 
The sampler can only take available precautions, then prepare himself for 
his share of mistakes. In this he is not alone. The journalist, the judge, 
the banker, the weather forecaster-these along with the rest of us are 
subject to the laws of chance, and each makes his own quota of wrong 
guesses. The statistician has this advantage: he can, in favorable circum­
stances, know his likelihood of error. 

1.8-The sampled population. Thus far we have learned that if we 
want to obtain some information about a population that is too large to 
be completely studied, one way to do this is to draw a random sample 
and construct point and interval estimates, as in the Boone County exam­
ple. This technique of making inferences from sample to population is 
one of the principal tools in the analysis of data. The data, of course, 
represent the sample, but the concept of the population requires further 
discussion. In many investigations in which data are collected, the popu­
lation is quite specific, apart possibly from some problems of definition: 
the patients in a hospital on a particular day, the payments received by a 
firm during the preceding year, and 30 on. In such cases the investigator 
often proceeds to select a simple random sample, or one of the more 
elaborate methods of sampling to be presented in chapter 17, and makes 
inferences directly from his sample to his population. 

With a human popUlation, however, the popUlation actually sampled 
may be narrower than the original popUlation because some persons 
drawn into the sample cannot be located, are ill, or refuse to answer the 
questions asked. Non-responses of this kind in 5% to 15% of the sample 
are not uncommon. The popUlation to which statistical inferences apply 
must be regarded as the aggregate of persons who would supply answers 
if drawn into the sample. ' 

Further, for reasons of feasibility or expense, much research is carried 
out on populations that are greatly restricted as compared to the popUla­
tion about which, ideally, the investigator would like to gain information. 
In psychology and education the investigator may concentrate on the 
students at a particular university, although he hopes to find results that 
apply to all young men in the country of college age. If the measuring 
process is troublesome to the person being measured, the research worker 
may have to depend on paid volunteers. In laboratory research on ani­
mals the sample may be drawn from the latest group of animals" sent from 
the supply house. In many of these cases the sampled population, from 
the viewpoint of statistical inference, is hard to define concretely. It is the 
kind of population of which the data can be regarded as a random sample. 
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Co'!fidence interval statements apply to the population thaI was 
actually sampled. Claims that such inferences apply to some more exten­
sive population must rest on the judgment of the investigator or on addi­
tional extraneous information that he possesses. Careful investigators 
take pains to describe any relevant characteristics of their data in orde~ 
that the reader can envisage the nature of the sampled population. The 
investigator may also comment on ways in wIDch IDS sampled population 
appears to differ from some broader population that is of particular 
interest. As is not surprising, results soundly established in narrow popu­
lations are sometimes shown to be erroneous in much broader popula· 
tions. Fortunately, local studies that claim important results are usually 
repeated by investigators in other parts of the country or the world, SO 

that a more extensive target population is at least partially sampled in 
tIDS way. 

1.9-The fr""""""y distribution and its graphical representation. 
One group of students drew 200 samples, each of size 1 O. The combined 
results are compactly summarized in a frequency distribution, shown in 
table 1.9.1. There are only eleven possible results for the numher of odd 
digits ill a sample, namely the integers 0, 1,2, ... 10. Consequently, the 
frequency distribution has eleven classes. The number of samples out of 
the 200 that faU into a class is the class frequency. The sum of the class 
frequencies is, of course, the total number of samples drawn, 200. The 
classes and their frequencies give a complete summary of the drawings. 

TIDs type of frequency distribution is called discrele, because the 
variable, number of odd digits, can take only a limited number of distinct 
values. Later we shall meet continuous frequency distributions, wIDch are 
extensively u.ro with measurement data. 

One striking feature of the sampling distribution is the conecntra-

TABLE 1.9.1 
FIU3Q~C)' D~IBUTION OF Nuvans OF <;>Do DIGITS IN 200 SAMPLES Of n === 10 

Class Class Theoretical 
(NumbcT of Odd Diaits) Ftequency Class Frequency 

0 1 0.2 
1 1 2.0 
2 8 U 
3 2S 23.4 
4 39 41.0 
S 4S 49.2 
6 36 41.0 
7 2S 23.4 
8 16 &.& 
9 4 2.0 

10 0 0.2 

Total Frequency 200 200.0 
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tion of frequencies near the middle of the table. The greatest frequency 
is in the class of five odd digits; that is, half odd and half even. The three 
middle classes, 4, 5, 6, contain 39 + 45 + 36 = 120 samples, more than 
half of the total frequency. This central tendency is the characteristic 
that gives us confidence in sampling-most samples furnish close esti­
mates of the population fraction of odds. This should counterbalance the 
perhaps discouraging fact that some of the samples are notably divergent. 

Another interesting feature is the symmetry of the distribution, the 
greatest frequency at the center with a trailing away at each end. This is 
because the population fraction is 50%; if the percentage were nearer zero 
or 100, the frequencies would pile up at or near one end. 

The regularity that has appeared in the distribution shows that chance 
events follow a definite law. The turning up of odd digits as you counted 
them may have seemed wholly erratic: whether an odd or an even would 
come next was a purely chance ~vent. But the summary of many such 
events reveals a pattern which may be predicted (aside from sampling 
variation). 

Instead of showing the class frequencies in table 1.9.1, we might have 
divided each class frequency by 200, the number of samples, obtaining a 
set of ,elatire class frequencies that add to I. As the number of samples is 
increased indefinitely, these relative frequencies tend to certain fixed 
values that can be calculated from the theory of probability. The theoreti­
cal distribution computed in this way is known as the binomial distribu­
tion. It is one of the commonest distributions in statistical work. In 
general terms, the formula for the binomial distribution is as follows. 
Suppose that we are drawing samples of size n and that the attribute in 
question is held by a proportionp of the members of the population. The 
relative frequency of samples containing' members having the attribute, 
or in other words the probability that a .sample will contain r members 
having the attribute, is 

n(n - I)(n - 2) ... (n - r + I) P'(I _ pr-' 
,(r - I)(r - 2). " (2)(1) 

In the numerator the expression n(n - I )(n - 2) ... (n - r + I) means 
"multiply together all the integers from n down to (n - , + I), inclusive." 
Similarly, the first term in the denominator is a shorthand way of writing 
the instruction "multiply together all integers from r down to I." We 
shall study the binomial distribution and its mathematical derivation in 
chapter 8. 

What does this distribution look like for our sampling in table 1.9.1? 
We have n = 10 and p = 1/2. The relative frequency or probability of a 
.. mpl. having four odd digits is, putting r = 4 so that (n - r + I) = 7, 

(I0)(9)(8)(7)(!)'(!)6 = (210)(!)10 = 210 
(4)(3)(2)(1) 2 2 2 1024 
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As already mentioned, these reliltive frequencies add to I. (This is 
not obvious by looking at the formula, but comes from a well-known 
result in algebra.) Hence, in our 200 samples of size 10, the number that 
should theoretically have four odd digits is 

(200)(210) 
41.0 

1024 

These theoretical class frequencies are given in the last column of table 
1.9.1. The agreement between the lJctual and theoretical frequencies is 
pleasing. . 

The graph in figure 1.9.1 brin~s out the features of tbe binomial 
distribution. On the horizontal axis .. re marked off the different classes­
the numbers of odd digits. The solid ordinate beside each class number 
is the observed class frequency while the dotted ordinate represents the 
theoretical frequency. This is tbe type of grapb appropriate for discrete 
distributions. 
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" EXAMPLE 1.9.I-For the 200 samples of size 10 in table 1.9.1. in how many cases is 
(i) the 95% confidence interval statement wrong? (ii) the 99V~ confideoce interval statement 
wrong? Ans. (i) 6 times. or 3.0%: (ii) I time, or 0.5%. 

EXAMPLE 1.9.2-Use the table of random digits to select a random sample of 20 
pages ofthis book, regarding the population as consisting of pages 3-539. Note the number 
of pages in your sample that do not contain the beginning: of a new section, and calculate 
(he 95% interval for the proportion of pages' in'the book on which no new section begins. 
Don't count "References" as a section. The popUlation proportion ls 311/537 = 0.59. 

EXAMPLE 1.9.3--Whcn the doors of a clinic are opened. twelve patients enter simul­
taneously. Each patient wishes to be handled first. Can you use the random digit tabJe to 
arrange the patients in a random order? 

EXAMPLE 1.9.4-A sampler of public opinion estimates from a sample tbe number of 
eligible voters in a state favoring a certain candidate for governor. Assuming that his esti­
mate was close to the population value at the time the survey was made j suggest two teasons 
why the ballot on election day might be quite different. 

EXAMPl.E 1.9.5-A random sample of families from a population bas been selected.. 
An interviewer calls on each family at its bome between the hours of9 A.M. and 5-p.M. If 
no one is ott home. the interviewer makes no attempt to contact the family at slater time. For 
each of the following attributes. give your opinion whether the sample results are likely to 
overestimate. underestimate. or be at about the correct level: (i) proportion of families in 
which coe husband is "retired. (ii) proportion o(families with at least one child under 4 yean, 
{iii} proportion of families in whi<:h husband and wife both work. Give YOUt reasons. 

EXAMPLE 1.9.6-From the: formula for the binomial distribution. calculate the prob.­
ability of O. I. 2 "'Yes" answers in a sample of size 2, where p is the proportion of "Yes" 
answers in the popuJation. Show that the three probability values add to 1 for any value of p. 

EXAMPLE 1.9.7-At birth the probability that a child is a boy is very close to one· 
half. Show thai according to the binomial distribution. balf the families of si~e 2 ~how.d 
consist of one boy and one girl. Why is the proportion of boy-girl families likely to be Slightly 
\(SS than one·half in practice'" 

EXAMPLE 1.9.8·-~Five dice were tossed 100 times. At each toss the number oftwo's 
(deuces) out oftive were noted. with these resultS: 

Number Deuces Frequellcy of Theoretical 
Per Toss Oc(,:urrence Frequency 

5 2 o.oll 
4 3 0.322 , , 3.214 
2 18 16.075 
1 42 4{).188 
0 32 4{).188 

Total 100 100.000 

(i) From the binomial distribution, verify the result 16.075 for the theoretical frequency 
,Jf.2 deuceS. Iii) Draw a graph showing the observed and'theoretical distributions. (iii) Do 
~·tlU Ihink the dice were balanced and fairly tossed? Ans. The binomial probability of 2 
J.euces i:. 1250/7776 = 0.16075. This is multiplied by 100 to give the theoretical frequency. 
A later. test (example 9.5.1) casts doubt on the truO'4-1. 



t.tO-Hypotheses about populations. The investigator often has in 
mind a definite hypothesis about the population ratio, the purpose of 
the sampling being to get evidence concerning his hypothesis. Thus a 
geneticist studying heredity in the tomato had reason to believe that in 
the plantS produced from a certain cross, fruits with red nesh and yellow 
nesh would be in the ratio 3: 1. In a sample of 400 he found 310 red toma­
toes instead of the hypothetical 300. With your experience of sampling 
variation, would you accept this as verification or refutation of the hy­
pothesis? Again, a physician has the· hypothesis that a certain disease 
requiring hospitalization is equally common among men and women. 
In a sample of 900 hospital cases he finds 480 men and 420 women. Do 
these results support or contradict his hypothesis? (Incidentally, this is 
an example in which the sampled population may differ from the target 
population. Although good medical practice may prescribe hospitaliza­
tion, there are often cases that for one reason or another do not come to 
a hospital and therefore could not be included in his sample.) 

To answer such questions two results are needed, a measure orthe 
deviation of the sample from the hypothetical popUlation ratio, and a 
means of judging whether this measure is an amount that would commonly 
occur in sampling, or, on the contrary, is so great as to throw doubt upon 
the hypothesis. Both results were furnished by Karl Pearson in 1899 (3). 
He devised an index of dispersion or test criterion denoted by X' (chi­
square) and obtained the formula for its theoretical frequency distribution 
when the hypothesis in question is true. Like the binomial distribution, 
the chi-square distribution is another of the basic theoretical distributions 
much used in statistical work. Let us first examine the index of dispersion. 

I.II-Chi-square, an index of dispersion. Naturally, the deviations 
of the observed numbers from those specified by the hypothesis form the 
basis' of the index. In the medical example, with 900 cases, the numbers 
of male and female cases expected on the hypothesis are each 450. The 
deviations-. tpen, are 

480 - 450 = +30, 

and 

420 - 450 = -30, 

the sum of the two being zero. The value of chi-square is given by 

2 _ (+ 30>' ( - 30>' _ 2 2 - 4 
1. - 450 + 450 - + -

Each deviation is -squared, each square is divided by the hypothetical or 
expected number, and the results are added. The expected numbers appear 
in the denominators in order to introduce sample size into the quantity­
it is the relatit1e size that is important. 

The squaring of the deviations in the numerator may puzzle you. 
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It is a common practice in statistics. We shall simply say at present that 
indexes constructed in this way have been found to have great flexibility. 
being applicable to many different types of statistical data. Note that the 
squaring makes the sign of the deviation unimportant, since the square of a 
negative number is the same as that of the corresponding positive number. 
It is clear that chi-square would be zero if the sample frequencies were.the 
same as the hypothetical, and that it will increase with increasing deviation 
from the hypothetical. But it is not at all clear whether a chi-square value 
of 4 is to be considered large, medium, or small. 

To furnish a basis for judgment on this point is our next aim. Pearson 
founded hi. judgment from a study of the theoretical distribution of chi­
square, but we shall investigate the same problem by setting up a sampling 
experiment. Before doing this, a useful formula will be given, together 
with a few examples to help fix it in mind. 

1.1l-The formula for chi-square. It is convenient to represent by 
II and I, the sample counts of individuals who do and do not possess the 
attribute being investigated, the corresponding hypothetical or expected 
frequencies being FI and F,. The two deviations, then, are II - FI and 
I, - F" so that chi-square is given by the formula. 

X' = (/1 - FI)'/FI + (I, - F,)'/F, 

The formula may be condensed to the more easily remembered as well as 
more general one, 

X' = J:.(/ - F)' /F, 

where t denotes summation. In words, "Chi-square is the sum of such 
ratios as 

~4!~c...~w.,,- ,,\'J&eJ!\i~"'l.%tJ!l! "-ll!t\be<\" 

Let us apply the formula to the counts of red and yellow tomatoes 
in section 1.10. There, II = 310, I, = 400 - 310 = 90, FI = 3/4 of 
400 = 300, and F, = 1/4 of 400 = 100. Whence, 

, _ (310 - 3(0)' (90 - 1(0)' _ 33 
X - 300 + 100 -).;_ 

Note. When computing chi-square it is essential to use the actual size 
of sample and the actual numbers in the two altribute classes. lfwe know 
only the percentages or proportions in the two classes, chi-square cannol 
he calculated. Suppose we are told that 80~~ of the tomato plants in a 
sample are red, and asked to compute chi-square. If we guess that the 
sample cont~ined 100 plants then 

, (80 - 75)' (20 - 25)' 25 25 
X = 75 + 25 = 75 + 25 = 1.33 
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But if the sample actually contained only 10 plants, then 

2 (8 - 7.5)2 (2 - 2.5)2 0.25 0.25 
X = 7.5 + 2.5 = 7.5 + 2.5 = 0.133 

If the sample had 1,000 plants, a similar calculation finds X2 = 13.33. 
For a given percentage red, the value of Chi-square can be anything from 
almost zero to a very large number. 

EXAMPLE 1.12.I-A student tossed a coin 800 times, getting 440 heads. What is the 
value of chi-square in relation to the hypothesis that heads and tails are equally likely? 
ADs. 8. 

EXAMPLE'I.12.2-lf the count in the preceding example had been 220 heads out of 
400 lOsses, would chi-square also be half its original value? 

EXAMPLE 1.12.3---A manufacLurer of a small mass-produced article claims that 96% 
oftbe articles function properly. In an independent test of 1.000 articles. 950 were found to 
function properly. Compute chi-square. Ans. 2.60. 

EXAMPLE 1.12.4-10 the text example about tomatoes the deviation from expectation 
was 10. If the same deviation had occum:d in a sample of twice the size (tha't is, of 800): 
what would have been .the value of chi-square? Ans. 0.67, half the original value. 

1.l3-AD experiment in sampling cbi-square; the sampling distribution. 
You have now had some practice in the calculation of chi-square. Its 
main function is to enable us to judge whether the sample ratio itself de­
parts much or little from the hypothetical population value. For that 
purpose we must answer the question already proposed: What values of 
chi-square are to be considered as indicating unusual deviation, and what 
as ordinary sampling variation 0 Our experimental method of answering 
the question will be to calculate chi-square for each of many samples 
drawn from the table of random numbers, then to observe what values of 
chi-square spring from the more unusual samples. If a large number of 
samples of various sizes have been drawn and if the value of chi-square is 
computed from each, the-distribution of chi-square may be mapped. 

The results to be preserited here come from 230 samples of sizes vary­
ing from 10 to 250, drawn from the random digits table A I. We suggest 
that the reader use the samples that he drew in section 1.7 when verifying 
the confidence interval statements. There is a quick method of calculat­
ing chi-square for all samples of a given size n. Since odd and even digits 
are equally likely in the population, the expected numbers of odd and even 
digits are F, = F2 = n12. The reciprocals of these numbers are therefore 
both equal to 21n. Remembering that the two deviations are the same in 
absolute value and differ only in sign, we may write 

X2 = (/, - F,)2(1IF, + IIF2) 

= d2(21n + 21n) = 4d' /n 

where d is the absolute value of the deviation. For all samples of a fixed 
size n, the multiplier 4/n is constant. Once it has been calculated it can be 
used again and again. 
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To illustrate, suppose that n = 100. The multiplier 4/n is 0.04. If 56 
odd digits are found in a sample, d ~ 6 and 

X' ~ (0.04)(6') = 1.44 

Proceed to calculate chi-square for each of your samples. To 
summarize the results, a frequency distribution is again convenient, There 
is one difference, however, from the discrete frequency distribution used 
in section 1.9 when studying the binomial distribution. With the binomial 
for n = 10, there were only eleven possible values for the numbers of odd 
digits, so that the eleven classes in the frequency distribution selected 
themselves naturally. On the other hand, with chi-square values calcu­
lated from samples of different sizes. there is a large number of possible 
values, Some grouping of the values into classes is necessary. A distribu­
tion of this type is sometimes described as continuous. since conceptually 
any positive number is a possible value of chi-square, 

When forming frequency distributions from continuous data, decide 
first on the classes to be used. For most purposes. somewhere between 
8 and 20 classes is satisfactory. Obtain an idea of the range of the data 
by looking through them quickly to spot low and high values. Most of 
your chi-squares will be found to lie between () and 5. Equal-sized class 
intervals of 0.00-D.49, 0,So-{),99, .. ,will therefore cover most of the 
range in 10 classes, although a few values of chi-square greater than S may 
occur. Our values of X' were recorded to 2 decimal places, 

Be sure to make the classes non-overlapping, and indicate clearly 
what the class intervals are, Class intervals described as "O.Oo-{).50," 
"0.50-1.00," "1.00-1.50" are not satisfactory, since the reader does not 
know in what classes the values 0.50 and 1.00 have been placed. If the 
chi-square values were originally computed to three decimal places. re­
ported class intervals of "0.00-D,49," ··O,SO-{).99," and so on, would be 

TABLE 1.13.1 
SAMPLING D,STRIOUTIOr-; Of 230 VALUES OF CHI·SOUAJU: CALCULATED FROM SA~"LFS 

DRAWN FROM TABLE A 1 

Sample sizes,--IO, 15.20.30.50.100. and 250 
----

Class Jnterval Frequency Class Interval Frequency 

"-
O.IXHl.49 116 6.00- 6.49 0 
O.5CH),99 39 6.5<>- 6.99 I 
1.00--1.49 18 1.00-- 7.49 0 
1.5()..1.99 22 750- 7.99 0 
2,()().2.49 12 '.00- 849 0 
2.5()..2.99 5 K.50· 8.99 I 
3.()()o. 3,49 5 I:J.OO- 9.49 0 
3.5(),,),99 6 <.).50- 9.99 0 
4.()()..449 I IO.(l{)-IO.49 I 
4.5()..4,99 2 10.50-10.99 0 
5.00-5.49 0 I IJ)()··] 1.49 _I 
5.5()"5.99 0 Tl1tal 230 
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ambiguous, since it .is not clear where a chi-square value of 0.493 is placed. 
Intervals 0[0.000-0.494, 0.495--0.999, and so on, could be used. 

Having deiermined the class intervals, go through the data system­
atically, assigning each value of chi-square to its proper class, then 
counting the number of values (frequency) in each class. Table 1.13..1 
shows the results for our 230 samples. 

In computing chi ... quare, we chose to regard the population as con­
sisting of the 10,000 random digits in table A I, rather than as an infinite 
population of random digits. Since 5,060 of the digits in table A I are 
odd, we took the probability of an odd digit as 0.506 instead of 0.50. The 
reader is recommended to use 0.50, as already indicated. The change 
makes only minor differences in the distribution of the sample values of 
chi-square. 

Observe the concentration of sample chi-squares in the smallest class, 
practically half of them being less than 0.5. Small deviations (with small 
chi-squares) are predominant, this being the foundation of our faith in 
sampling. But taking a less optimistic view, one must not overlook the 
samples with large deviations and chi-squares. The possibility of getting 
one of these makes for caution in drawing conclusions. In this sampling 
exercise we know the population ratio and are not led astray by discrepant 
samples. In actual investigations, where the hypothesis set up is not 
known to be the right one, a large value of chi-square constitutes a dilem­
ma. Shall we say ihat it denotes only an unusual sample from the hy-
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FIG. 1.13.I-Histogram representing frequem:y distribution of the 230 sample 
values of chi-square in table \ .13,1. 
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pathetical population, or shall we conclude that the hypothesis misrepre­
sents the true population ratio? Statistical theory contains no certain 
answer. Instead, it furnishes an evaluation of the probability of possible 
sample deviations from the hypothetical population. If chi-square is large, 
the investigator is warned that the sample is an improbable one under his 
hypothesis. This is evidence to be added to that which he already pos­
sesses, all of it being the basis for his decisions. A more exact determina­
tion of probability will be explained in section 1.15. 

The graphical representation of the distribution of our chi-squares 
appears in figure !.I3.1. In this kind of graph, called a histogram, the 
frequencies are represented by the areas of the rectangular blocks in the 
ngure. The graph brings out both the concentration of small chi-square 
at the left and the comparatively large sizes of a few at the right. It is now 
evident that for the medIcal example in section 1.11, X' = 4 is larger than 
a great majority of the chi-squares in this distribution. If this disease were 
in fact equally likely to result in male or female hospitalized cases, this 
would be an unusually large value of chi-square. 

1.I4-ComparisoD witb tbe theoretical distribution. Two features of 
our chi-square distribution have yet to be examined: (i) How does it com­
pare with the theoretical distribution? and (ii) How can we evaluate more 
exactly the probabilities of various chi-square sizes? For these purposes 
a rearrangement of the class intervals is advisable. Since our primary 
interest is in the relative frequency of high values of chi-square, we used 
the set of class intervals defined by column 4 of table 1.14.1. The first three 
intervals each contain 25% of the theoretical distribution. As chi·square 
increases, the next four intervals contain respectively 15%, 5%, 4%, and 

TABLE 1.14.1 
COMPARISON OF THE SAMPLE AND TiU:ORETlCAl DISTRIBUTIONS OF Cm-SQl:ARE 

SampJe Frequency Theoretical Frequency 
Distribution Distribution 

Cumulative 
Clas,s Interval Per Cent 
of Chi-square t\ctual Percentage Percentage X' Greater Than 

I 2 3 4 ., 6 

0-<).1015 57 24.8 25 I 0 100 
0.1015-j).455 59 25.6 25 0.1015 75 
0.455-1.323 62 27.0 25 0.455 50 
1.323-2.706 32 13.9 IS \.323 25 
2.706-3.841 14 6.1 5 2.706 10 
3.841-6.635 3 1.3 4 3.841 5 
6.635- 3 1.3 I 6.635 1 

--
Total 230 100.0 100 

. ---~-
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I '%,. Since the theoretical distribution is known exactly and has been 
widely tabulated. the corresponding class intervals for chi-square, shown 
in column I, are easily obtained. Note that the intervals are quite unequal. 

Column 2 of table 1.14.1 shows the actual frequencies obtained from 
the 230 samples. I n column J, these have been converted to percentage 
frequencies, by mUltiplying by 100/230, for comparison with the theoreti­
cal wrcentage frequencies in column 4. The agreement between columns 
3 and 4 is good. If your chi-square values have been computed mostly 
from sll}all samples of sizes 10, 15, and 20, your agreement may be poorer. 
With small samples there is only a limited number of distinct values of chi­
square, so that your sample distribution goes by discontinuous jumps. 

Columns 5 and 6 contain a cumulative frequency distribution of the 
percentages in column 4. Beginning at the foot of column 6, each entry 
is the sum of all the preceding ones in column 4, hence the name. The 
column is read in this way: the third to the last entry means that 10% 
of all samples in the theoretical distribution have chi-squares greater 
than the 2.706. Again, 50'%, of them exceed 0.455; this may be looked 
upon as an average value, exceeded as often as not in the sampling. Final­
ly, 'chi-squares greater than 6.635 are rare, occurring only once per 100 
samples. So in this sampling distribution of chi-square we find a measure 
in terms of probability, the measure we have been seeking to enable us 
to say exactly which chi-squares are to be considered small and which 
large. We are now to learn how this measure can be utilized. 

LIS-The test of a nuD hypothesis or test of signiflCiiiice, As indicated 
in section 1.10, the investigator's objective can often be translated into a 
hypothesis about his experimental material. The genet1cist, you remem­
ber, knowing that the Mendelian theory of inheritance produced a 3: I 
ratio, set up the hypothesis that the tomato population had this ratio of 
red to yellow fruits. This is called a null hypothesis, meaning that there 
is no difference between the hypothetical ratio and that in the population 
of tomato fruits. If this null hypothesis is true, then random samples of 
n will have ratios distributed binomially, and chi-squares calculated from 
the samples will be distributed as in table 1.14.1. To test the hypothesis, 
a sample is taken and its chi-square calculated; in the illustration the 
value was 1.33. Reference to the table shows that, if the null hypothesis 
is true, 1.33 is not an uncommon chi-square, the probability of a greater 
one being about 0.25. As the result of this test, the geneticist would not 
likely reject the null hypothesis. He knows, of course, that he may be in 
error, that the population ratio among the tomato fruits may not be 3: J. 
But the discrepancy, if any, is so small that the sample has given no con­
vincing evidence of it. 

Contrasting with the genetic experiment, the medical example turned 
up X' = 4. If the null hypothesis (this disease equally likely in men and 
women) is true, a Jarger chi-square has II probability of only about 0.05. 
This suggests that the null hypothesis is false, so the sampler would likely 
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reject it. As before, he may be in error because this might be one of those 
5 samples per 100 that have chi-squares greater than 3.841 even when the 
sampling is from an equally divided population. In rejecting the null 
hypothesis, the sampler faces the possibility that he is wrong. Such is the 
risk always run by those who test hypotheses and rest decisions on the 
tests. 

The illustrations show that in testing hypotheses one is liable to 
two kinds of error. If his sample leads him to reject the null hypothesis 
when it is true, he is said to have committed an error of the first kind, or a 
Type I error. If, on the contrary, he is led to accept the hypothesis when 
it is false, his error is of the second kind, a Type II error. The Neyman­
Pearson theory of testing hypotheses emphasizes the relations between 
these types. For recent accounts of this theory see references (6,7,8). 

As a matter of practical convenience, probability levels of 5~~ (0.05) 
and 1 % (0.0 I) are commonly used in deciding whether to reject the null 
hypothesis. As seen fromlable 1.14.1, these correspond to 1.2 greater 
than 3.841 and X' greater than 6.635, respectively. In the medical exam­
ple we say that the difference in the number of male and female patients 
i. significant at the 5% level, because it signifies rejection of the null 
hypothesis of equal numbers. 

This use of 5% and I % levels is simply a working convention. There 
i. merit in the practice, followed by some investigators, of reporting in 
parentheses the probability that chi-square exceeds the value found in 
their data. For instance, in the counts of red and yellow tomatoes, we 
found X' = 1.33, a value exceeded with probability about 0.25. The re­
port might read: "The X' test was consistent with the hypothesis of a 
3 to I ratio of red to yellow tomatoes (P = 0.25)." 

The values of X' corresponding to a series of probability levels.are 
shown below. This table should be used in working the exercises/that 
follow. 

Probabilit.y of a Greater Value 
_~-----------------.--. 

p 0.90 0.75 0.50 0.25 0.10 0.05 ..... \1,025 o.oto 0.005 

:x_' _l_._0_.02 __ 0_.1_0 __ 0_.4_5 __ 1.32 2.71 3.84 5.02 6.63 7.88 

EXAMPLE I. J 5.)-Two workers A and B perfonn a task in which carelessness leads to 
minor accidents. In the first 20 accidents, 13 happened to A and 7 to B. Is this evidtnce 
against the hypothesis that the two men are equally liable to accidents? Compute"r and 
find the significance probability. Ans. Xl = t .8. Pbetween 0.10 and 0.25. 

EXAMPLE 1.15.2--A baseball player has a litetime: batting average of 0.280. (This 
me-<ms that the probability that he gets a hit when at bat is 0.280.) Starting a new season. he 
gets t 5 hits in Ilis first 30 times at bat. Is this evidence that he is having what is called a hot 
streak" Compute Xl for the null hypothesis that his probability of hitting is still 0.280. Ans. 
7..l "", ;.20. P <: 0.01. Null hypothesis is rejected. 

EXAMPLE l.lS.3-.'.....In some experiments on heredity in the tomato, MacArthur (5) 
counted 3,629 fruits with red flesh and ),176 with yellow. This was in the F2 generatIOn 
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wherethetheoret1ca\ ratio wa.~ 3: \. Compute '1. 2 = 0.71 and find the significance probability. 
MacArthur concluded that "the discrepancies between the observed and expected ratios 
are not significant." 

EXAMPLE 1.15.4---10 a South Dakota farm 1abor survey of 1943, 480-of the 1,000 
reporting farmers were classed as owners (or part owners), the remaining 520 being renters. 
It is known that'ofnearly 7,000 farms in the region, 41% are owners. Assuming this to be 
popu\ati.on percentage, cakulate chi-square and P for the 'Mlmp\e of 1,000. Ans.·t! = 0.4\, 
P = 0.50. Does this increase your confidence in the randomness of the sampling? Such' 
collateral evidence is often cited. The assumption is that irthe sample is shown to be repre­
sentative for one attribute it is more likely to be representative also of the attribute under 
investigation, provjded the two are related. 

EXAMPLE 1.15.s..-James Snedecor (4) tried the effcct of injecting poultry eggs with 
female sex honnones. In one series 2 normal males were hatched together with 19 chicks 
which were classified as either normal females or as individuals with pronounced female 
characteristics. What is the probability of the ratio 2: 19, or one more extreme, in sampling 
from a population with equal numbers. of the sex.es in which the oormone has no effect? 
Ans. Xl = )3.76. P is much less than 0.01. 

EXAMPLE 1.15.6---ln table 1.14.1, there are 62 + 32 + 14 + 3 + 3 = 114 samples 
baving chi~squares greater than 0.455, whereas 50% or 230 were ex.pected. What is the prob­
ability of drawing a more discrepant sample if the sampling is truly random? Ans. Xl 
= 0.0174, P = 0.90. Make the same test for your own samples. 

EXAMPLE 1.15.7-This example illustrates the discontinuity in the distribution of 
chi·square when computed from small samples. From 100 samples of size 10 drawn from the 
random digits table A I, the following frequency distribution of the numbers of odd digits in 
a sample was obtained. 

Number of odd digits 
Frequency 

lor 9 
2 

2 or 8 
8 

3 or 7 
19 

4 or 6 
46 

Compute the sample frequency distribution Of;(l as in tabl' 1.14.1 and compare it with the 
theoretical distribution. Obser:ve that no sample..,l occurs in the class interval 0.455-1.323, 
although 25% of the theoretical distribution lies in this range. 

1.16-Tests of significance in practice. A test of significance is some­
times thought to be an automatic rule for making a decision either to 
"accept" or "reject" a null hypothesis. This attitude should be avoided. 
An investigator rarely rests his decisions wholly on a test of significance. 
To the evidence of the test he adds knowledge accumulated from his own 
past work and from the work of others. The size of the sample from which 
the test of significance is calculated is also important. With a small sam­
ple, the test is likely to produce a significant result only if the null hypothe­
sis is very badly wrong. An investigator's report on a small sample test 
might read as follows: "Although the deviation from the null hypothesis 
was not significant, the sample is so small that this result gives only a 
weak confirmation of the null hypothesis." With a large sample, on the 
other hand, small departures from the null hypothesis can be detected 
as statistically significant. After comparing two proportions in a large 
sample, an investigator may write: "Although statistically significant, 
the difference between the two proportions was too small to be of practical 
importance, and was ignored in the subsequent analysis." 
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In this connection, it is helpful, when testing a binomial proportion 
at the 5% level, to look at the 95% confidence limits for the population p. 
Suppose that in the medical example the number of patients was only 
n = 10, of whom 4 were female, so that the sample proportion of female 
patients was 0.4. If you test the null hypothesisp = 0.5 by X2 , you will find 
X2 = 0.4, a small value entirely consistent with the null hypothesis. 
Looking now at the 95% confidence limits for p, we find from table 1.4.1 (p. 
000) that these are 15% and 74%. Any value of the population plying 
between 15% and 74% is also consistent with the sample result. Clearly, 
the fact that we found a non-significant result when testing the null hy­
pothesis p = 1/2 gives no assurance from these data that the true p is 
1/2 or near to 1(2. 

1.17-Summary of technical terms. In this chapter you have been 
introduced to some of the main ideas in statistics, as well as to a number of 
the standard technical terms. As a partial review and an aid to memory, 
these terms are described again in this section. Since these descriptions 
are not dictionary definitions, some would require qualification from a 
more advanced viewpoint, but they are substantially correct. 

Sta/is/ies deals with techniques for collecting, analyzing, and drawing, 
conclusions from data. 

A sample is a small collection from some larger aggregate (the 
population) about which we wish information. 

Statistical inference is concerned with attempts to make quantitative 
statements about properties of a population from a knowledge of the 
results given by a sample. 

Allribute data are. data that consist of a classification of the members 
of the sample into a limited number of classes on the basis of some 
property of the members (for instance, hair color). In this chapter, only 
samples with two classes have been studied. 

Measurement data are data recorded on some numerical scale. They 
are called discrete when only a restricted number of values occurs (for 
instance, 0, 1,2, ... J I children). Strictly, all measurement data are dis­
crete, since the results of any measuring process are recorded to a limited 
number of figures. But measurement data are called continuous if, con­
ceptually, successive values would differ only ))y tiny amounts. 

A point estimate is a single number stated as all estimate of some quan­
titative property of the population (for instance, 2.7% defective articles, 
58.300 children under five years). The quantity being estimated is often 
called a population parameter. 

An interval estimate is a statement that a population parameter has 
a value lying between two specified limits (the population contains be­
tween 56,900 and 60.200 children under five years). 

A confidence inrefl'ai is one type of interval estimate. It has the fea­
ture that in repeated sampling a known proportion (for instance, 95%) 
of the intervals computed by this method will include the population 
parameter. 
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Random sampling, in its simplest form, is a method of drawing a 
sample such that any member of the population has an equal chance of 
appearing in the sample, independently of the other members that happen 
to fall in the sample. 

Tables of random digits are tables in which digits 0, I, 2, ... 9 have 
been drawn by some process that gives each digit an equal chance of 
being selected at any draw. 

The sampled population is the population of which our data are a 
random sample. It is an aggregate such that the process by which we 
obtained our sample gives every member of the aggregate a known chance 
of appearing in the sample, and is the popUlation to which statistical 
inferences from the sample apply. In practice, the sampled population is 
sometimes hypothetical rather than real, because the only available data 
may not have been drawn at random from a known population. In 
meteorological research, for instance, the best data might be weather 
records for the past 40 years, which are not a randomly selected sample 
ofyears. 

The target population is the aggregate about which the investigator 
is trying to make inferences from his sample. Although this term is not 
in common use, it is sometimes helpful in focussing attention on differ .. 
ences between the population actually sampled and the popUlation that 
we are attempting to study. 

In afrequency distribution, the values in the sample are grouped into 
a limited number of classes. A table is made showing the class boundaries 
and the frequencies (number of members of the sample) in each class. 
The purpose is to obtain a compact summary of the data. 

The binomial distribution gives the probabilities that 0, 1, 2 .... n 
members of a sample of size n will possess some attribute, when the sample 
is a random sample from a population in which a proportion p of the 
members possess this attribute. 

A null hypothesis is a specific hypothesis about a population that is 
being tested by means of the sample results. In this chapter the only hy­
pothesis considered was that the proportion of the population having some 
attribute has a stated numerical value. 

A test of significance is, in general terms, a calculation by which the 
sample results are used to throw light on the truth or falsity of a null 
hypothesis. A quantity ca!fed a test criterion is computed: it measures 
the extent to which the sample departs from the null hypothesis in some 
relevant aspect. If the value of the test criterion falls beyond certain 
limits into a region of rejection, the' departure is said to be statistically 
significant or, more concisely, significant. Tests of significance have the 
property that if the null hypothesis is true, the probability of obtaining a 
significant result has a known value, most commonly 0.05 or 0.01. This 
probability is the significance level of the test. 

Chi-square = I:(Observed - Expected)2/(Expected) is a test criterion 
for the null hypothesis that the proportion with some attribute in the 
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population has a specified value. Large values of chi-square are signifi­
cant. The chi-square criterion serves many purposes and will appear 
later for testing other null hypotheses. 

Errors of the first and second kinds. In the Neyman-Pearson theory 
of tests of hypotheses, an error of the first kind is the rejection of the null 
hypothesis when it is true, and an error of the second kind is the acceptance 
of a null hypothesis that is false. In practice, in deciding whether to re­
ject a null hypothesis or to regard it as provisionally true, all available 
evidence should be reviewed as well as the specific result of the test of 
significance. 
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* CHAPTER TWO 

Sampling from a normally 
distributed population 

2.I~NormalJy distributed population. In the first chapter. sampling 
was mostly from a population with only two kinds of individuals; odd or 
even, alive or dead, infested or free. Random samples of n from such a 
population made up a binomial distribution. The variable. an enumera­
tion of successes, was discrete. Now we turn to another kind of population 
whose individuals are measured for some characteristic such as height or 
yield or income. The variable flows without a break from one individual 
to the next-a continuous variable with no limit to the number of indi­
viduals with different measurements. Such variables are distributed in 
many ways, but we shall be occupied first with the normal distribution. 

Next to the binomial. the normal distribution was the earliest to be 
developed. De Moivr. published its equation in 1733, twenty years after 
Bernoulli had given a comprehensive account of the binomial. That the 
two are not unrelated is clear from figure 2.1. I. On the top is the graph 
of a symmetrical binomial distribution similar to that in figure 1.9.1. In 
this new figure the sample size is 48 and the population sampled has equal 
numbers of the two kinds of individuals. Although discrete. the binomial 
is here graphed as a histogram. That is, the ordinate at 25 successes is 
represented by a horizontal bar going from 24.5 to 25.5. This facilitates 
comparison with the continuous normal curve. An indefinitely great 
number of samples were drawn so that the frequencies are expressed as 
percentages of the total. Successes less than 13 and more than 35 do occur. 
but their frequencies are so small that they cannot be shown on the graph. 

Imagine now that the size of the sample is increased without limit. the 
width of the intervals on the horizontal axis being decreased correspond­
ingly. The steps of the histogram would soon become so small as to look 
like the continuous curve at the right. Indeed. De Moivre discovered the 
normal d;stribution when seeking an approximation to the binomial. The 
discrete variable has become continuous and the frequencies have merged 
into each other without a break. 

This normal distribution is completely determined by two constants 
or parameters. First, there is the meun, p, which locates the center of the 
distribution. Second. the standard deviation, (1, measures the spread or 
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variation of the individual measurements; in fact. 0 i, the JCQ'e (unit of 
measurement) of the' variable which is normally distributed. 

From the figure you see that within one sigma on either side.of II- the 
frequency is decreasing ever more rapidly but beyond that point it de­
creases at a continuously lesser rate. By the time the variable, X. has 
reached ± 30' the percentage frequencies are negligibly small. Theoret­
ically, the frequency of occurrence never v.aoisbes entirely, but it ap­
proaches zero as X increases indefinitely. The concentration of the 
measurements close to 'p. is emphasized by the fact that over 2/3 of tbe 
observations lie in the interval )J. ± 0' while some 95% of them are in the 
interval II- ± 20'. Beyond ±30' liesl)nJy 0.26% of the total frequency. 

The formula for the ordinate or height of the normal curve is 

1 _ (X - ,.)1/2.~ 
y=--e • 

O'.j'i'lt 
where the quantity e = 2.3026 is the base for natura1logarithms and 'It is 
of course 3.141~. To illustrate the role of the standard deviation 0' in 
determining the shape of the curve, figure 2.1.2 showlt two curves. The 
solid curve has II- = 0, 0' = 1. while tbe dotted curve has II- = 0. 0' .:: 1.5. 
The curve with the larger 0' is lower at tbe mean and more spread out. 
Values of X that are far from the mean are much more frequent with 
u = 1.5 than with 0' = I. In other words. the population is more variable 
with CJ = 1.5. A curve with f1 = 1/2 would have a height of nearly 0.8 at 
the mean and would have scarcely any frequency beyond X = 1.5. 
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To indicate the effect of a change in the mean 1'. the curve with I' = 2. 
cr = I is obtained by lifting the solid curve bodily and centering it at 
X = 2 without changing its shape in any other way. This explains why I' 
is callec the parameter of location. 

2.2-Reasons for the use of the normal distribution. You may be 
wondering why such a model is presented since it obviously cannot de­
scribe any real population. It is astonishing that this normal distribution 
has dominated statistical practice as well as theory. BrieBy. the main 
reasons are as follows: 

I. Convenience certainly plays a part. The normal distribution has 
been extensively and accuralely tabulated. including many auxiliary re­
sults that Bow from it. Consequently if it seems to apply fairly well to a 
problem. the investigator has many time-saving tables ready at hand. 

2. The distributions of some variables are approximately normal. 
such as heights of men. lengths of ears of com. and, more generally. many 
linear dimensions, for instance those of numerous manufactured articles. 

3. With measurements whose distributions are not normal, a simple 
transformation of the scale of measurement may induce approximate 
normality. The square root. J X, and the logarithm, log X, are olien 
used as transformations in this way. The scores made by students in 
national examinations are frequently rescaled so that they appear to fol­
Iowa normal curve. 

4. With measurement data. many investigations have as their purpose 
the estimation of averages-tbe average life of a battery, the average in­
come of plumbers, and so on. Even if the distribution in the original 
population is far from normal, the distribution of sample averages tends 
to become normal, under a wide variety of conditions, as the size of 
sample increases. This is perhaps the single most important reason for the 
use of the normal. 

5. Finally. many results that are useful in statistical work. although 
strictly true only when the population is normal. hold well enough for 
rough-and-ready use when samples come from non-normal populations. 
When presenting such results we shall try to indicate how well they stand 
up under non-normality. 

2.~ Tables of the annual distribution. Since the normal curve de­
pends on the two parameters I' and cr, the;:e are a great many different 
normal curves. All standard tables of this distribution are for the dis­
tribution with I' = 0 and (J = I. Consequently if you have a measurement 
X with mean Il and standard deviation (J and wish to use a table of the 
normal distribution, you must rescale X so that the mean becomes 0 and 
the standard deviation becomtlS I. The rescaled measurement is given 
by relation 

3 

X-I' 
Z=-­

(J 
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The quantity Z goes by various names~a standard normal variate, a 
standard normal deviate, a normal variate in standard measure, or, in educa­
tion and psychology, a standard score (although this term sometimes has 
a slightly different meaning). To transform back from the Z scale to the 
X scale, the formula is 

X = JJ + I1Z 

There are two principal tables. 

Tah/e a/ordinates. Table A 2 (p. 547) gives the ordinates or heights of the 
standard normal distribution. The formula for the ordinate is 

These ordinates are used when graphing the normal curve. Since the 
curve is symmetrical about the origin, the heights are presented only for 
positive values of Z. Here is a worked example. 

EXAMPLE J -Suppose that we wish to sketch the normal curve for a variate X that 
has Jl "'" 3 and (1.= 1.6. What is the height of this curve at X == 1? 

Swp 1. Find Z ~ (2 - 3)11.6 ~ -0.62S. 
SI~P 2. Read the ordinate in table A 2 for Z = 0.625. In the table, the Z entries afe given 

to two decimal places only. For Z = 0.62 the ordinate isO.32.92and for Z == O.63theordinate 
is 0.3211. Hence we take 0.320. fOf Z = 0.625. 

Seep 3. Finally, divide the ordinate 0.328 by U, getting 0.328/1.6 = 0.205 as the answer. 
This step is needed because if you look back at the formula in section 2, I for the ordinate 
of the general normal curve, you will 'lee a P' in the denominator that does not appear in the 
tabulated curve. 

Table of the cumulatire distribution. Table A 3 (p. 548) is much more 
frequently used than Table A 2. This gives, for any positive value of Z, 
the area under the curve from the origin up to the point Z. It shows, for 
aay positive Z, the probability that a variate drawn at random from the 
standard normal distribution will have a value lying between 0 and Z. 
The word cumulative is used because if we think of the frequency dis­
tribution of a very large sample, with many classes, the area under the 
curve represellts the total or cumulative frequency in all classes lying be· 
tween 0 and Z, divided by the total sample size so as to give a cumulative 
relative frequency. In the limit, as the sample size increases indefinitely, 
this becomes the probability that a randomly drawn member lies between 
Oand Z. 

As a reminder the area tabulated in Table A 3 is shown in figure 2.3.1. 
Since different people have tabulated different types of area under the 
normal curve, it is essential, when starting to use any table, to understand 
clearly what area has been tabulated. 

First. a quick look at table A 3. At Z = 0 the area is, of course, zero. 
At Z = 3.9, or any larger value, the area is 0.5000 to four decimal places. 
It follows that the probability of a value of Z lying between - 3.9 and 
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o 
FIG. 2.3. I -The shaded area is the a!'ell Iilbuhlled In lable A 3 for posnlve YIIlues of Z 

+ 3.9 is 1.0000 to four decimals. remembering that the curve is sym­
metrical about the origin. This means that any value drawn from a stan­
dard normal distribution is practically certain to lie between - 3.9 and 
+ 3.9. At z,. 1.0. the area is 0.3413. Tbus the probability of a value 
lying between - 1 and + 1 is 0.6826. This verifies a previous remark 
(section 2.1) that over 2/3 of the observations in a general nonnal distribu­
tion lie in the interval p. ± a. Similarly, for Z = 2 the area is 0.4772, cor­
re<;ponding to the resuJt that about 95% of the observa tions (more ac­
curately 95.44%) will lie between Jl - 2a and Jl + 2a. 

Wben using table A 3 you will often want probabilities represented 
by areas different from those tabulated. If A is the area in table A 3, the 
following table shows bow to obtain the probabilities most commpnly 
needed. 

TABLE 2.3.1 
FORlIULAS FOa F1NDING Paoa.uu.mIS 1lEr..AT1iD TO THE NOIUIAL DJSnIBUT10N 

Probability of . Value 

(I) Lyiaa between 0 and Z 
(2) Lyilll bctweeD - Z and Z 
(3) Lyioa outaide the interval ( - Z , Z) 
(4) Las thaD Z (Z positive) 
(5) Less thaD Z (Z neptive) 
(6) Greater than Z (Z positive) 
(7) Greater thaD Z (Z neptive) 

Formula 

A 
2,4 

J- U 
0.5 + A 
0.5 - A 
0.5 - A 

11.5 + .4 

Verification of these formulas is left as an exercise. A few morc 
complex examples will be worked : 

EXAMPLE 1-What is the probability that I nonnal deviate lies bctwectl -1.62 and 
+0.28? We have to lpIit the interva l into two parts : from -1.62 to O. alld from 0 to 0.28. 
From table A 3, tbe a reas for the two peru are. respectively, 0.4474 and O. 1103. livinl 0.5577 .s the answer. 
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EXAMPLE 3-What is the probability that a normal deviate lies between -2.67 and' 
-O.59? In this case we take the area from - 2.67 to 0, namely 0.4912, and subtract from it the 
area from - 0.59 to 0, namely 0.2224. giving 0.2748. 

EXAMPL£4-The heights of a large sample afmeo were found to be approximately 
normally distributed with mean = 67.56 inches and standard deviation = 2.57 i\'lChes. 
What proportion of the men have heights less than 5 feet 2 inches? We must first find Z. 

Z ~ X - # _ 62 - 67.56 -2.163 
11 2.57 

The probability wanted is the probability of a value less. than Z. where Z is negative. We 
use formula (S)jn table 2.3.1. Reading labJeA 3 at Z '= 2.163, we get A = 0.4847, interpolat­
ing mentally between Z = 2.16 and Z = 2.17. From formula (5), the answer is 0.5 - A, 
or 0.01 53. 'About 11% of the men ha\'e heights less than 5 ft . .2 in. 

EXAMPLE 5-What height is exceeded by 5% of the men? The first step is to find Z , 
we use formuJa (6) in table 2.3.1, writjng 0.5 - A = 0.05, so that A = 0.45. We now look 
in table A 3 for the value of'Z such that A = 0.45. The value is Z = 1.645. Hence the actual 
height is 

X _ # + uZ - 67.56 + (2.57)(1.645) .. 71. 79 inches. 

just under 6 feet. 
Some examples to be worked by the reader follow: 

EXAMPLE 2.3. I-Using tabl-e A 2. (i) at rheorigiu. what is the ~ight ofa normal curve 
with (1 = 2? (ii) for any normal curve, at what value of X is the height of the curve one-tenth 
of the height at the origin? Ans. (i) 0.1994; (ii) at the val\le X = JI. + 2.15a. 

EXAMPLE 2.3.2-Using table A 3, show that 92.16% of the items in a normally dis­
tributed population lie between - 1. 76a and + 1.76". 

EXAMPLE 2.3.3---Show that 65.24% of the items in a nonnal population lie between 
p-l.la andp. + 0.8(1. 

EXAMPLE 2.3.4-Show that 1 3.59% oft~ items lie between Z = J and Z = 2. 

EXAMPLE 2.3.5-Sbow that half the population lies in the interval from JI. - 0.6745a 
and JI. + 0.6745a. The deviation 0.6745(1, formerly much used, is called the probable error 
of X. Ans. You will have to use interpolation. You are lOeeking a value of Z stich that the 
area from 0 to Z is 0.2500. Z = 0.67 gives 0.2486 and Z = 0.68 gives 0.2517. Since 0.2500 
- 0.2486 = 0.0014. and 0.2517 - 0.2486 "'" 0.0031. we need to go 14(31 of the distance 
from 0.67 to 0.68: Si~e 14/31 = 0.45. the interpolate is Z = 0.6745. 

EXAMPLE 2.3.6--Show that 1% of the population lies outside the limits Z = ± 2.575. 

EXAMPLE 2.3.7-For the heights of men, with p = 67.56 inches and (1 = 2.57 inches, 
what percentage of the population has heights lying between 5 feet 5 inches and S feet 10 
inches? Compute your Z's to two decimals only. Ans. 67%. 

EXAMPLE 2.3.8-The specification for a manufactured component is that the pres­
stlre at a certain point must not exceed 30 pounds. A manufacturer who would like to enter 
this market finds that he can make components with a mean pressure JI. = 28 Ibs., but the 
pressure varies from one specimen to another with a standard deviation (1 = 1.6 lbs. What 
proportion of his specimens will fail to meet the specification? Ans. 10.6%. 

EXAMPLE 2.3.9--By quality control methods it may be pos!:ible to reduce a in the 
previous example while keeping p. at 28 lbs. If the manufacturer wishes only 2~~ of his 
specimens to be rejected. what muSt rosa be? ADs. 0.98 lbs. 
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2.4--Estimators of I' and ". While I' and" are seldom known, they 

may be estimated from random samples. To illustrate the estimation of 
the parameters, we turn to the data reported from a study. In 1936 the 
Council on Foods of the American Medical Association sampled the 
vitamin C content of commercially canned tomato juice by analyzing a 
specimen from each of the 17 brands that displayed the seal of the Council 
(I). The vitamin C concentrations in mg. per 100 gm. are as follows 
(slightly altered for easier use): 

16,22,21,20,23,21;19, !5, 13,23, 17,20,29, 18,22, 16,25 

Estiryalion of fl. Assuming random sampling from a normal popula· 
tion, I' is estimated by an average calIed the mean of the sample or, more 
briefly, the sample mean. This is calculated by the familiar process of 
dividing the sum of the observations, X, by their number. Representing 
the sample mean by X', 

X = 340/17 = 20 mg. per 100 grams of juice 

The symbol, X is often called "bar-X" or "X-bar." We say that this 
sample mean is an estimator of I' or that I' is estimated by it. 

Estimation of G. The simplest estimator of" is based on the range of 
the sample observations, that is, the difference between the largest and 
smallest measurements. For the vitamin C data, 

range = 29 - 13 = 16 mg./IOO gm. 

From the range, sigma is estimated by means of a multiplier wbich de­
pends on the sample size. The multiplier is shown in tbe column headed 
''a/Range'' in table 2.4.1 (2,3). For /I = 17, halfway between 16 and 18, 
tbe multiplier is 0.279, so tbat 

rI is estimated by (0.279)(16) = 4.46 mg./lOO gm. 

Looking at table 2.4.1 you will notice tbat tbe multiplier decreases as 
n becomes larger. This is because the sample range tends to increase as 
the sample size increases, although tbe population rI remains unchanged. 
Clearly if we start with a sample of size 2 and keep adding to it, the range 
must either stay constant or go up with each addition. 

Quite easily, then, we have made a point estimate of each parameter of 
a normal population; these estimators constitute .summary of the infor· 
mation contained in the sample. The sample mean cannot be improved 
upon as an estimate of 1', but we shall learn to estimate rI more-efficiently. 
Also we shall Ieam about interval estimates and tests of hypotheses. Be­
fore doing so, it is worthwhile to examine OUr sample in greater detail. 

The first point to be clarified is this: What popUlation was repre­
sented by the sample of 17 determinations of vitamin C? We raised this 
question tardily; it is the first one to be considered in analyzing any sam· 
piing. The report makes it clear that not all brands were sampled, only 
tbe seventeen allowed to display the seal of the Council. Tbe dates of the 
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TABLE 2.4.1 
RATIO OF a TO RANGE IN SAMPLES Of n FROM THE NORMAL DISTRIBUIlON. EFfiCIENCY 

OF RANGE AS ESTIMATOR OF (1, NVMBER OF OBSERVATIONS WITH 

RANGE To EQUAL 100 WrrH S 

• Relative Number • Relative Number 
n Range Efficiency per 100 n Range Efficiency per 100 

2 0.886 1.000 100 12 0.307 O.8iS 123 
3 .591 0.992 101 14 .204 .78) !28 
4 .486 .975 103 16 .283 .753 133 
5 .430 .955 105 18 .275 .726 138 
6 .395 .933 107 20 .268 .700 143 
7 .370 .912 110 30 .245 .604 166 
8. .351 .890 112 40 .231 .536 186 
9 .337 .869 115 50 .222 .49 204 

10 .325 .850 118 

packs were mostly August and September of 1936. about a year before the 
analyses were made. The council report states that the vitamin concentra­
tion "may be expected to vary according to the variety of the fruit, the 
conditions under which the crop has been grown, the degree of ripeness 
and other factors." About all that can be said. then. is that the sampled 
popUlation consisted of those year-old containers still available to the 17 
selected packers. 

2_5-The array and its graphical representation. Some of the more 
indmate features of a sample are shown by arranging the observations in 
order of size, from low to high. in an array. The array of vitamin contents 
is like this: 

13,15.16.16,17.18,19.20,20.21.21.22.22.23 • .23.25.29 

For a small sample the array Serves some Qfthe same purposes as the fre-
quency distribution of a large one. . 

The range, from 13 to 29. is now obvious. Also. attention is attracted 
to the concentration of the measures near the center of the array and to 
their thinning Qut at the extremes. In this way the sample may reflect the 
distribution of the nQrmal popUlation from which it was drawn. But the 
smaller the sample. the more erratic its reflection may be. 

In looking through the vitamin C contents of the several brands, one is 
struck by their variation. What are the causes of this variation') Different 
processes of manufacture. perhaps. and different sources of the fruit. 
Doubtless. also. the specimens examined. being themselves samples of 
their brands. differed from the brand means. Finally. the laboratory 
technique of evaluation is never perfectly accurate. Variation is the 
essence of statistical data, 

Figure 2.5.1 is a graphical representation of the foregoing array of 17 
vitamin determinations. A dot represents each item. The distance of the 
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FIG. 2.5.I-Graphical represent;ttion of an array. Vitamin C data. 

dot from the vertical line at the left, proportional to the concentration 
of ascorbic acid in a brand specimen, is read in milligrams per 100 grams 
on Ihe horizontal scale. ' 

The diagram brings out vividly not only the variation and the con­
c.entralion in the sample, but also two other characteristics: (i) the rather 
symmetrical occurrence of the values above and below the mean, and 
(ii) the scarcity of both extremely small and extremely large vitamin C 
contents, the bulk of the items being near the middle of the set. These 
features recur with notable persistence in samples from normal distribu­
tions. For many variables associated with living organisms there are 
averages and ranges peculiar to each, reflecting the manner in which each 
seems to express itself most successfully. These norms persist despite the 
fact that individuals enjoy a considerable freedpm in development. A 
large part of our thinking is built around ideas corresponding to such 
statistics. Each of the words, pig, daisy, man,. raises an image which is 
quantitatively described by summary numbers. It is difficult to conceive 
of progress in thought until memories of individuals are collected into 
concepts like averages and ranges of distributions. 

2.6-Algebraic ootatiOll. The items in any set may be represented by 

where the subscripts I, 2, ... n, may specify position in the set of /I items 
(not necessarily an array). The three dots accompanying these symbols 
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are read "and so on." Matching the symbols with the values in section 2.4, 

Xl = 16, X, = 22, ... Xl' = 25 mg';IOO gm. 

The sample mean is represented by X, so that 

X = (Xl + X, + ... X.l/n 

This is condensed into the form, 

X = (EX)/n, 

where X stands for every item successively. The symbol, £X, is read 
"summation X" or "sum of the X.". Applying this formula to the vitamin 
C concentrations, 

LX = 340, and X = 340/17 = 20 mg./IOO gm. 

2.7-Deviations from sample mean. The individual variations of 
the items in a set of data may be well expressed by the deviations of these 
items from some centrally located number such as the sample mean. 
For example, the deviation-from-mean of the first X-value is 

16 - 20 = -4 mg. per 100 gm. 

That is, this specimen falls short of X by 4 mg.!1 00 gm. Of special interest 
is the whole set of deviations calculated from the array in section 2.S: 

-7, -5, -4, -4, -3, -2. -1,0,0,1,1,2,2,3,3,5,9 

These deviations are represented graphically in figure 2.5.1 by the dis­
tances of the dots from the vertical line drawn through the sample mean. 

Deviations are almost as fundamental in our thinking as are averages. 
"What a whale of a pig" is a metaphor expressing astonishment at the 
deviation of an individual's size from the speaker's concept of the normal. 
Gossip and news are concerned chiefly with deviations from accepted 
standards of behavior. Curiously, interest is apt to center in departures 
from norm, rather than in that background of averages against which the 
departures achieve prominence. Statistically, freaks are freaks only 
because of their large deviations. 

Deviations are .(epresented symbolically by lower case letters. That 
is: 

Xl = Xl - X 
x,=X,-X 

x" = XII - X 
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Just as X may represent any of the items in a set, or all of them in succes­
sion, so x represents deviations from sample mean. In general, 

x=X-X 

It is easy to prove the algebraic result that the sum of a set of de­
viations from the mean is zero; that is, Ix = O. Look at the set of de­
viationsx, =X, -X,andsoon(footofp.42). Insteadofaddingthecol­
umn of values Xi we can obtain the same result by adding the column of 
values Xi and subtracting the sum of the column of values X. The sum of 
the column of values Xi is the expression :EX. Further, since there are II 
items in a column, the sum of the column of values X is just nX. Thus we 
have the result 

:Ex = IX - nX 

But the mean X = IX/n, so that nX = IX, and the right-hand side is 
zero. It follows from this theorem that the mean of the deviations is also 
zero. 

This result is useful in proving several standard statistical formulas. 
When it is applied to a specific sample of data, Ihere is a slight snag. If 
the sample mean X does not come out exactly, we have to round it. As a 
result of this rounding, the numerical sum of tbe deviations will not be 
exactly zero. Consider a sample witb the values I. 7, 8. Tbe mean is 
16/3, whicb we might round to 5.3. The deviations are tben -4.3, + 1.7 
and + 2.7, adding to + 0.1. Thus in practice the sum of the deviations is 
zero, apart from rounding errors. 

EXAMPLE 2.7.1-The weights of 12 staminate hemp plants in early April at Colle&e. 
Station. Texas (9). were approximately; 

IJ. I I. 16,5.3,18,9.9,8,6,27, and 7 grams 

Array the weights and represent them graphically. Calculate the sample mean. II gram$. 
and the deviations therefrom. Verify the fact that I:x = O. Show that (J is estimated by 7.4 
grams. 

EXAMPLE 2.7.2-The heights of II men are 64.70.65,69.68,67.68.67.66.7'2 and 
61 inches. Compute the sample mean and verify it by summing the deviations. Are thl? 
numbers of positive and negative deviations equal. or only their sums? 

EXAMPLE 2.7.3---The weights of II forty-year-ola.men were 148. 154. 158. 160. 161. 
162. 166. 170. 182, 195. and 236 pounds. Notice the fact that only three of the weights 
eJl.c~d the sample mean. Would you expect weights of men to be normally distributed ~ 

EXAMPLE 2. 7.4--1n a sample of 48 observations you are told that the standard devia­
tion has been computed and is 4.0 units. Glancing through the data. you notice that the 
lowest observation is 39 and the highest 76. Does the reported standard deviation look 
reasonable? 

EXAMPLE 2.7.5- Tcn patients troubled with sleeplessness each received a nightly 
dose ora sedative for one period. while in another period they received no sedative (4). The 
average bours of sleep per night for each patient during each two-week period are as follows: 
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Patient 2 3 4 6 7 8 9 10 

Sedative I.J 1.1 6.2 3.6 4.9 14 6.6 4.5 4.3 6.1 
None 0.6 l.l 2.5 2.8 2.9 3.0 3.2 4.7 5.5 6.2 

Calculate the 10 differences. (Sedative - None). Might these differences be a sample from 
a normal population of differences? How would you de~cribe this population': (You might 
want to ask for mor..:: information.) Assummg that lhc differences afe normally distributed. 
estimate J1 and (J' for the population of differences. Ans. + O. 75 hOllfS and I. 72 hour~, 

EXAMPLE 2.7.6-If you have two sets of data that are paired as in the preceding 
example, and if you have calculated the resulting set of differences. prove algebraically that 
the sample mean of the differences is equal to the difference between the sample means of the 
two sets. Verify this result for the data in example 2.7.5. 

2.8--Another estimator of a; the sample standard deviation. The 
range. dependent as it is on only the two extremes in a sample. usually has 
a more variable sampling distribution than an estimator based on the 
whole set of deviations-from-mean in a sample. not just the largest and 
smallest. What kind of average is appropriate to summarize these devia­
tiuns, and to estimate a with the least sampling variation? 

Clearly, the sample mean of the deviations is useless as an estimator 
because it is always zero. But a natUIal suggestion is to ignore the signs, 
calculating the sample mean of the absolute values of the deviations. The 
resulting measure of variation, the mean absolute deriation, had a consider~ 
able vogue in times past. .Now. howc\'er, we use another estimator. more 
efficient and more flexihle. 

The sample standard deviation. This estimator. denoted by s. is the most 
widely used in statistical work. The formula defining s is 

s = /};(X _- X)' = I Lx' 
\j 11-1 ~ 

"-
First. each de\'iatinnis sqllar~d. Next. the slim orsquare~. rx2

• is divided 
hy (n - I). one less than the sample size. The result is the mean square 
or sample rariance. S2. Finally. the extraction of the square root recovers 
the original scale of measurement. For the vitamin C concentrations. the 
calculations are set out in the right-hand par! of table 2.8.1. Since the 
sum of squares of the deviations is 254 and n is 17. we have 

,'~ 254/16 = 15.88 

5 = )15:88 = 3.98 mg./IOO gill. 

Before further discussion of s is given. irs calculat ion should be fixed 
in mind by working a couple of examples. Table A 18 is.. 1ahle of 'quare 
rootS. Hints on finding square roots are giv~n on p. 541. 
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TABLE 2.8 I 
C AL(,ULA TION m THf SAMPl_f S r ",.,OARD f)Evr",TlON 

Observation Vitamin C Concentration Devitttion Deviation 
Numb~r Mg. Per 100 gm. From Mean Squared 

" X x=X-x x' 

I 16 4 16 
2 22 + 2 4 
3 21 + I I 
4 20 0 0 
5 23 + ) 9 
6 21 + I I 
7 19 - I I 
8 15 5 25 
9 13 7 49 

10 23 + 3 9 
II 17 3 9 
12 20 0 0 
13 29 + 9 81 
14 18 2 4 
15 22 + 2 4 
16 16 - 4 16 
17 25 + 5 25 

Totals 340 -26 +26 254 

EXAMPLE 2.8.1----ln five patients with pneumonia, treated with sodium penicillin G, 
the numbers of days required to bring the temperature down to normal were 1.4 5, 7, 3. 
Compute 5 for these data and compare it with the estimate based Qn the range. Ans. s = 2.24 
days. Range estimate = 2.58 days. 

EXAMPLE 2.8.2-- Calculate s for the hempp\ant weights in example- 2.7.1. Am. 6.7 
grams. Compare with your first estimate of u. 

The appearance of the divisor (n - I) instead of n in computing " 
and s is puzzling at firsl sight. The reason cannot be explained fully at 
this stage, being related to the computation of s from data of mor" com: 
plex structure. The quantity (11 - I) is called Ihe numher oj degrees of 
jiwdom in s. Later in the book we shall meet situations in which the 
number of degrees of freedom is nt.!ither II nor (1l - I), but some other 
quantity. If the practice of using the degrees of freedom as divisor is fol­
lowed. there is the considerable advantage tha!. the same statistical tables, 
needed in important applications, serve for a wide variety of types of data. 

Division by (n - I) has one standard property that is often cited. If 
random samples are drawn from allY indefinitely large population (not 
just a normally distributed one) that has a finite value of", then the average 
value of S2, taken over all random samples. is exactly equal to (12. Any 
estimate whose average value over all possible random samples is equal 
to the popUlation parameter being estimated is called unbiased. Thus, 
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S2 is an unbiased estimate of (J2. This property, which says that on the 
average the estimate gives the correct answer, seems a desirable one for an 
estimate to possess. The property, however. is not as fundamental as 
one might think, because s is not an unbiased estimate of (J. If we want 
s to be an unbiased estimate of (J in normal populations, we must use a 
divisor that is neither (n - I) nor n. 

2.9-Comparison ofthe two estimate", of (J. You now have two esti­
mators of (J, one ofthem easierlO ca!culatethan the other. but less efficient. 
You need to know what is meant by "less efficient" and what governs the 
choice of estimate. Suppose that we draw a large number of random 
samples of size 10 from a normal population. For each sample we can 
compute the estimate of (J obtained from the range, and the estimate s. 
Thus we can form two frequency distributions, one showing the distrihu­
tion of the range estimate, the other showing the distribution of s. The 
distribution of s is found to be more closely grouped about 0'; that is. s 
usually gives a more accurate estimate of (J. Going a step further, it can 
he shown that the range estimate, computed from normal samples of size 
12, has roughly the same frequency distribution as that of s in samples of 
size 10. We say that in samples of size 10 the relath'" efficiency of the range 
estimator to s is about 10/12, or more accurately 0.850. The relative 
efficiencies and the relative sample sizes appear in the third and fourth 
columns of table 2.4.1 (p.40). In making a choice we have to weigh the 
cost of more observations. If observations are costly. it is cheaper to 
compute s. 

Actually, both estimators are extensively used. Note that the rela­
tive efficiency of the range estimator remains high up to samples of sizes 
8 to 10. In many operations, (J is estimated in practice by combining the 
estimates from a substantial number of small samples. For instance, in 
controlling the quality of an industrial process, small samples ofthc manu­
factured product are taken out and tested frequently. say every 15 min­
utes or every hour. Samples of size 5 are often used, the range estimator 
being computed from each sample and plotted on a time-chart. The 
efficiency of a single range estimate in a sample of size 5 is 0.955. and the 
average of a series of ranges has the same efficiency. 

The estimate from the range is an easy approximate check on the 
computation of s. In these days, electronic computing machines are used 
more and more for routine computations. Unless the investigator has 
learned how to program, one consequence is that the details of his com­
putations are taken out of his hands. Errors in making the programmers 
understand what is wanted and errors in giving instructions to the maw 
chines are common. There is therefore an increasing need for quick 
approximate checks on all the standard statistical computations. which the 
investigator can apply when his results are handed to him. If a table of 
(J/Ronge is not at hand. two rough rules may help For samples up to size 
10. divide the range by ,In to estimate (J. Rememher also: 
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The range estimator and s are both sensitive to gross errors, because 
• gross errol is likely to produce a highest or lowest sample membe that is 
entirely false, 

EXAMPLE 2.9.1-ln a sample of size 2, with measurements Xl and Xz, show that sis 
(Xl - X 1V"/2 = O.707\X\ - X 1(' and that the range estimator is 0.886!X1 - Xl!, where the 
vertic:allines denote. the absolute ",alue. The reason for the different multipliers is that the 
range: estimator is constructed to be' an unbiased estimator of (J, while s is not, as already 
mentioned. 

EXAMPLE 2.9.2-The birth weights of 20 guinea pigs were: 30, 30, 26, 32, 30, 23, 29, 
31,36,30,25,34,32',24,28,27,38,31,34,30 grams. Estimate u in 3 ways: (i) by the rough 
approximation, onc~fourth of the range (Ans. 3.8 gm.); (ii) by use of the fraction, 0.268, in 
table :,/,4.1 (Ans. 4.0 gm.); (iii) by calculating s (Ans. 3.85 gm.). N.B: Observe the time re­
quired to calculate s. 

EXAMPLE 2.9.3--ln the preceding example, how many birth weights would be re­
quired to yi.eld the same precision if the range were used. instead of s7 A.ns. a.bout 29 weigh~ 

EXAMPLE 2.9.4---Suppose JOU lined up according to height 16 freshmen, then mea­
sured the heigh! of the shortest, 64 inches, and the- tallest, 72 inches. Would you accept the 
midpoint of the range, (64 + 72)/2 = 68 inches as a rough estimate of p, and 8/3 = 2.7 
inches as a quick-and-easy estimate of (1'! 

EXAMPLE 2.9.5-ln a sample of 3,the values are, increasing order, Xl' Xl, and X3 • 

The range estimate of u is 0.591(X3 - Xl) If you are ingenious at algebra. show that s 
always lies between (X3 - X I )/2 = 0.5(X) - Xl)' and (X3 - Xd/.,/3. = 0.578(X3 - Xl)' 
Verify the two extreme cases from the samples 0, 3, 6, in which s = 0.5(X3 - XI) lind 0, 0, 6, 
in which s = 0.578(X3 - Xl)' 

2.tO-Hints on the computation of s. Two results in algebra help to 
shorten the cakulation of S, Both give quicker ways of finding Ex', If 
G is any number, there is an algebraic identity to the effect that 

Ex' = l:(X - X)' = E(X - G)' - (EX - nG)'jn 

An equivalent alternative form is . 

I:x 2 = E(X - X)2 = I:(X - G/~ nrX - G)2 

These expressions are useful when s has to be computed without the aid of 
a calculating machine (a task probably confined mainly to students nowa­
days), Suppose the sample total is EX = 350 and n = 17, The mean X 
is 350/17 = 20,59, If the X's arc whole numbers, it is troublesome to take 
deviations from a number like 2(),59. and still more so to square the 
numbers without a machine. The trick is to take G (sometimes called the 
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guessed or working meun) equal to 20. Find the deviations of the X's 
from 20 and the sum of squares of these deviations. L(X - G)'. To 
get LX'. you have only (0 subtract n times the square of the difference 
between.Y and G. or. in this case. 17(0.59)' = 5.92. 

Prouf oj {he IdeHfity. We shall denote a typical value in the sample by 
Xi' where the subscript i goes from 1 to n. Write 

Xi - G = (X, - X) + (X - G) 

S'luanng both sides. we have 

(Xi - G)2 = (X, - X)2 + 21X .. - XliX - G) + I.Y - G)' 

We now add over the n members of the sample. In the middle term on 
the right. the term 2(X .- G I is a constant multiplier throughout this 
addition. since this term does not contain the suhscript i that changes from 
onc member ofthe.sample to another. Henl.:c 

L2(Xi ._ XUX - G) ~ 2<)( - GIl:(Xi - X) = n. 
since as we have seen previQus)y. the sum of the deviations from the sam­
ple mean is alwaY5zcro. Thl~ gIves 

L(Xi - G)' = L(Xi - X)2 + n(X - G)' 

noting that the sum of the constant term (X - G)' over the sample is 
niX - G)'. Moving this term 10 the other side. we get 

L(X, - G)' - Il(.\' - G)' = L(X; - X)' 

This completes the proof. 
Incidentally. the result shows that for any value of G. L(Xi - X)' 

is always smaller than L(Xi - Gl'. unless G = X. The sample mean ha, 
the property that the sum of squares of deviations from it is it minimum. 

The second aigebraic result. a particular case of the first. is used 
when a calculating machine is avaiJable. rut G = 0 in the lirst result 
in this section. We get ~ 

LX' = L(X - .x)' = LX' - (LX)';n 

This result enables us to find LX' without computing any ofthedeviations. 
For a set of po,itive numbers Xi' most calculating machines will compute 
the sum of squares. LX'. and the sum. LX. simultaneously. without 
writing down any intermediate figures. To get I:x1 . we square the sum. 
dividing by n. to give (LX)' in. and subtract this from the original sum of 
square". rx' The computation will be illustrated for the 17 vitamin C 
concentrations. Earlier. as mentioned. these data wore altered slightly to 
simplify the presentation. The actual determinations were as follows. 

16.22.21. 20.23. 22.17, Ij. 13,22.17,18.29,17,22.16.23 

The only figures that need be written down are shown in table 2.10.1. 



TABLE 2.10.1 
COMPUTING THE SAMPLE MEAN AND SUM OF SQUARES OF DEVIATIONS 

WITH A CALCULATING MACHINE 

n,.,.17 !.X2 =6.773 
l:X = 333 (l:X)'!n ~ 6.522.88 

X = 19.6 mg. per 100 gm. !.x2 = 250.12 
s' = 250.12/16 ~ 15.63 
,= ,,115.63 = 3.95 
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When using this method, rememher that any constant number can 
be subtracted from all the Xi without changing s. Thus if your data are 
numbers like 1032, 1017, 1005. and so on, they can be read as 32,17,5, 
and so on, when following the method in table 2.10.1 

EXAMPLE 2.lO.I-For those who need practice.in using a guessed mean, here is a set 
of numbers for easy computation: 

15, 12, 10, 10. 10,8.7,7,4,4.1 

First cakulate X = 8 and s = 4 by finding deviations from the sample mean. Then try 
various guessed means, such as 5, 10, and I. Continue unlil you convince yourself that the 
answers, X = 8 and s ~ 4, can be reached regardless of the value chosen for G. Finally, 
try G = O. Note: With a guessed mean, X can be found without having to add the Xi' by 
the relation 

x = G + [l:(X - G)l!n 

where the quantity 1:(X - G) is the sum of your rleviations from the guessed mean G. 

EXAMPLE 2.10.2- For the ten patients in a previous example, the average differences 
in hours of sleep per night between sedative and no sedative were (in hours): 0.7. 0.0. 3.7, 
0.8,2.0, -1.6.3.4. - 0.2, - 1.2, - 0.1. With a calculating machine. compute s by the short· 
cut method in table 2.10.1. Ans. s "'" 1.79 hrs. The range method gave 1.71 hr!S. 

EXAMPLE 2.10.3---Without finding deviations from X and without u~ing a calculating 
machine. compute1:.\'2 for the fOllowing measurements: 961. 953. 970. 958. 950. 951. 957. 
Ans.286.9. 

2.11-The standard deviation of sample means. With measmement 
data, as mentioned previously. the purpose of an investigatiollis often to 
estimate an average or total over a population (average selling price of 
houses in a town, total wheat crop in a region). If the data are a random 
sample from a population. the sample mean X is used to estimate the cor­
responding average (lver the population.· {urther, if the number of items 
N in the population is known, the quantity NX is an estimator orthe popu­
lation total of the X's. This brings up the question: How accurate is a 
sample mean as an estimator of the population mean '? 

As usual. a question of this type can be examined either experimental­
ly or mathematically. With the experimental approach. we first find or 
construct a population that seems typical of the type of populalion en­
countered in our work. Suppose that we are particularly interested in 
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samples of size 100. We draw a large number of random samples of size 
100, computing the sample mean]( for each sample. In this way we form 
a frequency distribution of the sample means, or graph the frequencies 
in a histogram. Since the mean of the population is known, we can find 
out how often the sample mean is satisfactorily close to the popUlation 
mean, and how often it gives a poor estimate. 

Much mathematical work has been done on this problem and it 
has prod ueed two of the most exciting and useful results in the whole of 
statistical theory. These results, which are part of every statistician's 
stock in \.Iade, will be stated first. Some experimental verification will 
then be presented for illustration. The first result gives the mean and 
standard deviation of X in repeated sampling; the second gives the shape 
of the frequency distribution of X. 

Mean and standard deviation of X. If repeated random samples of size n 
are drawn from any population (not necessarily normal) that has mean Jl 
and standard deviation a, the frequency distribution of the sample means 
X in these repeated samples has mean Jl and standard deviation u/jn. 

This result says that under random sampling the sample mean X is 
an unbiased estimator of Jl: on the average, in repeated sampling, it will be 
neither too high nor too low. Further, the sample means have less varia­
tion about Jl than the original observations. The larger the sample size, 
the smaller this variation becomes. 

Students sometimes find it difficult to reach the point at which the 
phrase "the standard deviation of ](" has a concrete meaning for them. 
Having been Introduced to the idea of a standard deviation, it is not too 
hard to feel at home with a phrase like "the standard deviation of a man's 
height." hecause every day we see taU men and short men, and reallze 
that this standard deviation is a measure of the extent to which heights 
vary from one rnan to another. But usually when we ha\lc a sample, we 
calculate a single mean. Where does the variation come from? It is the 
variation that would arise if we drew repeated samples from the popula­
tion that we are studying and computed the mean of each sample. The 
experimental samplings presented in this chapter and m chapter 3 may 
make this concept more realistic. 

The standard deviation of X, u/.Jn, is often called. alternatively, the 
srandard erJ'Or {~r X. -..... T~he terms "standard deviation" and "standard 
error" are synonymous. When we are studying the frequency distribution 
of an estimator like X. its standard deviation supplies information about 
the amount of error in X when used to estimate J1. Hence, the term 
"standard error" is rather natural. Normally. we would not speak of the 
standard error of a man's height. because if a man is unusually tall. this 
does not imply that he has made a mistake in his height. 

The quantity NX. often used to estimate a total over the popUlation, 
is also an unbiased estimator under random sampling. Since N is simply 
a fixed number. the mean of NX in repeated sampling is Nil. which. by 
the definition ofJl, is the correct population total. The standard error of 



51 

NX is Nu/Jn. Another frequently used result is that the sample total, 
1:X = nX, has a standard deviation nu/J1I, or uJn. 

2.12-The frequency distribution of sample meaDS. The second major 
result from statistical theory is that, whatever the shape of the frequency 
distribution of the original population of X's, the frequency distribution 
of X in repeated random samples of size n tends to become normal as 11 

increases. To put the result more specifically, recall that if we wish to 
express a variable X in standard measure, so that its mean is zero and its 
standard deviation is 1, we change the variable from X to (X - Il)/U. 
For X, the corresponding.expression in standard measure (sm) is 

x _ (X - Il) 

- - u/Jn 

As 11 increases, the probability that X_ lies between any two limits L, 
and L, becomes more and more equal to the probability that the standard 
normal deviate Z lies between L, and L,. By expressing X in standard 
measure, table A 3 (the cumulative normal distribution) can be used to 
approximate the probability that X itself lies between any two limits. 
This result, known as the Central Limit Theorem (5), explains why the 
normal distribution and results derived from it are so commonly used 
with sample means, even when the original population is not normal. 
Apart from the condition of random sampling, the theorem requires 
very few assumptions: it is sufficient that u is finite and that the sample 
is a random sample from the popUlation. 

To the practical worker, a key question is: how large must n be III 

order to use the normal distribution for X? Unfortunately, no simple 
general answer is available. With variates like the heights of men, the 
original distribution is near enough normal so that normality may be as­
sumed for most purposes. In this case a sample with n = I is large enough. 
There are also populations, at first sight quite different from the normal, 
in which n = 4 or 5 will do. At the other extreme, some populations re­
quire sample sizes well over 100 before the distribution of X becomes at all 
near to the normal distribution. 

As illustrations of the Central Limit Theorem, the results of two 
sampling experiments will be presented. In the first, the population is the 
popUlation of random digits 0, I, 2, ... 9 which we met in chapter I. 
This is a discrete population. The variable X has ten possible values 
0, I, 2, ... 9, and has an equal probability 0.1 of taking any of these 
values. The frequency distribution of X is represented in the upper part of 
figure 2.12.1. Clearly, the distribution does not look like a normal dis­
tribution. Distributions of this type are sometimes called uniform, since 
every value is equally likely. 

Four hundred random samples of size 5 were drawn from the table 
of random digits (p. 543),each sample being a group of five consecutive 
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FlO. 2.l2.I-Upper part: Theoretical probability distribution of tbe random digits from 
o to 9. lower pan: Histogram showing [he distribution of 400 means of samples of size 
S drawn from the random digits. The curve is the normal distribution with mean JJ = 4.5 
and standard deviation 1'1/../1'1 = 2.872/ .. /5 == 1.284. 
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numbers in a column. The frequency distribution of the sample means 
appears in the lower half of figure 2.12.1. A normal distribution with 
mean p. and standard deviation (1/../5 is also shown. The agreement is 
surprisingly good, considering that the samples are only of size 5. 

Calculation of p. and (1. In fitting this normal distribution, the quantities 
p and (J were the mean and standard deviation of the original population 
of random digits. Although the calculation of X and s for a sample has 
been discussed, we have not explained how to calculate p. and (J for a 
population. In a discrete population, denote the distinct values of the 
measurement X by X" X" ... X.. In the population of random digits, 
k = 10, and each value has an equal probability, one-tenth. In a more gen­
eral discrete population, the value XI may appear with probability or 
relative frequency PI' We could, for example, have a popt.lation of 
digits in which a 0 is 20 times as frequent as a I. Since the probabilities 
must add to I, we have 

• L P, = 1 
i= 1 

The expression on the left is read "the sum of the P, from i equals 1 to k." 
The population mean p. is defined as 

• 
p. = L PIX, 

;= 1 

Like X in a sample, the quantity p is the average or mean of the values of 
XI in the population, noting, however, that each XI is weighted by its rela­
tive frequency of occurrence. 

For the random digits, every P, = 0.1. Thus 

p. = (0.1)(0 + I + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) = (0.1)(45) = 4.5, 

The population u comes from the deviations XI - p. With the 
random digits, the first deviation is 0 - 4.5 = -4.5, and the successive 
deviations are -3.5, -2.5, -1.5, -0.5, +0.5, +1.5, +2.5, +3.5, and 
+4.5. The population variance, (1', is defined as 

• 
(1' = L P,(X, _ p)' 

j= 1 

Thus, (1' is the weighted average of the squared deviations of the values 
in the population from the population mean. Numerically, 

(1' = (0.2j{(4.5)' + (3.5)' + (2.5)' + (1.5)' + (0.5)'} = 8.25 

This gives (1 = ,,'8.25 = 2.872; so that (1/../5 = 1.284. 
There is a shortcut method of finding (1' without computing any 
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deviations: it is similar to the corresponding shortcut formula for l:x'. 
The formula is: , 

(12 = L Pj X j
2 - Jl.2 ,.[ 

With the normal distribution, I' is, as above, the average of the values 
of X, and u' is ttle average of the squared deviations from the population 
mean. Since the normal population is continuous, having an infinite 
number of values, formulas from the integral calculus are necessary in 
writing down these definitions. 

As a student or classroom exercise, drawing samples of size 5 from 
the random digit tables is recommended as an easy way of seeing the 
Central Limit Theorem at work. The total of each sample is quickly 
obtained mentally. To avoid divisions by 5, work with sample totals 
instead of means. The sample tota~ 51', has mean (5)(4.5) = 22.5 and 
standard deviation (5)(1.284) = 6.420 in repeated sampling. In forming 
the frequency distribution, put the totals 20, 21, 22, 23 in the central class, 
each class containing four consecutive totals. Although rather broad, 
this grouping is adequate unless, say, ·500 samples have been drawn. 

The second sampling experiment illustrates the case in which a large 
sample size must be drawn if X is to be nearly normal. This happens with 
populations that are markedly skew, particularly if there are a few values 
very far from the mean. The population chosen consisted of the sIZes 
(number of inhabitants) of U.S. cities having over 50,000 inhabitants in 
1950 (6), excluding the four largest cities. All except one have sizes rang­
ing between 50,000 and 1,000,000. The exception, the largest city in the 
popUlation, contained 1,850,000 inhabitants. The frequency distribution 
is shown at the top of figure 2.12.2. Note how asymmetrical the distri­
bution is, the smallest class having much the highest frequency. The city 
with 1,850,000 inhabjtants is not shown on this histogram: it would ap­
pear about 4 inches to the right of the largest class. 

A set of 500 random samples with n = 25 and another set with n = 100 
were drawn. The frequency distributions of the sample means appear 
in the middle and lower parts of figure 2.12.2. With n = 25, the distribu­
tion has moved towards the normal shape but is still noticeably asymmetri­
cal. There is some further improvement towards symmetry with n = 100, 
but a normal curve would still be a poor fit. Evidently, samples of 400-
500 would be necessary to use the normal approximation with any as­
surance. Part of the trouble is caused by the 1,850,000 city: the means 
for n = 100 would be mOre nearly normal if this city had been excluded 
from the population. On the other hand, the situation would be worse if 
the four largest cities had been included. 

Combining the theorems in this and the previous section, we now 
have the very useful result that in samples of reasonable size, X is approxi­
mately normally distributed about 1', with standard deviation or standard 
errorul,jn. 
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FIG 2.12.2-Top part: Frequency distribution of the populations of 228 U.S. citie5 having 
populations over 50.000 in 1950. Middle pan: Frequency distribution of the means 0(500 
random samples of size 25. Bottom part; Frequency distribution of the means of 500 
I'ilndorn 9amples of size 100. 
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EXAMPLE 2.12.1-A population of heights of men has a standard deviation (1 = 2.6 
inches. What is the standard error of the mean of a random sample of (i) 25 men, (ii) 100 
men? Ans. (i) 0.52 in. (ii) 0.26 in. 

EXAMPLE 2.12.2-10 order to estimate the total weight of a batch of 196 bags that 
a(,e to be shipped, each of a random sample of 36 bags is weigbed., giving X = 40 lhi. As­
suming (1 = 3Ibs., estimate the total weight of the 196 bags and give the standard error of 
your estimate. Ans. 7,840 1bs.; standard error, 981bs. 

EXAMPLE 2.12.3-10 estimating the mean beight of a large group of boys with 
(J = 1.5 in., how large a sample must be tak~n if the standard error of the mean height is to 
be 0.2 in.? Ans. 56 boys. 

EXAMPLE 2.12.4-If perfect dice are thrown repeatedly, the probability is 1/6 that 
each of the raCes 1,2,3,4,5,6 turns up. Compute", and t1 for this population. Ans. p. "'" 3.S, 
Q=1.7J. 

EXAMPLE 2. 12.S-Ifhoys and gIrls are equally likely, the probabilities that a family of 
size two contains 0, I, 2 hoys are, respectively. 1/4, 1/2, and 1/4 Find", and t1 for this 
population. Ans. '" = I, (/ = I/J2 = 0.71. 

EXAMPLE 2.12.6--The following sam.pling experiment shows how the Central Limit 
Theorem perrorms with a population simulating what is called a u-shaped distribution. In 
the random digits table, score 0, 1,2,3 as 0; 4, 5 as I; and 6, 7,8,9 as 2. In this population. 
the probabilities of score 0[0, I, 2 and 0.4, 0.2, and 0.4. respectively. This is a discrete dis­
tribution in which the central ordinate. 0.2., is lower than the two outside ordinates, 0.4. 
Draw a number of samples of size 5, using the random digits table. Record the total score 
for each sample. The distribution of total scores will be found fairly similar to the bell­
shaped normal curve. The theoretical distribution of the total scores is as follows; 

Score 
Prob. 

o or 10 
.010 

lor 9 
.026 

2 or 8 
.077 

3 or 7 
.115 

That is, the probability of a 0 and that of a 10 are both 0.010. 

4 or 6 
.i82 

5 
.179 

2.I3-Confidence intervals for I" when <1 is known. Given a random 
sample of size n from a population, where n is large enough so that X can 
be assumed normally distributed, we are now in a position to make an 
interval estimate of 1". For simplicity, we assume in this section that 
(J is known. This is not commonly sO in practice. In some situations. 
however. previous populations similar to the one now being investigated 
all nave about the same standard deviation, which is known from these 
previous results. Further, the value of (J can sometimes be found from 
theoretical considerations about the nature of the population, 

We first show how to find a 9S'Y" confidence interval. In section 2.1 
it was pointed out that if a variate X is drawrt from a normal distribution, 
the probability is about 0.95 that X lies between I" - 2<1 and I" + 2<1. 
More exactly, the limits corresponding to a probability 0.95 are I" - 1.96<1 
and I' + 1.96<1. Apply this result to X, remembering that in repeated 
sampling X has a stan_dard deviation <1/.,jIl. Thus, unless an unlucky 5% 
chance has come off. X will lie between I" - 1.96<1/Jn and I" + 1.96(1/Jn. 
Expressing this as a pair of inequalities, we write 

I' - 1.96(1/,/n ,;; X ,;; /' + 1.96a/Jn 
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apart from a 5% chance. These inequalities can be rewritten so that they 
provide limits for I' when we know X. The left-band inequality is equiva­
lent to the statement that 

I' s; X + 1.96u/.Jn 
In the same way, the right-hand inequalitY implies that 

I' '" X - 1.96u/.Jn 
Putting the two together, we reach the statement that unless an unlucky 
5% chance occurred in drawing the sample, 

X - 1.9OO/.Jn S; I' S; X + 1.96u/.Jn 
This is the 95% confidence interval for 1'. 

Similarly, the 99% confidence interval for I' is 

X - 2.58a/.Jn S; I' S; X + 2.58a/.Jn 
because the probability is 0.99 that a normal deviate Z lies betwcen the 
limits - 2.58 and + 2.58. 

To find the confidence interval corresponding to any confidence prob­
ability P, read fFom the cumulative normal table (table A 3) a value Zp, 
say, such that the area given in the table is P/2. Then the probability that 
a normal deviate lies between - Zp and + Zp will be P. The confidence 
interval is 

X - Zpa/.jn s; I' s; X + Zpa/.jn 

One-sided confidence limits. Sometimes we want to find only an upper 
limit or a lower limit for 1', but not both. A company making large 
batches of a chemical product might have, as part of its quality control 
program, a regulation that each batch be tested to ensure that it does not 
contain more than 25 parts per million of a certain impurity, apart from 
a I in 100 chance. The test consists of drawing out n amounts of the prod­
uct from the batch, and determining the concentration of impurity in 
each amount. If the batch is to pass the test, the 99% upper confidence 
limit for I' must be not more than 25 parts per million. Similarly, certain 
roots of tropical trees are a source of a potent inseCtic;ide whose concen­
tration varies considerably from root to roOI. The buyer of a large ship­
ment of these roots wants a guarantee that the concentration of the active 
ingredient in the shipment exceeds some stated value. It may be agreed 
between buyer and seller that the shipment is acceptable if, say, the 95~~ 
lower confidence limit for the average concentration I' exceeds the desired 
minimum. 

To find a one-sided or one-tailed limit with confidence probability 
'95~~, we want a normal deviate Z such that tile area beyond Z in one tail 
is 0.05. [n table A 3, the area from 0 to Z will be 0.45, and the value of Z 
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is 1.645. Apart from a 5% chance in drawing the sample, 

x :s; I' + 1.645u/.jn 

This gives, as the 'ower 95% confidence limit for 1', 

JJ 2! X - J.645u/.jn 

The upper limit is X + 1.645u/.jn. For 99% limit the value of Z is 2.326. 
For a one-sided limit with confidence probability P (expressed as a pro­
portion), read table A 3 to find the Z that corresponds to probability 
(P - 0.5). 

2.14--Size of sample. The question: How large a sample must I 
take? is frequently asked by investigators. The question is not easy to 
answer. But if the purpose of the investigation is to estimate the mean 
of a population from the results of a sample, the methods in the preceding 
sections are helpful. 

First, the investigator must state how accurate he would like his 
sample estimate to be. Does he want it to be correct to within I unit, 5 
units, or IO units, on the scale on which he is measuring? In trying to 
answer this question, he thinks of the purposes to which the estimate will 
be put, and tries to envisage the consequences of having errors of different 
amounts in the estimate. If the estimate is to be made in order to guide 
a specific business or financial decision, calculations may indicate the 
level of accuracy necessary to make the estimate useful. In scientific re­
search it is often harder to do this, and there may be an element of arbi­
trariness in the answer finally given. 

By one means or another, the Investigator states that he would like 
his estimate to be correct to within some limit ± L, say. Since the normal 
curve extends from minus infinity to plus infinity, we cannot guarantee 
that X is certain to lie between the limits I' - L and I' + L. We can, how­
ever, make the probability that X lies between these limits as large as we 
please. In practice, this probability is usually set at 95% or 99% For 
the 95% probability, we know that there is a 95% chance that X lies be­
tween the limits I' - 1.9OO/.jn and I' + 1.96(1/.jn. This gives the equation 

1.96(1/.jn = L 

which is solved for n. 
The equation requires a knowledge of (I, although the sample has 

not yet been drawn. From previous work on this or similar popUlations, 
the investigator guesses a value of u. Since this guess is likely to be some­
what in error, we might as well replace 1.96 by 2 for simplicity. This gives 
the formula 

n = 4<12/L2 

The formula for 99~~ probability is n = 6.OO2/L' 
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To summarize. the investigator must supply: (i) an upper limit L to 
the amount of error that he can tolerate in the estimate. (ii) the desired 
probability that the estimate will lie within this limit of error. and (iii) 
an advance guess at the population standard deviation u. The formula 
for n is then very simple. 

EXAMPLE 2.14.1-Find (i) the 80010. (ii) the 90% confidence limits for,.,.. given X and 
". An •. (i) X ± 1.28a/.jn.(ii) X ± 1.64<1/.jn. 

EXAMPLE 2.14.2-The heights of a random sample of 16 men from a population with 
(1 = 2.6 in. are measured. What is the confidence probability that X does not differ from JJ 
by more than 1 in.? Ans. P = 0.876. 

EXAMPLE 2.t4.3-For the insecticide roots, the buyer wants assurance that the 
average content of the active ingredient is at least 8 100. per 100 Ibs., apart from a 1-in-lOO 
chance. A sample of9 bundles of roots drawn from the batch gives, on analysis, X = 10.2 
Ibs. active ingredient per 100 Ibs. If q = 3.31bs. per 100 Ibs .. find the lower 99% confidence 
limit for Ji. Does the batch meet the specification? Ans. Lower limit = 7.6lbs. per 100 lbs. 
No. 

EXAMPLE 2.14.4-1n the auditing of a firm's accounts rtCe1vab\e, \00 entries were 
checked out of a ledger containing 1,000 entries. For these 100 entries, the auditor's check 
showed that the stated total amount receivable exceeded the correct amount receivable by 
$214. Calculate an upper 95% confidence limjt for the all)ount by which the reported total 
receivable in the whole ledger exceeds the correct amount. Assume q = $1.30 in the popu­
lation of the bookkeeping errors. Ans. $2,354. Note: for an estimated population total, 
the formula for a one-sided upper limit for Nfl is NX + NZ(1/..jn. Note also that you are 
given the sample lOla/ nX = $214. 

EXAMPLE 2.14.5-When measurements are rounded to the nearest whole number, it 
can often be assumed that the eITor due to rounding is equally likely to lie anywhere between 
-0.5 and +0.5. That is, rounding errors follow a uniform distribution between the limits 
-0.5 and +0.5. From theory, this distribution has p. = 0, (I = IlJ12 = 0.29. If 100 inde-
pendent, rounded measurements are added, what is the probability that the error in the 
total due to rounding does not exceed 5? Ans. P = 0.916. 

EXAMPLE 2.14.~In the part of a large city in which houses are rented, an economist 
wishes to estimate the average monthly rent correct to within ±$20, apart from a l-in-20 
chance. If he guesses that (J is about $60, how many houses must he include in his sample? 
Ans. n = 36. 

EXAMPLE 2.14.7-Suppose that in the previous example the economist would like 
~Ia probability that his estimate is correct to within $20. Further, he learns that in a recent 
sam-ple of 100 houses, the lowest rent was $30 and the highest was 5260. Estimating {f from 
these data. find the sample size needed. Ans. n == 36. This estimate is, of course, very rough. 

EXAMPLE 2.l4.8-Show that if we wish to cut the limit of error from L to L/2. the 
sample size must be quadrupled. With the same L, if we wish ,~Ia probability of being 
within the limit rather than 95% probability, what percentag~ increase in sample size is 
required? Ans. about 65% increase. 

2.1S-"Student's" t-distribution. In most applications in which 
sample means are used to estimate population means. the value of u 
is not known. We can. however. obtain an estimate s of u from the sample 
data that give us the value of X. If the sample is of size n. the estimate s 
is based on (n - I) degrees of freedom. We require a distribution that will 
enable us to compute confidence limits for IJ.lmowing s but not u. Known 
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Flo. 2. IS. I- Dislribution of t with 4 degrees of freedom . The shaded areas comprise 
S% of the total area. The distribution is more peaked in Ihe center and has higher tails 

than the normaJ. 

as "Student's" t-distribution. this result was discovered by W. S. Gosset 
in 1908 (7) and perfected by R. A. Fisher in 1926 (8). This distribution 
has revolutionized the statistics of small samples. In the next chapter you 
will be asked to verify the distribution by the same lcind of sampling 
process you used for chi-square; indeed. it was by such sampling that 
Gosset first learned about it. 

The quantity I is given by the equation. 

X-jJ. 
1=--

S/JII 

That is, , is the deviation of tbe estimated mean from that of the popula­
tion. measured in terms of s/ J 11 as the unh. We do not know J.I. though 
we may have some hzyothesis about it. Without jJ.. , cannot be calcu­
lated ; but its sampling distribution has been worked out. 

The denominator. s/J 1I. is a useful quantity estimating (f/Jn, the 
sla1ldnrd error of X. 

The distribution of ( is laid out in table A 4, p. 549. In large samples 
it is practically normal with J.I. = 0 a nd (f = I . It is only for samples of less 
than 30 that the distinction becomes obvious. 

Like tbe normal, the I-distribution is symmetrical about the mean. 
T his allows the probability in the table to be stated as that of a larger 
absolute value. sign ignored. For a sample of size 5, with 4 degrees of 
freeedom. figure 2. 15.1 shows such val ues of I in the shaded areas; 2.5% 
of them are in one tai l and 2.5% in the o tber. Effectively, the table shows 
the two ha lves of the figure superimposed, giving the sum of the shaded 
areas (probabil ities) in both. 
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EXAMPLE 2.15.1-10 the vitamin C sampling of table 2.8.l,sr = 3.98/J17 = 0.965 
mg.jlOO gm. Set up the hypothesis that jJ "'" 17.954 mg./IOO gm. Calculate t. ADS. 2.12. 

EXAMPLE 2.15.2~For the vitamin C sample. degrees of freedom = 17 - I = 16, the 
denominator of the fraction giving S2. From table A 4, find the probability of a value of t 
larger in absolute value than 2.12. ADs. 0.05. This means that, among random samples of 
" = 17 from normal populations, 5% of them are expected to have ,·values below -2.12 or 
above 2.12. 

EXAMPLE2.15.3---Ifsamples ofn = 17 are randomly drawn from a normal population 
and have t calculated for each, what is the probability that I will fall between -2.12 aod 
+2.l2? ADS. 0.95. 

EXAMPLE 2.15.4-lfrandom samples ofn = 17 are drawn from a normal population, 
what is the probability of t greater than 2.12? Ans.0.025. 

EXAMPLE 2.IS.S-What size of sample would have I> 121 in S% of all random 
samples from normal populations? Ans.61. (Note the symbol for "absolute value," tbalis, 
ignoring signs.) 

EXAMPLE 2.IS.6---Among very large samples (d! = 00), what value of t would be 
exceeded in 2.S% of them? Ans.l.96. 

2.Ie>-Confideoce limits for Il based on tbe , .... istribution. Witb IT 

known. the 95% limits for Il were given hy the relations 

X - 1.96tr/.jn ,;; Ji ,;; X + 1.96tr/.jn 

When IT is replaced by s. the only change needed is to replace the number 
1.96 by a quantity which we call 10 .0 " To find 10 .0 " read table A 4 in the 
column headed 0.050 and find the value of I for the number of degrees of 
freedom in s. When the df are infinite, 10 .0 , = 1.960. With 40 df, 10 .0 , 

has increased to 2.021, with 20 df it has become 2.086, and it continues 
to increase steadily as the number of df decline. 

The inequalities giving the 95% confidence limits then become 

X - lo.o,s/.jn,;; I' ,;; X + lo.o,s/.jn 

As illustration, recall the vitamin C determinations in table 2.8.1; n = 17, 
X = 20 and s" = 0.965 mg.!IOO gm. To get the 95~~ confidence interval 
(interval estimate): 

I. Enter the table with d.{ = 17 - I = 16 and in the column headed 
0.05 take the entry, 10 .0 , = 2.12. 

2. Calculate the quantity, 

lo.o,'x = (2.12)(0.965) = 2.05 mg./IOO gm. 

3. The confidence interval is from 

20 - 2.05 = 17.95 to 20 + 2.05 = 22.05 mg./IOO gm. 

If you say that Illies inside the interval from 17.95 to 22.05 mg./IOO gm., 
you will be right unless a l-in-20 chance has occurred in the sampling. 

The point and 95~{, interval estimate of 11 may be summarized Ihis 
way: 20 ± 2.05 mg./IOO gm. 
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The proof of this result is similar to that given when (] is known: 
Although J.! is unknown, the drawing of a random sample creates a value of 

X-J.! 
1=--

5/";" 
that follows Student's I-distribution with (n - 1) d.f. Now the quantity 
10 .05 in table A 4 was computed so that the probability is 0.95 that a value 
of I drawn at random lies between - /0.0' and + to .o,. Thus, there is a 
95~'~ chance that 

X-J.! 
- 10 .0 ,:5 s/";n :5 + 10 .05 

Multiply throughout by s/";n, and then add J.! to each term in the in· 
equalities. This gives, with 95% probability, 

JJ - 10.0,S/";" :5 X :5 J.! + lo.o,s/";n 

The remainder of the proof is exactly the same as for (] known. The limits 
may be expressed more compactly as X ± /0.0''<'' For a one-sided 95% 
limit, use 10.10 in place of to.os. 

EXAMPLE 2.16.1- The yields of alfalfa from 10 plots were 0.8,1.3,1.5,1.7.1.7,1.8, 
2.0, 2.0, 2.0, arn:l2.2 tons per acre. Set 95% limits on the mean of the poP!llation of whkh 
this is a random sample. Ans. 1.41 and 1.99 tons per acre. 

EXAMPLE 2.16.2--ln an investigation of growth in school cbildren in private schools, 
the sample mean height of 265 boys of age 13 1/2-14 1/2 years was 63.84 ill. with standard 
deviation s = ].08 in. What is the 9S~(, confidence interval for IJ" Ans. 63 5 to 64.2 in. 

EXAMPLE 2.16.3-·ln a check of a day's work for each of a sClmple of 16 women 
engaged in tedious, repetitive work, the average number of minor errors per day was 5.6, 
with a sample s.d. of 3,6. Find (i) a 90% confidence interval for the population mean 
number of errors, (ii) a one-sided upper 90% limit to the population number of errors. 
Ans. (i) 4.0 to 7.2. (ii) 6.8. 

EXAMPLE 2.16.4--We have stated that the t-distribution differs clearly from the 
normal distribution only for samples of size less than 30. For a given value 01'.\\. how much 
wider is (i) the 95~'o (ii) the 99"/~ confidence interval when the sample size is 30 than when the 
sample size is very large'.' Are there samples sizes for which the 95(., and 99/., interV<lls 
become twice as wide. for the same X.t . <IS with very large samples? Ans. 0) 4.3'\, wider 
(1i) 7.0% wider, since '~K has 29 df For a sample of size 3 (2 dI) the 95% interv<l1 is twice 
as wide, and for a sample of size 4 the 99/.', interval is twice as wide. With ~mall samples. s 
is not a good estimate of G, and the confidence limits widen to allow for the chance that the 
sample s is far removed from the true (J. 

2.l7-Relative variation. Coefficient of variation. In describing the 
amount of variation in a population. a measure often used is the {'oe{ft"dem 
of mrialion C = "ill. The sample estimate is siX. The standard devi­
ation is expressed as a fraction, or sometimt!s as a percentage .. of the mean. 
The utility of this measure lies partly in the fact that in many ,erics the 
mean and standard deviation tend to change together. This 15 illustrated 
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by the mean stalure and corresponding standard deviation of girls from 
I to 18 years of age shown graphically in figure 2.17.1. Until the twelfth 
year the standard deviation increases at a somewhat greater rate, relative 
to its mean, than does stature, causing the coefficient of variation to rise, 
but by the seventeenth year and thereafter C is back to where it started. 
Without serious discrepancy one may fix in mind the figure, C = 3.75%, 
as the relative standard deviation of adult human stature, male as well as 
female. More precisely, the coefficient rises rather steadily from infancy 
through puberty, falls sharply during a brief period of uniformity, then 
takes on its permanent value near 3.75%. 

A knowledge of relative variation is valuable in evaluating experi­
ments. After the statistics of an experiment are summarized, one may 
judge of its success partly by looking at C. In corn variety trials, for exam­
ple, although mean yield and standard deviation vary with location and 
season, yet the coefficient of variation is often between 5% and 15%. 
Values outside this interval cause the investigator 10 wonder if an error 
has been made in calculation, or if SOme unusual circumstances throw 
doubt on the validity of the experiment. Similarly, each sampler knows 
what values of C may be expected in his own data, and is suspicious of 
any great deviation. If another worker with the same type of measure­
ment reports C values much smaller thal) one's own, it is worthwhile to 
try to discover why, since the reason may suggest ways of improving one's 
precision. 
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Other uses of the coefficient of variation are numerous but less prev­
alent. Since C is the ratio of two averages having the same unit of mea­
surement it is itself independent of the unit employed. Thus, C is the same 
whether inches, feet, or centimeters are used to measure height. Also, 
tbe coefficient of variation of tbe yield of hay is comparable to that of the 
yield of corn. Experimental animals have characteristic coefficients of 
variation, and these may be compared despite the diversity of the variables 
measured. Such information is often useful in guessing a value of (T for 
the estimation of sample size as in section 2.14. 

Like many other ratios, the coefficient of variation is so convenient 
that some people overlook the information contained in the original data. 
Try to imagine how limited you would be in interpreting the stature-of­
girls coefficients if they were not accompanied by X and s. You would 
not know whether an increase in C is due to a rising s or a falling X, nor 
whether the saw-tooth appearance of the C-curve results from irregulari­
ties in one or both of the others, unless indeed you could supply the facts 
from your own fund of knowledge. The coefficient is informative and use­
ful in the presence of X and s, but abstracted from them it may be mis­
leading. 

EXAMPLE 2.17, I-In experiments involvins chlorophyll determinations in pineapple 
plants (10). the question was raised as to the method that would give the most consistent 
results. Three bases of measurement-were tried. each involving 12-1eaf samples, with the 
sbltistics reported below. From the coefficients of variation, it was decided that the methods 
were equaUy reliable, and the most convenient ODe could be chosen with no sacrifice of pre­
cision. 

STATImCS Of' CuLOIlOPHYLL DETaMINAnoNS OF 12-LEAF SAMPLES FROM PlNEMPLE 
PLANTS., USING THREE BASES OF MEASUREMENT 

tOO-gram lOO-gram lOO-sq. em. 
S<alistic Wet Basi> Dry Basls Buis 

SampJ~ Mean (milligrams) 61.4 337 13.71 
Sample Standard Deviation (milligrams) 5.22 31.2 1.20 
Coefficient of Variation <Per cent) 8.S 9.3 8.8 

EXAMPLE 2.17.2-10 a cens;» Jaboratory there is a roJony of rats in wbieh t.be coeffi· 
cient of variation of the weights of males between 56 and 84 days of aae is close to 13%. 
Estimate the sample standard deviation of the weights of a lot of these: rats whost: sample 
mean weight is 200 grams. Ans. 26 grams. 

EXAMPLE 2.17.3--lf C is the coefficient of variation in a population. show that the 
coefficient of variation oftbe mean of a random sample of size n is C/../n in repeated samplina. 
Docs (he same result hold for the sample (otal? Alai. Yes. 

EXAMPLE 2. 17.4--1f tbe coefficient of variation of the gain in weight of a certain 
animal over a month is 10C'/.,. what would you e''\pcct the coefficient of variation oftbe gain 
over a four-month period to~? ADS. The answer is complicated, and cannot he given 
fuUy al tbis stage. ]f q and p were tbe same during each of the four months. an~ if Ihe 
pius were indepentknt from month to month the answer would "'= C/..j4 = C!2. by the 
result in the preceding example. But animals sometimes grow by spuns. so that tbe gains in 
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successive periods may not be independent, and our formula for the standard deviation of 
a sample does Dot apply in this case. The answer is likely to lie between C and C!2. The 
point win be clarified when we study correlation. 
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* CHAPTER THREE 

Experimental sampling from 
a normal population 

3.t-lntroduction. In chapter I the facts about confidence intervals 
for a proportion were verified through experimental sampling. This 
same device illustrated the theoretical distribution of chi-square that forms 
the basis of the test ofa null hypothesis about the population proportion. 
In chapter 2 the results of two experimental samplings were presented to 
show that the distribution of means of random samples tends to approxi­
mate the normal distribution with standard deviation u/.Jn, as predicted 
by the Central Limit Theorem. " 

In this chapter we present further experimen"tal samplings from a 
population simulating the normal, with instructions so that the reader 
can perform his own samplings. The purposes are as follows: 

(I) To provide additional verification of the result that the sample 
means are normally distributed with S.D. = u/.Jn. 

(2) To investigate the sampling distribution of Sl, regarded as an 
estimate of u ' , and of s, regarded as an estimate of u. Thus far we have 
not been much concerned with the question: How good an estimate of 
u2 is S2? The frequency distribution of 52 in normal samples has, however, 
been worked out and tabulated. Apart from a mUltiplier, it is an extended 
form of the chi·square distribution which we met in chapter I. 

(3) To illustrate the sampling distribution of ( with 9 degrees of 
freedom, by comparing the values of (found in the experimental sampling 
with the theoretical distribution. 

(4) To verify confidence interval statements based on the (-distribu­
tion. 

The population that we have devised to simulate a normal population 
departs from it in two respects: it is limited in size and range instead of 
being infinite, and has a discontinuous variate instead of the continuous 
one implied in the theory. The effects of these departures will scarcely be 
noticed, because they are small in comparison with sampling variation. 

3.2-A IIoite population simulating the normal. In table 3.2.1 are 
the weight gains of a hundred swine, slightly modified from experimental 
data so as to form a distribution which is approximately normal with 
66 



T ABLI! 3.2.1 
AIulAy OF GAINS IN WEIGHT (PolfNDS) Of 100 SWINE DuluNo A PERJooOF 20 DAYS 

The gains approximate a normal distribution with 
I' = 30 pounds ud (I = 10 pounds 

Item I Item Item Item 

67 

Number Gain 
, 

Number Gain Number Gain Number Gain , 

00 3 25 24 SO 30 75 37 
01 7 26 24 51 30 76 37 
02 II 27 24 52 30 77 31 
03 12 21 25 53 30 78 38 
04 13 29 25 54 30 79 39 
05 14 30 2S 55 31 80 39 
06 15 31 26 56 31 81 39 
07 16 32 26 57 31 82 40 
08 17 33 26 58 31 83 40 
09 17 34 26 59 32 84 41 
10 18 35 27 60 32 85 41 
II 18 36 27 61 33 86 41 
12 18 37 27 62 33 87 42 
13 19 38 28 63 33 88 42 
14 19 39 21 64 33 89 42 
IS 19 40 28 65 33 90 43 
16 20 41 29 66 34 91 43 
17 20 42 29 67 34 92 44 
18 21 43 29 68 34 93 45 
19 21 44 ~9 69 35 94 46 
20 21 45 30 70 35 95 47 
21 22 46 30 71 35 96 48 
22 22 47 30 72 36 97 49 
23 23 48 30 73 36 98 53 
24 23 49 30 74 36 99 57 

J.I = 30 pounds and a = 10 pounds. The items are numbered from 00 to 
99 in order that they may be identified easily with corresponding numbers 
taken from the table of random digits. The salient features of this kind 
of distribution may be discerned in figure 3.2.1. The gains, clustering at 
the midpoint of the array, thin out SyJllmetrically, slowly at first, then more 
and more rapidly: two-thirds of the gains lie in the interval 30 ± 10 
pounds, that is, in an interval of two standard deviations centered on the 
mean. In a real. population, indefinitely groat in number of individuals, 
greater extremes doubtless would exist, but that need caUse us little con­
cern. 

The relation of the histogram to the array is clear. After the class 
bounds are decided upon, it is necessary merely to count the dots lying 
between the vertical lines, then make the height of the rectangle propor­
tional to their number. The central value, or clDs. mmk, of each intcrval 
is indicated on the horizcntal scale of gains. 

In table 3.2.2 is the frequency distribution which is graphically repre­
sented in figure 3.2.1. Only the class marks are entered in the first row. 
The class intervals are from 2.5 to 7", etc. 

5 
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w$togram is proportional to the number of dots in the array which He between the vertica1 
sides, 



TABLE 3.2.2 
f'RIiQUENCY DIsTRIBUTION OF GAINS IN WmGHT OF )00 SWINe 

(A finite population approximating the normal) 

CIa» mark (pounds) 5 10 IS 20 25 30 35 40 45 sa 55 

Frequency 2 2 6 I) IS 23 16 13 6 2 2 

3.3-Ramlom samples from a normal distn1JuDoo. An easy way to 
draw random samples from the table of pig gains is to take numbers con­
secutively from the table of random numbers, table A.I, tben matcb them 
with the gains by means of the integers, 00 to 99, in table 3.2.1. To avoid 
duplicating the samples of others in class work, start at some randomly 
selected point in the table of random numbers instead of at the beginning. 
tben proceed upward, downward, or crosswise. Suppose you have hit 
upon the digit, 8, in row 71, column 29. This, with the following digit, 3, 
specifies pig number 83 in table. 3.2.1, a pig whose gain is 40 pounds. 
Hence, 40 pounds is the first number of the sample. Moving upward 
among the random numbers you read the integers 09, 75, 90, etc., and 
recora the corresponding gains from the table, 17, 37, and 43 pounds. 
Continuing. you get as many gains and a. many samples as you wish. 

Samples of 10 are suggested. For our present purposes all the sam­
ples must be of the same size because the distributions of their statistics 

-

TABLE 3.3.1 
FOUJ SAWPLESOF 10 JTEJa DRAWN AT RANDOM FROM THE PIG GAINS OF TA8U 3.2.1, 

EACH FocLOWfD BY STATISTICS To Bf EXPLAINED IN SECTIONS 3.4-3.8 

Sample Number 
Item Number 
ODd Formulas I 2 3 4 

I 33 32 :l9 17 
1 53 31 34 22 
3 34 II 33 20 

• 29 30 33 19 
5 39 19 33 3 
6 57 2A 39 21 
7 12 '3 36 3 
8 24 .. 32 25 
9 39 19 3l .... 40 

10 36 30 30 21 

X 35.6 29.3 34.1 19.1 

" 169.1 151.6 9.0 112.3 
I 1).0 12.3 3.0 10.6 

'r 4.11 3.89 0." 3.35 , 1.36 -0.18 4.32 -3.25 

to.osSf 9.3 1.8 2.2 1.6 
Xi I •. o~r 26.3-44.9 2O . .s-38.1 31.9--36.3 11 • .s-26.7 
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change with n. It is well to record the items in columns, leaving a half 
dozen lines below each for subsequent computations. For your guidance, 
four samples are listed in table 3.3.1. The computations below them will 
be explaiued as we go along. Draw as many of the samples as you think 
you can process within the time at your command. If several are working 
together, the results of each can be made available to all. Keep the records 
carefully-because you will need them again and again. 

Each pig gain may be drawn as often as its number appears in the 
table of randdm digits-it is not withdrawn from circulation after being 
taken once. Thus, the sampling is always from the same population, and 
the probability of drawing any particular item is constant throughout 
the process. 

EXAMPLE 3.3.1-Determine the range in c:acb of your samples of PI = 10. The 
mean of the ranges ntimates afO.325 (table 2.4.1); that is. 10/0.325 = 30.8. How close is 
your estimate? 

3.4.-The distribution of sample means. First add the items in each 
sample, then put down the sample mean, X (division is by 10). While 
every mean is an estimator of J.I = 30 pounds, there is yet great variation 
among them. Make an array of the means of all your samples. If there 
are enough of them, group them into a frequency distribution like table 
3.4.1. 

Our laboratory means ranged from 19 to 39 pounds, perhaps to the 
novice a disconcerting variability. To assess the meaning of this, try 
to imagine doing an experiment resulting in one of these more divergent 
mean gains instead of the population value, 30 pounds. Having no infor­
mation about the population except that furnished by the sample, you 
would be considerably misled. There is no way to avoid this hazard. 
One of the objects of the experimental samplings is to acquaint you with 
the risks involved in all conclusions based on small portions of the aggre­
gate. The investigator seldom knows the parameters of the sampled 
population; he knows only the sample estimates. He learns to view his 
experimental data in the light of his experience of sampling error. His 
judgments must involve not only the facts of his sample liut all the related 
iilformation which he and others have accumulated. 

The more optimistic draw satisfaction from the large number of 
means near the center of the distribution. If this were not characteristic, 
sampling would not be so useful and popular. The improbability of 
getting poor estimates produces a sense of security in making inferences. 

Fitting the normal distribution. In constructing table 3.4.1, one-pound 
class intervals were used. Since all the means come out exactly. to one 
decimal place, the class limits were taken as 19.5--20.4, 20.5--21.4, and 
so on. 

From theory, the distribution of.sample means should be very close 
to normal, with mean J.I = 30 pounds and standard deviation ax = 1 O( ,! 10 
= 3.162 pounds. The theoretical frequencies appear in the right-hand 
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TAIlLE 3.4.1 
FREQUENCY DlsnJaUTION OF 5 J J MEANS Of' SAMPLIl! OF 10 DAA WN FROM 

THE PIG GAINS IN TABLE 3.2.1 

Oass limits Observed Theoretical 
(Pounds) Frequency Frequency 

Less than 19.5 I 0.20 
19.5-20.4 I 0.46 
20.5-21.4 0 1.12 
21.5-22.4 7 2.56 
22.5-23.4 5 5.47 
23.5-24.4 10 10.48 
24.5-25.4 19 18.09 
25.5-26.4 30 28.46 
26.5-27.4 41 40.52 
27.5-28.4 48 52.12 
28.5-29.4 66 60.76 
29.5-30.4 72 64.18 
30.5-31.4 56 61.32 
31.5-32.4 46 53.25 
32.5-33.4 45 41.65 
33.5-34.4 22 29.59 
34.5-35.4 24 19.11 
35.5-36.4 12 11.09 
36.5-37.4 5 5.88 
37.5-38.4 0 2.76 
Over 38.5 I 1.94 

511 511.01 

n 

column of table 3.4.1. To indicate how these are computed, let us check 
the frequency 28.46 for the class whose limits are 25.5-26.4. First we 
must take note of the fact that our computed means are discrete, since 
they change by intervals of 0.1, whereas the normal distribution is con­
tinuous. No computed mean in our samples can have a value of, say, 
25.469, although the normal distribution allows such values. This dis­
crepancy is handled by regarding any discrete mean as a grouping of all 
continuous values to which it is nearest. Thus, the observed mean of 
25.5 represents all continuous values lying between 25.45 and 25.55. 
Similarly, the observed mean 26.4 represents the continuous values be­
tween 26.35 and 26.45. Hence for the class whose discrete limits are 
25.5 and 26.4, we take the true class limits as 25.45 and 26.45. When 
fitting a continuous theoretical distrihution to an observed frequency 
distribution, the true class limits must always be found in this way. 

In order to use the normal table, we express the true limits in standard 
measure. For X = 25.45, Jl = 30, (l.T = 3.162. we have 

2 I = (X - Jl)/(lx = (25.45 - 30)/3.162 = - 1.439 

For X = 26.45, we find 2, = - 1.123. From table A 3 (p. 548) we read 
the area of the normal curve between - 1.123 and - 1.439. By symmetry. 
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this is also the area between 1.123 and 1.439. Linear interpolation in the 
table is required. The area from 0 to 1.43 is 0.4236 and from 0 to 1.44 is 
0.4251. Hence, by linear interpolation, the aroa from 0 to 1.439 is 

(0.9)(0.4251) + (0.1)(0.4236) = 0.4250. 

Similarly, the area from 0 to 1.123 is 0.3693 so that the required area is 
0.0557. Finally, since there.are 511 means in the frequency distribution, 
the theoretical frequency in this class is (511)(0.0557) = 28.46. 

To summarize, the steps in fitting a normal distribution are: (i) Find 
the true class limits. (ii) Express each limit in standard measure, getting 
a series of values Z" Z" Z;, .... (iii) From table A 3, read the areas 
from 0 to Z" 0 to Z" 0 to Z3' . . .. (iv) The theoretical probabilities in 
the classes are the areas from - 00 to Z" from Z, to Z" from Z, to Z3' 
and so on, ending with the area from Z. to + 00, where Z. is the lower 
limit of the highest class. The area from - 00 to Z, is 0.5 - (area from 
o to Z,), and the area from Z. to + 00 is 0.5 - (area from 0 to Z.). The 
intermediate areas are all found by subtraction as in the numerical illus­
tration. The only exception is the area that straddles the mean, say from 
2. to 2.+ ,. Here, 2. will be negative and 2.+, positive. In this case we 
add the area from 0 to 2. and that from 0 to Z.+ ,. (v) Finally, mUltiply 
each area by the total observed frequency. 

If you have used the same class limits as in table 3.4.1 but have drawn 
a different number of samples, say 200, multiply the theoretical frequencies 
in table 3.4.1 by 200/511 to obtain your comparable theoretical fre­
quencies. If you used two-pound classes, as is advisable with a smaller 
number of samples, add the theoretical frequencies in table 3.4.1 in ap­
propriate pairs and multiply by the relative sample sizes. 

It is clear from table 3.4.1 that the observed frequencies are a good 
fit to the theoretical frequencies. 

3.5-Sampllag distributions of,' and,. For each sample, calculate 
" by the shortcut formula, 

s' = {Ll" - (l;X)'/IO}(9 

Four values of s' are shown in table 3.3.1. Three of them overestimate 
,,' = 100, while the fourth is notably small. Examine any of your samples 
with unusual 5' to learn what pecUliarities of the sample are responsible. 
The freakish sample 3 in the table has a range of only 39-30 = 9 pounds, 
with not a single member less than Jl. This sample gave the smallest s' 
that appeared in our set of 511 values. 

The distribution of 5' in our 511 samples is displayed in table 3.5.1. 
Notice its skewness, with bunching below the mean and a long tail above-­
resembling the chi-square distribution of chapter I, though less extreme. 
Despite this, the mean of the values of 5' is 101.5, closely approximating 
the population variance, 100, and verifying the fact that s' is an unbiased 
estimator of ci'. 
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TABLE 3.5.1 
OBsatVED ANI) TIu!ounCAL DJsD.IlIUT1ONS OF 511 MEAN SQu .... r. OF NoaMAL 

SAlIIPLES WITH n .. 10 

-~"'" 0 ... 

20 40 60 10 100 120 140 160 110 200 220 240 2$) 210 lOG )20 :wo 

12 ., 92 " n 13 42 29 16 II I 2 1 0 I 1 I 

12.1 50 .• 14.' 94.7 14.5 65.2 4,., 29.6 11.4 10.1 6.1 U 3.S· 

Our distribution of s. shown in table 3.5.2. has a slight skewness 
(not as large as that of s') as well as a small bias. with mean 9.8 pounds. 
slightl y less than a = 10 pounds. Even in samples as small as 10 the bias is 
unimportant in a single estimate s. 

TABLE 3.5.2 
FJUlQUENCY D1SD.IBUTION OF 511 SAMPLE STANDARD 'DEv1A.'I1ONS Cou.i!IPoNDJNG TO 

THE MEAN SQUA.RJ!S OF TABLE 3.5.1 

Clas!.mark 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 

Frequency 2 9 18 58 77 80 71 79 44 41 17 8 3 2 

The theoretical distribution 0/8'. We have already mentioned that the 
distribution of .' in normal samples is closely related to the chi-square 
distribution. First. we give a general definition of the chi-square distribu­
tion. If Z" Z, • ... Z, are independently drawn random normal deviates. 
the quantity 

x' = Z,' + zl + ... + Z/ 
follows the chi-square distribution with/degrees of freedom. Thus. chi­
square with / degrees of freedom is defined as the distribution followed 
by the sum of squares of/independent normal deviates. The form of this 
distribution was worked out mathematically. It could. alternatively. be 
examined by experimental sampling. By expressinll the 100 gains in 
table 3.2.1 in standard measure. we would have a set of normal deviates 
from which we could draw samples of size f, computing / as defined 
above for each sample. For more accurate work. there are tables of 
random normal deviates (I )(2). that provide a basis for such samplings. 
Table A 5 (p. 550) presents the percentage points ofrhe x'distribution. It 
will be much used at various points in this book. 

A second result from theory is that if 5' is a mean square with / de­
grees of freedom. computed from a normal population that has variance 
,,'. then the quantity /s' /,,' follows the chi-square distribution with / de­
grees of freedom. This is an exact mathematical result. Since our sample 
variances have (n - I) df. the relation is 

X'.= (n - 1)8'/17' 
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We cannol presenl a proof of Ihis resull. bul a lillie algebra makes Ihe 
relation between s' and X' clearer. Remember that (n - I )s' is the sum 
of squares of deviations. L(X - X):. Introduce I' as a working mean. 
From the identity for working means (section 2.10) we have 

In - l)s' (X, - p)' (X, - p)' (X. - PI' niX - p)' 
'-----H-'.-'-- = - 2 + , + . . . + --,-- - . , 

... t1 n (J (f 

Now, the quantities (X, -1')/0', (X, -1')/0' •... (X. -1')/0'. are all in stan­
dard measure: in other words. they are random normal deviate;. And 
the quantity -In(X - 1')/0' is another normal deviate. since the standard 
deviation of X is t1/Jn. Hence we may write 

(n - 1 )s' " , , 
'-----0'-,.-'-- = Z, + Z, + ... + Z. - Z. + , 

Thus. (n - I )s' /0" is the sum of squares of n normal deviates. minus the 
square of one normal deviate. whereas X'. with (n - I) dJ. is the sum of 
the squares of (n - 1) normal deviates. It is not difficult to show mathe­
matically that these two distributions are the same in this case. 

The theoretical frequencies for our 511 values of S2 appear in the 
last line of table 3.5.1. Again. the agreement with the observed frequen­
cies is good. For filling this distribution. lable A 5 is nol very convenient. 
We used the table in reference (3). which gives, for specified values of X'. 
the probability of exceeding the specified value. 

From the definition of the chi-square distribution. we see that chi­
square with I degree of freedom is the distribution followed by the square 
of a single normal deviate. Later (chapter 8) we shall show that the chi­
square test criterion which we encountered in chapter I when testing a 
proportion is approximatel~ distributed as Ihe square of a normal 
deviate .. 

Like the normal distribution. the theoretical distribution of chi­
square is continuous. "Unlike the normal, X2

• being a sum of squares. 
cannot take negative values. so that the distribution extends from 0 to 7:;, 

whereas the normal. of course, extends from - Xl to + x. An important 
result from theory is that the mean value of X' withfdegrees of freedom is 
exactly f. Since .,' = X',,' If; a consequence of this result is that the mean 
value of.\"'. in its theoretical distribution. is exactly 0'2 This verifies the 
result mentioned in chapter 2 when we stated that s' is an unbiased 
estimator of 0", The property that ,,' is unbiased does not require 
normality, but only that the sample be a random sample. 

3.6-Interval estimates of 0". With continuous popUlations, our at­
tention thus rar has centered on the problem of estimating the population 
mean from a sample. In studying the precision of measuring instruments 
and in studying variability in pOfulations, we face the problem of estimat­
ing the population variance 0' from a sample. If the population is 
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normal, the x' table can be used to compute a confidence interval for ,,' 
from a sample value 5'. 

The entries in the chi-square table (p. 550) are the values of X' that 
are exceeded with the probabilities st,Hed at the heads of the columns. 
For a 95% confidence interval, the relevant quantities are X' 0.915, the 
value of the chi-square exceeded with probability 0.975, and X' 0.025' the 
value of chi-square exceeded with probability 0.025. Hence, the prob­
ability that a value of / drawn at random lies between these two limits is 
0.975 - 0.025 = 0.95. Since X' = is'/"', the probability is 95% that 
when our sample was drawn, 

, is', 
X 0.975 :$; ~ .:$ X 0.025 

([ 

Multiplying through by,,', we have 

(['X'o .• " sfs' i> u'X'O.025 

The reader may verify that these inequalities are equivalent to the fol­
lowing, 

Is' Is' _, __ $ tTl ~ -,--

X 0.02.5 X 0.97.5 

This is the general formula for 95~;' cOJlfidence limits. With s' computed 
from a sample of size n, we have f = (n - I), and is' is the sum of squares 
of deviations, l:x'. The simplest form for computing is, therefore, 

l:x' l:x' 
_, __ ::; (J2 ~ -,--

X 0.025 X. 0.<;-15 

As an illustration we shall set contidence limits on ,,' for the popula­
tion of vitamin C concentrations sampled in section 2.4. For these data, 
l:x' = 254, d,f. = 16, ·s' = 15.88. From table A 5, X' 0 .• " = 6.91 and 
X' 0.025 = 28.8. Sub&tituting, 

254 , 254 
28.8 S ([ .; 6.91 ' 

that is, 

8.82 ,; ([' ,;;; 36.76, 

gives the confidence interval for (['. UIIless a l-in-20 chance has occurred 
in the sampling, (1' lies between 8.82 and 36.76. To obtain confidence 
limits for (1, take the square roots of these limits. The limits for (1 are 2.97 
and 6.06 mg./lOO gm. Note that s "" 3.98 is not in the middle of the 
interval, since the distribution of sis st<:ew. 
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Large samples are necessary if (1 is to be estimated accurately. For 
illustration. assume that by an accurate estimate we mean one that is 
known, with confidence probability 95%, to be correct to within ± 10?/0" 
If our estimate, is 100. the confidence limits for (1 should be 90 and 110. 
Consider a sample of size IOI, giving 100 dj. in 5'. From the last line of 
table A 5. with,' = 10,000, the 95% limits for G' are 7,720 and 13,470. 
so that those for G are 87.9 and \\6, Thus, even a sample of 101 does not 
produce limits that are within 1 Oo/~ of the estimated value. For a sample 
of size 30, with 5 = 100, the limits are 80 and 134. The estimate could be 
in error by more than 20,%. 

The frequency distribution of .1" is sensitive to non-normality in the 
original population, and can be badly distributed by any gross errors that 
occur in the sample. This effect of non-normality is discussed further in 
section 3,15. 

3,7 -Test of a null hypothesis value of G'. Situations in which it is 
necessary to tt:st \\"hether a sample value of S2 is consistent with a postu­
lated population value of G' are not too frequent in practice. This prob­
lem does arise, however. in some applications in which (J2 has been ob­
tained from a very large sample and may be assumed known. In others, 
in genetics for example, a value of (1' may be predicted from a theory that 
is to be tested. The following examples indicate how the test is made. 

Let the null hypothesis value of (1' be 0'0'. Usually, the tests wanted 
are one-tailed tests. When the alternative is (J2 > 0'02 , compute 

This value is significant, at the 5% level, if it exceeds /0.0'0 withf degrees 
of freedom. Suppose that an investigator has used for years a stock of 
inbred rats whose weights have Go = 26 grams. He considers switching 
to a cheaper source of sUpply of rats, except that he suspects that the new 
rats will show greater variabiJity. An experiment on 20 new rats gave 
:Ex' = 23,000. 5 = 35 grams, in line with his suspicions. As a check he 
tests the null hypothesis: 0' = 26 grams. against the alternative: 0' > 26 
grams. 

, 23,000 
X = (26)"- = 34.02, df = 19 

In table A 5, X' 0.0'0 is 30.14, so that the null hypothesis is rejected. 
To test HA : G' <Go', reject at the 5% level if z' </0.9<0' To 

iJlustrate, a standard method of performing an intricate chemic<.I1 analysis 
gives 0'0 = 4.9 parts per I,CX>O for the content of some chemical COI1-

stituent. A refinement on the analysis. which may improve the precision 
and cannot make it worse, gave 5 = 4.1, based on 49 df We have 
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r! = (49)(4.1)2(4.9)' = 34.3. Table A 5 gives X2 = 34.76 for I = 50 and 
26.51 for/= 40. Interpolating linearly, we find X'0.950 = 33.9 fori = 49. 
Formally, the null hypothesis would not be rejected, though the sig­
nificance probability is very close to 5%. 

If H .. is the two-sided alternative ,,' # "0', the region of rejection is 
X' < x' 0.975 and X' > X' 0.01" 

EXAMPLE 3. 7. I-For the fitted normal distribution in table 3.4.1, verify the theoretical 
frequencies(i) 1.94 for the class "Over 38.S" and (ii) 64.18 for the class "29.5--30.4," 

EXAMPLE 3.7.2-lf half the standard deviations in table 3.5.2 were expected to be 
less than II .. 10 pounds, as would be true if s were symmetrically distributed about (T, cal­
culate X" ~ 4.89, with I dj. for the sample. The fact that X2 is significant is evidence against 
a symmetrical distribution in the population. 

EXAMPLE 3.7.3-10 a sample of 61 patients. the amount of an anesthetic required to 
produce anesthesia suitable for surgery was found to have a standard deviation (from patient 
to patient) of s = 10.2 mg. Compute 90% confidence limits for (I, Ans. 8.9 and 12.0 mg. 

Use X2
0.950 and X1

0.050· 

EXAMPLE 3.7.4---With routine equipment like light bulbs, which wear out after a 
time, the standard deviation of the length of life is an important factor in determining whe'her 
it is cheaper to replace all the pieces at fixed mtervals or to replace each piece individually 
when it breaks down. For a certain gadget, an industrial statistician has calculated that it 
will pay to replace at fixed intervals if (J < 6 days. A sample of 71 pieces gives 5 = 4.2 days. 
Examine this question (i) by finding the upper 95"10 limit for (J from s, (ii) by testing the null 
hypothesis t1 = (10 = 6 days against the alternative (J < (. days. Ans. (i) The upper 95'4 
limit is 5.0 (ii) Ho is rejected at the 5% level. Notice that the two procedu~es are equivalent; 
jf the upper confidence limit bad been 6.0 days, the chi-square value would be at the 5% 
significance level. 

EXAMPLE 3.7.5-For df greater than 100, which are not shown in table A 5. an ap­
proximation due to R. A. Fisher is that J2X1 is normally distributed with mean J'2J'.: .. : i 
and standard deviation I. Check. this approximation by finding the value that it gives for 
'1. 20.015 when! = JOO, the correct value being 129.56. Ans. 129.1. 

3.8-The distribution of t. Returning to our experimental samples, 
we are ready to examine the t-distribution for 9 degrees of freedom. 
Since X and Sll have already been calculated for each of your samples of 
10, the sample value of t may now be got by putting" = 30, the formula 
being 

t = {X - 30)(sx " 

Here, t will be positive or negative according as X is greater or less than 
30 pounds. In the present sampling the two signs are equally likely, so 
you may expect about half of each. On account of this symmetry the 
mean of all your t should be near zero. 

The four samples in table 3.3.1 were selected to illustrate the manner 
in which large, small, and intermediate values of t arise in sampling. A 
small deviation, (X - ,,), or a large sample standard error tend to make t 
small. Some striking combinations are put in the table, and you can 
doubtless find others among your samples. 
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TABLE 3.8.1 
SAMPLE AND THEORETICAL DISTRIBUTIONS OF I. SAMPLES Of 10. 

DEGREES OF FREEDoM, 9 

Interval of t Sample Theoretical 

Cumulative 
Pen:entagc Percentage 

From To Frequency Frequency Frequency OncTail Both Tails 

....... -3.2SO 3 O.~ 0.5 100.0 
-3.2SO -2.821 4 0.8 0.5 99.5 
-2.821 -2.262 5 1.0 I.S 99.0 
-2.262 -1.833 16 3.1 2.S 97.5 
-1.833 -1.383 31 6.1 5.0 95.0 
-1.383 -LlOO 25 4.9 5.0 90.0 
-LlOO -0.703 52 10.2 10.0 85.0 
-0.703 0.0 132 25.8 25.0 75.0 

0.0 0.703 126 24.<1 25.0 SO.O 100.0 
0.703 1.100 41 8.0 10.0 25.0 SO.O 
1.100 1.383 32 6.3 5.0 15.0 30.0 
1.383 1.833 18 3.S 5.0 10.0 20.0 
1.833 2.262 13 2.S 2.S 5.0 10.0 
2.261 2.821 8 I.~ 1.5 2.5 5.0 
2.821 3.2SO 2 0.4 0.5 1.0 2.0 
3.250 ..... 3 O.~ 0.5 0.5 1.0 

511 100.0 100.0 

The distribution of the laboratory sample of I is displayed in table 
3.8.1. The class intervals in the present table are unequal, adjusted so as 
to bring into prominence certain useful probabilities in the tails of the 
distribution. The theoretical percentage frequencies are recorded for 
comparison with those of the sample. The agreement is remarkably good. 
In the last two columns are the cumulative percentage frequencies which 
make the table convenient for confidence statements and tests of hy­
potheses. Examination of the table reveals that 2.5~~ of all I-values in 
samples of 10 theoretically fall beyond 2.262, while another 2.5% of values 
are smalier than - 2.262. Combining these two tails of the distribution, 
as shown in the last column. 5°" of all t in samples of 10 lie further from 
the center than 12.2621. which is therefore the 5°'~ level of t. Make a dis­
tribution of your own sample t to be compared with the theoretical 
distributions in the table. 

Our I-Iable, fable A 4, is a two-tailed table because most applications 
of the I-distribution cali for two-sided confidence limits and two-tailed 
lests of siglllficancc. If you need a table that gives the probability for 
specified values of I inslead of I for specified probabilities. see (4). 

3.9-The interval estimate of I'; the confidence interval. The theory of 
the confldence interval may now be verified from your sampling. Each 
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sample specifies an interval, X ± 1 •. ,!!.,SX, said to cover Jl. In each of your 
samples, substitute the estimators, X and sx, together with / •.• , = 2.262, 
the 0.05 level for 9 df. Finally, if you say, for any particular sample, that 
the interval includes Jl you will be either right or wrong; which it is may be 
determined readily because you know that Jl = 30 pounds. The theory 
will be verified if about 95% of your statements are right and about 5% 
wrong. 

Table 3.3.1 (p. 69) gives the steps in computing confidence limits for 
four samples. The intervals given by these four samples are, respectively, 

26.3 to 44.9 
20.5 to 38.1 
31.9 to 36.3 
11.5 to 26.7 

Sample 1 warrants the statement that Jl lies between 26.3 and 44.9 
pounds, and we know that this interval does contain Jl, as does likewise 
the interval from sample 2. On the contrary, samples 3 and 4 illustrate 
cases leading to false statements, one because of an unusually divergent 
sample mean, the other because of a small sample standard deviation. 
Sample 3 is particularly misleading: not only does it miss the mark, but 
the narrow confidence interval suggests that we have an unusually ac­
curate estimate. Of the 511 laboratory samples, 486 resulted in correct 
statements about Jl; that is, 95.1 % of the statements were true. The per­
centage of false statements, 4.9%, closely approximated the theoretical 
5%. Always bear in mind the condition involved in every confidence 
statement at the 5% level-it is right unless.a l-in-20 chance has occurred 
in the sampling. 

Practical applications of this theory are by people doing experiments 
and other samplings without knowledge of the population parameters. 
When they make confidence statements, they do not know whether they 
are right or wrong-they know only the probability selected. 

EXAMPLE 3.9.1-Using the sample frequencies of table 3.8.1, test the hypothesis 
(k.nown to be true) that the (-distribution is symmetrical in the sense that half of the popu­
lation frequency is greater than zero. Ans./' = 1.22. . 

£XA.MPLE !>,9-.2-F'im\\\a.b'.t. :,.,t.\ \\\~~\ha\ 3- T '" +- 5 + % T 1 ,_!> = lSsamp\a 
have III> 2.262. Test the hypothesiS that S% of the population values are greater than 
12.2621· Ans. X' = 0.0124. 

EXAMPLE 3.9.3-ln table 3.8.1. accumulate the sample freq~encies in both tails and 
compare their percentage values with those in the last column oflhe table. 

EXAMPLE 3.9,4-0uring the fall of 1943, approximately one in each 1,000 ,city 
families of Iowa (cities are defined as having 2.500 inhabitants or more) was 'visited to learn 
the number of quarts of food canned. The average for 300 families was 165 quarts with 
standard deviation. 1"53 quarts. Calculate the 95':~ confidence limits. Ans. 165 ± 17 quarts. 
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EXAMPLE 3.9.5- The 1940 census reported 312.000 dwelling units (rouply the same 
as families) in Iowa cities. From the statistics of the foregoing example, estimate the nllm­
ber of quarts of food canned in Iowa cities in 1943. Ans. 51.500.000 quarts with.95%con~ 
tidence limit!.. 46,200,000 and 56,800.000 quarts. 

3.lO-Use of frequency distributions for computing j and s. In this 
chapter we have used frequency distributions formed by grouping the 
sample data into classes to give a piClure of the way in which a variable is 
distributed in a population. A frequency distribution also provides a 
shortcut method of computing X and s from a large sample. For this 
calculation, at least 12 classes are advisable, and for highly accurate work, 
at least 20 classes. The reason will be indicated presently. 

After forming the classes and counting the frequency in each class, 
write down the class mark (center of the class) for each class. Normally, 
the class mark is found by noting the lower and the upper limits of the 
class, and taking the average of these two values. For instance, with data 
that are originally recorded to whole numbers, the class limits might be 
0-9, 10-19, and so on. The class marks are 4.5, 14.5, and so on. Note 
that the marks are not 5, 15, etc., as we might hastily conclude. 

The assumptions made in the shortcut computation are that the 
class mark is very close to the actual mean of the items in the class, and 
that these items are approximately evenly distributed throughout the 
class. These assumptions are likely to hold well in the high-frequency 
classes near the middle of the distribution. Caution is necessary if there 
are natural groupings in the scale of measurement. An instance was ob­
served where the number of seed compartments in tomatoes was the 
variable, its values being confined to whole numbers and halves. How­
ever, halves occurred very Infrequently. At first, the class intervals were 
chosen to extend from 2 up to but not including 3, etc., the class marks 
being written down as 2 1/2, 3 1/2, etc. Actually, the class means were 
alnwst at the lower boundaries, 2, 3, etc. This systematic error led to an 
overestimate of almost half a seed compartrnont in the mean. In this 
situation the actual class means should be computed and used as the class 
marks (see exercise 3.11.3). 

The same problem can arise in the extreme classes in a frequency 
distribution. To revert to the example with intervals 0-9, 10-19, etc. and 
class marks taken as 4.5, 14.5, etc., we might notice that the lowest class 
contained six O's, one 2, and one 6, so that the class mean is actually 1.0, 
whereas the class marjc is 4 5. For accurate work the class mark for this 
class is taken as 1.0. 

In the shortcut computation of X and s, each item in the sample is 
replaced by the class mark for the class in which it lies. AIl values be­
tween 10 and 19 in the previous example are replaced by 14.5. The process 
is exactly the same as that of rounding to the nearest whole number, or 
the nearest 100. This rounding introduces an additional error into tbe 
data. The argument for having a relatively large number of classes is to 
keep this error small. 
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The remainder of this section discusses how much accuracy is lost 
owing to this rounding error. Let X represent any item in the sample and 
let X' be the corresponding class mark or rounded value. Then we may 
writ. 

X' = X + e 

where e is the rounding error. If [is the width of the class interval. the 
values e are assumed to be roughly evenly distributed over the range from 
- 112 to + [12. An important result from theory is that the variance of 
the sum of two independent variables is the sum of their variances. This 
gives 

t1X,l = t1xl + (1~'l 

If e is uniformly distributed between -[12 and + [12, it is known from 
theory that its variance is 12/12. Hence, 

ax .2 = ax2 + [2/12 = a 2 + 1'/12, 

since a x 2 is the original population variance a2
• 

Consequently, when a value X is replaced by the corresponding class 
mark X', the variance is increased by [2/12 due to the rounding. The rela­
tive increase in variance is [2/12a2. We would like this increase to be 
small, 

Suppose that there are 12 classes in the frequency distribution. If 
the distribution is not far from normal, nearly all the frequency lies within 
a distance ± 3a from 1'. Since these classes cover a range of 6a. [ will 
be roughly 60/12 = a/2. Thus the relative increase in the variance of 
X due to grouping is about 1/48, or 2%. A further analysis, not presented 
here, shows that the computed S'2 has a variance about 4% larger than 
that of the original .2 (5). For ordinary work these small losses in ac­
curacy to save time in computation are tolmble. For accurate work. the 
adVIce commonly given is that [snouid not exceed a/4. This reqw'res 
about 24 classes to cover the frequency distribution when the sample is 
large. 

With a iiiscrete variable, there is -often no rounding and no loss of 
accuracy in using a frequency distribution to compute the sample mean 
and variance. For instance, in a study of accidents per week, the number . 
of accidents might range only from 0 to 5. The six classes 0, I, 2, 3, 4. 5: 
give a complete representation of the sample data without any rounding. 

3.Il-ComputatioD of flUId. in large samples: example. The data 
in table 3.11.1 come from a sample of 533 weights of swine, arranged in 
22 classes. The steps in the calculation of X and s are given under the table. 

A further simplification comes from coding the class marks, as shown 
in the third column. Place the 0 on the coded scale at or near the class 
mark that has the highest frequency. We chose this origin at G = 170 
pounds. The classes above this class arc coded, as I, 2, 3, etc.; those 



TABLE l.ll.I 
FuQUENCY DISTllIBUTlDN OF LIVE WEJGHTS OF 533 SWJNE. COMPUTATION OF MEAN 

AND StANDARD DEVIATION. 1- 10 PoUNDS. G = 170 PouNDS 

Sum of 
Class Mark. Frequency Code Numbers Code Numbers Squares 

Pounds f U fU fU' 

80 1 - 9 - 9 81 
90 0 - 8 0 0 

100 0 - 7 0 0 
llO 7 - 6 -42 252 
120 18 - 5 -90 4SO 
130 21 - 4 -B4 336 
140 22 - 3 -66 198 
ISO 44 - 2 -88 176 
160 67 - I -67 67 
170 76 0 0 0 
1110 55 I 55 55 
190 57 2 114 22B 
200 47 3 141 423 
210 33 4 112 528 
220 30 5 ISO 7SO 
230 23 6 138 B2B 
240 II 7 77 539 
2SO S B 40 320 
260 S 9 45 405 
270 4 10 40 400 
280 5 II 55 60S 
290 2 12 24 28B 

" = 533 lJfU = 565 r,[Ul "'"' 6,929 

1:fU= S65 1:fU' = 6,929 
(IfU)'(" - (565)'(Sll = 59B.92 

IU ~ 1.CY;S6~~11\ 
= 10.6 pounds 1:.' = 6,330.08 

X=G+IU ~V2 = 1:.2/(" - 1)-= 11.8986 
= 170 + 10.6 Sv == 3.45 
= 180.f! pounds $ -I!v = (IO),sv == 34.S pounds 

below as - I, - 2, - 3, etc. It is importa'lt to know the relation between 
your original and your coded class marks. If X(dropping the prime) is an 
original class mark and U is its coded value, this relation is 

X=G+lU 

where I is the width of the class interval (10 pounds in this example). To 
verify the rule, when U is - 5, what is X? We have, X = 170 + (10)( - 5) 
= 120, as appears in column I. 

In the computations we first find the sample mean and variance of 
U, namely i7 and so. From the above relation we get 

K=G+IU 
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and S = Sx = lsu 

With these relations the steps given under table 3.11.1 are easily fol­
lowed. With a computing machine the individual values jV2 need not be 
written down. Their sum can be found by taking the sum of products of 
the column U with the column fU. The individual values jV are required; 
pay anention to their signs when adding them. 

Note that s is 3.45 times the class interval 1, so that the loss of ac­
curacy due to the use of class marks is trivial. 

Sheppard's Correction. From the theory presented in the previous sec­
tion, a consequence is that 52, as computed in table 3.11.1, is an estimate 
or (12 + [2/12, rather than of (12 itself. A correction introduced by 
W. F. Sheppard (6) is to subtr~ct [2/12 from the value of S2. in order to 
obtain a more nearly unbiased estimate of ,,2 In this example, with 
S2 = 1,189.86, thecor<ection amounts to only 100/12, or 8.33. The cor­
rected value of 5 is 3.44 as against our computed 3.45. The correction is 
seldom substantiaL The corrected value should not be used i.n a test of 
significance (7). 

EXAMPLE J.II.I-The data: show the frequency distribution of the heights of 8,585 
men, arranged in ten 2·in. classes. The number of classes is \00 sma1l for accurate work, but 
gives an eas)' exercise. Compute K and's. using a convenient coding. Ans. X = 67.53 in .. 
s = 1.62 in. 

Class Class 
Mark (in.) Frequency Mark (in.) Frequency 

58 6 68 2.559 
60 55 70 1,709 
62 252 72 594 
64 1.063 74 III 
66 2.213 76 23 

EXAMPLE 3.11.2~Apply Sheppard's correqlon and report. the corrected 5. Ans. 
2.56 ins . 

. .... 
EXAMPLE 3.11.3-- ThiS baby example illustrates how the accura,"y 'of the !Ihortcut 

method improves when the clas~ marks are the means of the items in thec:la:-.ses. The original 
data consist of the fourteen values: 0, 0, 10. 12. 14, 16~20. 22, 2'4, 25, 29, 32, 34: 49. (il Com­
pute X and s directly from these data. (ii) Form a frequency distribution with cla~se!. 0- 9. 
10-19. 20-29. 30-39, and 40--4.,.. Cpmpute X and .f from tht: I,;onvenuonal class marks, 
4.5.14.5,24.5,34.5, and 44.5. (iii) In the same frequency distribution. fin'~ the actual mean!> 
of the items in t:"ach class, and use these rr.eans as the class marks. (Coding doesn't help he{e,) 
Ans. (i) X ~ 20.5 • .\' = Ll..a. Iii) X =- 21.6. s =' 1 1'.4. both qUIte inaccurate. (IiI) X ': 2(1.5. 
J = 13.1. Despite the rounding errors that contribute IP this s. it is smaller than the onglnal 
s in (i). This is an effect of sampling-error in this small sample. 



EXAMPLE 3.11.4--The yields in grams of 1.499 rows of wheat are recorded by Wiebe 
(9). They have been tabulated as follows: 
------

Class Mark lirequeocy Chrss Mark Frequency i Class Mark Frequency 

975 3 600 127 -r 825 ·10 
400 d 625 14() 850 10 
425 41 650 122 875 4 
450 99 675 94 900 4 
475 97 700 64 925 2 
500 il8 725 49 I 950 3 
525 138 750 31 975 I 
550 146 775 26 i 1.000 1 
575 136 800 20 Gtal 1.499 

ComptCte X ,= 587.74 grams. and s = 100.55 grams. Are there enough classes in this dis-
tribution'? . 

3.12-Tests of normality. Since many of the standard statistical tech­
niques are based on the assumption of normality, methods for judging the 
normality of a set of data are of interest. In this and in the following 
sections. three tests will be illustrated from the frequency distribution'of 
means of samples of 100 drawn from the population of city sizes in section 
2.12 (-p. 51). The histo'gram of this frequency distribution, shown in the 
boltom part Of figure 2.12.2. p. 55, gave· the impression that a normal 
distribution would not be a good fit. We can now verify this. impression 
in a quantitative manner. 

In the tirst test. often called the X. goodness oj fil lesl, the data are 
grouped into classes to form a frequency distribution and the sample 
me:"" X ~.WJ $l.>mivD Dey.wtiD." _'~.rr'C~.Ic>.)hj"D. Fn\w t.bt:se ~.Njj.;"S, .a 
n'Ormal distribution is litted and the expected frequencies in each class 
are ohtained as desCribed in section 3.4 (p. 70). Table 3.12.1 presents the 
obseI:Ved frequencies.r. and the expected frequencies £,: 

For each class, compute and record the quantity 

if. - £,)'/F; = (Obs. - Exp.)'/Exp. 

The tesl criterion is 

x' = E(J. - £,)'/Fj 

s~mmed over the classes. If the data actualiy come from a normal dis­
tribution, this quantity follows approximately the theoretical 'l,' distribu­
tion with (k - 3) dj., where k is the number of classes used in computing 
X' If the data come· from some other distribution, the observed J. 

. will tend to agree poorly with the values of F, that are expected on the 
assumption of norinality, and the computed X' becomes large. Conse' 
queillly, large values of'l,' cause rejection "I' the hypothesis of normality. 



TABLE 3.12.1 
CALCULATION Of THE GOODNESS Of FIT X2 FOR THE DISTRIBUTION Of MEANS Of 

SAMPLES Of 100 CiTY SIZES 

Frequencies 

Class Limits Obs. Exp. 
(I.00I)"s) J. F, If, - F,)' I F, 

Under 129 9 20.30 6.29 
1311-139 35 30.80 0.57 
140-149 68 55.70 2.72 
1511-159 94 80.65 2.21 
1611-169 90 93.55 0.13 
1711-179 76 87.00 1.39 
1811-189 62 64.80 0.12 
190-199 28 38.70 2.96 
2011-209 27 18.55 3.85 
2111-219 4 7.10 1.35 
2211-229 5 2.20} 
2311-239 I 0.50 6.04 
240- I 0.15 

Total . , 500 500.00 27.63 

x' ~ 27.63. df. ~ II - J ~ 8. P < 0.005 

'5 

- . 

The theorem that this quantity follows the theoretical distribution of 
X' when the null hypothesis holds and that the degrees of freedom are 
(k - 3) requires advanced methods of proof. The subtracted number 3 in 
the df may be thought of as the number of ways In which the observed 
and expected frequencies have been forced to agree in the process of 
fitting the normal distribution. The numbers /; "nd F, both add to 500 
and Ihe sets agree in the values of X and ., that they give. 

The theorem. also requires that the expected numbers not be toO 
small. Small expectations are likely to occur only in the extreme classes. 
A working rule (10) is that the two extreme expectations may each be as 
low as I. provid~d that most of the other expected values exceed S. In 
table 3.12.1, small expectations occur in the three highest classes. In this 
event. classes are combined to give an expectation of at least one. The 
three highest classes give a combined{, of 7 and F; of 2.8S. The contribu-
tion to X' is (4.IS)'12.85 = 6.04. . 

For these data. k = II after combination. so that X' = .27.63 has g d/ 
Reference to table A 5 shows that the hypothesis of normality is rejected 
at the OS" level. the most extreme level given in this table. 

The x' test may be described as a non-specific test. in that the test 
criterion is dirocled against no particular type of departure from nor­
mality. Examples occur in which the data are noticeably skew. although 
the X' test does not reject the null hypothesis. An alternative test that is 
deSigned to detect skewness is often U<ettas a supplement to the X' test. 
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3.13-A test of skewness. A measure of the amount of skewness in a 
population is given by the average value of (X - 1')'. taken over the 
population. This quantity is called the third moment about the mean. If 
low values of X are bunched close to the mean I' but high values extend 
far above the mean, this measure will be positive, since the large positive 
contributions (X - 1')3 when X exceeds I' will predominate over the 
smaller negative contributions (X - /1)' obtained when X is less than /1. 
Populations with negative skewness, in which the lower tail is the ex­
tended one, are also encountered. To render this measure independent 
of the scale on which the data are recorded, it is divided by 0"'. The r .. ult­
ing· coefficient of skewness is denoted sometimes by .J P I and sometimes 
by Y" 

The sample estimate of this coefficient is denoted by .Jb, or gJ. We 
compute 

and take 

m, = l:(X - X)'/n 
m, = l:(X - X)2/n 

.,jb , = gl = m,/(m,.,jm,) 

Note that in computing ".", the sample variance, we have divided by n 
instead of our customar¥ (n - I). This makts subsequent calculations 
slightly easier. 

The calculations are illustrated for the means of city sizes in table 
3.13.!. Coding is worthwhile. Since .Jb , is dimensionless, the whole 
calculation can be done in the coded scale, with no need to decode. Hav­
ing chosen coded values U, write down their squares and cubes (paying 
attention to signs). The U4 values are not needed in this section. Form 
the sums of products with the f s as indicated, and divide each sum by n 
to give the quantities hI' h" h,. Carry two extra decimal places in the 
h's. The moments m, and m, ate then obtained from the algebraic 
identities given under the table. Finally, we obtain .,jb , = 0.4707. 

If the sample comes from a normal population, :jb, is approximately 
normally distributed with mean zero and S.D . .J(6/n), or in this case 
.,j(6/500) = 0.110. ~Since.,j ~I is over 4 times its S.D .. the positive skewness 
is confirmed. The assumption that oj b I is normally distributed is ac­
curate enough for this test if n exceeds 150. For sample sizes between 25 
and 200, the one-tailed 5% and I~; significance levels of .,jb , . computed 
from a more accurate approximation. are given in table A 6, 

3.14--Tests for kurtosis. A further type of departure from normality 
is called kurtosis. In a population, a measure of kurtosis is the average 
value of (X - /1)4, divided by (14 For the normal distribution, this ratio 
has the value 3. If the ratio exceeds 3, there is usually an excess of values 
near the mean and far from it. with a corresponding depletion of the flanks 
of the distribution curve. This is the manner in which the t--distribution 
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TABLE 3.13.1 
COMPUTA"tIONS FOR TESTS OF SKEWNESS AND KURTOSIS 

lower Class 
Limit f U u' U' U· 

120- 9 -4 16 -64 256 
lJO- 35 -3 9 -27 81 
140- 68 -2 4 - 8 16 
15().· 94 -I 1 - 1 1 
160- 90 0 0 0 0 
170- 76 I I I 1 
180- 62 2 4 8 16 
190- 28 3 9 27 81 
200- 27 4 16 64 256 
210- 4 5 25 125 625 
220- 5 6 36 216 1.296 
230- I 7 49 343 2.401 
240- I 8 64 512 4.096 

1/ = 500 Tesl of j'keH'nesS 
TofU ~ + 86 h, = TofUln = + 0.172 
TofU' = U26 h, = TofU"n = 4.452 
Tofl!' = + 3.332 h, = TofU~/n = + 6.664 

'"2 = hl - h,l = 4.4224 . 
"') = h) - 3h 1hl + 2h,) = 4.3770 

.jb, = m,lm,.jm, ~ 4.3770/(4.4224).j4.4224 = 0.4707 

Test of kUrlosiS 
TofU' ~ 32.046 h. ~ TofU·I. ~ 64.092 

"'4 = h£ - 4h.h 3 + 6h l
2h2 - 3h,4 =,60.2948 

bl = m./m/ = 60.2948/(4.4224)2 = 3.083 

departs from the normal. Ratios less than 3 result from curves that have 
a flaller top than the normal. 

A sample estimate of the amount of kurtosis is given by 

g, = h, - 3 = (m,lm,') - 3. 

where 

m. ~ :!;(x- X)4/1 

is the fourth moment of the sample about1tsmean. Notice that the normal 
distribution value 3 has been subtracted. with the result that peaked 
distribution..; show po<;;.itive kurtosis and flat-topped distributions show 
negative kurtosis. 

The shortcut computation of ni4 and b1 from the coded values L'is­
shown under table 3.13.1. For this sample. g, = b2 - 3 has the value 
+0.083. In very large samples from the normal distribution. g, is lIor­
mally distributed with mean 0 and S.D. ,'(24m) = 0.219. since /1 i, 
SOO. The sample vahie of g, is much smaller than its standard error. so 
that the amollnt of kurtosis in the population appears to ~ trivial. 
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Unfortunately, the distribution of g, does not approach the normal 
closely until the sample size is over 1,000. For sample sizes between 200 
and 1,000, table A 6 60ntains better approximations to the 5% and 1% 
significance levels. Since the distribution of g, is skew, the two tails are 
shown separately. For n = 500, the upper 5% value of g, is +0.37, much 
greater than the value 0.083 found in this sample. 

For sample sizes less than 200, no tables of the significance levels of 
g, are at present available. R. C. Geary (1\ I developed an alternative 
test criterion for kurtosis, 

a = (mean deviation)/(standard deviation) 
= I:!X - l'J/ny'm" 

and tabulated its significance levels for sample sizes down to n = II. If 
X is a normal deviate, the value of a when computed for the whole popula­
tion is 0.7979. Positive kurtosis produces higher values, and negative 
kurtosis lower values of a. When applied to the same data, a and g, 
usually agree well in their verdicts. The advantages of a are that tables 
are available for smaller sample sizes and that a is easier to comp)!te. 

An identity simplifies the calculation of the numerator of a. This will 
be illustrated for the coded scale in table 3.13.1. Let 

I:' = sUm of all observations that exceed U 
n' = number of observations that exceed D 
I:!U - D! = 2(I: - n'D) 

Since U = 0.172, all observations in the classes with U = I or more 
exceed D. This gives I:' = 457, n' = 204. Hence, 

I:!U - U! = 2{457 - (204)(0.172)) = 843.82 

Srne. m, .= 4.4224, we have 
a = (843.82)/(500)y' 4.4224 = 0.802 

This is little greate, than the value 0.7979 for the normal distribution, 
in agreement with the result given by g,. For n = 500 the upper 5% level 
of a is about 0.814. 

3.tS-Effects of skewness and kurtosis. In samples from non-normal 
populations, the quantities g, and g, are useful as estimates of the cor­
responding popUlation values I, and y" which characterize the common 
types of non-normality. K. Pearson produced a family oflheoretical non­
normal curves intended to simulate the shapes of frequency distributions 
having any specified values ofy, and I" provided that the non-normality 
was not too extreme. 

The quantities y, aM y, have also been useful in studying the dis­
tributions of X and s' when the original population is non-normal. Two 
results will be quoted. For the distribution of X in random samples of 
size n, 
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ylX") = Yl/..Jn heX) = h/n 

Thus, in the distribution of g, the measures of skewness and kurtosis 
both go to zero when the sample size increases, as would be expected from 
the Central Limit Theorem. Since the kurtosis is damped much faster 
than the skewness, it is not surprising that in our sample means g 1 was 
substantial but g 2 small. 

Secondly, the exact variance of S2 withf degrees offreedom is known 
to be 

2 2a
o 

{ f Y2} VIs ) = - 1 + --'-
f f+ 1 2 

The factor outside the brackets is the variance of S2 in samples from a 
normal population. The term inside the brackets is the factor by which 
the normal variance is multiplied when the population is non-normal. 
For example, if the measure of kurtosis, Y2, is I, the variance of S2 is 
about 1.5 times as Jarge as it is in a normal population. With Y2 = 2, the 
variance of S2 is about twice as large as in a normal population. These 
results show that tbe distribution of S2 is sensitive to amounts of kurtosis 
that may pass unnoticed in handling the data. 

EXAMPLE 3.15.1--10 table 3,2.2, compute g. = - 0.0139 and K2 = 0.0460, showing 
that the distribution is practically normal in these respects. -

EXAMPLE 3.15.2-10 table 3.5,2 is the sampling distribution of 511 standard devia­
tions. Calculate &1 = 0.3074 with standard error 0.t08. As expected, this indicates that 
the distribution is positively skew. 

EXAMPLE 3.15.3-Tbe SI I values of I discussed in section 3.8 were distributed as fol­
lows: 

, 
\ 'Cli,s"Mork -Class Mark f Qass Mark. f I Class Mark J f 

I ------
-3.13 3 -1.13 29 I 0.87 31 j 2.87 
-2.88 5 -0.88 35 I 1.12 23 , 3.11 
-2.63 I -0.63 38 1.37 17 3.37 2 
-2.38 3 -0.38 40 I 1.62 II i 3.62 0 
-2.\3 6 -0.\3 52 1.87 ~ J.87 0 
-1.88 12 0.12 57 I 2.12 10 .~_, 4. I."! () 

-1.63 21 0.37 43 2.37 6 4..17 I 
-1.38 16 0.62 37 2.62 2 

Total 51 I 
._--_----

The highly significant value of g2 = 0.5340 shows that the frequencies near the mode and 
in the tails are greater than in the normal distribution. those in the flanks being less. TlUs 
was expected. But gl "'" 0.1356 is non·significant. which is also expected because the theoreti-
cal distribution of I is symmetrical. 
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* CHAPTER FOUR 

he comparison of two samples 

4.1-Estimates and tests of differences. Investigations are often de­
signed to discover and evaluate diflerences between effects rather than the 
effects themselves. It is the difference between the amounts learned under 
two methods of teaching. the difference between the lengths of life of two 
types of glassware or the difference between the degrees of relief reported 
from two pain-relieving drugs that is wanted. In this chapter we consider 
the simplest investigation of this type, in which two groups or two pro­
cedures are compared. In experimentation, these procedures are often 
called the treatments. Such a study may be conducted in two ways. 

Paired samples. Pairs of similar individuals or things are selected. One 
treatment is applied to one member of each pair, the other treatment to 
the second member. The members of a pair may be two students of 
similar ability; two patients of the same age andsex who have just under­
gone the same type of operation; or two male mice from the same litter. 
A common application occurs in self-pairing in which a single individual 
is measured on two occasions. For example, the blood pressure of a sub­
ject might be measured before and after heavy exercise. For any pair, the 
difference between the measurements given by the two members is an 
estimate of the difference in the effects of the two treatments or procedures. 

With only a single pair it is impossible to say whether the difference 
in behavior is to be attributed to the difference in treatment, to the natural 
variability of the individuals, or partly to both. ·.There must be a number 
of pairs. The data to be analyzed consist of a sample of n differences in 
measurement. 

Independent samples. This case, which is commoner, arises whenever we 
wish to compare the means of two populations and have drawn a sample 
from each quite independently. We might have a sample of men aged 
50-55 and one of men aged 30-35, in order to compare the amounts 
spent on life insurance. Or we might have a sample of high school seniors 
from rural schools and one from urban schools, in order to compare 
their knowledge of current affairs as judged by a special examination on 
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this subject. Independent samples are widely used in experimentation 
when no suitable basis for pairing exists, as, for example, in comparing 
the lengths of life of two types of drinking glass under the ordinary condi­
tions of restaurant use. 

4.2-A simulated paired experiment. Eight pairs of random normal 
deviates were drawn from a table of random normal deviates. The first 
member of each pair represents the result produced by a Standard pro­
cedure. while the second member is the result produced by a New proce­
dure tho t is being compared with the Standard. The eight differences, 
New-St., are shown in the Column headed Case I in table 4.2.1. 

TABLE 4.2.1 
A SIMULATED PAIRED EXPERIMflNT 

CASE 1 CASE [[ CASE 111 
Pair New-St. (D,) New-St. (1:>1) New-SI. (DJ 

I +3.2 +13.2 +4.2 
2 -1.7 I + 8.3 -0.7 
3 +0.8 +10.8 + 1.8 
4 -0.3 + 9.7 +0.7 
5 +0.5 + 10.5 +1.5 
6 + 1.2 + 11.2 +2.2 
7 -1.1 + 8.9 -0.1 
8 -0.4 + 9.6 +0.6 

Mean (Il) +0.28 + 10.28 + 1.28 

SD 1.527 1.5~7 1.527 

s. 0.540 0.540 0.540 

Since the Fe.sults for the New and Standard procedures were drawn 
from the same normal population, Case I simulates a situation in which 
there is no difference in effect between the two procedures. The observed 
differences represent the natural variability that is always present in ex­
periments. It is obvious on insp~ction that the eight differences do not 
indicate any superiority of the New procedure. Four of the differences are 
+ and 4 are -, and the mean difference is small. 

The results in Case II were obtained from those in Case I by adding 
+ 10 to every figure, to represent a situation in which the New procedure 
is actually 10 units better than the Standard. On looking at the data, most 
investigators would reach the judgment that the superiority of the New 
procedure is definitely established, and would probably conclude that 
the average advantage in favor of it is not far from 10 units. 

Case III is more puzzling. We added + I to every figure in Case I, 
so that the New procedure gives a small gain over the Standard. The New 
procedure wins 6 times out of the 8 trials, and some workers might con­
clude that the results confirm the superiority of the New procedure. 
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Others might disagree. They might point out that is is not too unusual 
for a fair coin to show heads in 6 tosses out of 8, and that the individual 
results range from an advantage of 0.7 units for the Standard to an ad­
vantage of 4.2 units for the New procedure. They would argue that the 
results are inconclusive. We shall see what verdicts are .uggested by the 
statistical analyses in these three cases. 

The data also illustrate the assumptions made in the analysis of a 
paired trial. The differences D, in the individual pairs are assumed to be 
distributed about a mean I'D' which represents the average difference in 
the effects of the two treatments over the population of which these pairs 
are a random sample. The deviations D, - I'D may be due to various 
causes, in particular to inherent differences between the members of the 
pair and to any errors of measurement to which the measuring instruments 
are subject. Another source of this variation is that a treatment may 
actually have different effects on different members of the population. A 
lotion for the relief of muscular pains may be more successful with some 
types of pain than with others. The adage: "One man's meat is another 
man's poison" expresses this variability in extreme form. For many ap­
plications it is important to study the extent to which the effect of a treat­
ment varies from one member of the popUlation to another. This re­
quires a more elaborate analysis, and usually a more complex experiment, 
than we are discussing at present. In the simple paired trial we compare 
only the average effects of the two treatments or procedures over the 
population. 

In the analysis, the deviations D, - I'D are assumed to be normally 
and independently distributed with population mean zero. The conse­
quences of failures in these assumptions are discussed in chapter II. 

When these assumptions hold, the sample mean difference /) is 
normally distributed about iJD with standard deviation or standard error 
(lD/../n, where (10 is the S.D. of the population of differences. The value 
of (lois seldom known, but the sample furnishes an estimate 

_ J1:(D, - 15)2 _ f?D/ - (1:D,)2/n 
SD - n _ 1 - ,,- n - 1 

Hence, s1) = sol../n is an estimate of (III, based on (it- I) d.f 
The important consequence of these results is that the quantity 

t = (.0 - PD)/SII 

follows Student's (-distribution with (n - I) d.!, where n is the number of 
pairs. The (-distribution may be used to test the null hypothesis that 
I'D = 0, Of to compute a confidence interval for I'D' '-

Test of significance. The test will be applied first to the doubtful Case 
Ill. The values of So and SII are shown at the foot of table 4.2.1. Note 
that these are exactly the same in all three cases, since the addition of a 
constant I'D to all the D, does not affect the deviations (D, - /). For 
Case III we have 
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I = D/sfj = 1.28/0.540 = 2.370 

With 7 d,J., table A 4 shows that the 5% level of I in a two-tailed test is 
2.365. The observed mean difference just reaches the 5% level, so that 
the data point to a superiority of the new treatment. 

In Case 11, I = 10.28/0.540 = 19.04. This value lies far beyond even 
the 0.1% level (5.405) in table A 4. We might report: "P < 0.001." 

In Case I, 1= 0.28/0.540 = 0.519. From table A 4, an absolute 
value of 1= 0.711 is exceeded 50% of the time in sampling from a popula­
tion with I'D = O. The test provides no evidence on which to rejeci the 
null hypothesis in Case I. To sum up, the tests confirm the judgment of 
the preliminary inspection in all three cases. 

Confidence inlerval. From the formula given in section 2.16, the 95% 
confidence interval for I'D is 

D ± 10.0,slI = 15 ± (2.365)(0.540) = 15 ± 1.28 

In the simulated example the limits are as follows. 

Case I : 
Case II : 
Case 111: 

- 1.00 to 1.56 
9.00 to 11.56 
0.00 to 2.56 

As always happens, the 95% confidence limits agree with the verdict given 
by the 5% tests of significance. Either technique may be used. 

4.3-Example of a paired experiment. The preceding examples il­
lustrate the assumptions and formulas used in the analysis ofa paired set of 
data, but do not bring out the purpose of the pairing. Youden and Beale 
(I) wished to find out if two preparations of a virus would produce dif­
ferent effects on tobacco plants. The method employed was to rub half a 
leaf of a tobacco plant with cheesecloth soaked in one preparation of the 
virus extract, then to rub the second half similarly with the second extract. 
The measuremCjlt of potency was the number of local lesions appearing 
on the half leaf: these lesions appear as small dark rings that are easily 
counted. The data in table 4.3.1 are taken from leaf number 2 on each 
of8 plants. The steps in the analysis are exactly the same as in the preced­
ing. We have, however, presented the deviations of the differences from 
their mean, d, = D, - D, and obtained the sum of squares of deviations 
directly instead of by the shortcut formula. 

For a test of the null hypothesis that the two preparations produce on 
the average the same number of lesions, we compute 

D 4 
I = ~ = --., = 2.63, 

.I D 1.5_ 
df = n - I = 7 

From table A 4, the significance probability is about 0.04, and the null 
hypothesis is re.jected. We conclude that in the popUlation the second 
preparation produces fewer lesions than the first. From this result we 
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TABLE 4.3.1 
NUM9Ell m LESIONS 0 .... HJ.l.VES Of EIGHT TOBACCO LEAVES· 

Prepara- Prepaea- i Squared 
tion I tion 2 I Difference Deviation Deviation 

Pair No. X, X, D=X1-X1 d~D-lJ d' 
- . __ -_ 

1 31 18 13 9 81 
2 20 17 3 -I 1 
3 18 14 4 0 O· 
4 17 II 6 2 4 
5 9 10 -I -5 25 
6 8 7 I -3. 9 
7 10 5 5 I I 
8 7 6 I -3 9 

Total 120 88 32 0 130 

Mean 
I 

15 II lJ~4 SDl = lSJi1 

3D'). = 18.57/8 = 2.32. Slf = 1.52 lesions 

• Slightly changed to mak.e calculation easier 

would expect that both the 95';-~ confidence limits for iJ.D will be positive. 
Since 10.osSo = (2.365)(1.52) = 3.69, the 95% limits are +0.4 and + 7.6 
lesions per leaf. 

In this experiment the leaf constitutes the pair. This chOIce was 
made as a result of earlier studies in which a single preparation was rubbed 
on a large number of leaves, the lesions fOlrnd on each half-leaf being 
counted. In a new type of work, a preliminary study of this kind can be 
highly useful. Since every half-leaf was treated in the same way, the varia­
tions found in the numbers of lesions per half leaf represent the natural 
variability of the experimental material. From the data, the investigator 
can estimate the population standard deviation, from which he can in 
turn estimate the size of sample needed to ensure a specified degree of pre­
cision in the sample averages. He can also look for a good method of 
forming pairs. Such a study is sometimes called a uniformity trial,' be­
cause the treatment is uniform, although a variability trial might be a 
better name. . ...... 

Youden and Beale found that the two halves of the same leaf were 
good partners, since they tended to give similar numbers of lesions. An 
indication of this fact is evident in table 4.3.1, where the pairs are arranged 
in descending order of total numbers of lesions per leaf. Notice that with 
two minor exceptions, this descending order shows up in each preparation. 
If one member of a pair is high, so is the other: if one is low, so is the other. 
The numbers on the two halves of a leaf are said to be positively correlated. 
Because of this correlation, the differences between the two halves tend 
to be mostly small, and therefore less likely to mask or conceal an im­
posed difference due to a difference in treatments. 
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EXAMPLE 4.3.1---L C. Grove (2) determined the sample mean numbers of florets 
produced by seven paIrS of plots of Excellence gladiolus. one plot of each pair planted 
with high (first-year) corms, the other with low (second-year or older) corms. (A corm IS 

an underground propagatmg stem.) The plot mean~ were as follows: 

Corm 

High 
Low 

11.2 
14.6 

13.3 
12.6 

12.8 
15.0 

Florets 

13.7 
15.6 

12.2 
12.7 

11.9 
12.0 

12.1 
13.1 

Calculate the sample mean difference." ADS. 1.2 florets. In the-population of such differ­
ences. tell the null hypothesis: JJD = O. Ans. P = 0.06, approximately. 

EXAMPLE 4.3.2--Samples of blood were taken from each of 8 patients. In each sam­
ple. the serum albumen content of the blood was detennined by each of two laborator~ 
methods A and B. The objective was to disco\-'er whether there was a consistent ,difference 
in the amount of serum albumen found by the two methods. The 8 differences (A-B) were 
as follows: 0.6, 0.7, 0.8, 0.9, 0.3, 0.5, -0.5, 1.3. the units being gm. per 100 ml. Compute 
I to test the I;1UII hypothesis (Ho) that the population mean of these differences Is zero. and 
report the approximate value of your signifi ance probability. What is the conclusion? 
Ans. I = 2.511, with 7 d.f P between 0.05 and 0.025. Method A has a systematic tendency to 
give higher values. 

EXAMPJ E 4.3.3--Mitchell, Burroughs, and Beadles (3) computed the biological 
values of proteins from raw peanuts (P) and roasted peanuts (R) as determined in an experi. 
ment with 10 pairs of rats. The pairs of data P, R are as follows: 61. 55; 60.54; 56. 47; 
63.59; 56. 51; 63, 61; 59. 57: 56. 54: 44.63: 61. 58. Compute the sample mean difference, 
2.0. and the sample standard deviation of the differences. 7.72 units. Since I"", 0.82. 
over 40° " of similar samples from a population with I'D = 0 would be expected to have 
larger (·values. 

Note: 9 of the 10 differences, P - R. are positive. One 'o\'ould like some information 
about the nexHo~the·last pair 44. 63. The first member seems abnormal. While unusual 
individuals lik.e this do occur in the most carefully conducted trials. their appearance de· 
\l\a:n<!'S. immedi.ate itwestip.tio\\. Doubt\ess a~ ettot It\ tecotdinog. Ot ,,:omputatiot\ wa'S. 
searched for but not found. What should be done about such aberrant observatIOns is a 
moot question: their occurrence detracts from one's confidence in the experiment. 

EXAMPLE 4.3.~~A man starting work in a new town has two routes A and B by which 
he may drive home. '"He conducts an experiment to find out which route is quicker. Sin .. ·e 
traffic is unusua\\y heavy on Mondays and Fridays but does nOl seem to vaT)' much from 
week to week. he selects the day of the week as the basis for pairing. The test lasts four weds, 
On the first Monday, he tosses a coin to decide whether to drive by rOllte A or 8, On Ihl' 
second Monday. he drives by the other route. On the third Monday. he again tosses a coin. 
using the other route on the fourth Monday, and similarly for the other days of the week 
The times taken. in minutes. were as follows: 

A 
B 

Ml 

28.7· 
25.4 

M2 

26.2 
25.8 

Tul 

24.8 
24.9 

Tu2 

2$.3 
25.0 

WI 

25.1 
23.9 

W2 

<3.9 
23.3 

Thl 

·26.1 
26.6 

T 

25.8 
24.8 

Fl 

30.3 
28.8 

Fl 

31.4 
30.3 

(i) Treating the data as consisting of JO pairs, test wh'!ther there seems to be any real differ· 
ence in average driVing times between A and B. (ii) Compute 95% confidence !tmits for the 
population mean difference. What would you regard as the population in thi~ trial'_' (iii) 
By eye inspection of the results, does the pairing look effective? (iv) Suppose that on the 
last Friday (F2) there had been a fire on route B. so that the time taken to get home was 48 
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minutes.' Would you recommend rejecting this pair from the analysis? Give your reason. 
Ans. (i) 1= 2.651, with-9 df. P about 0.03. Method B seems definitely quicker, (ii) 0.12 to 
1.63 mins. There really isn't much difference. (iii) Highly effective. 

4.4-Conditioos for pairing. The objective of pairing is to increase 
the precision of the comparison of the two procedures. Identical twins 
are natural pairs. Litter mates of the same sex are often paired success­
fully, because they usually behave more nearly alike than do animals less 
closely related. If the measurement at the end of the experiment is the 
subject's ability to perform some task (e.g., to do well in an exam), sub­
jects similar in natural ability and previous training for this task should 
be paired. Often the subjects are tested at the beginning of the trial to 
provide information for forming pairs. Similarly, in experiments that 
compare two methods of treating sick persons, patients whose prognosis 
appears about the same at the beginning of the rial should be paired if 
feasible. 

The variable on which we pair should predict l!ccurately the per­
formance of the subjects on the measurement by which the effects of the 
treatments ar.e to be judged. Little will be gained by pairing students on 
their I.Q.'s ifl.Q. is not closely related to ability to perform the particular 
task that is being' measured in the experiment. 

Self-pairing is highly effective when an individual's performance is 
consistent on different occasions, but yet exhibits wide variation when 
comparisons are made from one individual to another. If two methods 
of conducting a chemical extraction are being compared, tlie pair is likely 
to be a sample of the original raw material which is thoroughly mixed 
and divided into two parts. 

Env.irqnmental variation often calls for pairing. Two treatments 
should be laid down side by side in the field or on the greenhouse bench 
in order to avoid the effects of unnecessary differences in soil, moisture, 
temperature, etc. Two plots or pots next to each other usually respond 
more nearly alike than do those at a djstance. As a final illustration, 
sometimes the measuring process is lengthy and at least partly subjective, 
as in certain psychiatric studies. If several judges must be used to make 
the measurements for comparing two treatments A and B, each scoring a 
different group of patients, an obvious precaution is to ensure that each 
judge scores as many A patients as B patients. Even if tne patients were 
not originally paired, they could be paired for a;signment to judges. 

Before an experiment has been conducted, it is of course not possible 
to foretell how effective a proposed pairing will be in Increasing precision. 
However, from the results of a paired experiment, its precision may be 
compared with that of tJi.e corresponding unpaired experiment (section 
4.11 ). 

4.S-Tests of olber null hypotheses ahout 1'. The null hypothesis' 
I'D = 0 is not the. only one that is useful, and the ulternative may be I'D > 0 
instead of I'D '" O. Illustrations are found in a Boone County survey of 
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corn borer effects. On 14 farms, the effect of spraying was evaluated by 
measuring the corn yield from both sprayed and unsprayed strips in each 
field. The data are recorded in table 4.5.1. The sample mean difference 
is 4.7 bu./acre with SD = 6.48 bu./acre and Sn = 6.48/ J 14 = I. 73 bu./acre. 

A one-tailed /-lest. It had already been established that the spray, at 
the concentration used, could not decrease yield. If there is a decrease, as 
in the first field, it must be attributed to causes other than the spray, or to 
sampling variation. Consequently if I'D is not zero then it must be greater 

TABLE' 4.5.1 
YIELDS Of CORN (BUSHELS PER ACRETIN SPRAYED ,.ND UNSPRAYED STRIPS OF 14 FIELDS 

Boone County,lowa. 1950 

Sprayed 64.3 78.1 93.0 80.7 89.0 79.9 90.6 102.4 
Unsprayed 70.0 74.4 86.6 79.2 84.7 75.1 87.3 98.8 

Difference -5.7 3.7 6.4 .1.5 4.3 4.8 3.1 3.6 

70.7 106.1 107.4 74.0 72.6 69.5 
70.2 101.1 83.4 65.2 68.1 68.4 

0.5 • 5.0 24.0 8.8 4.5 U 

than zero. The objective of this experiment was to test Ho : I'D ,: 0 with· 
HA /-ID > O. As before, 

.4.7 - 0 . 
I = 3 = 2.72, df = 13 

1.7 

To make a one-failed leSI with filble A 4, ./ocate the sample ,.alue of t 
and use half of the probabililY indicated. 

Applying this nlle to the t = 2.72 above, Pis .,ight'y less than 0.02/2; 
the null hypothesis is rejected at P < 0.01. Evidently spraying did decrease 
corn borer damage, resulting in increased yields in BOQne Couniy in 1950. 

Test of a non-zero 1'. This same Boone County experiment may be 
cited to illustrate the use of a null hypothesis different from /-ID = O. This 
experiment might have had as its objective the test of lhe null hypothesis, 
"The cost of spraying is eq'lal to the gain from increased yield." To 
evaluate costs, the fee of commercial sprayers was $3 per acre and the 
1950 crop was sold at about $1.50 per bushel. So 2 bushels per acre would 
pay for the spraying .. This test would be Ho: I'D = 2 bu:;acre. H. : I'D ~ 2 
bU./acre, resulting in . 

4.7 - 2.0 
1= --= 1.56, df = 13 

L73 . 



" The two-tailed probability is about P = 0.15, and the ·null hypothesis 
would presumably nO.t be rejected. The verdict of the test is inconclusive: 
it provides no strong evidence that the farmers will either gain or lose by 
spraying. 

One-tailed test of a non-zero 1'. It is possible that Ho : I'D = 2 bu,jacre 
might be tested withH. : I'D > 2 bu./acre; that is, thealtemative hypothesis 
might be put in the form of a slogan, "It pays to spray." If this weredone, 
1= 1.56 would be associated with P = 0.15/2 = 0.075, not significant. 
But the implication of this one-sided test is that Ho would be accepted 
no matter how far the sample mean might fall short of 2 bu./acre. It is 
the two tailed test which is appropriate here. 

This point is stressed for the reason that some people use the one­
sided test because, as a man said, "I am not interested in the other alterna­
tive." A one-tailed test of Ho: I'D = 1'0 against H.: I'D ,.. 1'0 should ~ 
used only if we know enough about the nature of the process being studied 
to be certain that I'D could not be less than 1'0' 

In considering the profitability of spraying, it is more informative to 
treat the statistical problem as one of estimation than as one of testing 
hypotheses. Since the mean difference in yield between sprayed and un­
sprayed strips is 4.7 bu. per acre. the sample estimate of the profit per acre 
due to spraying is 2.7 bu. We can compute confidence limits for the 
average profit per acre over a population of fields of which this is a random 
sample. For 90% limits we add and subtractto.1oSD = (1.771)(1.73) = 3.1 
bu. Thus if the farmers are willing to take a 1-in-1 0 chance that the sample 
estimate was not exceptionally poor, they learn that the average profit per 
acre lies somewhere between -0.4 bu. and + 5.8 bu. These !imits are 
unfortunately rather wide for a practical decision: a larger sample size 
would be necessary to narrow the limits. They do indicate, however, that 
although there is the possibility of a small loss, there is also the possibility 
of a substantial profit. The 95% limits, - 1.0 bu. and + 6.4 bu., tell much 
the same slory. 

EXAMPLE 4.5.1-]D an investigation of the effect of feeding 10 meg. of vitamin 8 12 

per pound of ratioD.to growing swine (4), g lots (each with 6 pigs) were fed in pairs. The 
pai.rs were di.stinguished by being _fed different levels of aureomycin, an antibiotic whicb 
did nOl interact with the vitamin; that is, the differences were not affected by the aureomycin. 
The average daily gains (to about 200 Ibs. live weight) are summarized as follows: 

Pairs of Lots 

Ration 2 3 4 ~ 1> 7 S 

With 8 12 1.60 1.68 I. 75 1.64. 1.75 1.79 1.78 1.77 
Without Btl 1.~6 1.52 1.~2 1.49 1.59 1.56, 1.60 1.56 

Difference, D 0.04 0.16 0.23 0.15 0.16 0.23 0.18 0.21 

For the differences, calculak the statistics. D = 0.170 Jb..jday aDd 'lJ - O.0217Ib./day. 

7 
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EXAMPLE 4.5.2-1t is known that the addition of small amounts of the vitamin Clln­
not decrease the rate: of growth. While it is fairly obvious that [j will be found significantly 
different from zero, the ditlerences being atl positive and. with one exception, fairly con­
sistent, you may be interested. in evaluating I. ADS. 7.83, rar beyond the 0.01 level in the 
table. The appropriate alternative hypothesis is J.I > O. 

EXAMPLE 4.S.l-The effect 0[8 11 seems to be a stimulation of the metabolic processes 
including appetite. The pigs eat more and grow faster. In the experiment above, the cost 
of the additional amount of feed eaten, including that of.the vitamin. corresponded to about 
0.130 lb./day of gain. Test the hypothesis that the'profit derived from feeding Bil is zero. 
Ans. t = 1.8.4. P = 0.11 (two-sided alternative). 

4.6-CompariloD of the means of two illdependent samples. When no 
pairing has been employed, we have two independent sample. with means 
X" X,; which are estimates of their respective population means 1'" 1'" 
Tests of significance and confidence ~ntervals concerning the population 
difference. 1'. -1',. are again based on the t-distribution. where tnow bas 
the value 

It is assumed that X. and X, are normally distributed and are independent. 
By theory. their difference is also normally distributed. so that the 
Rumerator of t is normal with mean zero. 

The denominator of t is a sample estimate of the standard error of 
(X, - X,). The background for this estimate is given in the next two sec­
tions. First. we need an important new result for the population variance 
ofa difference between any two variables XI and X,. 

aXt- x / =: O'xl
l + (Tx./ 

The variaRce of a difference is the sum of the variances. This result holds 
for any two variables, whether normal or not, provided tbey are inde­
pendently distributed. 

4.7-1be variaace of. dilfereace. A popUlation variance is defined 
(section 2.12) as the average, over the population. of the squared devia­
tions from the pppulation mean. Thus we may write 

t1x.-x/ = Avg. of {(X, - X,) - (p. -I'l)}' 
But. 

(X, - X2) - (p, - 1',) = (X. - 1',) - (X, - 1',) 

Hence. on squaring and expanding. 

{(X, - X,) - (p, - I',)}' = (X, -1'.)' + (X, - 1',)' 
- 2(XI -I',)(X, -1'1) 

Now average over all pairs of values X" X, that can be drawn from 
their respective pOpulations. By the definition of a population variance, 
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Avg. of (X, - 1',)' = t7x: 
Avg. of (X. - 1'.)' = t7x: 

This leads to the general result 

t7x ,-x,' = t7x : + t7x,' - 2 Avg. of (X, -I',)(X. -1'.) (4.7.1) 

At this point we use the fact that X, and X. are independently drawn. 
Because of this independence, any specific value of X, will appear with 
all the values of X. that can be drawn from its population. Hence, for 
this specific value of X" 

Avg. of (X, - I',)(X. -1'.) = (X, -I',){Avg. of (X. -I'.)} 
=0 

since 1'2 is the mean or average of all the values of X.. It fo1lows that the 
overall average of the cross-product term (X, -I',)(X. -1'.) is zero, so 
that 

(4.7.2) 

Apply this result to two means X" X., drawn from populations with 
variance a'. With samples of size n, each mean has variance t7'/n. This 
gives 

l1xl_x/' = 20"2/n 

The variance of a difference is twice the variance of an individual mean. 
If 17 is known, the preceding results provide the material for tests and 

confidence·intervals concerning 1', - 1' •. To illustrate, from the table of 
pig gains (table 3.2.1) which we used to simulate a normal distribution 
with f1 = 10 pounds, the first two samples drawn gave X, = 35.6 and 
X;. = 29.3 pounds, with n = 10. Since the standard error of X, - X. is 
.,,;2t7/Jn, the quantity . 

Z = In{(X, - X.) - (P, - 1'.)}/J2t7 

is a normal deviate. To test the null hypothesis that 1', = 1'. we compute 

Z = In(X, - X.) = JTO(6.3) = 19.92 = 1.4J 
J2 f1 .,,;'!(10) 14.14 

From table A 3 a larger value of Z, ignoring sign, occurs about 16% ofthe 
trials. As we would expect, the difference is not significant. The 95% 
confidence limits for (I', - 1'.) are '. 

(X, - X.) ± (1.96)J2 t7/Jn 

4.8-A pooled estimate of •• riam:e. In most applications the value 
of 0'1 is not known. However, each sample furnishes an estimate of ,,2 : 

call these estimates $,' and •• '. With samples of the same size n, the best 
combined estimate is their pooled average .' = (s,' + $. ')/2. . 
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Since $,' = I:x/I(n - I) and s/ = 1:x,z/(n - I), where, as usual, 
x, = X, - X, and X2 = X2 - X,. we may write 

2 I:XJ 2 + l;X2
2 

s = -----:2':-(n----:-l:--') '-

This formula is r""ommended for routine computing since it is quicker 
and extends easily to samples of unequal sizes. 

The number of degrees of freedom in the pooled S2 is 2(n - I), the 
sum of the df. in s,. and s;. This leads to the result that 

I'" In{{X , - X2) - (p, - 1l,»)IJ2 s 

follows Student's t-distribution with 2(n - I) df. 
The prc:cedinll analysis requires one additional assumption, namely 

that (1 is the same in the two populaJions. The situations in which this 
assumption is suspect and the comparison of X, and X, when the assump­
tion does not hold are discussed in sc:ction 4.14. 

It is now time to apply these methods to a real experiment. 

4,9-An experiment comparing two groups of eqaal size, Breneman 
(5) compared the IS-day mean comb weights of two lots of male chicks, 
One receiving sex horll)one A (testosterone), the other C (dehydro­
androsterone). Day-old chicks, II in number, were assigned at random 
to each of the treatments. To distinguish between. the two lots, which 
were caged together. the heads of the chicks were stained red and purple. 
respectively. The individual comb weights are recorded in table 4.9.1. 

The calculations for the test of Significance lire given at the foot of 
the table. Note that in the Hormone A sample the correction term 
(1:%)2/n is (1,067)2/11 = 103,499. Note also the method recommended 
for computing the pooled S2. With 20 df., the value of t is significant at 
the I % level. Hormone A gives higher average comb weights than 
hormone C. ~ two sums .of squares of deviations, 8,472 and 7,748, 
make the assumption of equal (1' appear reasonable. 

The 95% confidence limits for (p, - Ill) are 

x, - X, ± 1 •.• ,Sr,_r, 

or, in this example, 

41 - (2.086)(12.1) = 16 mg., and 41 + (2.086)(12.1) = 66 mg. 

EXAMPLE 4.9.1-Lots of 10 bees were fed. two concentrations of syrup, 2€r'';' and 
65%. at a feeder half a mile from the bive (6). Upon arrival at the hive their hooey sac;s 
were removed and the concentration of the ftuid measured. In every case there Was a de­
crease from the feeder concentration. The dten:ases were: from the 21)010 syrup, 0.7.0.5.0.4. 
0.7.0.5,0.4.0.7,0.4.0.2. and 0.5; from (be 65% syruP. 1.7.2.8.2.2.1.4,1.3.2.1, O.S. 3.4, 
1.9, and 1.4%. Here. every observation in the second sample is LvI« than any ill. the first, 
$0 that rather obviOUlly p, < Pl' Show that I - 5.6 if PI - lit ... O. 1bere is Jittle doubt 



TABLE " .9.1 
TI!STING TME DIFlEJtENCE B£TWDN THE MEANS OF Two II'IDIPEND£NT SAMPLII 

Totals 

l:xJ 

df. 

Waght of Comb (mas.) 

Hormone Hormone 
A C 

57 89 
120 30 
101 82 
137 SO 
119 39 
117 22 
1()4 57 
73 32 
53 96 
68 ) 1 

118 88 

1.067 616 

II II 
97 56 

111 .971 42.244 
103.499 3 .... 96 

8.472 7.748 
10 10 

8.472 + 7.~ 
df. .,. 20 --- - 811 

10 + 10 . 

/(811) lX, - X, = - .. -_ .... 12.14 mg. 
II 

, = (!. - !z)/Jr,- J, - 41 /12.14 '" 3.38 
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that. under the experimentJIl conditions imJlO$ed. tbe concentration durin8 RighI dccreases 
more with the 65% syrup. But how about equality of variances ? Set secuons 4.14 and 
4. IS for further discussion. 

EXAMPLE 4.9.2-Four determlDations of the pH of Shelby 101m were made with 
eacb of two types of &Jus electrode (7). With a modified quinhydrone electrode. the read­
iDp _e 5.78. 5.74. 5.14, and 5.80: while with modified AI/4C1 electrode. they were 
5.82. S.87, 5.96, and S.89. With the hypothesil tbat 1', - 1'1 - O. c:aIc1IIate I - 2.66. Note : 
if you subtrKt 5.74 from every observation. tbe calculations are simpler. 

EXAMPLE 4.9.1--lu experiments to rneuure the effectiveness 0( carbon tetrachloride 
u a worm-killer. each of 10 flIU received an injcction of SOO larvae of the worm. lfippo­
J/'fHfIYbu """is. Eight days later S of the tats, cholen at random. each received 0.126 « . 
of a solution of carbon tetrachloride. and two daY' later tbe rau were killed and the ftumbcn 
of adult worms counted. These numhcn ~ 378. 275. 412. 26S, &lid 286 for the control 
rau and 123, 143, 192. 40. and 259 for the ralS treated wilh CCI.. Findlhe Iipi6cance 
probabilil) for tbe dift'erencc in mean numba'5 of worms. and (:Omputc 95% confideN:e 



limits for this difference. Ans. I = 3.64 with 8 df. P close to 0.01. Confidence limits are 
63 and 280. 

EXAMPLE 4.9.4--Fifteen kernels of mature lodent corn were tested for crusbing 
resistance. Measured in pounds the resistances were: 50, 36. 34, 45, 56, 42, 53, 25, 65, 
33,40,42.39,43.42. Another batch of 15 kernels was tested after being harvested in the 
dough stage: 43, 44, 51,40,29,49, 39, 59, 43, 48, 67, 44, 46:54, 64. Test the significance 
of the difference between the two means. Ans. I = 1.38. 

EXAMPLE 4.9.5--ln reading reports of researches it is sometimes desirable to supply 
a test of significance which was not considered necessary by the author. As an elUUllple, 
Smith (S) gave the sample mean yields and their standard errors for two crosses of maize 
as S.84 ± 0.39 and 7.00 ± O.IS grams. Each mean was the average of five replications. 
Determine if the mean difference is significant. Ans. I = 4.29, df. = 8. P < 0.5%. To do 
this in the quickest way, satisfy yourself that the estimate of the variance of the difference 
between the two means is the sum of the squares of 0.39 and 0.18, namely 0,1845. 

4.10-Groups of unequal sizes. Unequal numbers are common in 
comparisons made from survey data as, for example, comparing the mean 
incomes of men of similar ages who have master's and bachelor's degrees, 
or the severity of injury suffered in auto accidents by drivers wearing seat 
belts and drivers not wearing seat belts. In planned experiments, equal 
numbers are preferable, being simpler to analyze and more efficient, but 
equality is sometimes impossible or inconvenient to attain. Two lots of 
chicks from two batches of eggs treated differently nearly always differ in 
the number of birds hatched. Occasionally, when a new treatment is in 
short supply, an experiment with unequal numbers is set up deliberately. 

Unequal numbers occur also in experiments because of accidents and 
losses during the course of the trial. In such cases the investigator should 
always consider whether any loss represents a failure of the treatment 
rather than an accident that is not to be blamed on the treatment. Need­
less to say, such situations require careful judgment. 

The statistical analysis for groups of unequal sizes follows almost 
exactly the same pattern as that for groups of equal sizes. As before, we 
assume that the variance is the same in both populations unless otherwise 
indicated. With samples ofs~nl' n2' their means XI and X2 have vari­
ances (12/nl and 0 2/n2 . The variance of the difference is then 

In order to form a pooled estimate of (12, we follow the rule given for 
equal-sized samples. Add the sums of squares of deviations in the numer­
ators of S,2 and s/. and divide by the sum of their degrees of freedom. 
These degrees of freedom are (nl - I) and (n2 - I), so that the de­
nominator of the pooled S2 is (nl +"2 - 2). This quantity is also the 
number of d,( in the pooled S2. The procedure will be clear from the 
example in table 4.10.1. Note how closely the calculations follow those 
given in table 4.9.1 for samples of equal sizes. 
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TABLE 4.10.1 
ANALYSIS FOR Two SAMPll:S Of UNEQUA.l SIZES.. q"INS IN WEIGHTS OF Two loTS 

OF FEMALE RATS (28-84 days old) UNDER Two DIETS 

Totals 

" means 
IXl 
(H)'/" 

Pooled 52 

Gains (gms.) 

High Protein 

134 
146 
104 
119 
124 
161 
107 
83 

113 
129 
97 

123 

1440 

12 
120 

177.832 
172.800 

5.032 
II 

5.032 + 2.552 
11 + 6 

446.l:!, 

low Protein 

70 
118 
101 
85 

107 
132 
94 

707 

7 
101 

73.959 
71.407 

2.552 
6 

J ("' + n,) sl,_I, = S' -- = J{(446.l2)(19)j84} = 10.04 gms. 
n1nl 

t = 19/10.04 = 1.89, P about 0.08. 

The high protein diet showed a slightly greater mean gain. Since P 
is about 0.08, however, a difference as large as the observed one would 
occur about 1 in 12 times by chance, sn that the observed difference can­
not be regarded as established by the usual standards in tests of sig­
nificance. 

For evidence about homogeneity of variance in.the two populations. 
observe that 5,' = 5.032111 = 457 and 5,' = 2,552/6;0, 425. 

If the investigator is more interested in estimates than in tests. he may 
prefer the confidence interval. He reports an observed difference of 19 
gms. in favor of the high protein diet. with 95~o confidence limits - 2.2 
and 40.2 gms. 

EXAMPLE 4.10.1-The following are the rates of diffusion of carb~1O diOXide through 
two SOils of different porosity (9). Through a fine soilln: 20. :_\ 1. 18. 23, 23, .""!8, 23, 26. 27, 
26, 12, 17, 25: through a coarse soil (c): 19, 30, 32, 28. 15, :!6. 35, ! S, 25, 27, 35. 34. Show 



that pooled Sl,.. 35.113. s:r,-rl '" 2.40, d.f. = 23, and t - 1.67. The difference, therefore, 
is Dot significant. 

EXAMPLE 4.10.2-The total nitrogen content of the blood plasma of normal albino 
rats was measured at 37 and ISO days of age (10). The results are ex.pressed as gms. per 100 
ce.ofplasma. At ale 37 days. 9 rats had 0.98, 0.83, 0.99, 0.86. 0.90, 0.81. 0.94, 0.92, and 
0.87; at age 180 days. 8 rats bad 1.20. 1.18. 1.33, 1.21, 1.20, 1.07, 1.13, and 1.12 gms. per 100 
cc. Since significance is obvious. set a 95% confidence interval on the population mean 
difference. Ans. 0.21 toO.35 JIllS./IOO ce. 

EXAMPLE 4.10.3-Sometimes, especially in comparisons made from surveys, the two 
samples are large. Time is saved by fanning frequency distributions and computing the 
means and variances as in section 3.11. The following data from an ex.periment serve as an 
illustration. The objective was to compare the effectiveness of two antibiotics, A and B, for 
treating patients with lobar pneumonia. The numbers of patients were 59 and 43. The data 
are the numbers of days needed to. bring the patient's temperature down to normal. 

No. of Days I 2 3 4 S 6 7 8 9 10 Total 

No. of A 17 8 S 9 7 I 2 I 2 7 S9 
Patients B IS 8 8 S 3 I 0 0 0 3 43 

What are your conclusions about the relative effectiveness of the two antibiotics in brinsina 
down the fever? Ans. The difference of about 1 day in favor ofB has a Pvaiue between 0.05 
and 0.025. Note that although these are frequency distributions. the only real grouping 
is in the 10..d,ay groups, which actually represented "at least 10" and were arbitrarily rounded 
to 10. Since the distributions are very skew, the analysis leans heavily on the Central Limit 
Theorem. Do tbe variances Jiven by the two drugs appear to differ? 

EXAMPLE 4.10.4---Show that if the two samples are ofaizes 6 and 12. the S.D. oftbe 
difference in means is the same as when tbe samples are both of size S. Are tbe d.f. in tbe 
pooled sl·the same? 

EXAMPLE :4.IO.S-Sbow that the pooled S2 is a weighted mean of J 1
l and S]l in which 

each is weishted by its number of df 

",Il-Paired versus independent gro..... The formula for the vari­
ance of a difference throws more light on the circumstances in which 
pairing is effective. Quoting formula (4.7.1), 

(].,_.,' = (] • ."+ (]x,' - 2 Avg. of(Xt - I't)(X, - 1'2) 

When pairing, we try to choose pairs such that if XI is high, so is X2 . 

Thus, if (XI - 1'1) is positive, so is (X2 - 1'2)' and their product 
(XI - ,I'I)(X, - 1',) is positive. Similarly, in successful pairing, when 
(XI - 1'1) is negative, (X2 - 1',) will usually also be negative. Their 
product (XI - I't)(X, - 1'2), is again positive. For paired samples, then, 
the average of this product is positive. This helps, because it makes the 
variance of (XI - X,) less than the sum of their variances, sometimes very 
much less. The average value of the product over the population is 
called the covariance of XI and X" and is studied in chapter 7. The result 
for the variance of a difference may now be written 

aXI_xz
2 = a xl

2 + a x2
2 

- 2 Cov. (Xh X2) 
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Pairing is not always effective, because Xl and X, may be poorly 
correlated. Fortunately, it is possible from the resuHs of a paired experi­
ment to estimate what the standard error of (X, - X,) would have been 
if the experiment had heen conducted as two independent groups. By 
this calculation the investigator can appraise the success of his pairing, 
which guides him in decidin5 whether the pairing is worth continuing in 
future experiments. 

With paired samples of size n, the standard error of the mean dif­
ference 15 = Xl - X, is aD/.Jn, where aD is the standard deviation of the 
population of paired differences (section 4.3). For an experiment with 
two independent groups, the standard error of X I - X, is.J2 a/.Jn, where 
u is the standard deviation ofth. original popUlation from which we drew 
the sample of size 2n (section 4.7). Omitting the .In, the quantities that 
we want to compare are aD and .J2·u. Usually, the comparison is made in 
terms of variances: we compare (1 D 2 with 20"2. 

From the statistical analysis of the paired experiment, we have an 
unbiased estimate so' of aD'. The problem is to obtain an estimate of 
2u'. One possibility is to analyze the results of the paired experiment by 
the method of section 4.9 for two independent samples, using the pooled 
5' as an estimate of u'. This procedure gives a good approximation when 
n is large, but is slightly wrong, because the two samples from which s' 
was computed were not independent. An unbiased estimate of 2u' is 
given by the formula 

2/1' = 2s' - (2s' - SD ')/(2n - I) 

(The 'hat' [ 1 placed above a population parameter is often used in mathe­
matical statistics to denote an estimate of that parameter.) 

Let us apply this method to the paired experiment on virus lesions 
(table 4.3.1, p.95), .which gave SD' = 18.57. You may verify that the 
pooled s' is 45.714, giving 2s' = 91.43. Hence, an unbiased estimate of 
2u1 is 

2a' = 91.43 - (91.43 - 18.57)/15 = 86.57 

The pairing has given a much smaller variance of the mean difference, 
18.57/n versus 86.57/n. What does this imply in practical terms? With 
independent samples, the sample size would have to be increased from 8 
pairs to 8{86.S7)/(I8.57), or about 37 pairs, in order to give the sam. 
variance of the mean difference as does the paired expenmen!. The saving 
in amount of work due to pairing is large in this case .. , 

The computation overlooks one point. In the paired experiment, 
SD' has 7 df .. wheroas the pooled s' would have 14 dj. for error. The 
I-value used in tests of significance or in computing confidence limits 
would be slightly smaller with independent samples than with paired 
samples. Several writers (11), (12), (13), have discussed the allowance 
that should be made for this difference in number of dj. We suggest a 



108 Chapter 4: The Comparison of Two Samp/., 

rule given by Fisher (12). Multiply the estimated variance by 
(f + 3)/(/ + 1), where f is the d.f. that the experimental plan provides .. 
Thus we compare 

(18.57)(10)/8 = 23.2, with (86.57)(I7)/( 15) = 98.1 

D. R, Cox (13) suggests the multiplier (f + 1 )'11'. This gives almost the 
same results, imposing a slightly higher penalty whenfis small. 

From a single experiment a comparison like the above is not very 
precise, particularly if n is smalL The results of several paired experi­
ment~ in which the same criterion for pairing was employed give a more 
accurate picture of the success of the pairing. If the criterion has no cor­
relation with the response variable, there is a small loss in accuracy from 
pairing due to the adjustment for df. There may even be a substantial 
loss in accuracy if the criterion is badly chosen so that members of a pair 
are negatively correlated. 

When analyzing the results of a comparison of two procedures. the 
investigator must know whether his samples are paired or independent 
and must use the appropriate analysis. Sometimes a worker with paired 
data forgets this when it comes to analysis, and carries out the statistical 
analysis as if the two samples were independent. This is a serious mistake 
if the pairing has been effective. In the virus lesions example, he would 
be using 2s'ln or 91.43/8 = 11.44 as the variance of 15 instead of 
18.57/8 = 2.32. The mistake throws away all the advantage of the pair­
ing. Differences that are actually significant may be found non-significant 
and confidence intervals will be too wide. 

Analysis of independent samples as if they were paired seems to be 
rare in practice. If the members of each sample are in essentially random 
order, so that the pairs are a random selection, the computed SD' may be 
shown to be an unbiased estimate of 2"'. Thus the analysis still provides 
an unbiased estimate of the variance of \X J - X,) and a valid Hest. 
There is a slight loss in sensitivity, since I-tests are based on (n - I) dl, 
instead of 2(n - I) df 

As regards assumptions, pairing has the advantage that its Hest does 
nol require" I = (f,. "Random" pairing of independent samples has been 
suggested as a means of obtaining tests and confidence limits when the 
investigator knows that O't and (T2 are unequal. 

Artificial pairing of the results, by arranging each sample in descend­
ing order and pairing the top two, the next two, and so on, produces a 
great under-estimation of the true variance of 15. This effect may be 
illustrated by the first two random samples of pig gains from table 3.3.1 
(p.69). The population variance .,' is 100, giving 2.,' = 200. In table 
4.11.1 this method of artificial pairing has been employed. 

Instead of the correct value of 200 for 20'2 we get an estimate sv 2 of 
only 8.0. Since SlJ = ,1(8.0/10) = 0.894, the I-value for testing fj is 
I ~ 6.3/0.894 ~ 7.04. with 9 d.f. This gives a P value of much less than 
0.1 ";';, although the two samples were drawn from the same population. 
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TABLE 4.11.1 
Two SAMPLES OF 10 PIG GAINS ARRANGED IN DESCENDING OaDER, TO ILLUSTRATE 

THE ERJlONEQUS CONCLUSIONS FROM ARTIFICIAL PAIRING 

Sample I 
Sample 2 

Dilr. 

57 53 39 39 36 
53 44 32 31 30 

4 9 7 8 6 

34 33 29 24 
30 24 19 19 

4 9 10 5 

12 
II 

Ed' ~ 469 ~ (63)'/10 = 72.1. so' ~ 72.1/9 = 8.0 

Mean = 35.6 
Mean = 29.3 

Mean= 6.3 

EXAMPLE 4.11.I-ln planning experiments to test the effects of two pain-deadeners 
on the ability of yaung men to tolerate pain from a narrow beam of light directed at the arm, 
each subject was first rated several times as to the amount of heat energy that he bore with­
out complaining of discomfort. The subjects were then paired according to these initial 
scores. In a later experiment the amounts of energy received at the point at which the sub­
ject complained were as follows. A and B denoting the treatments. 

PaiT 

A 
B 

IS 
6 

2 

2 
7 

3 

4 
3 

4 

1 
4 

5 

5 
3 

6 

7 
2 

7 

1 
3 

8 

o 
o 

9 

~3 

~6 

Sums 

32 
22 

To simplify calculations, 30 was subtracted from each original score. Show that for ap­
praising the effectiveness of the pairing, comparable variances are 22.5 for the paired experi· 
ment and 44.6 for independent groups {after allowing for the difference in df.). The pre· 
liminary work in rating the subjects reduced the number of subjects needed by almost one· 
half. 

EXAMPLE 4.11.2~In a previous ex.periment comparing two routes A and 8 for dln·ing 
home from an office (ex.ampie 4.3.4). pairing. ..... as by days of the week. The times taken 
(-13 mim.) for the ten pairs were as follows: 

A 
B 

Diff. 

5.7 
2.4 

3.3 

3.2 1.8 
B 1.9 

0.4 ~O.I 

2.3 
2.0 

0.3 

2.1 
0.9 

1.2 

0.9 3.1 
0.3 3.6 

0.6 ~0.5 

2.8 
1.8 

1.0 

7.3 
5.8 

1.5 

8.4 
7.3 

1.1 

Show that if the ten nights on which route A was used had been drawn at random from the 
twenty nights available. the variance of the mean difference would have been about 8 times 
as high as with this pairing. 

EXAMPLE 4.' 1.3....:...1f pairing has not re<iuced the variance. ~ "chat Spl = 2(1"2, show 
that allowance for the error dj. by Fisher's rule makes pairing 15~/o less effective than inde­
pendent groups when n """ 5 and 9~~ less effecti've when n = 10. In small ex.periments, 
pairing is inadvisable unless a sizeable reduction in variance is eXpe<:ted. 

4.12-Precautions against bias-randomization. With either inde­
pendent or paired samples, the analysis assumes that the difference 
(X, - X,) is an unbiased estimate of the population mean difference 
between the two treatments. Un\ess precautions are taken when con­
ducting an experiment. (X, - X2 ) may be subject to a bias of unknown 
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amount that makes the conclusion false. Corner (14) describes an ex­
ample in which, when picking rabbits ouLof a hatch, one worker tended 
to pick large rabbits, another to pick small rabbits, although neither was 
aware of his personal bias. If the rabbits for treatment A are picked out 
first, a bias will be introduced if the final response depends on the weight 
of the rabbit. If the animals receiving treatment A are kept in one cage 
and those having B in another, temperature, draftiness, or sources of in­
fection in one cage may affect all the animals receiving A differently 
from those receiving B. When the application of the treatment or the 
measurement of response takes considerable time, unsuspected time trends 
may be present, producing bias if all replicates of treatment A are pro­
cessed first. The investigator must be constantly on guard against such 
sources of bias. 

One helpful device, now commonly used, is randomization. When 
pairs have been formed, the decision as to which member of a pair re­
ceives treatment A is made by tossing a coin or by using a table of random 
numbers. If the random number drawn is odd, the first member of the 
pair will receive treatment A. With 10 pairs, we draw 10 random digits 
from table A I, say 9, 8, 0, 1,8,3,6,8,0, 3. In pairs 1,4,6, and 10, treat­
ment A is given to the first member of the pair and B to the second member. 
In the remaining pairs, the first member receives B. 

With independent samples, random numbers are used to divide the 
2n subjects into two groups of n. Number the subjects in any order from 
I to 2n. Proceed down a colul1ln of random numbers, allotting the sub­
ject to A if the number is odd. to B if even, continuing until n A's or n B's 
have been allotted. With 14 subjects and the same random numbers as 
above, subjects 1,4,6, and 10 receive A and subjects 2, 3. 5,7,8. and 9 
.r .... r.;"" .!I. J:luc< Jar Wi" .M"" ... llnlW Jonr .4'5"'00 "~iJ .II ~~. "" .that -'Dill" 
random numbers must be drawn. The next two in the column are J, 8. 
Subject II gets A and subject 12 gets B. Since seven B's have been as­
signed we 'tOp, giving A to subjects 13 and 14. 

Randomization gives each treatment an equal chance of bemg al­
lotted to any subject that happens to give an unusually good or unusually 
poor response, exactly as assumed in the theory of probability on which 
the statistical analysis is based. Randomization does not guarantee to 
balance out the natural differences between the members of a pair exactly. 
With n pairs, there is a small probability, 1/2"-1, that one treatment will be 
assigned to the superior member in every pair. With 10 pairs this prob­
ability is about 0.002. If the experimenter can predict which is likely to 
be the superior member in each pair, he should try a more sophisticated 
design (chapter II) that utilizes this information more effectively than 
randomization. Randomization serves primarily to protect against 
sources of bias that are unsuspected. Randomization can be used not 
merely in the allocation of treatments to subjects, but at any later stage in 
which it may be a safeguard against bias, as discussed in (II), (13). 

Both independent and paired samples are much used m comparisons 
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made from surveys. The problem of avoiding misleading conclusions is 
formidable with survey data (15). Suppose we tried to learn something 
about the value of completing a high school education by comparing. 
some years later. the incomes, job satisfaction. and general well-being of 
a group of boys who completed high school with a group from the same 
schools who started but did not finish. Obviously. significant differences 
found between the sample means may be due to factors other than the 
completion of high school in itself: differences in the natura! ability and 
personal characteristics of the boys. in the parents economic level and 
number of useful contacts. and so On. Pairing the subjects on their school 
performance and parents' economic level helps, but no fa ndomization 
within pairs is possible. and a significant mean difference may still be due 
to ~xtraneous factors whose influence has been overl~oked. 

Remember that a significant I-value is evidence that the popUlation 
means differ. Popular accounts arc sometimes written as if a signifi­
cant I implies that every member of population I is superior to every 
member of population 2. 'The oldest child in the family achieves more 
in science or in business." In fact. the two populations may largely 
overlap even though I is significant. 

4.J3-Sample size in comparatil''' experiments. In planning an eXe 

periment to compare two treatments. the following method is often used 
to estimate the size of sample needed. The investigator first decides on a 
value (j which represents the size of ditrerence between the true effect of 
the treatments that he regards as important: If the lJ'ue difference is as 
large as D. he would like the experiment to ..have a high probability of 
showing a statistically significant difference between the tfeatment means. 
Probabilities of 0.80 and 0.90 arc common. A higher probability, say 
0.95 or 0.99, can be set, but the sanlpIe.size required to meet these severer 
specifications is often too expensive. 

This way of stating the aims in planning the sample size is particularly 
appropriate when (if the treatments afe a standard treatment and a new 
treatment that th~ experimenter hopes will be better than the standard. 
and (ii) he intends to.discard the new treatment if (he experilllcn( does noc 
show it to be significantly superior to the standard~ .,In these circum­
stances he does not mind dropping the new treatment if it ·is at most only 
slightly better than the standar~. hilt he does not want to drop it. on the 
evidence of the experiment. if it is substantially superior. The value of (~ 
measures his idea of a substantial true ditl"erence. 

In order to make the calculation the experimenter supplies: 
1. the value of 0, 
2. the desired probability P' of obtaining a significant result if the 

true difference- is (~t 
3. the significance level ex of the test. which may be either one-tailed 

or two-tailed. . 
Cpnsider paired samples. Assume at first that (lD is known and that 
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the test is two-tailed. In our specification, the observed mean dilference 
fj = XI - Xl is normally distributed about (; with standard deviation 
~oI..jn. This distribution is shown in figure 4.13.1. which forms the 
basis of our explanation. We have assumed {, > O. 

z. CTO /..[fi 8 

8 - Z2(1_ p', CTO /.fii 

Fki. 4.13.1- Frequcncy distributIOn of the mean difference D between t\lo'O treatments. 

In order to be statisticall) significant. 1) must exceed Z2~", ... :n, where 
Z. is the normal deviate corresponding to the two-tailed significance level 
IX. (For IX = 0.01. 0.05, 0.10, the values of Zrare 2.576. 1.960, and 1.645. 
respecli"ely. ) The vertical line 10 fi~ure 4. 13.) shows the Critical value. 

In our specification. the probability that 1) exceeds this value must 
be r . That is. this value divides the frequency distribution of fj into an 
area r on the right and t 1 - r) on the left. Consider the standard 
normal curvc. with mean 0 and S .D. I . With P.' > 112. the point at which 
the area on the left is (I - P') is minus the normal deviate corresponding 
to a on~-IQiled significance level (1 - P ' ). This is the same as minus the 
normal deviate corresponding to a two-tailed significance level 2( I - P'), 
or in our nota (ion to - Z211 _ r")' For instance, with P' = 0.9, this is the 
normal deviate - Z O.l' or - 1.282. 

Since l) has mean cS and S.D. ~ o f .J ", the quantity (1) - cS)/(~ Df J Il) 
follows the standard normal curve. Hence. the value of fj that is exceeded 
with probability P' is given by the equation 
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or, 

It follows that our specification is satisfied if 

A look at figure 4.13.1 may help at this point. Write fJ = 2(1 - P') and 
solve for n, 

(4.13.1) 

To illustrate, for a one-tailed test at the 5% level with P' = 0.90, we 
have,Z. = 1.645. Z, = 1.282. giving n = 8.6ao'/Ii'. Note that' 11 is the 
size of each sample, the total number of observations being 2n. 

Formula (4.13,1) for n remains the same for independent samples. 
except that" 0 

2 is replaced by 2,,'. 
The two-tailed case involves a slight approximation. In a two-tailed 

test, [j in figure 4.13,1 is also significant if it is less than - Z,uo/Jn. 
But with ~ positive. the probability thai this happens is negligible in most 
practical situations. 

Table 4,13, I presents the multipliers (Z. + Z,)' that are most fre· 
quently used, 

When "D and" are estimated from the results of the experiment. 
I-tests replace the normal deviate tests, The logical hasis of the argument 
remains the same. but the formula for 11 becomes an integral equation in 
calculus that must be solved by successive approximation. This equa­
tion was' given by Neyman (21) to whom this method of determining 
sample size is due. 

For practical purposes, the following approximation agrees well 
enough with the values of 11 as found from Neymari's solution: 

I. Find", to one decimal place by table 4.13.1. 

TABLE 4,13.1 
MULnPLtEas Of a lJ

Z/ll IN PAIRED So\MPU!S, AND OF 2,,'l/d1 IN'INpEPENOENT SAMPLIIS, 
IN Oaon TO DETEIlMINE THE SIZE OF EACH SAMPLE 

Two-tailed Tests One-tailed Tests 

Level Level 
p- O.oI O.OS 0.10 0.01 O.OS 0.10 

0.80 11.7 7.9 6.2 10.0 6.2 4.5 
0,90 14.9 10,S 8;6 13.0 S.6 M 
0.95 17.S 13.0 10:8 IS,S to.8 8.6 
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2. Calculate J, the number of degrees of freedom supplied by an 
experiment of this size (rounding n, upwards for this step). 

3. Multiply n, in step I by (/ + 3)/(/ + I). 
To illustrate, suppose that a 10"1. difference J is regarded as important 

and that P' = 0.80 in a two-tailed 5°-;; test of significance. The samples 
are to be independent, and past experience has shown that a is about 6%. 
The mUltiplier for P' = 0.80 and a 5% two-tailed test in table 4.13.1 is 7.9. 
Since2,,'/b' = 72/100 = O.72,n, = (7.9)(0.72) = 5.7. With a sample size 
of 6 in each group,J = 10, Hence we take n = (13)(5,7)/11 = 6.7, which 
we round up to 7, . 

Note that the experimenter must still guess a value of ao or a, 
Usually it is easier to guess a, If pairing is to be used but is expected to 
be only moderately effective, take aD = ,)2 u, reducing this value if some­
thing more definite is known about the effectiveness of pairing. This un­
c~rtainty is the chief source of inaccuracy in the process. 

The preceding method is designed to protect the investigator against 
finding a non-significant result and consequently dropping a new treat­
ment that is actuaUy effective, because his experiment was too small. The 
method is therefore most useful in the early stages of a line of work, At 
later stages, when something has been learned about the sizes of dif­
ferences produced by new trealmenls, we may w;sh 10 spedfy Ihe ';ze of 
the standard error or the half-width of the confidence interval that will be 
attached to'an estimated difference. 

For example, previous small experiments have indicated that a new 
treatment gives an increase of around 20%, and a is around 7%, The in­
vestigator would like to estimate this increase, in his next experiment, with 
a standard error of ± 2%. He sets ,)2(7)/,)n = 2, giving n = 25 in each 
group, This type of rough calculation is often helpful in later work, 

EXAMPLE 4.13.1-10 table 4.13.1. verify the multipliers given for a one-tailed test 
at the 1% level with P' = 0.90 and for a two-tailed test at the lOO/~ level with P' = 0.80. 

EXAMPLE 4.13.2-10 planning a paired experiment. the investigator proposes to 
use a one-tailed test of significance at the 5% level. and wants the. probability of finding a 
significant difference to be 0.90 if (i) d = 100/0. (ij) c} = 5%. How many pairs does he need? 
In each case, give the answer if (a) aD is known to be 12'}~. (b) tiD is guessed.as 12%. but a 
Hest will be used in the experiment. Ans. (10) 13. (ib) 15. (iia) 50. (iib) 52. 

EXAMPLE 4.13.3-10 the previous example. how many pairs would you guess to be 
necessary if 6 == 2.5%':' The answer brin,s out the difficulty of detecting small differences 
in comparative experiments with variable data. 

EXAMPLE 4. 1 3.4-If tJD = 5. how many pairs are needed to make the half-width 
of the 90°" confidence interva.l for the difference between the two population means = 22 
Ans. n == 17. 

4,14-Analysis of independent samples when (1, '" (1,. The ordinary 
method of finding confidence limits and making tests of significance for 
the difference between the means of two independent samples assumes that 
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the two population variances are the same. Common situations in which 
the assumption is suspect are as follows: 

(I) When the samples come from populations of different types, as 
in comparisons made from survey data. In comparing the average values 
of some characteristic of boys from public and private schools, we might 
expect, from our knowledge of the differences in the two kinds of schools, 
that the variances will not be the same. 

(2) When computing confidence limits in cases in which the popula­
tion means are obviously widely different. The frequently found result 
that" tends to change. although slowly. when /1 changes, would make us 
hesitant to assume 0"1 = (12' 

(3) With samples from populations that are markedly skew. In 
many such populations the relation between" and /1 is often relatively 
strong. 

, When ", '" ",. the formula for the variance of (X, - X,) in inde­
pendent samples still holds, namely. 

The two samples furnish unbiased estimates S1
2 of a/ and 52

2 of 0/ 

Consequently; the ordinary t is replaced by the quantity 

t' = (X, - X,lIJ(-', '/11, + ','/11,) 

This quantity does not fqllow Student's t-distribution when /1, = /1 ,. Two 
different forms of the distribution of t , arising from different theoretical 
backgrounds, have been worked out, one due to Behrens (16) and Fisher 
(17), the other to Welch and Aspin (18). (22). Both require special tables. 
given in the references. The tables differ relatively little. the Dehrens­
Fisher table being on the whole more conservative. in the sense Ihal slighlly 
higher values of I' are required fpr significance. The following ap­
proximation due to Cochran (19), which uses Ihe ordinary Hable. is suffi­
cienlly accurale for our purposes. It is usually slighlly more conservalive 
than the Behrens-Fisher solution. 

Case I: '11 = n2 . With"l ="2';;:::: n. the variance in the denominator 
of t' is (s,' + S,')/II. But this is just 2-"/11. where -,' is Ihe pooled variance. 
Thus, in this case, t' = I. The rule is: calculate I in Ihe usual way, but 
give it (II - I) dJ: instead of 2(11 - I). " 

Case 1: II, '" II" Calculate t', To find its significance 'level, look up 
the significance levels of I in table A 4 for (n, - l) and (11,',- I) df Call 
these values I, and I,. The significance level of t' is. approximately. 

(Will + Wl/z)/(w t + wl)' where WI = 'J/ln" HI:! = s/Iu: 

The following artificial examples illustrates th<calculatlOns: A quick 
but imprecise method of estimating th~ concentration of a chemical in a 
vat has been developed, Eight samples from the vat are an'alyzed. as well 

8 
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as four samples by the standard method, which is precise but slow. In 
comparing the means we are examining whether the quick method gives 
a systematic over- or underestimate. Table 4. J 4.1 gives the computations. 

TABLE 4.14.1 
A TEST OF (Xl - X2 ) WHEN 0'1'" (fl' 

CONCENlllA TION OF A CHE~ICAL BY Two MOHODS 
======== ========= 

Standard 

25 
24 
25 
26 

XI ~ 25 
n J =- 4 

5\2== 0.67 
S11/1l1'= 0.17 

Quick 

23 
18 
22 
28 
17 
25 
19 
16 

X, -21 
n2 = 8 
s/ = 17.11 

Slljnl =- 2.21 

,. - 41..12.38 - 2.60 
I,() df.) ~ }.182 1,(7 df.) = 2.365 
I"" ~ 5:, levtl of t' ~ 1(0.17)(3.182) + (h.21)(2.365)}/2.38 

= 2.42 

Since 2.60 > 2.42, the difference is significant .at the 5% level; the quick 
method appears to underestimate. 

Approximate 95% confidence limits for (I'I - 1',) are 

XI -Xl±l'o,ossx,-X1 

or in this example, 4 ± (2.42)( 1.54) = 4 ± 3.7. 
The ordinary Hest with a pooled s' gives t = 1.84, to which we would 

erroneously attribute 10 df. The Hest tends to give too few significant 
results when the larger sample has the larger variance, as in this example, 
and too many when' the larger sample has the smaller variance. 

Sometimes, when it seemed reasonable to assume that (J I = (12 or 
when the investigator failed to think about the question in advance, he 
notices that '1' and .,' are distinctly different. A test of the null hy­
pothesis that a, = a" given in the next section, is useful. If the null 
hypothesis is rejected. the origin of the data should be re-examined. This 
may reveal some cause for expecting the standard deviations to be dif~ 
ferent. [n case of doubt it is better to avoid the assumption that 0' I = a2' 

4.1S-A test of the equality of two .arilUlces. The null hypothesis is 
that S,' and .,' are independent random samples from normal popula­
tions with the same variance 0-2 • In situations in which there is no prio_r 
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reason to anticipate inequality of variance. the alternative is a two-sided 
one: <1, # <12' The test criterion is F=s'>ls/. where s,' is the larger 
mean square. The distribution of F when the null h~thesis is true was 
worked out by Fisher (20) early in the 1920·s. Like X and t it is one of the 
basic distributions in modern statistical methods. A condensed two­
tailed table of the 5~~ significance levels of Fis table 4.15.1. 

TABLE 4.15.1 
50:'0 LEVEL (Two-TAILED) Of THE DISTRIBUTION Of F 

f, - df for .Ii = df. for urger Mean Square 
Smaller Mean 

Square 2 4 6 8 10 12 15 20 30 '" ---~ 

2 39.00 39.25 39.33 39.37 39.40 39.41 39.43 39.45 39.46 39.50 
3 16.04 15.10 14.74 14.54 14.42 14.34 14.25 14.17 14.08 13.90 
4 10.65 9.60 9.20 8.98 8.84 8.75 8.66 8.56 8.46 8.26 
5 8.43 7.39 6.98 6.76 6.62 6.52 6.43 U3 6.23 6.02 
6 7.26 6.23 5.82 5.60 5.46 5.37 5.21 5.11 5.01 4.85 

1 6.54 5.52 512 4.90 4.76 4.67 4.57 4.41 4.36 4.14 
8 6.06 5.05 4.65 4.43 4.30 4.20 4.10 4.00 3.89 3.67. 
9 5.71 4.72 4.32 4.10 3.96 3.87 3.77 3.67 3.56 3.33 

10 5.46 4.47 4.07 3.85 3.72 3.62 3.52 3.42 3.31 3.08 
12 5.10 4.12 3.73 3.51 3.37 3.28 3.18 3.07 2.96 2.72 

15 4.76 3.80 3.41 3.20 3.06 2.96 2.86 2.76 2.64 2.40 
20 4.46 3.51 3.13 2.91 2.77 2.68 2.57 2.46 2.3, 2.09 
30 4.18 3.25 2.87 2.65 2.51 2.41 2.31 2.20 2.01 1.79 

'" 3.69 2.79 2.41 2.19 2.0S 1.94 1.83 I. 71 J.~7 1.00 

Use of the table is illustrated by the bee data in example 4.9.1 Bees 
fed a 65% concentration of syrup showed a mean decrease in concentra­
tion of 1.9%. with s,' : 0.5"89. while bees fed a 2~~ concentration gave 
a mean decrease of O.5~-;; with s,' = 0.027. Each mean square has 9 d/ 
Hence 

F = 0.589/0.027 = 22.1 

In the row for 9 df. and the column for 9 d,t: (interpolated between 8 and 
10) the 5% level of F is 4.03. The null hypothesis is rejected. No clear 
explanation of the discrepancy in variances was found, except that it may 
reflect tbe association of a smaller variance with a smuller mean. The 
difference between tbe means is strongly significant whether the variances 
are assumed the same or not. 

Often a one-tailed test is wanted, because we know, in advance of 
seeing the data. which population will have the higher variance jf the null 
hypothesis is untrue. The numerator of F is ,,' if <1, > <1, is the alterna­
tive, and s/ if <1, > <1, is the alternative. Table A 14 presents one-tailed 
levels of Fdirectly. 
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EXAMPLE 4.IS.I-Young examined the basal metabolism of 26 college women 
in two groups of 11\ = 15 and nl == 11; .II = 34.45 and Xl = 33.57 cal./sq. m.jhr.; l:Xll 
= 69.36, :EX}1 = 13.66. Test Ho: at = 0'1- Ans. F= 3.62 to be compared with Fo.o, 
= 3.55. (Data from Ph,D. thesis. Iowa State University, 1940). 

BASAL MET ABOLISM OF 26 COLLEGE WOMEN 

(Calories per square meter per hour) 

======= 
7 or More Hours of Sleep 6 or Less Hours of Sleep 

I. 35.3 9. 33.3 I. 32.5 7. 34.6 
1. 35.9 10. 33.6 2. 34.0 8. 33.5 
3. 37.2 II. 37.9 3. 34.4 9. 33.6 
4. 33.0 12. 35.6 4. 31.8 10. 3LS 
5. 31.9 13. 29.0 5. 35.0 II. 33.8 
6. 33.7 14. 33.7 6. 34.6 
7. 3!i.0 IS. 35.7 I.X 120 369.3 
8. 35.0 EX, = 516.8 

'X I == 34,,45 cal/sq. m./hr. Xl = 33.57 cal./sq. m./hr. 

EXAMPLE 4.15.2--ln the metabolism data there is little difference between the group 
means, and the difference in variances can hardly reflect a cbrrelation between variance and 
mean. It might arise from non-random sampling. since the subjects are volunteers, or it 
could be due 10 chance. since Fis scarcely beyond the 5~1, level. As an exercise. test the differ­
ence between the means ii) without assuming 171 = 171' (ii) making this assumption. Ans. 
(i)" - 1.31.1 o_os = 2.17. (ii) I = 1.19. to_os = 2.048. There is no difference in theconclu: 
lions. 

EXAMPLE 4.15.3-ln the preceding example, show that 95'l~ confidence limits for 
Pl - Pl are -0.58 and 2.34 if we do not assume (J 1 = (11 • .and - 0.63 and 2.39 if this assump­
tion is made. 

EXAMPLE 4.1 S.4-lf you wanted to test the Dull hypothesis (/t = (/1 from the data in 
ta'b)ez..)z..). woui6:you use. ODC-W)cO or a twa-taJ)cO test"? 
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* CHAPTER FIVE 

Shortcut and non-parametric 
methods 

S.I-Introduction. In the preceding chapter you learned how to com­
pare the means of two samples: paired or independent. The present 
chapter takes up several topics related to the same problem. For some 
years there has been continued activity in developing rapid and easy 
methods for dealing with samples from normal populations. In small 
samples, we saw that the range, as a substitute for the sample standard 
deviation, has remarkably high efficiency as compared to s. In section 
5.2 a method will be described for comparing the means of two samples, 
using the range in place of s. Often this test. which is quickly made. leads 
to definite conclusions, so that there is no necessity to compute Student's 
I. This range test may also be employed as a rough check when there is 
doubt whether 1 has been computed correctly. 

To this point the normal distribution has been taken as the source 
of most of our sampling. Fortunately, the statistical methods described 
are also effective for moderately anormal populations. But there is much 
current interest in finding methods that w(lrk well for a wide variety of 
populations. Such methods, sometimes called dislrihulion,tree methods. 
are needed when sampling from populations that are far from normal. 
They are useful <llso, particularly in exploratory research, when the in­
vestigator does not know much about the type of distribution being 
sampled. The best-known procedures of this type are described in sec­
tions 5.3 to 5.7. 

5.2-The t-test based on range. Lord (3) has developed an alternative 
to the Hest in which the range replaces S¥ in the denominator of I. This 
test is used in the same way as 1 for testing a hypothesis or making in­
terval estimates. Pillai (4) has shown that for interval estimates the effi­
ciency of this procedure relative to t stays above 95% in samples up to 
n = 20. Like t. the range test assumes a normal distribution. It has 
become popular, particularly in industrial work. 

Table A 7 (i) applies to single samples or to a set of differences ob­
tained from paired samples. The entries are the values of (X - ,,)/ ... , 
where w denotes the range of the sample. This r"tio will be called tw , 

since it plays the role of I. 
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For an illustration of the setting of confidence intervals by means of 
Lord's table, we use the vitamin C data from chapter 2. The sample 
values were 16,22,21,20,23,21,19,15,13,23,17,20,29,18,22,16,25, 
with X = 20. We find w = 29 - 13 = 16 mg./IOO gm., with n = 17. 
Table A 7 (i) has the entry 0.144 in the column headed 0.05 and the row 
for n = 17. The probability that I'wl" 0.144 is 0.95 in random samples 
of n = 17 from a normally distributed population. The 95% confidence 
interval for Jl is fixed by the inequalities 

X - lw~1-' ::; Jl :$ X + I .... "" 

Substituting the vitamin C data, 

20 - (0.144)(16) :5 Ii " 20 + (0.144)(16) 
17.7" Jl " 22.3 mg./IOO gm. 

This is to be compared with the slightly narrower interval 17.95 "Ii'; 22.05 
based on s. 

The test ofa null hypothesis by means of tw is illustrated by the paired 
samples in chapter 4 showing the numbers of lesions on the two halves 
oftobacco leaves under two preparations of virus. The eight differences 
between the halves were 13, 3,4,6, - I, I, 5, I. Here the mean difference 
jj = 4, while w = 14 and n = 8. For the null hypothesis that the two 
preparations produce on the average equal numbers of lesions, 

jj 4 
I = - = - = 0.286 

w w 14 ' 

\Vhich is practically at the 5% level (0.288). The ordinary Hest gave a 
significance probability of about 4~~. 

Table A 7 (ii) applies to two independent samples of equal size. The 
mean of the two ranges, W = (w, + w,)/2, replaces t'he K' of the preceding 
paragraphs and X, - X, takes the place of jj. 

The test of significance will be applied to the numbers of worms 
found in two samples oftive rats, one sample lreated previously by a worm 
killer. 

Means, X 

Ranges, J.I' 

TABLE 5.2_1 
NUM8ER OF WORMS PER RAT 

Treated 

123 
14J 
192 
40 

259 

151.4 

. 219 

Untreated 

378 
275 
412 
265 
2&6 

323.2 

147 
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We have X - X, ~ 171.8 and w = (219 + 147)/2 = 183. From this. 
Iw = (X, - .t,)/iii = 171.8/183 = 0.939, which is beyond the 1% point, 
0.896, shown in table A 7 (ii) for n = 5. 

To find 95% confidence limits for the reduction in number of worms 
per rat due to the treatment, we use the formula 

(X, - X,) - Iw iii :s; Il, - III :s; (X, - X,) + tw iii 
171.8 - (0.613)(183):S; Il, - III :s; 171.8 + (0.613)(183) 

60 :s; Il, - III :s; 284 

The confidence inter'lal is wide, owing both to the small sample sizes and 
the high variability from rat to rat. Student's t, used in example 4.9.3 
for these data, gave closely similar results both for the significance level 
and the confidence limits. 

For two independent samples of unequal sizes, Moore (I) has given 
tables for the 10%, 5%, 2%, and I % levels of Lord's test to cover all cases 
in which the sample sizes n, and n, are both 20 or less. 

The range method can also be used when the sample size exceeds 20. 
With two samples each of size 24, for example, each sample may be divided 
at random into two groups of size 12. The range is found for each group, 
and the average of the four ranges is taken. Lord (3) gives the necessary 
tables. This device keeps the efficiency of the range test high for samples 
greater than 20, though the calculation takes a little longer. 

To summarize, the range test is convenient for nonnal samples if a 
5% to 10% loss in information can be tolerated. It is much used when 
many routine tests of significance or calculations of confidence limits have 
to be made. It is more sensitive than I to skewness in the population and 
to the appearance of gross errors. 

EXAMPLE 5.2.1··-ln a previous example the differences in the serum albumen found 
by two methods A and B in eight blood samples were; 0.6. d.7, O.S, 0.9, 0.3, 0.5. -0.5,1.3 
~. ~t \00 ml. A.\\\\\)' the tan.,'! methOO. to te~ the nun n'J?lth.eUs tl;w.t t\\(.te i.~ M oon.U'bt-:. ...... 
difference in the. amount of serum albumen found by the two methods. Ans. t", = 0.:.\2. 
p < 0.05. 

EXAMPLE S.2.2~In this example. given by Lord (3), the data are the times taken for 
an aqueous solution of glycerol to fall between two fixed marks. In five independent determi. 
nations in a viscometer, these times were 103.5. 104.1. 102.7. 103.2. and 102.6 seconds. 
For satisfactory calibration o'the viscometer, the mean time should be accurate to within 
± 1/2 sec., apart from a l·in·20 chance. By finding the half·width of the 95% confidence 
interval for J.t by (1) the I .. method, and (ii) the t method, verify whether this requirement is 
satisfied. Ans. No. Both methods give ±0.76 for the half·width. 

EXAMPLE 5.2.3--10 15 kernels of corn the crushing resistance of the kernels, in 
pounds, ,ranged from 25 to 65 with a mean of 43.0. Another sample of) S kernels, harvested 
at a different stage. ranged from 29 to 67 with a mean of 48.0 Test whether the difference 
between the means is significant. Ans. No, t,.,::=- 0.128. Note that since the ranges of the 
two samples ipdicate much overlap, one could guess that the test will not show a significanl 
difference. 
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S.3-MediaD, pereeotiles, and order statistics. The median of a popu· 
lation has the property that half the values in the population exceed it 
and halffall short of it. To estimate the median from a sample, arrange 
the observations in increasing order. When the sample values are ar­
ranged in this way, they are often called the ist, 2nd, 3rd ... order sta­
tistics. If the sample size n is odd, the sample median is the middle tenn 
in this array. For example, the median of the observations 5, 1,8, 3, 4 
is 4. In general, (n odd) the median is the order statistic whose number is 
(n + 1 )/2. With n even, there is no middle term, and the median is de­
fined as the average of the order statistics whose numbers are n/2 and 
(n + 2)/2. The median of the observations I, 3,4, 5,7,8 is 4.5. 

Like the mean, the median is a measure of the middle of a distribution. 
If the distribution is symmetrical about its mean.. the mean and the 
median coincide. With highly skewed distributions like that of income 
per family or annual sales of firms, the median is often reported, because 
it seems to represent people's concept of an average better than the mean. 
This point can be illustrated with small samples. As we saw, the median 
of the observations I, 3, 4, 5, 8 is 4, while the mean is 4.2. If the sample 
values become I, 3, 4, 5, 24, where the 24 simulates the introduction of a 
wealthy family or a large firm, the median is still 4, but the mean is 7.4. 
Four of the five sample values now fall short of the mean, while only one 
exceeds it. Similarly, in the distribution of incomes per family in a 
country, it is not unusual to find that 65% of families have incomes below 
the mean, with only 35% above it. In this sense, the mean does not seem 
a good indicator of the middle of the distribution. Further, the sample 
median in our small sample is still 4 even if we do not know the value of 
the highe:;t observation, but merely that it is very large. With this sample, 
the mean cannot be calculated at all. 

The calculation of Ibe median from a large sample is illustrated from 
the data in table 5.3.1. This shows for 179 records of cows, the number 
of days between calving and the resumption of the oestrus cycle (16). 
Many of the records are repeated observations from successive calvings of 
the same cow. This raises doubts about the conclusions drawn, but the 
data are intended merely for illustration. 

TABLE 5.3.1 
DlS.tlt.IBUTlON OF NUMBElt OF DAYS FROM CALVING TO fIRSt SUBSEQUENT OESTRUS 

FOR A HOUTEIN·FRIESIAN Hem IN WlSCOJ'\o"SJN 

CIa5$ limits 0.5-- 2O.!I- .... S- ... 5-- 80.5-- IOO.s.- 120.'- 14O.S- 160.5- 180.5- 200.5-
(days) 20.' ... , 6O' .... 100.5 120.5 140.5 160.5 tlO.5 200.' 220.5 .... _, • " 

,. 
" " 

,. \I • 2 

Cumulauw 

''''_' B ., 
" '" '" '" ... '" 177 '" ". 
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The frequency rises to a peak in the class from 40.5 days to 60.5 days. The 
day corresponding to the greatest frequency was called the mode by Karl 
Pearson. There is a secondary mode in the class from 100.5 to 120.5 days. 
This bimodal feature. as well as the skewness. emphasizes the non­
normalito/ of the distribution. 

Since n = 179, the sample median is the order statistic that is 90th 
from the bottom. To find this, cumulate the frequencies as shown in the 
table until a cumulated frequency higher than 90 is reached-in this case 
91. It is clear that the median is very close to the top of the 40.5--{)0.5 days 
class. The median ;s found by interpolation. Assuming that the 50 
observations in this class are evenly distributed between 40.5 and 60.5 
days, the median is 49/50 along the interval from 40.5 days to 60.5 days. 
The general formula is 

where 

gl 
M = X, + --. . f (5.3.1) 

XL = value of X at lower limit of the class containing the median 
= 40.5 days 

9 = order statistic number of the median minus cumulative fre­
quency up to the upper limit of previous class = 9O - 41 = 49 

J = class interval = 20 days 
f = frequency in class containing the median = 50 

This gives 

. (49(20) 
M = MedIan = 40.5 + ---so = 60 days 

The mean of the distrihution turns out to be 69.9 days. considerably 
higher than the median because of the long positive tall. 

In large samples of size n from a normal distribution (6). the sample 
median becomes normally distributed about the population median 
with standard error 1.253<1/)n. For this distribution, in which the 
sample mean and median are eSlimates of the same quantity, the median 
is less accurate than the mean. As we have stated, however. the chief 
application of the median lies in non-normal distributions. 

There is a simple method of calculating confidence limits for the 
population median that is valid for any continuous distribution. Two of 
the order statistics serve as the upper and lower confidence limits. These 
are the order statistics whose numbers are, approximately (7). 

(n + I) z..;n ---+--, 
2 - 2 

(5.3.2) 
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where z is the normal deviate corresponding to the desired confidence 
probability. for the sample of cows, using 95% confidence probability, 
z'" 2 and these numbers are 90 ± .J179 = 77 and 103. The 95% confi­
dence limits are the numbers of days corresponding to the 77th and the 
103rd order statistics. The actual numbers of days are found by adapting 
formula 5.3.1 for the median. 

(36)(20) 
for 77: No. of days = 40.5 + 50 = 55 days 

(12)(20) 
For 103: No. of days = 60.5 + 32 = 68 days 

The population median is between 55 and 68 days unless this is one of 
those unusual samples that occur about once in twenty trials. Th.e reason­
ing behind this method of finding confidence limits is essentially that by 
which confidence limits were found for the binomial in chapter 1. For­
mula 5.3.2 for finding the two-order statistics is a large-sample approxima­
tion, hut is adequate for practical purposes down to " = 25. 

In reporting on frequency distributions from large samples, investi­
gators often quote percentiles of the distributions. The 90th percentile of 
a distribution of students' I.Q. scores is the I.Q. value such that 9O~ of 
the students fall short of it and only 10"10 exceed it. 

In estimating percentiles, a useful result (7) is that in any continuous 
frequency distribution the Plh percentile is estimated by the order statistic 
whose number is (n + I)P/loo. For the 179 cows, the 90th percentile is 
estimated by order statistic whose number is 1= (180)(90)/100 = 162. 
By again using formula 5.3.1, the number of days corresponding to the 
162nd order statistic is found as 

120.5 + (4)(20)(([ = 128 days 

EXAMPLE 5.3.1--From a sam~e whose values are 8, 9, 2,7,3, 12, 15, estimate (i) the 
median. (ii) the lower quartile of the population (the lower quartile is the 25th percentile, 
having one-quarter of [he popUlation below it and three-quarters above), (iii) the 80th per­
centile. Ans. (j) 8, (ii) 3, (iii) 13.2. For the 80th percentile, the number of the order statistic 
is 6.4. Since tht; 6rh and 7th order statistics have values 12 and !5, f(;-:.pectively, linear 
interpoiation gives 13.2 for the 6.4th order statistic. Note that from this small sample we­
cannot estimate the 90th percentile, beyond saying that our estimate exceeds J 5. 

5,4--The siga test, Often there is no scale for measuring a character, 
yet one believes that he can distinguish grades of -I)Ierit. The animal 
husbandman, for example, judges body conformation, ranking the in­
dividuals from high to low, then assigning ranks I, 2, ... n. In· the same 
way, the foods expert arrays preparations according to llavor or palat­
ability. If rankings of a set of individuals or treatments are made by a 
random sample of judges, inferences can be made about the ranking in 
the population from which the sample of judges was drawn; this despite 
the fact !bat the parameters r>f the distributions cannot be written down. 
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First consider the rankings of two products by each of m judges. As 
an example, m = 8 judges ranked patties of ground beef which had been 
stored for 8 months at two temperatures in home freezers (17). Flavor wa~ 
the basis of the ranking. Eight of the patties, one for eachjudge, were kept 
at O'F.; the second sample of 8 were in a freezer whose temperature 
fluctuated between 0° and 15°F. The rankings are shown in table 5.4.1. 

TABLE 5.4.1 
R"NKJNGS Of THE FLAVOR OF PAlM OF PATTIES Of GROUND BEEF 

(Eight judges. Rank I is high: rank 2, low) 

Sample I Sample 2 

Judge OCF. Fluctuated 

A 2 
B 2 
C 2 1 
D 2 
E 2 
F 2 
G 2 
H 2 

There are two null hypotheses that might be considered for these 
data. One is that the fluctuation in temperature produces no detectable 
difference in flavor. (If this hypothesis is true, however, one would expect 
some of the judges to report that their two patties taste alike and to be un­
willing to rank them.) A second null hypothesis is that there IS a dif­
ference in flavor. and that in the population from which the judges were 
drawn, half the members prefer the patties kept at oaF. and half prefer 
the other pattIes. Both hypotheses have the same consequenCj: as regards 
the experimental data-namely, that for any judge in the sample, the 
probability is 1/2 that the O°F. patty will be ranked I. The reasons for 
this statement are different in tlie two cases. Under the first null hy­
pothesis, the probability is 1/2 because the rankings are arbitrary; under 
the second, because any judge drawn into the sample has a probability 
1/2 of being a judge who prefers the oaF. patty. 

In the sample,? out of 8 judges preferred the OOF. patty. On either 
null hypothesis. we expect 4 out of 8. The problem of testing this hy­
pothesis is exactly the same as that for which the X2 test was introduced 
in sections 1.10, 1.11 of chapter I. From the general formula in section 
1.12. 

2 (7 - 4)2 (I - 4)2 
7. =, + =45 

44' 

When testing the null hypothesis that the probability is 1/2, a slightly 
simpler version of this formula is 
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,(a-b)' (7-1)2 
1. = --- = = 4.5 . n 8 

where a and b are the observed numbers in the two classes (O°F. and 
Fluctuated). 

Since the sample is small. we introduce a correction for continuity. 
described in section 8.6, and compute X' as 

/' = (10 - b~ - 1)2 = (6 ~ I)' = 3.12, P = 0.078 

The expression 10 - bl- I means that we reduce the absolute value of 
(a ~ /J) by I before squaring. The test indicates non-significance, though 
the decision is close. 

In this example we used the X' .test, in place of the I-test for paired 
samples. because the individual observations, instead of being distributed 
normally, .take only the values I or 2, so that the differences within a 
pair are either + 1 or - I. The same test is often used with continuous 
or discrete data, either because the inn~stigator wishes to avoid the as­
sumption of normality or as a quick substitute for the I-test. The pro­
cedure is known as the sign test (8). because the difTert'llC'cs between the 
members of a pair are replaced by their sign~ (+ or. - ). the size of the 
difference being ignored. In the formula for .x'. a and b are the numbers 
of + and - signs, respectively. Any zero dilferc!nce is omitted rrom the 
test. so that n = a + h. 

When the sign test is appIJed to a variate X that has a continuous of' 
discrete distribution, the null hypothesis is that X has the same distribu' 
tion under the two treatments. But the null hypothesis does not necd to 
specify the shape of this distribution. In the I-test. on the other hand. the 
null hypothesis assumes normality and specifies that the parameLer 
iJ (the mean) is equal for the two treatments. For thi' reason theHest 
is sometimes called a parametric test. while the sign test is called non­
parametric. Similarly, the median and other order statistin <lre no~ 
parametric estimates. since they estimate percentiles of any continuous 
distribution without our requiring to define the shape of the distribution 
specifically by means of parameters. 

In sampling from normal distributions the el1icieney of the sign test 
relative to the I-test is about 65%. This statement imp)ie. that if the null 
hypothesis is false, so that the means of the two pnpulations differ by an 
amount .I, a sign test based on I g pairs and a I-test based on 12 pall' have 
about the same probability of detecting this by finding II significant dif­
ference.' The sign test saves time at the expense of a loss of sensitivity in 
the test. 

For numbers or pairs up to 20. table A 8 (p. 554). intended for quick 
reference, shows the smaller number of like signs required for significance 
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at the 1/~, 5~~~, and 10~'~ levels. For instance, with 18 pairs, we must have 
4 or less of one sign and 14 or more of the other sign in order to attain S% 
significance. This table was computed not from the X' approximation 
but from the exact binomial distribution. Since this distribution is dis­
continuous, we cannot find sample results that lie precisely at the 5% level. 
The significance probabilities, which are often substantially lower than 
the nominal significance levels, are shown in parentheses in table A 8. 
The finding of 4 negative and 14 positive signs out of 18 represents a 
significance probability of 0.031 instead of the nominal 0.05. For one­
tailed tests these probabilities should be halved. 

EXAMPLE 5.4.1----0n being presented with a choice between two sweets, differing 
tn color but Qtherwise identical. 15 out of 20 children chose color B. Test whether this is 
evidence of a general preference for B (i) by Xl, (ii) by reference to tahle A 8. Do the results 
agree'? 

EXAMPLE 5.4.2--Two ice creams were made with different flavors but otherwise 
similar. A panel of 6 expert dairy industry men all ranked Ravor A as p~ferred. Is this 
statistical evidence that the consuming public will prefer A? 

EXAMPLE 5.4.3- To illustrate the dIfference berween the sign test and the (-test in 
extreme situations. consider the two samples. I!a.ch of9 pairs. in which the actual differences 
are as follows. Sample I: - 1. L 2, 3. 4. 4, 6, 7, \0. Sample II: I. I. 2. 3, 4. 4, 6, 7. - 10. 
rn both sample\; the sign test indicates significance at the 5°>~ level, with P ==. 0.039 from 
table A 8. In sample I. in which the negative sign occurs for the smallest difference. we 
find [ = 3.618. with 8 d/. the ~ignificance probability being 0.007. In sample II. where the 
largest difference is the one with the negative sign. t = 1.125, with P = 0.294. Verify that 
Lord's test shows t ... == 0.364 for sample I and 0.118 for sample fI, and gives v('rdicts in 
good agreement with the I-tes!. When the aberrant signs represent eUreme observations 
the sign test and the Hest do nOl agree well. This does not necessarily mean that the sign 
test is at fault: if the extreme observation ...... ere caused by an undetected gross error. the 
verdict of the '·test might be misleading. 

5,S-Non-parametric methods: ranking of differtnces between mea­
surements. The signed rank test, due to Wilcoxon (2), is another sub­
stitute for the I-test in paired samples. First, Ihe absolute values of the 
differences (ignoring signs) are ranked, the smallest difference being as­
signed rank I. Then the signs are restored tothe rankings. The method is 
illustrated from an experiment by Collins et al. (9). One member of a pair 
of corn seedlings was treated by a small electric current, the other being 
untreated. After a period of growth, the differences in elongation 
(treated-untreat.d) are shown for each of ten pairs. 

In table 5.5.1 the ranks with negative signs total 15 and those with 
positive signs total 40. The test criterion is the smaller of these (otals, in 
this case, 15. The ranks with the less frequent sign will usually, though 
not always, give the smaller rank total. This number, sign ignored, is 
referred to table A 9. For 10 pairs a rank sum S 8 is required for re­
jection at the S% level. Since 15 > 8, the data suppon the null hypothesis 
that elongation was unaffected by the electric current treatment. 

The null hypothesis in this test is that the frequency distribution of 
tbe original measurements is the same for the treated and untreated mem-



TABLE 5.S. 1 
EXAMPLE OF WILCOXON'S SIGNED RANI:. TEST 

(Differences in e long.ation of treated and untrea ted seedlings) 

'29 

Palf Difference (mm.) Signed Rank 

I 6.0 5 
2 (..3 , 
3 10.2 7 
4 23.9 10 
S 3.1 3 
6 6.8 6 
7 - 1.5 - 2 
8 - 14.7 - 9 
9 - 3.3 - 4 

10 11.1 t! 

bers of a pair, but as in the sign test the shape of this frequency distribu­
tion need not be specified. A consequence of this null hyPothesis is that 
eaoh rank is equally lik.ely to have a + or a - sigp. The frequency dis­
tribution of the smaller rank sum was worked out by the rules of prob­
ability as described by Wilcoxon (2). Since this distribution is discon­
tinuous, the significance probabilities for the entries in table A 9 are not 
exactly ~% and I %, but are close enough for practical purposes. 

lfthe two or more differences are equal. it is often sufficiently accurate 
to assign to each ofthe lies the average o(the ranks that would be assigned 
to the group. Thus, if two differences are tied in the fifth and sixth posi­
tions, assign rank 5 1 '2 to each of them. 

If the number of pairs n exceeds 16. calcuhite the approximate normal 
deviate 

Z = (ill - TI - Wcr 
where T is the smaller rank sum. and 

Il = n(n + 1)/4 cr = J (2n + 1)/i/6 

The number - 1/ 2 is a correction for continuity. As usual, Z > 1.96.sig­
ames rejection at the 5% level. 

EXAMPLE 5.5. I - From two J·sbaped populations distributed like chi-square with 
d.f. = I (figure 1.13.1). two samples of Ii "" I 0 were drawn1lnd paired al random : 

Sample I 1.98 3.30 5.91 1.05 1.01 1.44 3.42.. 2. 17 1.37 1.13 

Sample 2 0.33 0.11 0.04 0.24 1.56 0.42 0.00 0.22 0.82 2.54 

Difference 1.65 3.19 5,87 0.81 - 0.55 1.02 3.42 1.95 0.55 -1.4l 

Rank 6 8 10 ' 3 - 1.5 4 9 7 1.5 - S 

The dilferellCe between lhe population means was I. Apply the sisned rank test. ADs. 
The smallest two absolute diffcr~ are tied. SO each is assigned the tank (I + 2){2 - 1.5. 
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The sum of the negative ranks is 6.5, between the critical sums, 3 and 8, in table A 9. Ho 
1s rejected with P = 0.04, approximately. 

EXAMPLE 5.S.2-If you had not known that the differences in the foregoing example 
were from a non-normal population, you would doubtless have applied the I-test. Would 
you haved,fawn any different conclusions? Ans. t = 2.48. P = 0.04, 

EXAMPLE 5.5.3- Apply the signed rank test to samples I and II of example 5.4.3. 
Verify that the results agree with those given by the I-test and not with those given by the 
5ign test. Is this what you would expect? 

EXAMPLE 5.5.4---For 16 pairs, table A 9 states that the 5% level of the smaller rank 
sum is 29. the exact probability being 0.053. Check the normal approximation in this case 
by showing that f' = 68, a = 19.34. so that for T = 29 the value of Z is 1.99, corresponding to 
a significance probability of 0.041. 

S.6-Noo-parametric methods: ranking for ""paired measurem ... ts. 
Turning now to the two·sample problems of chapter 4, we consider rank­
ing as a non-parametric method for random samples of measurements 
which do not conform to the usual models, This test was also developed 
by Wilcoxon (2), though it is sometimes called the Mann-Whitney test 
(II). A table due to White (12) applies to unequal group sius as well as 
equal. All observations in both groups are put into a single array. care 
being taken t.O tag the numbers of each group so that they can be dis­
tinguished. Ranks are then assigned to the com billed array Finally, the 
smaller sum of ranks, T, is referred to table A 10 to determine signifi­
cance. Note that small values of T cause rejection. 

An example is drawn from the Corn Borer project in Boone County, 
Iowa. It is well established that, in an attacked field, more eggs are de­
posited on tall plants than on short ones. For illustratibn we took records 
of numbers of eggs found in 20 plants in a rather uniform field. The 
plants were in 2 randomly selected sites. 10 plants each. Table 5.6.1 con­
tams the egg counts. 

TABLE 5.6.\ 
NUMBER Of CORN BOREl. EGGs ON CORN PLANTS. BOONE COUNTY. IOWA, 1950 

Height of Plant 

Less than 23" 

More than 23" 

o 
37 

\4 

42 

\8 

12 

o 
32 

Number of Eggs 

31 

105 

o 
84 

o 0 

15 47 

II 

51 

o 
65 

In. years such as 1950 the frequency distribution of number of eggs 
tends to be J-shaped rather than normal. At the low end. many plants 
have no eggs. but there is also a group of heavily infested plants. Normal 
theory cannot be relied upon to yield correct inferences from small 
samples. 

For convenience in assigning ranks. tbe counts were· rearranged in 
increasing order (table 5.6.2), The counts for the tall plants are in bold-
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TABLE 5.6.2 
EGG CoUNTS ARRANGED IN INCREASING ORD£k, WITH RANKS 

(Boldface type indicates COUDts on plants 23" or more) 

Count O. O. O. O. O. O. 11, 11, 14. 15, IS, 31 

Rank 3t. 31. 31. 31. 31, 3l, 7, 8. 9. 10, ll. IZ 

face type. The eight highest counts are omitted, since they are all on tall 
plants and it is clear that the small plants give the smaller rank sum. 

By the rule suggested for tied ranks, the six ties are given the rank 
3t, this bemg the average of the numbers I to 6. In this instance the aver­
age is not necessary, since aU the tied ranks belong to one group; the sum 
of the six ranks, 21, is all that we need. But if the tied counts were in both 
groups, averaging would be required. 

The next step is to add the '" rank numbers in the group (plants less 
than 23 in.) that has the smaller Sum. 

T=21 +7+9+ II + 12=60 

This sum is refe!'red to table A 10 with", = '" = 10. Since Tis less than 
Tom = 71, the null hypothesis is rejected with P S; 0.01. The anticipated 
conclusion is I.hat plant height affects the number of eggs deposited. 

When the samples are of unequal sizes n" n" an extra step is required. 
First, find the total T, of the ranks for the sample that has the smaller 
size, say n,. Compute T, = "'(", + n, + 1) - T,. T"en T, which is re­
ferred to table A 10, is the smaller of T, and T,. To illustrate, White 
quotes Wright's data (10) on the survival times, under anoxic conditions, 
ofthe peroneal nerves of 4 cats and 14 rabbits. For the cats, the times were 
25,33,43, and 45 minutes: for the rabbits, 15, 16, 16, 17,20,22,22,23, 
28,28,30,30,35, and 35 minutes. The ranks for the cats are 9, 14, 17, 
and 18, giving T, = 58. Hence, T, = 4(19) - 58 = 18, and is smaller 
than T" so that T = 18. For n, = 4,", = 14, the 5% level of Tis 19. The 
mean survival time of the nerves is significantly higher for the cats than 
for the rabbits. 

For values ofn, and", outside the limits of the table, calculate 

Z = <I" - TI - t)/a, 
where 

The approximate normal deviate Z is referred to the tables of the normal 
distribution to give the significance probability P. 

Table A 10 was calculated from the assumption that if the null 
hypothesis is true, the n, ranks in the smaller sample are a rand~m selec­
tion from the ('" + ",) ranks in the combined samples. 
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S.7-Comparison of rank and normal tests. When the I-test is used 
on non-normal data, two things happen. The significan~ probabilities 
are changed; the probability that t exceeds to.o, when Ihe null hypothesis 
is Irue is no longer 0.50, but may be, say. 0.041 or 0.097. Secondly, the 
sensitivity or power of Ihe test in finding a significant result when the null 
hypothesis is false is altered, Much of the work on non-parametric 
methods is motivated by a desire to find tests whose significance proba­
bilities do not change and whose sensitivity relative to competing tests 
remains high when Ihe dala are non-normal. 

With the rank tests, the significance levels remain the same for any 
continuous distribution, except that they are affecled to some extent by 
ties, and by zeros in the signed rank test. I n large normal samples, the 
rank tests have an efficiency of about 95"~ relative to the I-tesf. (13), and 
in small normal samples, the signed rank test has been shown (4) to have 
an efficiency slightly higher than this. With non-normal data from a 
continuous distribution. the efficiency of the rank tests relative 10 t never 
falls below 86% in large samples and may be much greater than 100% for 
distri buti<lns that have long tai]$ (13). Since they are relatively quickly 
made, the rank tests are highly useful for the investigator who is doubtful 
whether his data can be regarded as normal. 

The beginner may wi,h to compute both the rank tests and the t-test 
for some of his data to see how they compare. Needless to say. the prac­
tice of quoting the test that agrees with one's predilections vitiates the 
whole technique. 

As has been Slated previously, most investigations. after the prelimi­
nary slages, are designed to estimate the sizes of differences rather than 
simply to test null hypotheses. The rank methods can furnish estimates 
and confidence limits for the difference between two treatments (see 
examples 5.8.\ and 5.8.2). The calculations require no assumption of 
normality, but are a little tedious. Some work has also been done _in ex­
tending rank methods to the more complex types of data that we shall meet 
in later chapters, -though the available techniques still fall short of the 
ftexibility of the slanaard methods based on normality. 

5.8-Scales with limited values_ In some lines of work the scales of 
measurement are restricted to a small number of values, perhaps to 0, I, 
2 or I, 2, 3, 4, 5. Investigators are sometimes puzzled as to how to test the 
differences between two treatments in this case, because the data do not 
look normal, while rank methods usually involve a substantial number 
of zeros and ties. We suggest that the ordinary Hest be used, with the in­
clusion of a correction for continuity. To illustrate, consider a paired 
test in which the original data are on a 0, I, 2 scale. The differences be­
tween the members of a pair can then assume only the values 2, I, 0, - I, 
and -2. 

With 12 pairs, suppose tha( the differences D between two treatments 
A and Bare 2, 2, 2. I, 1, 1,0,0,0,0, -I, -I. Then:ED = 7. There is a 
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test, called Fisher's randomization test (15), that requires no assumption 
about the form of the basic distribution of these differences, The argu­
ment used is that if there is no difference between A and B, each of the 
12 differences is equally likely to be + or -. Thus, under the null 
hypothesis there are 21

' = 4.096 possible sets of sample results. Since, 
however. +0 and -0 are the same. only 28 = 256 need be examined. 
We then count how many samples have r.D as great as or greater than 7, 
the observed r.D. It is not hard to verify that 38 samples are of this kind 
if both positive and negative totals are counted so as to provide a two­
tailed test. The significance probability is 38/256 = 0.148. The null 
hypothesis is not rejected by the randomization test. 

With this test the investigator must work out his o\l1n significance 
probability. From his writings it seems clear that Fisher did not intend 
the test for. routine use, but merely to illustrate that a test can be made 
if A and B were assigned to the members of each pair by randomization. 

For scales with limited numbers of values, numerous comparisons of 
the results of this test and the Hest show that they usually agree welf 
~nough for practical purposes. In the randomization test, however. the 
possible values of r.D jump by 2's. Our observed r.D is 7. We would 
have :ED = 9 if only one I had a - sign, and r.D = 5 if three I's had a -
.,ign. To apply the correction for continuity, we compute t, as 

jr.Dj - 1 6 
t = --- = = I <'97 
, nSn (12)(0.313) ._, 

where sn = 0.313 is computed in the usual way. With II df" Pis 0.138. 
in good agreement with the randomization test. The denominator of Ie 
is ]hc standard error of r.D. This may be computed either as "So or as 
\' "so· 

In applying the correction for continuity. the rule is to hnd the next 
highest value of r.D that the randomization set provides. The numerator 
of I, is halfway between this value and the observed r.D. The values of 
I.D do not always jump by 2's. 

With two independent samples of size n the randomization test 
assumes that on the null hypothesis the (2n) observatloQs have been 
divided at random into two samples of n. There are (2n)1/(n')' cases. 
To apply the correction, find the next highest value of r.D I - I.D,. If 
one sample has the values 2, 3. 3, , and the other has 0, O. 0, 2. we have 
I.DI = II, r.D, = 2. giving r.D I - r.D, = 9. The next highest value is 7. 
given by the case2. 2. 3. 3 and 0, 0, 0, 3. Hence. the numerator of I, is 8. 
The general formula for I, is 
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with 2(n - 1) dj., where SI' and s,' are the sample variances and c is the 
size of the correction. 

With small samples that show little overlap, as in this example, the 
randomization test is easily calculated and is recommended, because in 
such cases I~ tends to give too many significant results. With sample 
values of 2, 3, 3, 3 and 0, 0, 0, 2, the observed result is the most extreme 
of the 8!/(4!)' cases. The randomization provides 4 cases like the ob­
served one in a two-tailed test. P is therefore 4170 = 0.057. The reader 
may verify that I, = 3.58, with 6 df. and P near 0.01. 

EXAMPLE 5.8.1-10 Wright's data, p. 131, show that if the survival time for eae!l 
cat is reduced by 2 minutes, the value of Tin the signed rank test becomes 18 1/2. whi!elf 
the cat times are reduced by 3 minules, T = 21. Show further that if 23 minutes are sub· 
tracted from each cat, we find T = 20 1/2. while for 24 minutes. T = 19. Since TOM = 19. 
any hypothesis which states that the average survival time of cats exceeds that of rabbits 
:'ya D,gure between 3 and 23 mmutes is accepted in a 5~,~ test. The limits 3 and 23 minutes 
are 95%, confidence limits as found from the rank sum test. 

~AMPLE 5.8.2--ln a two·samplecomparison. the eSfimate of the difference between 
the two populations appropriate to the use of ranks is the median of th1: difference~ - YJ• 

where Xi and Y-; denote members of the first "nd second sample~. In Wrighrs data, with 
nj == 4, n z == 14. there are 56 differences. Show that the median is 12.5. (You should be 
able to shoncut the work..) 

EXAMPLE 5.8.3--1n a paired two--sample test the teh values of the differences D were 
3, 3, 2. I, I, l, l, O. O. -1. Show that the randomization test gives P =: 3/64 "'" 0.047 while 
the' value of t, corrected for continuity. is 2.451,- corresponding to a P value of about 0.036. 
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* CHAPTER SIX 

Regression 

6.1-lntroduction. In preceding chapters the probl~ms considered 
have involved only a single measurement on each individual. In this 
chapler. attenlion is centered on the dependence of one variable Y on 
another variable X. In mathematics Y is called a function of X, but in 
statistics the term regression is generally used to describe the relationship. 
The growth curve of height is spoken of as the regression of height on age: 
in toxicology the lethal effects of a drug are described by the regression of 
per cent kill on the amount of the drug. The origin of the term regression 
will be explained in section 6.16. To distinguish the two variables in 
regression studies, Y is sometimes called the dependent and X the inde­
pendent variable. These names are fairly appropriate in the toxicology 
example, in which we can think of the per cent kill Y as being caused by 
the amount of drug X, the amount itself being variabie at the will of the 
investigator. They are less suitable though still used, for example. when 
Y is the weight of a man and X is his maximum girth. 

Regression has many uses. Perhaps the objective is only to learn if Y 
does depend on X. Or~ prediction of Y from X may be the goal. Some 
wish to determine the shape of the regression curve. Others are con­
cerned with the error in Y in an experiment after adjustments have been 
made for the elfect of a related variable X. An investigator has a theory 
about cause and elfect, and employs regression to test this theory. To 
satisfy these various needs an extensive account of regression methods is 

'. necessary. 
I n the next two sections the calculations required in fitting a regres­

sion are introduced by a numerical example. The theoretical basis of these 
calculations and the useful applications of regression are taken up in sub­
sequent sections. 

6.2.-The regression of blood pressure on age. A project "The Nutri­
tionai Status of Popuiation Groups" was set up by the Agricultural 
Experiment Stations of nine midwestern states. From the facts learned we 
have extracted data on systolic blood pressure among 58 women over 30 
years of age, a random sample from a region near Ames. iowa (l). For 
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present purposes, the ages are grouped into lO-year classes and the mean 
blood pressure calculated for each class. The results are in the first two 
columns of table 6.2.1. 

TABLE 6.2.1 
MEAN SYSTOLIC BLOOD PussUk£ OF S8 WOMEN IN IG-YIAJ. AGE CUssI!S 

Midpoint of McaaBlood Deviations. From 
Ageel .... PressUft M .... Squons Products 

X Y x y x' y' xy 

35 114 -20 -27 400 719 S40 
45 124 -10 --17 100 289 170 
55 143 0 2 0 4 0 
65 ISS 10 17 100 289 170 
75 166 20 25 400 625 .lOCI 

SUm 275 705 0 0 1.000 1,936 1,3B() 
Mean 55 141 

l:xy 1.380 
Sample regression coefficient: b = -, = 000 = 1.38 units of blood. pnMUR per year 

:Ex I. 

As in most regression problems, the first thing to do is to draw a graph, 
figure 6.2.1. The independent variable X is plotted along the horizontal 
axis. Each measure of the dependent Y is indicated by a black circle 
above the corresponding X. Clearly, the trend of blood pressure with age 
is upward and roughly linear. 

The straight line drawn in the figure is the .rample regression of Yon X. 
Its position is fixed by two results: 

(i) .[t passes through the point O'(X, f), the point determined by the 
mean of each sample. For the blood pressures this is the point (55, 141). 

(ii) Its slope is at the rate of b units of Y per unit of X. where b is 
the sample regression coefficient. Writing x = X - X and y = Y - Y. 
b = r.xy/Lxz. The numerator of h is a new quantity-the sum of products 
of the deviations, x and y. In table 6.2.1 the individual values of X Z have 
been obtained in the fifth column and tho"" of xy in the seventh column. 
[n section 6.3 a quicker method of calculating b will be given. For the 
blood pressures, h = + 1.38. meaning that blood pressure increases on 
the average by 1.38 units per year of age. 

The sample regression equation of Y on X is now written as 

f = f +'bx, 
or, 

.~ = bx. 

where Y IS the estimated value and y the estimated deviation of Y cor­
responding to any x-deviation. If x = 20 years. y = (1.38) (20) = 27.6 
units of blood pressure. 
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This equation enables us to compl.le figure 6.2.1 by drawing the 
sample regression line. Layoff 0' M = 20 years to Ihe right of 0', th.n 
erect a perpendicular, MP = 27.6 units of blood pressure. The line O'P 
then has the slope, 1.38 units of blood pressure per year. 

1n terms of the original units. the sample regression equation is 

f - Y = !>(X - X) 

For the blood pressures. this breomes 

f - 141 = 1.38 (X - 55) 

or 
f = 141 + 1.38 (X - 55) 

= 65.1 + 1.38X 

If X = 75 is entered in this equat.on. f becomes 65.1 + (1.38)(75) = 168.6 
units of blood pressure. The corresponding point. (75, 168.6). is shown 
as P in the figure. 

We can now compare the sample points with the corresponding f to 
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get measures of the goodness affit of the line to the data. Each X is sub­
stituted in the regression equation and f calculated. The five results are 
recorded in table 6.2.2. The deviations from regression. Y - f = d,. .. 
measure the failure of the line to fit the data. In this sample, 45-year-old 
women had below average blood pressure and 65-year-olds had an excess. 

TABLE 6.2.2 
CALCULATION OF f AND DEVIATIONS FROM REGRESSION, dp. = Y - r 

(Blood pressure data) 

Midpoint of Mean Blood Estimated Blood Deviation From Square of 
Age Class Pressure Pressure Regression Deviation 

X y t Y - r = drs d,.Jt. 
, 

35 114 113.4 0.6 0.36 
45 124 127.2 -3.2 10.24 
55 143 141.0 2.0 4.00 
65 158 154.8 3.2 10.24 
75 166 168.6 -2.6 6.76 

Sum Id)"x az:: 0.0 Idr }:= 31.60 

The sum of squares of deviations. :Ed,.x 2 = 31.60, is the basis for an 
estimate of error in fitting the line. The corresponding degrees of freedom 
are n - 2 = 3. We have then, 

s,.x' = :Ed,.//(n - 2) = 10.53. 

where s,..x 2 is the mean square deviation from regression. The resulting 
sample standard det'iationfrom regression, 

s"x = ,)s,'..' = 3.24 units of blood pressure, 

corresponds to s in single-variable problems. In particular, it furnishes a 
sample standard deviation of the regression coefficient. 

s" = Sy.,,/.JI.x2 

This is 3.241.j 1,000 = 0.102 units of blood pressure. with (n - 2) = 3 df. 
A test of significance of b is given by 

t = his., df. = n - 2 

Applying this to the blood pressures, 

t = 1.3810.102 = 13.5" df. = 3 

Note: It is often convenient to denote significance by asterisks. A single 
one indicates probabilities between 0.05 and 0.01: two indicate prob­
abilities equal to or less than 0.0 I. 
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Often there is little interest in the individual d,.. of table 6.2.2. If so, 
rdy '" may be calculated directly by the formula, 

rd, .. .' = ry' - ((rxy)'/I:x'] 

Substituting the blood pressure data from table 6.2.1, 

I:.d, ... 2 = 1,936 - [(1,380)'/1,000] = 31.60 

as before. 

EXAMPLE 6.2.I-Following are measurements on heights of soybean plants in a 
field. a different random selection each week (2): 

Age in weeks I 2 3 456 7 

Height in centimeters 5 13 16 23 33 38 40 

Verify thest results: X = 4 weeks, Y = 24 ems., .Ix2 = 28, Iyl = 1.080 • .Ixy = 172. Com­
putt the sample regr~si(}n, f = 6.143 X - 0.572 centimeters. 

EXAMPLE 6.2.2-Plot on a graph the sample points for the soybean data. then con­
struct Ule sample regression line. Do the points lie about equally above and below the line? 

EXAMPLE 6.2.3---Calculate s~ = 0.409 cltls./wk. Set the 95% confidence interval for 
the population regression. ADS. 5.09 -_ 7.20 cms./wk. Note that sb' has 5 df 

EXAMPLE 6.2.4---The soybean data constitute a growth curve. Do you suppose the­
population growth curve is really straight? How would you design an experiment to get a 
growth curve of the blood pressure in l(lwa wonten? 

EXAMPLE 6.2.5--Eighteen samples of soil were prepared with varying amounts of 
inorganic phosphorus. X. Corn plants. grown in each soil. were harvested at the end of 38 
days and analyzed for phosphorus content. From this was estimated the plant~availabJe 
phosphorus in the soil. Nine of the observations. adapted for ease of computation. are 
shown in this table: 

Inorganic phosphorus in soil (ppm), X 4 5 9 13 II 23 23 2& 

Estitnatedplant-availablephosphorus(ppm). Y 64 71 54 81 93 76 77 95 109 

Calculate b = 1,417. Sb = 0.395,1 = 3.59" 

, 
6.3-8hortcut methods of computation in regression. Since regres­

sion computations are tedious, a calculating machine is almost essential. 
In fitting a regression, the following six basic quantities must be obtained: 

n, X, Y, I:.x', I:.y', I:.xy 

You already know shortcut methods of computing I:.x' and I:.y' without 
finding the individual deviations x and y. A similar method exists for 
finding I:.xy, based on the algebraic identity 

1:xy = 1: (X - X)( Y - Y) = I:XY - (I:.X)(I:. y)/n 
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Note that the correction term may be larger than :EXY, making :Exy nega­
tive. This indicates a downward sloping regression line. 

In table 6.3.1 the regression of blood pressure on age has been 
recomputed using these shortcuts. 

TABLE 6.3.1 
MACHINE COMPUT A nON Of A LINEAR REGRESsION 

Age (years), X 
Blood pressure (units), Y 

EX = 275 
X= 55 

35 
114 

45 
124 

I:Y= 705 
Y = 141 

55 
143 

65 
158 

75 
166 

I:X' = 16,125 
(1:x)'I' = 15,125 

I: Y' = 101,341 
(I: n'l. = 99,405 

l:XY = 40,155 
(l:X)(l: n/. = 38.775 

l:y2 =: 1,936 

b = l:xy/I:x1 = 1,380(1,000 = 1.38 units per year of age 
f=Y+biX-XJ 

= )41 + 1.38(X - 55) = 65.1 + 1.38X 
Id,.; = 1:,..' - (l:xy)'/l:x' = 1,936 - (1,380)'/1.000 = 31.60 

S,."l = I.d,.//(n - 2) = 31.60(3 = 10.53 
5";1< = .jlO.53 = 3.245 units 
'. = ".,J";1:x' = 3.2451";1.000 = 0.102 
1= bls" = 1.38jO.1O:! = 13.5··, d.f. :::;" - 2 ",. 3 

l:xy = 1,380 

The figures shown under the sample data are all that need be written 
down. In most calculating machines, :EX and :EX' can be accumulated 
in a single run, :E Yand :E Y' in a second run and :EXY in a third, without 
writing down any intermediate figures. With small samples in which X 
and Y have no more than three significant figures, some machines will 
accumulate :EX, :E Y, :EX'. 2:EXY, and :E y' in one run. 

EXAMPLE 6.3.1-The data show the initial weights and gains in weight (grams) of IS 
female rats on a high protein diet, from the 24th to 84th day of age. The point of interest 
in these data is whether the gain in weight depends to some extent on initial weight. If so. 
feeding experiments on female rats can be made more precise by taking account of the 
initial weights of the rats, either by pairing on initial weight or by adjusting for differences 
in initial weight in the analysis. Calculate b by the shortcut method and test its significance. 
Ans. b .:: 1.0641. t = blsb = 2.02. with 13 d.f,. not quite significant at the S~~ level. 

Rat Number 

2 J 4 .~ 6 7 8 9 10 II 12 IJ 14 15 

Initial weight, X 50 64 76 64 74 60 ~ 68 56 48 57 S9 46 4S 65 

Gain. Y 128 159 158 119 133 112 96 126 132 118 107 106 82 103 104 
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EXAMPLE 6.3.2~Speed records attained in the Indianapoi)$ Memorial Day auto­

mobile rac;cs 1911 1941 are as fonows in miles pet hour -

Speed Speed Speed 
Yea, X y Year X y Y- X Y 

1911 0 74.6 1922 II 94.5 1932 21 104.1 
1912 I 78.7 1923 12 9J.0 1933 2:! 104.2 
)9J3 2 75.9 1924 13 98.2 1934 2.1 )()4.9 
19)4 3 82.5 )925 14 lOLl 1935 24 106.2 
1915 4 89.8 1926 15 95.9 1936 Z5 109.1 
1916 5 83.3 1927 16 97.5 1937 26 113.6 
)917 6 .... • 1928 11 99.5 1938 27 111.2 
1918 7 " .. • )929 )8 97.6 1939 28 115.0 
)919 8 88.1 1930 19 100.4 1940 29 114.3 
\~1\) ~ 88.b \~)\ 1~ %.b \~\ 30 \lS.1 
1921 10 89.6 

._ No races. 

T~ )'ears M(>'e bt:en 00<kd b}' subtracting i<.ll i (rom cltch. Calculate L,K.l = 2,325.02. 
l:y' = 4,(139.81 • . by = 2.97J.23. f = 1.278.1" + 77.57 miles per hour. 

6.4-The mathematical model in linear regressioD. In standard linear 
regression. three assumptions are made about the relation between Yand 
X: 

I. For each selected X there is a normal distribution of Yfrom which 
the sample value of Y is drawn at random. If desired. more than 
one Y may be drawn from each distribution. 

2. The population of values of Y corresponding to a selected X has a 
mean p. that lies On the straight line p. ~ IX + /l(X - X) = IX + /1<. 
where IX and fJ are parameters (to be explained presently). 

3. In each population the Standard deviation of Y about its mean. 
" + fJx has the same value. often denoted by <1 yT 

The mathematical model is specified concisely by the equation 

Y = .~ + fix + ". 

where r. is a random variable drawn from "v«(). ",.,t. 
In this model. Y is the Slim of a r:Jftdom part. c, and a part fixed by x. 

The fixed part; according to assumption number 2 above. determines the 
means of the populations sampled. one rnean for each x. These means 
lie ()n the straight line represented by p. '" " + /lx. the populurion regr.S­
siollline, The parameter" is the mean of the population that corresponds 
to x = 0: thus. '1. specifi", the height of the line when X = X. Ii is the slo,w 
of the regression line. the chanxe in Y per writ inc'r(·a.\'e in x. As for the 
variable part of Y. c is drawn at random from KII). <1,.,): it is ;nd'penclenr 
of x and normally d.istributed. as the symhoLK ,ignifies. 



FlO. 6.4. I- Represcntation or the hnear reJre5sion model. The nermal di.c.lribut;on 
of' Yabout the rcgrnsion line a + ~x is shOllf" (or f<,ur selected villucs orx. 

x 

Figure 6.4.1 gives a schematic representation of these populations. 
For each of four selected values of X the normal distribution of Yabout 
its mean Jl = (X + {Jx is sketched. These normal distributions would all 
coincide if their means were superimposed. 

For non-mathematicians. the model is best explained by an arith­
metical construction. Assign to X the values O. 2, 3, 7. ~. 10. as in table 
6.4.1. This is done quite..._arbitrarily; the manner in which X is fixed has 
no bearing on the illustration. 

Next. calculate X and the deviations. x = X - X, in column 2. 
Now take (J = 0.5; this implies that the means of the populatiuns are 

to increase one-half unit with each unit changl! in x. From this. ~olumn 3 
is calculated. 

Choose 0: == 4, meaning that at x = I) the population regression is 4 
units above the X-axis. 

The fixed X together with IX and {J determine the succes!lion or means 
in column 4. These are indicated by open circles on the population regres­
sion line (the dotted line) of figure 6.4.2. So far all quantIties are fixed. 
without sampling variation. 

Coming now to the variable part of Y. the t: are drawn 31 random 
from a table of random normal deviates with mean zero (Jrx =- I . The 
values which we obtained were 1.1. - t .3. -1 .1. 1.0. O. and - 1.0. as 
shown in column 50ftable6.4.I . Column 6contain~ the sample vft I ues of 
Y. each item being the sum of th~ fixed pari in column 4 and the cor-
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(1) 

0 
2 
3 
7 
8 

10 

TABLE 6.4.1 
CoNsnUCTlON OF A SAMPLE FROM Y ... (II + fJx + £, WITH (II - 4. fJ - 0.5, 

AND £ DaAWN Faow %(0. 1) 

143 

x fJx '" 0.5x « + fJx .. 4 + O.Sx e Y-«+fJ.x+£ 

(2) (3) (4) (S) (6) 

-5 -2.5 I.S 1.1 2.6 
-3 -1.S 2.S -1.3 1.2 
-2 -1.0 3.0 -1.J 1.9 

2 

I 
1.0 5.0 1.0 6.0 

3 J.S 5.S 0.0 S.S 
5 2.5 6.5 -1.0 5.5 

Cak:ulations of estimates for sample rearession, Y on X: 

1:X ... 30 
x- 5 

IA"l _ 221\ 
(rX)'/II - 150 

J:~ - 76 

tXY ... 149.1 
En; Yin = 113.5 

J:x), - 35.6 

b "" J:x)lrr.~ - 35.6/16 - 0.<468 
y .. 3.78 + 0.4fJ8 (X - 5) - 1.44 + O.<468X 

IY - 22.7 
Y - 3.78 

1:yl '" 108.31 
(E Y)1/" - 85.88 

Er. - 22.43 

Id,.,,' "" J:r - (l:xy)l~ '" 22.43 - (35.6)'/16 - 5.75 
11,./ .. u,.,.,l/(n - 2) - 5.75/4 - 1.44. s,.~ - .11.44 - 1.20 

respondi.D& random part in column 5. The S'amplc pomts are plottcci in 
black circles in the figure. 

The ca1culatioDB of Yand b are given under table 6.4.1 . The popula-

'1-5 - - --Population Regression 
- Sampl. RI9msion 

Y·3.78 

• • 
0 2 3 4 ~ 6 7 8 9 10 

X 

FlO. 6.4.2-PopuJation ~llrfSfion. p "" 4 "+' O.Sx. Sample resrtsSio ll. f' '" 3.78 + O.<468x. 
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tion value ex = 4 is estimated by Y: 3.78. The sample regression line 
passes through the point (X, f), (5, 3.78). The slope p : 0.5 is estimated 
by b : 0.468. The solid line in figure 6.4.2 is the sample regression line. 
It is nearly parallel to the population line but lies below it because of the 
underestimation of ex. The discrepancies between the two lines are due 
wholly to the random sampling of the e. 

EXAMPLE 6.4.1-10 table 6.4.1, b = 0.468. Calculate the six d~\'iations from regres­
sion. d,.,., and identify each with tbe distance of the corresponding paim from the sample 
rcgr.ession line. The sum of the deviations should be zero and the sum of their squares 
about 5.75. 

EXAMPLE 6.4.2-Construct a sample with Q; = 6and /1 = -1, The negative fJ means 
that the regression will Slope downwards to the ri&ht. Take X = 1.2, ... 9, X being 5. By 
using table 3.1.1, draw € randomly from. ""~(O. 5). Make a table showing the calculation of 
the sample of Y. Graph the population regression and the sample points. Save your work 
for further use. 

6.S-Yasan estimator of I' : " + fJx. For any x, the computed value 
1" estimates the corresponding I' = ~ + fJx. For example, we have already 
seen that at x = 0 (for which X = 5), 1", "" f estimates 1', = ex. As another 
example, at x = 2, for which X = 7, 1"7 = 1.44 + (0.468)(7) = 4.72, esti­
mates I' = 4 + (0.5)(2) = 5. 

More generally, 

1" - I' = (f -:x) + (b - P)x (6.5.1) 

Thus, the difference between 1" and the corresponding !A has two sources, 
both due to the random e. One is the difference between the elevations 
of the sample and population regression lines (¥ - ex): the other, the dif· 
ference between the two slopes (b - {3). 

Estimates of I' are often made at an X lying between two of the fixed 
X whose Y were sampled. For example, al X = 4, 

1". = 1.44 + (0.468)(4) = 3.31, 

locating a point on the sample regression line perpendicularly above 
X = 4. Here we are estimating I' in a population not sampled. There is 
no sample evidence for such an estimate; it is made on the cognizance of 
the investigator who has reason to believe that the intermediate popUla­
tion has a I' Iymg on Ihe sampled regression, ~ + {ix. 

Using the same argument, One may estimate I' at an X extrapolated 
beyond the range of the fixed X. Thus, at X = 12, 

Y" = 1.44 + (0.468)( 12) = 7.06 

Extrapolation involves twO extra hazards. Since x tends to be large 
for extrapolated values, equation 6.5.1 shows that the terrn (b - P)x may 
make the difference ( Y - 1') large. Secondly (and this is usually the more 
serious hazard), the population regression of means may actually be 
curved to an extent that is small within the limits of the sample, but be-
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comes pronounced when we move beyond these limits, so that results 
given by a straight-line regression are badly wrong. 

The value of 5' also enables us to judge whether an individual ob­
served Y is above or below its average value for the X in question. Look, 
for example, at the first point on the left of the graph (figure 6.4.2). 
Yo = 2.6, to be compared with 5'0 = 1.44. The positive deviation, 
d,.o = Yo - Yo = 1.16, shows that Yo exceeds its estimated value by 1.16 
units. Algebraically, 

dy .% = Y - t = at + fJx + • - (Y + bx) 
= (IX - YJ + (fJ - b)x + • 

Thus, Y - t is, as would be expected, an estimate of the corresponding 
normal deviate., but is affected also by the errors in Yand b. Ir. the con­
structed example, eo = 1.1, so that for this point Yo - to = 1.16 is close. 
In larse samples, the errors in Y and b become small, and the residual 
Y - Y is a good estimate of the corresponding •. 

This examination of deviations from a fitted regression is often useful. 
A doctor's statement: "For a woman of your age, your blood pressure is 
normal," would imply that Y - 5' was zero, or near to it. A value of Y 
that was quite usual in a woman aged 65 might cause a doctor to prescribe 
treatment if it occurred in a woman aged 35, because for this woman 
Y - 5' would be exceptionally high. 

EXAMPLE 6.5.1~For your sample in example 6.4.2, calculate Y and b, then plOl the 
sample regression line on your graph. Calculate the deviations d,.x and cO!llpare them 
with the corresponding t. It is a partial check on your accuracy jf l:dy.~ = O. 

EXAMPLE 6.5.2-Using the blood pressure data of section 6.2, estimate Il at age 30 
years. Ans. \06.5 units. 

EXAMPLE 6.5.3--Calculate Y,t = Y - bx. called adjusted Y. for each age group in 
table 6.2.2. Verify your results by the sum, 1: YA. = 1: Y. Suggest several possible reasons 
ror the differences amoDg adjusted Y. 

6.6-The estimator of <1,./. As noted earlier, the quantity 

s,./ ~ Ed,./ /(n - 2) 

is an unbiased estimator of <7,./, the variance of the~e's. One way of re­
membering the divisor (n - 2) is to note that in fitting the line we have 
two disposable constants, It and fJ, whose values we choose so to make the 
d,.% as small as possible. If there are only two points (Y" Xj) and (Y2 , X,), 
the fitted line goes through both points exactly. The dy •x and their sum of 
squares are then zero, no matter how large the true uJlOX is. In other words, 
there are no degrees of freedom remaining for estimating uJo./. 

. In the constructed example (table 6.4.1), S,./ was found to be 1.44, 
WIth 4 dj., as an estimate of <7,.%2 = I. This gives 1.20 as the estimate of 
a,o" = 1. 

The estimated variance in the original sample of values of Y is 
s; = 22.43/5 = 4.49. By utilization of the knowledge of X, this variance 
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is reduced to s,.x' = 1,44. It is sometimes said that a fraction 
(4.49 - 1.4 . )(4.49, or about 68~~ of the variation in Y is associated with 
the linear regression on X, the remaining 32% being independent of X. 
This statement is useful when the objective is to understand why Yvaries 
and it is known that X is one of the causes of the variation in Y. 

The nature of Sy-x 2 is also made clearer by some algebra. For the 
ith member of the sample, 

t:j = Y; - ct - f3Xj : dy•xl = Y; - Y - hXj = Yi - bx, 

Write 

f, = Y, -- , - px, = lj - Y - bx, + (y - » + (b - PIX, 
= (v, - bx,) + (I' - ,) + (bi - {J)x, 

Square both sides ~nd sum over the n values in the sample. On the right 
side there are three squared terms and three product terms. The squared 
terms give 

:E(y, - bx;l' + :E(Y - ~)2 + :E(b - P)'x/ 

The factors (Y - ,)' and (h - P)' are constant for all members of the 
sample and can be taken outside the :E sign. This gives, for the squared 
terms. 

:E(y, - bx,)' + n( Y -_ a)' + (b - P)':Ex,' 

Remark y, the three cross-product terms all vanish when summed 
over the sample. For example, 

2:E(y, - bx,)( Y - ~) = 2( Y - ~):E(v, - bx,) = 0 

since :Ey, = 0 and l:x, = O. Further, 

2l:(Y - ~)(h - Pix, = 2(Y -I%)(b - P)l:x, = 0, 
2:E(y, - bx,)(b - Pix, = 2(b - P)l:x,(y, - bx,) 

= 2(b - P)(r.XiJI, - br.x/) 

which vanishes since b = I:x,y,/I:x,'. Thus, finally, ... 
I:t,' = r.( Yo - 1% - pKj)2 = r.( Yo - Y - bx,}' + n( Y _ 1%)2 

+ (b - P)'r.X,2 
Rearranging, 

(6.6.1) 

r.d"x' = r.( Yo - Y - bx,)' = r.t,' - n( Y - 1%)2 - (b - P)'r.x,' 

On the right side of this equation. each t, has mean zero and variance 
(J.~ .• /. Thus the term te/ is an estimate of na,./: The two subtracted 
terms on the right can be shown to be estimates of (1,./. It follows that 
:Ed,.x' is an unbiased estimate of(n - 2)t1,./, and on division by (n - 2) 
provides an unbiased estimate of l1 y./. This result, namely that sr/ is 
unbiased, does not require the t, to be normally distributed. Normality is 
required, however, to prove the standard tests of significance in regression. 



147 

6.7-The method of least squares. The choice of Yand b to estimate 
the parameters ~ and fJ is an application of a principle widely used in 
problems of statistical estimation and known as the method of least 
squares. To explain this method, let 12 and P denote any two estimators 
of ~ and fJ that we might consider. For the pair of observations (Y, X) 
the quantity 

Y - & - px 
measures the amount by which the fitted regression is in error in estimating 
Y. In the method of least squares, 12 and fJ are chosen so as to minimize 
the sum of the squares of these errors, taken over the sample. That is, 
we minimize 

1:( Y - & - PX)2 (6.7.1) 

About 150 years ago the scientist Gauss showed that estimators ob· 
tained in this way are (i) unbiased, and (ii) have the smallest standard 
errors of any unbiased estimators that are linear expressions in the Y's. 
Gauss' proof does not require the Y's to be normally distributed, but 
merely that the £'s are independent with means zero and variances u.,.,/ 

The result that (6.7.1) is minimized by taking ~ = f and (J ~ his 
easily verified by quoting a previous result (6.6.1, p. 146). Since the proof 
of the algebraic equality in (6.6.1) may be shown to hold for any pair of 
values ~, fJ, the equation remains valid if we replace ~ by ~ and fJ by p. 
Hence quoting (6.6.1), 

1:( Y - ~ - /lX)2 ~ 1:( Y - Y - bX)2 + n(f _ ~)2 + (b - (J)21:x2 

The first term on the right is the sum of squares of the errors or residuals 
that we obtain if we take ~ ~ Y and p = b. The two remaining terms on 
the right are both positive unless" = Y and p = b. This proves that the 
choice of Y and b minimizes (6.7.1). 

6.8-The value of b in some simple cases. The expression for h. 
1:xy/1:x2 is unfamiliar at first sight. It is not obviously related to the 
quantity fJ of which b is an estimate, nor is it clear that this is the estimate 
that common sense would suggest to someone who hild never heard of 
least squares. A general expression relating band fJ and lin examination 
of a few simple cases may make b more familiar. 

Denote the members of the sample by (Y" X,), where the subscript i 
goes from I to n. The numerator of b is 1:X;Yi=1:Xi(Yi - Y)~L'iYi 
-l:Xj f. Since the term LXi Y vanishes, because I:Xj = 0, [he numerator 
of b may be written 1:X'yi' Now substitute Yi = ~ + {lx, + "i' This 
gIves 

1:Xi!~ + fJXi + eo) fJ 1:x/ [x,:ei fJ 1:xiei b- ~ --+--= +--, 
- l:x/ l:x/ LX/ l:x/ 

the term in a vanishing because l:x, = O. Thus b differs from fJ by a linear 

10 
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expression in the 'i' If the 'i were all zero. h would coincide with p. 
Further, since the'i have zero means in the population, it follows that b 
is an unbiased estimate of p. 

Turning to the simplest case, suppose that the sample consists of the 
values (YI • I) and (Y" 2). The obvious estimate of the change in Y per 
unit increase in X is Y2 - Yt - What does h give? Since X = t!. the 
deviations are x I = - 1/2, x, = + 1/2. giving LX' = 1/2. Thus 

in agreement. 

b = -1 YI + ! Y, = 
-l: 

Yl - Y" 

With three values ( YI , I), (Y" 2), (Y" 3) we might argue that Y, - YI 

and Y, - Y, are both estimates of the change in r per unit change in 
X. Since there seems no reason to do otherwise, we might average them, 
getting (Y, - Y, )(2 as our estimate. To compare this with the least 
squares estim~te. we have x\ = -]. X2 = O. x J = + I. This gives l:xY 
= Y, - )'1 and L ,., '= 2, so that b = (Y, - YI )!2, again in agreement 
with the common-sense approach. Notice that Y2 is not used in estimat­
ing the slope. Y, is useful in providing a ch""k on whether the population 
regression line is straight. If it is straight, Y, should be equal to the 
average of YI and Y" apart from sampling errors. The difference 
Y, - ( YI + Y,)!2 is therefore a mea;ure of the curvature (if any) of the 
population regression. 

Continuing in this way for the sample ( YI , 1), (Y" 2), (Y" 3), (Y., 4), 
we have thrre simple eSlimates of p, namely { Y, - YI ), (Y, - Y,), and 
(Y. - Y,). If we average them as before, we get (Y. - Y, )/3. This is dis­
concerting, since this estimate does not use either Yz or Y3' What does 
least squares give? The values of x are - 3/2, -1/2, + 1/2, and + 3/2 
and the estimate may be verified to be 

b = (3Y. + Y, - Y, - 3Y1)/IO. 

The least squares result can be explained as follows. The quantity 
{ Y. - Y,)/3 is an estimate of p, with variance 2o,.-x '/9. The sampJe sup­
plies another independent estimate (Y, - Y,), with variance 2(1y.;. In 
combining these two estimates, the principle of least squares weights 
them inversely as their variances, assigning greater weight to the more 
accurate estimate. This weighted estimate is 

[9( Y. - Y,)/3 + (Y, - Y,)1I(9 + I) = (3Y. + Y, - Y, - 3Y1 )/IO = b 

As these examples show. it is easy to construct unbiased estimates of fJ 
by simple. direct methods. The least squares approach automatically 
produces the estimate with the smallest standard error. 

Remember that h estimates the average change in Y per unit increase 
in X. Reporting a value of h requires that both units be stated, such as 
"systolic blood pressure per year of age." 
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6.9-TIte situatioB whell X varies from sample to sample. Often the 

investigator does not select the values of X. Instead. he draws a sample 
from some population. then measures two characters Y and X for each 
member of the sample. In our illustration, the sample is a sample of 
apple trees in which the relation between the percentage of wormy fruits 
Yon a tree and the size X of its fruit crop is being investigated. In such 
applications the investigator realizes that if he drew a second sam­
ple. the values of X in that sample would differ from those in the first 
sample. In the results presented in preceding sections, we regarded the 
values of X as essentially fixed. The question is sometimes asked: can 
these results be used when it is known that the X-values will change from 
sample to sample? 

Fortunately, the answer is yes, provided that for any value of X the 
corresponding Y satisfies the three assumptions stated at the beginning 
of section 6.4. For each X, the sample value of Y must be drawn from a 
normal popUlation that has mean I' = IX + fJx and constant varianc<: uY'/' 
Under these conditions the calculations for fitting the line, the I-test of b, 
and t1te methods given later to construct confidence limits for fJ and for 
the position of the true line all apply without change. 

Consider, for instance, the accuracy with which {J is estimated by b. 
The standaTd error of b is (fy .• I.jCr.x'). If a second sample of n apple 
trees were to be drawn, we know that E.x', and hence the standard error 
of b, would change. That is. when X varies from sample to sample, some 
samples of size n provide more accurate estimates of (J than othen. But 
since the value of E.x' is known for the sample actually drawn. it makes 
sense to attach to b the standard error uy .• I.j(r.x'), or its estimate 
s, .. ./.j(r.x'). By doing so we take account of the fact that our b may be 
somewhat more -accurate or somewhat less accurate than is usual in a 
sample of size n. In statistical theory this approach is sometim~. de­
scribed as using the conditional distribution of b for the values of X that 
we obtained in our sample, rather than the general distribution of b in 
repeated samples of size n. 

There is one important distinction between the two cases. Suppose 
that in a study of families, the heights of pairs of adult brothers (X) and 
sisters (Y) are measured. An investigator might be)nterested either in 
the regression of sister's height on brother's height: . 

f ~ Y + b, .• (X - X) 

or in the regression of brother's height on sister's height: 

g=X+b ... ,(Y- Y) 
These two regression lines are diff~rl?Tlt. For a sample of II pairs of 
brothers and sisten, they are shown in figure 7.1.1 (p. 173). The line AD 
in this figure is the regression of Yon X, whikthe line CD i. the regression 
of X on Y. Since b, .• = E.xyjf.x' and b •. , = 'E.xy/"E.T. it follows that 
br , is not in general equal to I/bn . as it would have to be to make the 
slopes AD and CD identical. 
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If the sample of pairs (X, Y) is a random one, the investigator may 
use whichever regression h relevant for his purpose. In predicting 
brother's heights from sister's heights, for inslance, he uses the regression 
of X on Y. If, however, he has deliberately selected his sample of values 
of one of the variates, say X, then only the regression of Yon X has mean­
ing and stability. There are many reasons for selecting the values of X. 
The levels of X may represent different amounts of a drug to be applied 
to groups of animalS, or persons of ages 25, 30, 35, 40, 45, selected for 
convenience in calculating and graphing the regression of Yon age. or a 
deliberate choice of extremes, so as to make I:x' large and decrease the 
standard error of b, 11,..J.j(I:x'). Provide,l. that the X are selected with­
out seeing the corresponding Yvalues, the hnear regression line of Yon X 
is not distorted. Selection of the Yvalues. on the other hand, can greatly 
change this regression. Clea,rly, if we choose Yvalues that are all equal, 
the sample regression b of Y on X will be zero whatever the slope of the 
population regression. 

To turn to the nllmerical example, it contains another feature of 
interest, a regression that is negative instead of positive. 

TABLE 6.9.1 
REGRESSION Of Pb.CENTAGE Of WORMY FRUIT ON SIZE Of ApPl E c..Of> 

===========================.== 
Size of Crop 

on Tree Estimate of 
Tree (hundreds of fruits) 

Percentage of 
Wormy Fruits 

Y if 
Deviation from 

Regression 
y- r=dy.~ Number X --.. ---------~-----

I 
2 
3' 
4 
5 
6 
7 
8 
9 

10 
II 
12 

8 
6 

II 
22 
14 
17 
18 
24 
19 
23 
26 
40 

I:X - 228 
X - 19 

I:X' - 5,256 
(I:X)'ln = 4,332 

59 
sa 
56 
53 
50 
45 
43 

'42 
39 
38 
30 
27 

I:Y - S40 
'I' - 45 

I: Y' - 25.522 
(I: Y)' In - 24,300 

56.14 
sa.17 
53.10 
41.96 
50.06 
47.03 
46.01 
39.94 
45.00 
40.95 
37.91 
23.13 

2.86 
-0.17 

2.90 
11.04 

-0.06 
-2.03 
-3.01 

2.06 
-6.00 
-2.95 
-7.91 

3.27 

I:XY - 9,324 
(IX)(I:y)ln _ 10,260 

I:x1 = 924 I:y' = 1,222 Ixy _ -936 
b :; l:xy~x2 = -,93619204 = - t.013 pc=r cent per 100 wormy fruits 
f - Y + b(K - X) = 45 - l.OI3(X - 19) = 64.247 - l.013X 

ttl,.; = 1,222 - (-936)'/924 = 273.88 
s,.; = I:d, . .'/(n - 2) = 273.88/10 - 27.388 

---------- -------------------
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It is generally thought that the percentage of fruits attacked by codling 
moth larvae is greater on apple trees bearing a small crop. Apparently the 
density of the flying moth tends towards uniformity, so that the chance of 
attack for any particular fruit is augmented if there are few fruits in the 
tree. The data in table 6.9.1 are adapted from the results of an experiment 
(3) containing evidence about this phenomenon. The 12 trees were all 
given a calyx spray oflead arsenate followed by 5 cover sprays made up of 
3 pounds of manganese arsenate and 1 quart of fish oil per 100 gallons. 
There is a decided tendency. emphasized in figure 6.9.1, for the percentage 
of wormy fruits to decrease as the number of apples in the tree increases. 
In this particular group of trees, the relation of the two variates is even 
closer than usual. 

o 
o 

~ • 
"'- • 

~ ", . 
• . ~ 

" ~ 
1'-. 

10 '2.0 ~ ~ 
Vll:L.D (Huru:i~C'd~ of' f"rvlt~) 

FIG. 6.9.I~Sample regression of percentage of wormy fruits on size or crop in apple 
trees. The cross indicates the origin for deviations,O'(.\'. flo 

The new feature in the calculations is the majority of negative prod­
ucts. xY. caused by the tendency of small values of Y to be associated 
with large values of X. The sample regression coefficient shows that the 
estimated percentage of wormy apples decreases. as indicated by the minus 
sign. 1.013 with each increase of 100 fruits in the crop. The sample regres­
sion line, and of course the percentage, falls away from the point. O'(X, f). 
by 1.013 for each unit of crop above 19 hundreds. 

The regression line brings into prominence the deviations from this 
moving average, deviations which measure the failure of crop size to ac­
count for variation in the intensity of infestation. Trees number 4. 9. and 
11 had notably discrepant percentages of injured fruits, while numbers 2 
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and 5 performed as expected. According to th~ modelth= are random 
deviations from the average (regr_ion) values, but close observation of 
the trees during the flight of the moths might reveal some characteristics of 
this phenomenon. Tree 4 might have been on the side from which tbe 
flight originated or perhaps its shape or situation caused poor applications 
ofth. spray. Trees 9 and II might have had some peculiariti.,; of con for­
mation of foliage that protected tbem. Careful s(udy of trees 2 and 5 
might tbrow light on the kind of tree or location that receives normal in­
festation. This kind of case studl' usually does not affect the handling of 
the sample statistics, but it may add to tbe investigator's knowledge of his 
experimental material and may afford clues to the improvement of future 
experiments. 

Among attitudes toward experimental data, two extremes exist. both 
of which should be avoided: some attend only to minute detail, of sample 
variatiun. neglecting the summarization of the data and the consequent 
inferences about the population; others are impatient of the data them­
selves, rushing headlong toward averages and other generalizations. 
Either course fails to yield full informatiun from the experiment. The 
competent investigator takes time to examine each datum together with 
the individual measured. He attempts to distinguish normal variation 
from aberrant observations. He then appraise, his summary statistics 
and his population inferences and draws his conclusions against this back­
ground Of sample facts. 

EXAMPLE 6.9.1- Another group of 12 trees. investigated by Hansberry and Richard. 
son. was sprayed with lead al'JC'nate thro1l8bout the ~son< In addition. the fourth and fifth 
cover sprdys contained l~/~ mineral oil emulsion lnd nicotine sulfate at the rate of I pint per 
100 gallons. The results are shown below. These facts may be verified: I:X= 240. I:Y 
= 384, };x2 = -808. 1:)"2 = 1.-428 • .I;x)' = - 582. regression cOefficient = -0.7203. f = 46.41 
-O.7203X. Y - f for theftrst tree: = 16.40";',. 

Size of Crop, X Hund~s I~, 15, 12. 26, 18. 12, 8, 38. 26, 19. 29, 22 

Pertentage Wormy, Y 52. 46. 38. 37, 37, 37, 34, 25. 22. 22. 20. t4 

"' EXAMPLE 6.9.2-ln table 6.9.1. calculate1:.d~,J<2 = 273.88 by means of tbe fonnula 
given in section 6.2. 

EXAMPLE 6.9.3~The following weiahU of body and comb of lS~y.-okl White 
Lqhorn male chicks are adapted from Soedocor and Breneman (4): 

Chick Number 

Body weight (grams). X 
Comb weight (milligrams), Y 

2345678910 

~ n ~ 00 % M " 91 ~ m 
56 42 t8 84 Sf> t07 90 68 31 48 

Calculate the sample regressIOn equation. f = 60 + 2.302 (X - 83). 

EXAMPLE 6.9.4--Construct the graph of the chick data. plotting body weight along 
Ihe honzontaJ axis. Jn~rt the regression line. 
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6.10-lnterYal estimal .. of P and tests of null hypotheses. Being pro­
vided with point estimates of the parameters of the regression population, 
we turn to their interval estimates and to tests of hypotheses about them. 

First in order of utility, there is the sample regression coefficient b, 
an estimate of {J. As seen in section 6.2, in random sampling, b is dis­
tributed with a variance estimated by 

S'2 = S 2~X' b y"% {-

Thus, in the apple sampling of table 6.9.1, 

so' = 27.3881924 ~ 0.0296; s, = 0.172% 

Moreover, since the quantity (b - {J)/s, follows the I-distribution with 
n - 2 degrees of freedom, it may be said with 95% contidence that 

b - lo.o,s, OS; {J s b + 10 .0 ,S, 

For the apples, d.f = 10, 10.0 , = 2.228, 10.o,S, = (2.228)(0.172) = 0.383, 

b - lo.o,s, ~ -1.013 - 0.383 = -1.396 per cent per 100 fruits. 
b + 10.o,S, = -1.013 + 0.383 = -0.630 per cent per 100 fruits, 

and, finally, 

- 1.396 s {J s - 0.630 

Ifit is said that the popUlation regression coefficient is within these limits. 
the slatemenl is right unless the sample is one of the divergenl kind Ihat 
occurs about once in 20 trials. 

Instead of the interval estimate of fI, interest may lie in testing some 
null hypothesis. While it is now rather obvious that Ho: {J = 0 will be 
rejected, we proceed with the illustration; if there were any other pertinent 
value of {J to be tested, we could use that instead. Since (b - {J);s, follows 
the l-distribution we put 

b - {J - 1.013 - 0 
/ = ---;,:- = 0.172 = -5.89, df = n - 2 = 10 

The sign is ignored because the table contains bothhalves of the distribu­
tion. Ho is rejected. One concludes that in the population sampled there 
is a regression of percentage wormy apples on crop size. the value likely 
being between -0.630 and -1.396 per cent per 100 fruits. 

6.11-Prediction of tile population regression line. Next. we may wish 
10 make inferences about Ji = " + {Jx, thaI is. aboul the height of Ihe pop­
ulation regression line at the point X. The sample .stnnote of I' is Y = Y 
+ bx. The error in the prediction is 

f - Ji = Cf' - 21 + (b - {JIX 
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But since Y = 0: + (Ix + e, we have Y = 0: + e, giving 

f - I' = f. + (b - II)x (6,11.1) 

The term;; has variance (1, • .'/n. Further, b is distributed about p with 
variance <1,., '/Ix'- Finally, the independence of the ,'s guarantees that 
these two sources of error are uncorrelated. so that the variance of their 
sum is the sum of the two variances. This gives 

, ,(I x' ) °v = (Jy"Jt. -;; + i~ 

The estimated standard error of f is 

.1, = s, .• ~O/n) + (x' /Ix') 16.11.2) 

with In - 2) df 

For the apples, s, ... = ~27.388, n = 12, and Ix' = 924. 

s, = )27.388)0/12) + (x'/924) '" )2.282' + 0.02964x' 

For trees with a high crop like tlla! of Tree 12, x = 21 and s, = 3.92%. 
notably greater than sp = I.SI% at x = O. The reason why s, increases 
as X recedes from X is evident from the term Ih- PIx in equation (6.11.1). 
The etfect of any error in h is steadily magnified as x becomes greater. 

Corresponding to any f, the point estimate of 1', there is an interval 
estimate 

f - to,O~Sy ~ II .$ Y + to.os~'t 
One might wish to estimate the mean percentage of wormy apples, 1'. at 
the point X = 30 hundreds of fruits. If so, 

Finally, 

x = X - X = JO - 19 = II hundreds of fruits 
f = Y + bx = 45 - (LOI3}(1l) = 33.86% 

10.0,S, = (2.228)j2.282 + (O.02964)(11'j = S.40";' 
33.86 - 5.40 .s J' .s 33.86 + 5.40 

28.46% .s J' .s 39.26~~ 
At X = 30 hundreds of fruits, the. population mean J' is estimaled as 
33.86% wormy fruits with 0.95 confidence limits from 28.46"1" to 39.26%. 
This confidence interval is represented by AB in figure 6.11.1. 

If oalculations like this are done for various values of X and if the 
<onfidence limits are plotted above and below the sample regression line. 
o~e has a conftdence bell or lone with curved borders DB and CAin 
figure 6.11.1. The curves are the branches of a hyperbola. We have 
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FJG. 6.J I.I----Confidence belts for fl. ABeD; and for Y. EFGH: the apple data. 

confidence that 1', for any X lies in the belt. The figure emphasizes the 
increasmg hazard of making predictions at X far removed from X. 

6.1Z-Prediction of an indiridual Y. A further use of regression is to 
predict the individual value of Y for a new member of the population for 
which X has been measured. The predicted value is again Y = Y + bx, 
but since Y = ~ + fix + e, the error of the prediction now becomes 

f - Y = (1' - ~l + (b - P)x - e 

The random element e for the new member is an additional source of un­
certainty. So, the mean square error of the predicted value contains 
another term, being 

2 2 2 
2 _ Srx X S,.x 2 s, - -- + ~ + s,.x 

n .. x 

Since the term arising from the variance of e usually dominates, the stan­
dard error is usually written as 

J I x' 
Sy == s;." 1 + - + '" 2 . . n .. x 

(6.12.1) 
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It is imponant not to confuse the two types of prediction. If the regres­
sion of weight on height were worked out for a sample of 20-year-old 
males, the purpose might be to predict the average weight of 20-year-old 
males of a specific height. This is prediction of J1 given X. Alternatively, 
We might want to predict the weight of a new male whose height is known. 
This is prediction of an individual Y, given X. 

The 1"'0 prediction problems hal-e the interesting feature that the pre­
diction, y, is exactly the same in the two problems. but the standard error 
of the prediction differs (compare equations [6.11.2] and [6.12.1]). To 
avoid confusion. use the symbols [1 and .~ji when a population average is 
neing predicted. and f' and Sf when an individual Y is being predicted. 
For example. if you wi,h to predict the percentage of wormy apples on a 
tree yielding 30 hundreds of fruits. 

'O.O,S, = 2.228 y'27.388 ~i12 + (11)'/924 = 12.85;', 

From Ihis and Y = 33.86%, the confidence interval is given by 

33.86 - 12.85 $ Y $ 33.86 + 12.85 
or. 

21.01'\, $ Y $ 46.71%. 

as shown by EF, figure 6.11.1. We conclude that for trees hearing 3.000 
fruits, population values of percentage wormy fruits fall between 21.01% 
and 46.71 '10 unless a l-in-20 chance has occurred in the sampling. 

Conlinlllllg this procedure. a confidence belt HF and GE for Y may 
be plolled as in the figure. It is to be observed that all the sample points 
lie in the belt. In general about 5% of them are expected to fall outside. 

Unfortunately. the meaning of this confidence band is apt to be mis­
und<fstood. Suppose that we construct 95% confidence intervals for the 
Y values of a large number of new individual specimens thai all have the 
same value of X. The 95% confidence probability is correct ifror each new 
specimen we draw a new sample of values of ( Y. X), compute a new sample 
regression line and value of -"Y';'" and construct a new confidence interval 
from these data. If we make a large number of confidence intervai state­
ments from the same sample regression line, the proponion of these state­
ments that is correct is not 95% for a specific line, but may be more or less. 
If the sample from which the regression line was computed happens to 
give an unusually low value' of SY'x. so that the confidence band is nar­
rower than usual. less than 95~{, of the confidence interval statements is 
likely to be correct. 

This point can be illustrated from the line constructed in table 6.4.1 
(p.143) as an example of the regression model. The sample line is 
1 . .\4 _. O.468X. and has 3 value 2.376 at X = 2. Further. s, at X = 2 is 
found to be 1.325. and /0.0" for 4 d/., is 2.776. Hence. the 95% con­
fidence limits for an individual Yat X = 2 are 2.376 ± (2.776)(L325), 
giving - I.J02 and 6.054· 



15T 

But we know from the population model that any new Y at X = 2 
is normally distributed with p. = 5 and (f = I. The probability that this 
Y lies between 0.948 and 8.484 is easily calculated from the normal table. 
I! is practically 100%, instead of95%. In fact, with this sample line, the 
95% confidence probability statements are conservative in this way at all 
six values of X. 

The worker who makes many predictions from the same sample line 
naturally wants some kind of probability statement that applies to his 
line. The available techniques are described by Acton (11). 

EXAMPLE 6.12.1-10 the ~gression of comb weight of chicks on body weight. t:x­
ample 6.9.3, n === 10. X = 83 gms., Y = 60 mg., l:x2 = 1,000. I:y2 = 6.854 end I:xy =. 2.302. 
Set 95% confidence limits on «, assuming the same set of body weights. Ans.49.8 - 70.2 mg. 

EXAMPLE 6.t2.2-lo the chick data, b ~ 2.302. Test the hypothesis that p ~ O. 
Ans. t = 5.22, P < 0.01. 

EXAMPLE 6.12.3-Since evidently there is a population regr~sion of comb weight 
on body weight. set 95% limits to the regression coefficient. Ans. 1.28 - 3.32 mg. per gm. 

EXAMPLE 6.12.4-Predict the population average comb weight of l00-gm. chicks. 
Ans. 99.1 mg. with 95% limits. 79.0 - 119.2 mg. 

EXAMPLE 6.12.5-Set 95% confidence limits to the forecast of the comb weight 0(' a 
randomly chosen IOO-gm. chick. Ans. 61.3 - 136.9 mg. 

EXAMPLE 6. 12.6~In the Indianapolis motor races (example 6.3.2),estimate the speed 
for the year 1946. for which the coded X is 35. and give 95% limits, remembering that in­
dividual speeds are being estimated. Ans. 122.3 miles per hour with 95% limits 
118.9 -125.7. The actual speed in 1946 was 114.8 miles per hour, lying outside the limits. 
The regression formula overestimated the speeds consistently in the ten years following 1945. 

EXAMPLE 6.12.7----Construct 80,?~ confidence bands for the individual race results in 
the p.;:riod 1911-1941. Since there were 29 races, you shouJd find about 6 results lying out­
side the band. 

EXAMPLE 6.12.8-In time series such as these races, the assumption that the t are 
independent of each other may not hold. Winning of successive races by the same man, 
type of car, or racing technique. all raise doubts on this point. If the t are not independent, 
Y and b remain unbiased estimates of IX and p. but they are no longer the most precise 
estimates. and the formulas for standard errors and confidence limits become incorrect. 

6.13-Testing a deviation that looks suspiciously large. When Y is 
plotted against X, one or two points sometimes look as if they lie far from 
the regression line. When the line has been computed, we can examine 
this question further by drawing the line and looking at the deviations for 
these points. or by calculating the values of d, .• for them. 

In this process one needs some guidance with respect to the question: 
When is a deviation large enough to excite suspicion? A test of signifi­
cance is carried out as follows: 

I. Select the point with the largest d, .• (in absolute value). As an 
illustration, we use the regression of wormy fruit on size of apple crop, 
table 6.9.1 and figure 6.9.1, p. 151. We have already commented that for 
tree 4. with X = 22. Y = 53. the deviation d, .• = 11.04 looks large. 
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2. Recompute the regression wIth this point omitted. This requires 
little work. since from the values rx. t Y. LX'. L Y'. and rx Y. we simply 
subtract the contribution for tree 4. We find for the remaining n - I = II 
points: 

x = 18.73 : LX' = 914 
ji = 44.27 - 1.053x : s,,/ = 15.50. with 9 df. 

3. For the suspect. x = 22 - 18.73 = 3.27. r = 44.27 - (1.053113.27) 
= 40.83. Y = 53. 

4. Since the suspect was not used in computing this line. we can re­
gard it as a new member of the populalion. and lesl whether ils deviation 
from the line is within sampling error. We have Y - Y = 53 - 40.83 
= IZ.IV. Since formula 6.IZ.1 is applicable to the reduced sample of size 
III - I). the variance due to sampling errors is 

. '\ 
sr_,' = ",.! 0 + n ~ 1 + ;xiJ 

= (15.50) (1 + 1\ + (3~~~') = (15.50)(1.1026) = 17.09 

The value of 1 is 

Y - Y 12.17 
t = - = -/1709 = 2.943. Sr_ f' . 

with 9 d.f The 2% level of I is 2.821 and the 1% level is 3.250. By in· 
terpolation. Pis aboul 0.019. 

As it stands. however. this I-lest does not apply. because the t~t 
assumes that the new member is randomly drawn. Instead. we selecltd 
it because it gave the largest deviation of tile 12 poinls. If P is the proo­
abiltty that 1 for a random deviation exceeds some value ' 0• then for small 
values of P the probability thatlm~ (computed for the largest of n devia­
tionsl exceeds 'ois roughly nP. Consequently. the significance probability 
for our Hest is approximately (12)(0.019) = 0.23. and Ihe null hypothesis 
is not rejected. 

When the null hypothesis is rejected. Ihis indicates an inquiry to see 
whether there were any circumstances peculiar to Ihis point. or any error 
of measurement or recording. that caused the large deviation. In some 
cases an error is unearthed and corrected. In others, some extraneous 
causal factor that made the point aberrant is discovered. although Ihe 
fault cannot be corrected. In this event. the point should be omitted in the 
line that is to be reported and used, provided that the causal factor " 
known to affect only Ihis point. When no explanation is found the situa­
tion is perplexing. 11 is usually best to ex. mine the conclusions obtained 
with the suspect (i I inCluded, (iil excluded. If these conclusions din·.r 
materially, as they sometimes ,il'. it is well to note that either may be 
correct. 
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6.14-Prediction of X from Y. Linear calibration. In some applica­
tions the regression line is used to predict X and Y, but is constructed by 
measuring Yat selected values of X. In this event, as pointed out in the 
discussion in section 6.9 (p. 150), the prediction must be made from the 
regression of Yon X. For example, X may be the concentration of some 
element (e.g., boron or iron) in a liquid or in plant fiber and Ya quick 
chemical or photometric measurement that is linearly related to X. The 
investigator makes up a series of specimens with known amounts of X 
and measures Y for each specimen. From these data, the calibration 
curve, the linear regression of Yon X, is computed. Having measured Y 
for a new specimen, the estimate of x = X - X is 

~=(Y-Y)lb 

Confidence limits for x and X are obtained from the method in sec­
tion 6.12 hy which we obtained confidence limits for Y given x. As an 
illustration we cite the example of sections 6.11-n.12 in which Y= per­
centage of wormy fruits; X = size of crop (though with these data we 
would in practice use the regression of X on Y, since both regressions are 
meaningful). 

We shall find 95% confidence limits for the size of crop in a new tree 
with 40 per cent of wormy fruit. Turn to figure 6.11.1 (p. 155). Draw a 
borizontalline at Y = 40. The two confidence limits are the values of X 
at the points where this line meets the confidence curves GE and HF. 
Our eye readings were X = 12 and X = 38. The point estimate g of X is, 
of course, the value of X, 24, at which the horizontal line meets the fitted 
regression line. 

For a numerical solution, the fitted line is Y + bx, where Y = 45, 
b = -1.013. Hence the value of x when Y = 40 is estimated as 

~ = (Y - Y)lb = - (40-45)/1.013 = 4.936: g = 23.9 hundreds 

To find the 95% confidence limits for x we start with tbe confidence 
limits of Y given x: 

J 1 x, 
Y = Y + bx ± to,·x 1 + II + I:... (6.14.1) 

where :E denotes :Ex2 and t is the 5% level for (n - 2) d/. Expression 
(6.14.1) is solved as a quadratic equation in x for given Y. After some 
manipulation the two roots can be. expressed in the following form, which 
appears the easiest for numerical work; 

X= 

where 

" ts"xJ (n + I) (1 ') ~2 .. +-- --- -c +-
- b n :E 

1 - C
Z 

(6.14.2) 
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c2 = e;( = KSb'x Y 
In this example n = 12, I = 2.228 (I0df.), s,.. = 5.233, 1: = 924, b = -LOB, 
i = 4.936. These give 

es". = (2.228)(5.233) = _I .509' '= (11.509)2 = 01434 
b - 1.013 I, c 924,' 

From (6.14.2) the limits for x are 

x = 4.936 ± (1I.509)J{(1.0833)(0.8566) + 0.0264) 

This gives - 7.4 and + IS.Ii for x or 11.6 and 37.9 for X, in close agreement 
with the graphical estimate. 

The quantity c = Is,,/b is related to the test of significance of b. If 
b is significant at the 5% level, b/s, > t, so that c < I and hence c' < I. If 
b is not significant, the denominator in equation (6.14.2) becomes negative, 
and finite confidence limits cannot be found by this approach. If c is small 
(b highly significant), c' is negligible and the limits become 

x IS,·x J i x, 
±T I +;;+1:x' 

These are of the form i ± IS" where s, denotes the factor that multiplies 
I. In large samples, s, can be shown to be the estimated standard error of 
i, as this result suggests. 

In practice, Y is sometimes the average of m independent measure­
ments on the new sp<:Cimen. The number I under the square root sign 
in(6.14.1) then becomes 11m. 

6.IS-Partitioning the sum of squares of the dependent variate. Re­
gression computations may be looked upon as a process of partitioning 
1: y' into 3 parts which are both useful and meaningful. You have become 
accustomed to dividing 1: y' into (1: Y)' In and the remainder, 1:y'; then 
subdividing 1:y' into (1:xy)'jI:x' and I:d,.j. This means that you have 
divided 1: y' into three portions: 

1: y' = (1: Y)' In + (1:xy)' jI:x' + 1:d,.) 

Each of these portions can be associated exactly with the sum of squares of 
a segment of the ordinates, Y. To illustrate this a simple set of data has 
becn set up in table 6.15.1 and'graphed in figure 6.15.1. 

In the figure the ordinate at X = 12 is partitioned into 3 segments: 

Y = Y + J + d, .•. 

where V = Y - Y = bx IS the deViation of the pomt Y on the filled line 
from Y Each of the other ordinates may be divided similarly, though 
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TABLE 6.15.1 
DATA SET UP TO ILLUSTRATE 1lfE PARTITION OF Iyl 

x 2 4 6 8 10 12 14 :EX- 56 

Y 4 2 5 9 3 II 8 :EY = 42 

n=7, X=8, Y=6,l:x2 =112. I:yl=68, Ixy==56 

negative segments make the geometry less obvious. The lengths are all set 
out in table 6.15.2 and the several segments are emphasized in figure 6.15.1. 
Observe that in each line of the table (including the two at the bottom) 
the sum of the last three numbers is equal to the number in column Y. 
Corresponding to the relation 

Y= y + ~ + d, ... 

we have the following identity in the sums of squares 

1: y2 = 1: y2 + 1:92 + 1:dy .;, 

ea~h of the three product terms being zero. The sums of squares of the 
ordinates, 1: y2 = 320, and of the deviations from regression, Di,.,2 = 40, 

10 

a ReOfltsion. Y. 6+0.5 (x-a) 

6 

.4 

2 

o 0~----~2----~4~----~6------8~----~IO~--~1~2----~'4~--X 

F1O, 6.15.1-Graph of data in table 6.15.L The ordinate at X = 12 is shown divided into 
2 parts, Y = 6 and y = 5. Tbrn y is subdivided into .9 = 2 and d,." =e 3. Thus Y = Y + r 

+dr .=6+2+3=11. 
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TABLE 6.15.2 
LENGTHS OF ORDINATES IN TABLE 6.15.1 TooElllER WITH 

SEGMENTS INTO WHICH THEY ARE PARTITIONED 

Deviation From 
Pair Number Ordinate Meall Deviation Regression 

y l' P d,." 

1 4 6 -3 1 
2 2 6 -2 -2 
3 5 6 -I 0 
4 9 6 0 3 
5 3 6 1 -4 
6 II 6 2 3 
7 8 6 3 -I 

Sum .42 42 0 0 

Sum of squares 320 252 28 40 

are already familiar. 
(l;xy)' /Ex' with E~' 

It remains to identify (E Y)2 In with :E Y' and --First, ~--~ 

(:E Y)' = (nY)' = nY' = :E Y' 
n n 

That is, the correction for the mean is simply the sum of squares of the 
mean taken n times. Second, 

(:Exy)' = (:Exy)2. :Ex' = b':Ex' = :Eb'x' = :E~' 
:Ex' (:Ex')' 

So the sum of squares attributable to the regression turns out to be the 
sum of squares of the de"iations of the points j) on the lilted line from their 
mean. 

The vanishing of the cross-product terms is easily verified by the 
method used in section 6.6. 

Corresponding to the partition of :E y' there is a partition of the 

TABLE 6.15.3 
ANALYSIS OF VARIANCE OF Y IN TABLE 6.15.1 

Description of Degrees of 
Source of Variation Symbol Freedom Sum of Squares 

The mean Y 1 (l: y)' In ~ 252 
Regression b 1 (I:xy)l~X2 = 28 
Deviation from regression d"1{ 11-2=5 l:.d,.;r; , ~ 40 

Total Y "=7 1: yl = 320 

l:y' = 28 + 40 _ 68, d,f. = n - 1 = 6 

• 

Mean 
Square 

s,." 1 = 8 
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total degrees of freedom into three parts. Both partitions are shown in 
table 6.15.3. The n = 7 observations contribute 7 degrees of freedom, of 
which I is associated with the mean and I with the slope b of the regression 
coefficient, leaving 5 for the deviations from regression. In most applica­
tions the first line in this table is omitted as being of no interest, the break­
down taking the form presented in table 6.15.4. 

TABLE 6.15.4 
ANALYstS OF V AllIANCE OF Y IN TABLE 6.15.1 

Degrees of SumoC Mean 
Source of Variation Freedom Squares Square 

Regression I 28 
Deviations from regression 5 40 8 

Deviations from mean 6 68 11.3 

Table 6.15.4 is an analysis of variance table. In addition to providing 
a neat summary of calculations about variability, it proves of great utility 
when we come to study curved regressions and comparisons among more 
than two means. The present section is merely an introduction to the 
technique, one of the major contributions of R. A. Fisher (5). 

EXAMPLE 6.lS.i-Dawes (6) determined the "density" of the melanin content of ~h:! 
skin of 24 male frogs together with their weights. Since "Some of the 24 males ... were 
selected for extreme duskiness or pallor so as to provide a measure of the extent of variabil­
ity," that is, since selection Wll$ exerciSed on density this variate must be taken as X. 

Density. X 0.13 0.t5 0.28 0.58 0.68 0.31 0.35 0.51< 
Weight, Y 13 t8 18 18 18 t9 21 22 

Density. X 0.03 0.69 0.38 0.54 1.00 0.73 0.77 0.82 
Weigh~Y 22 24 25 25 25 27 27 27 

Density. X 1.29 0.70 0.3. 0.54 1.08 0.86 0.40 1.67 
Weight, Y 28 29 30 30 35 37 39 42 

Calcwate X ... 0.6225 units. Y ,.. 25.79 grams, ~X2 = 3.3276.l:y2 = 1,211.96, I:xy = 40.01.2. 

EXAMPLE 6.tS.2-In example 6.tS.t test the hypOthesis. ~ = O. Ans. 1 = 3.81, P 
< 0.01. 

EXAMPLE 6. 1 5.3-Analyze ~be variance of the frog weights. as follows: 

Source of Variation 

Mean 
Regression 
De\i&tlons 

Tota! 

11 

Degrees of 
Freedom 

I 
I 

22 

24 

Sum of 
Squares 

15,%5.04 
481.36 
730.60 

n,171.00 

MeanSq ...... 

33.21 



164 Chapte' 6: Regre .. ioft 

EXAMPLE 6.15.4··--How nearly free from error is the measurement of melanin 
density, X? After preparation of a solution from the skin of the fwgs. the intensity of the 
color was evaluated in a colorimeter and the readings then transferred graphically into 
neutral denslties. The figures reported are means affrom 3 to 6 determinations. The error 
of this kind of measurement is usually appreciable. This makes the estimate of regression 
biased dow~wards. Had not the investigator wished to learn about extremes of density, 
the regression of density on weight might have been not only unbiased but more informative. 

6.16-Galton's use of the term "regression." In his studies of in­
heritance Galton developed the idea of regression. Of the "law of uni­
versal regression" (7) he said. "Ea~h peculiarity in a man is shared by his 
kinsman, but on the average in a less degree." His friend, Karl Pearson 
(8). collected more than a thousand records of heights of members of 
family groups. Figure 6.16.1 shows his regression of son's height on 
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FIG. 6. 16. I-Rcgre$sion orson's stature on father's (8). Y = O.516X + 33.73. 
1,078 families. 

father's. Though tall fathers do tend to have tall sons, yet the average 
height of sons of a group of tall fathers is less than theii father's height. 
There is a regression, or going back, of son's heights toward the average 
height of all men, as evidenced by the regression coefficient, 0.516, sub­
stantially less than I. 

6.17-Regression when X is subject to error. Thus far we have as­
sumed that the X-variable in regression is measured without error. Since 
no measuring instrument is perfect, this assumption is often unrealistic. 
A more realistic model is one that assumes Y = 11. + P(X - X) + e as be­
fore, but regards X as an unknown true value. Our measurement of X is 
X' = X + e, where e is the error of measurement. For any specimen we 
know (Y, X') but not X. 

If the measurement is unbiased, e, like e, is a random variable follow-
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ing a distribution with mean O. The errors e may arise from several 
sources. For instance, if X is the average price of a commodity or the 
average family income in a region of a country, this is usually estimated 
from a sample of shops or of families, so that X' is subject to a sampling 
error. With some concepts like "educational level" or "economic status" 
there may be no fully satisfactory method of measurement, so that e may 
represent in part measurement of the wrong concept. 

If e, e, and the true X are all normally and independently distributed 
it is known that Yand X' follow a bivariate normal distribution (section 
7.4.). The regression of Yon X' is linear, with regression coefficient 

P' = PI( I + ).), 
where). = (1/I(1x 2

• (If Xis not normal, this result holds in large samples 
and approximately in small samples if), is small.) Thus, with errors in 
X, the sample regression coefficient. b , of Yon X' no longer provides an 
unbiased estimate of p, but of PI(l + "). 

If the principal objective is to estimate p, often called the structural 
regression coefficient, the extent of this distortion downwards is de­
termined by the ratio;' = (1/1(1/. Sometimes it is possible to obtain an 
~stimate S.2 of (1/. Sin~ O'X,2 = ax2 + (1/, an estimate of A is 
). = s/I(sx 2 - s/). From). we can judge whether the downward bias is 
negligible or not, If it is not negligible, the revised estimate b'(1 + 1) 
should remove most of the bias. 

In laboratory experimentation, ). is often small even with a measuring 
instrument that is not highly accurate. For example, suppose that (1x 
= 20, Ilx = 100, so that nearly all the values of the true X's lie between 50 
and 150. Consider (1, = 3. This implies that about half of the true X'sare 
measured with an error greater than 2 and about one third of thel1) with 
an error greater than 3-a rather imprecise standard of performance. 
Nevertheless, 2 is only 9/400 = 0.022. 

If the objective is to predict the population regression line or the 
value of an individual Y from the sample of values (Y, X'), the methods 
of sections 6.11 and 6.12 may still be used, with X' in place of X, provided 
that X, e, and e are approximately normal. The pre8.lence of errors in X 
decreases the accuracy of the predictions, because Ihe residual variance 
is increased, though to a minor extent if A is small. The relation between 
(1Y'x· 2 and (1y.x' may be put in two equivalent forms: 

(1/ - ay .•. 2 = (a/ - a,'x2 )1(1 + 2), (6.17.1) 

or, 

2_ 2 ;. (2 2) 
O'y·x - tlr·x + --- Or - O'y·x 

. (I + 1) 
(6.17.2) 

Berkson (10) has pointed out an exception to the above analysis. 
Many laboratory experiments are conducted by setting X' at a series of 
fixed values. For instance, a voltage may be set at a series of prede· 
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termined levels X,', X2" ... on a voltmeter. Owing to errors in the volt­
meter or other defects in the apparatus, the true voltages X" X 2, ••• 

differ from the set voltages. 
In this situation we still have Y = " + PX + E, X' = X + e. In both 

our original case (X normal) and in Berkson's case (X' fixed) it follows 
that 

Y = " + PX' + (E - pel (6.17.3) 

The difference is this. In our case, e and X' are correlated because of the 
relation X' = X" e. Consequently, the residual (£ - pel is correlated 
with X' and does not have a mean zero for fixed X'. This vitiates Assump­
tion 2 of the basic model (section 6.4). With X' fixed, however, e is 
correlated with X but not with X', and the model (6.17.3) satisfies the 
assimiptions for a linear regression. The important practical conclusion 
is that b', the regression of Yon X', remains an unbiased estimate of p. 

6.18-Fittiog a straight line througb the origin. From some data the 
nature of the variable Yand X makes it clear that when X = 0, Y must be 
O. If a straight li'lle regression appears to be a satisfactory fit, we have the 
relation 

Y = pX + s 

where, in the simplest situations, the residual E follows %(0, ( 2 ). The least 
squares estimate of Pis b = I:XYj1:X' The residual mean square is 

s,.x' = p: yl - (I:Xy)2/I:X2}/(n _ I) 

with (n - I) df Confidence limits for pare 

b ± ISh' 

where t is read from the !-table with (n - I) df and the appropriate 
probability. 

This model should not be adopted without careful inspection of the 
data, since complications can arise. If the sample values of X are all some 
distance from zero, plotting may show that a straight line through the 
origin is a poor fit, although a straight line that is not forced to go through 
the origin seems adequate. The explanation may be that the population 
relation between Yand X is curved, the curvature being marked near zero 
but slight in the range within which X has been measured. A straight line 
of the form (a + bx) will then be a good approximation within the sample 
range, though untrustworthy for extrapolation. If the mathematical form 
of the curved relation is known, it may be fitted by methods outlined in 
chapter 15. 

It is sometimes useful to test the null hypothesis that the line, as­
sumed straight, goes through the origin. The first step is to fit the usual 
two-parameter line (oc + px), i.e., " + P(X - X), by the methods given 
earlier in this chapter. The condition that the population line goes 
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through .!_he origin is at - fiX = O. The sample estimate of this quantity 
is Y - bX, with estimated variance 

Sy./ (lin + X2jI:x2) 

Hence, the value of t for the test of significance is 

f- bX 
t = I X2 2) s"x V {lin + jI:x 

(6.18.1) 

with (n - 2) dj. This test is a particular case of the technique presented 
in section 6.11 for finding confidence limits for the population mean value 
of Y corresponding to a given value of X. 

The following example comes from a study (9) of the forces necessary 
to draw plows at the speeds commonly attained by tractors. Those results 
of the regression calculations that are needed are shown under table 6.18.1. 

Draft (Ibs.) Y 
Speed (m.p.h.) X 

TABLE 6.18.1 
DRAFT ANn SPIm OF PLows 0ItA WN BY .TllACTORS 

425 420 480 495 540 530 590 610 690 680 
0.9 1.3 2.0 2.7 3.4 3.4 4.1 5.2 5.5 6.0 

x - 3.45 m.p.h. Y = 546 Ibs. " = 10 
1:.' = 27.985 1:y' = 82,490 1:.y = 1,492.0 

b = 53.31 !bs. per mile 
5"Jl2 = 368.1 with 8 dj. 

One might suggest that the line should go through the origin, since 
when the plow is not moving there is no draft. However, inspection of 
table 6.18.1, or a plot of the points. makes it clear that when the line is 
extrapolated to X = 0, the predicted Y is well above 0, as would be 
expected since inertia must be overcome to get the plow moving. From 
(6.18.1) we have 

t = J--;-;o[~546_---,({.,--53_.34-,)"-(3_.4-,5)",,,2}=] = ~;~ = 26.0 

(368.1) 110 + ~~~is 
, 

with 8 dj., confirming that the line does not go through the origin. 
When the line is straight and passes through (0, 0), the variance of 

the residual e is sometimes not constant, but increases as X moves away 
from zero. On plotting, the points lie close to the line when X is small but 
diverge from it as X increases. The extension of the method of least 
squares to this case gives the estimate b = I: wxXYjl:wxX 2 

, where Wx is the 
reciprocal of the variance of e at the value of X in question. 

If numerous observations of Y have been made at each selected X, 
the variance of e can be estimated directly for each X and the form of the 
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functlons Wx d~termined empirically. If there are not enough data to use 
this method, simple functions that seem reasonable are employed. A 
common one when all X's are positive is to assume that the variance of e 
is proportional to X, so that Wx = k(X, where k is a constant. This gives 
the simple estimate b = I: Y(I:X = fiX. The weighted mean square of 
the residuals from the fitted .line is 

s,./ = {I:(Yz(X) - (I:Y)z(I:X}(n - I) 

and the estimated standard error of b is s"xl.jr.X. 

TABLE 6.18.2 
l\IUMBER OF ACIlES IN CoRN ON 25 FARMS IN SoUTH DAKOTA (1942) 

SELECTED BY FARM SIZE 

Size of Farm Acres in Standard 
(acres) Com Deviation Ratio 

X Y Range " ',IX 

80 25 
10 
20 
32 
20 22 8.05 0.101 

160 60 
35 
20 
45 
40 40 14.58 0.091 

240 65 
80 
65 
85 .~ 30 55 0.090 

320. 70 
110 
30 
55 
60 80 29.15 0.091 

400 75 
35 

140 
90 

110 105 39.21 0.098 

Mean 56.28 

I:(YIXI 
n = 25. b = -- = 0,243 corn acre/farm acre 

" 

Ratio 
YIX 

0.312 
.125 
.250 
.400 
.250 

0.375 
.219 
.125 
.281 
.250 

._ 

0.271 
.333 
.271 
.354 
.125 

0.219 
.344 
.094 
.172 
.188 

0.188 
.088 
.350 
.225 
.275 

0.243 
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Sometimes the standard deviation of e is proportional to X, so that 
Wx = k/X'. This leads to the least squares estimate 

b = 1:(XY/X')jl:(X'/X') = 1:( Y/X)/n, 

in other words, the mean of the individual ratios Y/X. This model is 
illustrated by the data in table 6.18.2, taken from a farm survey in eastern 
South Dakota in 1942, in which the size of the farm X and the number of 
acres in corn Y were measured. Five of the commoner farm sizes: 80, 
160,240,320, and 400 acres, were drawn. For each size, five farm records 
were drawn at random. 

The ranges of the several groups of Y indicate that G is Increasing 
with X. The same thing is shown in figure 6.18.1. To get more detailed 
information, Sy was calculated for each group, then the ratio of Sy to X. 
These ratios are so nearly constant as to justify the assumption that in Ihe 
population G J X is a constant. Also it seems reasonable to suppose that 
0(0, 0) is a point on the regression line. 

The value of b, 0.243 corn acres per farm acre, is computed in table 
6.18.2 as the mean of the ratios Y/X. The sample regression line IS 

f=0.243X. 

y 

100 

I • 

"" 

• 

200 
Numbir of Acres in Form 

• 

FIG. 6.18.I-Regression of corn acres on farm acres. 

• 

• 

400 )( 
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To find the estimated variance of b, first compute the sum of squares 
of deviations of the 25 ratios R = Yj X from their means, and divide by 
n - I = 24. This gives SR' = 0.008069. Then 

S/ 0.008069 
so' = -n- = 25 = 0.0003228 

s. = 0.0180, df. = n - I = 24. 

The 95% interval estimate of P is set in the usual way, 

b - to.05 Sb :::; fJ ~ b + to.05 sl1 , 

the result being 0.206 S fJ S 0.280. 
In straight lines through the origin the point (X, Y) does not in gen­

eral lie on the fitted line. In the figure, (240, 56.28) falls below the line. 
An exception occurs when ".' is proportional to X, giving b = fjX as we 
have seen. 

6.19-The estimation of ratios. With data in which it is believed that 
Y is proportional to X, apart from sampling or experimental error. tlie 
investigator is likely to regard his objective as that of estimating the com­
mon ratio Yj X rather than as a problem in regression. If his conjecture 
is correct, that is, if Y = PX + e, the three quantities LXYjLX'. L Yj1:X 
and L(Y/X)/n are all unbiased estimates of the population ratio p. The 
choice among the three is a question of precision. The most precise 
estimate is the first, second, or third above according as the variance of e 
is constant, proportional to X, or proportional to X'. If the variance of E 

is expected to increase moderately as X increases, though the exact rate 
is not known, the estimate L Yj1:X usually does well, in addition to being 
the simplest of the three. 

Before one of these estimates is adopted, always check that Y is 
proportional to X by plotting the data and, if necessary, testing the null 
hypothesis that the line goes through the origin. Hasty adoption of some 
form of ratio estimate may lose the information that Y/ X is not constant 
as X varies. 

6.20-Summary. The six sample values, n. X, Y, LX', LY', LXY, 
furnish all regression information about the population line I' = ~ + px: 

1. The regression coefficient of Yon X: b = LXy/LX'. The estimate 
of~:a=f 

2. The sample regression equation of Yon X: f = Y + bx 
3. Yadjusted for X: Adjusted Y = Y - bx 
4. The sum of squares attributable to regression: 

(1:xy)'j1:x' = 1:y' 



· J7J 

5. The sum of squares of deviations from regression: 

l:y2 _ (l:xy)2jl:x2 = l:d,./ 

6. The mean square deviation fcom regression: 

l:d,./I(n - 2) = Sy./ 
7. The sample standard error of Y estimated from X: 

Sf· .... = sy-JJn 
8. The sample standard deviation of the regression coefficient: 

s, = s,.,J.jl:x2 

9. The sample standard deviation of r as an estimate of)l = ,,+ fJx: 

s, = s,.".JTTn + xijl:x2 

10. The sample standard deviation of r as an estimate of a new point 
Y: 

Sf = s,.dl + lin + x 2jl:x2 

II. The estimated height of the line when X = 0: Y - bX. This is 
sometimes called the intercept or the elevation of the line. 
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* CHAPTER SEVEN 

Correlation 

7.I-Introduction. The correlation coefficient is another measure of 
the mutual relationship between two variables. Table 7.1.1 and figure 
7.1.1 show tl)e heights of II brothers and sisters. drawn from a large 
family study by Pearson and Lee (I). Sillce there is no reason to think of 
one height as the dependent variable and the other as the independent 
variable. the heights are designated X, and X, instead of Yand X. To 
find the sample correlation coefficient, denoted by r, compute 1:x, " 1:x,', 
and L"x, as in the previous chapter. Then, 

r: 1:x,x,!,J {(1:x,')(1:x,')} = 0.558, 

as shown under table 7.1.1. Roughly speaking, r is a quantitative expres­
sion of the commonly observed similarity among children of the same 
parents-the tendency of the taller sisters to have the taller brothers. In 
the figure. the value r = 0.558 reflects the propensity of the dots to lie in 
a band extending from lower left to upper right instead of being scattered 
randomly Over the whole field. The band is often shaped like an ellipse, 
with the major axis sloping upward toward the right when r is positive. 

EXAMPLE 7.1.1--Calculate r = I for the following pairs: 

X,: t. 2. 3. 4. 5 
X,: 3. 5. 7. 9. II 

TABLE 7.1.1 
STATURE (INCHES) OF BROTHER AND SISTER 

(l1Ju~rration taken from Pearson and Lee's sampJe of J,401 families) 

Family Number 2 3 4 5 6 7 8 9 to II 

Brother, Xi 71 68 66 67 70 71 70 73 72 65 66 
Sister. Xl 69 64 65 63 65 62 65 64 66 59 62 

----- ------------__ . -.----~ 

,,=11, XI ,.,,69. Xl = 64, ~XIZ = 74. Ix/ = 66. IX,X2 = 39 

172 
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FlO. 7 .1.l~Scatter (or dot) diagram of stature of II brother-sister pairs. r = 0.558. 

Represent the data in a graph similar to figure 7.l.1. 

EXAMPLE 7.1.2-Verify r - 0.91 io 'he pairs: 

X,: 2, 5, 6, 8, 10, 12, 14, 15, 18, 20 
X,: I, 2, 2, 3, 2, 4, 3, 4, 4, 5 

PIOI the elliptical band of points. 

EXAMPLE 7.1.3-ln the following. show that' = 0.20: 

X,: 3, 5, 8, II, 12. 12, 17 
X,: II, 5, 6, 8, 7. 18, 9 

Observe the scatter of the points in a diagram. 

EXAMPLE 7.1.4--10 the apple data of table 6.9.1. l:x' - 924. l:y' = 1.222, l:xy 
= - 936. Calculate r = - 0.88 

7 2-The sample correlation coefticlent r. The correlation coefficient 
is a measure of the degree of closeness of the linear relationship between 
two variables. 

Two properties of r should be noted: 
(i) r is a pure number without units or dimensions, because the scales 

of its numerator and denominator are both the products of the scales in 
which X, and X, are measured. One useful consequence is that r can be 
computed from coded values of X, and X,. No decoding is required. 
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(ii) r always lies between - I and + I (proved in the next section, 7.3). 
Positive values of r indicate a tendency of X, and X, to increase together. 
When r is negative, large values of Xl are associated with small values 
of X,. 

To help you acquire some experience of the nature of r, a number of 
simple tables with the corresponding graphs are displayed in figure 7.2.1. 
In each of these tables n = 9, Xl = 12, X, = 6, LXt' = 576, LX,' = 144. 
Only l:X1X, changes, and with it the value of r. Since ,j(l:xt'Hl:x,') 
= ,j(576)(I44) = 288, the correlation is easily evaluated in the several 
tables by calculating l:X,X2 and dividing by 288 (or multiplying by 
1/288 = 0.0034722 ... if a machine is used). 

In A, the nine points lie on a straight line, the condition for r = I. 

0 

X, o • • 8 12 141622 26 

XIO 2 3 • 6 7 8 11 13 

X. 
c.,. 0.597 

10 

• 

0 

XI 04'6 8 \2 \4 t6 22 a 
X I 280 • • • 13 7 " 
X"t E,r·-0368 

• 
10 • 

• 
°o~----~~~~~-+ 

XI 0 4 6 8 12 14 16 22 26 
Xl 8 7 6 I! 0 2 II 3 4 

.x, 

Xl 

Jr, 
B,p 0986 

XI 046 8 12 14 16 22 26 

XI02 :. 3 7 • 8 " 13 

Jr. 
D.'. 0 • • -

• 
• • \ \ 

XI 04 6 8 1214 16 U26 

.:x, 4 3 II 6 1 13 2 II 0 

][. F.f. -0.889 

• 

.xl 0 4 12 14 16 22 2:6 
'Ie II 13 8 4 1 6 3 Z 0 

FlG. 7 .2.l--Scauer diagrams with correlations ranging from t to -0.889. 

X, 

;x, 
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The line is a "degenerate" ellipse-it has length but no width, The two 
variables keep in perfect step, any change in one being accomparned by 
a proportionate change in the other, B depicts some deviation from an 
exact relationship, the ellipse being long and thin with r slightly reduced 
below I, In C, the ellipse widens, then reaches circularity in D where 
r = 0, This denotes no relation between the two variables, E and F 
show negative correlations tending toward - I, To summarize, .the thin­
ness of the ellipse of points exhibits the magrutude of r, while the inclina­
tion of the axis upward or downward shows its sign, Note that the slope 
of the axis is determined by the scales of measurement adopted for the two 
axes of the graph and is therefore not a reliable indicator of the magnitude 
of r, It is the concentratiOn of the points near the axis of the ellipse that 
signifies high correlation, 

The larger correlations, either positive or negative, are fairly obvious 
from the graphs, It is not so easy to make a visual evaluation if the 
absolute value of r is less !han 0,5; even the direction of inclination of the 
ellipse may elude you if r is between - 03 and + 03, In these small 
samples a single dot can make a lot of difference, In D, for example, if 
the point (26, 0) were changed to (26, 9), r would be increased from 0 to 
0,505, This emphasizes the fact that sample correlations from a bivariate 
population in which the correlation is p are quite variable if n is small, In 
assessing the value of r in a table, select soine extreme values of one 
variable and note whether they are associated with extreme values of the 
other, If no such tendency can be detected, r is likely small, 

Perfect correlation (r = 1) rarely occurs in biological data, though 
values as high as 0,99 are not unheard 0[, Each field of investigation has 
its own range of coefficients, Inherited characteristics such as height ordi­
narily have correlations between 0,35 and 0,55, Among high school 
grades r averages· around 0,35 (3), Pearson and Lee got "organic correla­
tions.," that is,correlatioQS between two sucltmeas.urements as stature and 
span in the same person, ranging from 0,60 to 0,83, Brandt (2) calculated 
the sample correlation, 0.986, between live weight and warm dressed 
weight of 533 swine, Evvard ef ai, (6) estimated r = -0,68 between 
average daily gain of swine and feed required per pound gained" 

7.3-Relatioll between the sample coefficients of correlation and re­
gression. If X, is designated as the dependent variable. its regression co­
efficient on X" say b21 , is LX,X,/LX, . But if X, is taken as dependent, 
its regression coefficient on X, is b12 = LX,X,/LX/, The two regression 
lines are shown in each diagram of figure 7,2, L The two lines are the 
same only if r = ± I, as illustrated in A, although they are close together 
if r is near ± 1, In the diagrams the regression of X, on X, is always the 
line that makes the lesser angle with the vertical axis, 

The fact that there are two different regressions is puzzling at first 
sight, since in mathematics the equation by which we calculate X, when 
given X, is the same as the equation by which X, is calculated when X, 
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is given. In correlation and regression problems, however, we are dealing 
with relationships that are not followed exactly. For any fixed X, there 
is a whole population of values of X,. The regression of X, on X, is the 
line that relates the average of these values of X, to X,. Similarly, for 
each X, there is a population of values of X" and the regression of X, on 
X, shows the locus of the averages of these populations as X, changes. 
The two lines answer two different questions, and coincide only if the 
populations shrink to their means, so that X, and X2 have no individual 
deviation from the linear relation. 

A useful property of r is obtained from the shortcut method of 
computmg -'"x 2 in a regression problem. Reverting to Y and X, it will 
be recalled from the end of section 6.2 that 

Ld,./ = (n - 2)s,./ = Ly2 - (LXy)2/I:x' 

Substituting (Lxy)2 = r2Lx2Ly2, we have 

'Ld,./ = (n - 2)s,.x' = (1 - r')1:y' (7.3.1) 

Since 'Ldy ./ cannot be negative, this equation shows that. must lie be­
tween -1 and + J. Moreover, if r is ± I, 'Ld,./ is zero and the sample 
points lie exactly on a line. 

The result (7.3.1) provides another way of appraising the closeness of 
the relation between two variables. The original sample variance of Y, 
when no regression is fitted, is 5,2 = l:y'/(n - I), while the variance of the 
deviations of Y from the linear regression is (I - r')'Ly2(n - 2) as shown 
above. Hence, the proportion of the variance of Y that is not associated 
with its linear regression on X is estimated by 

·,·x' = (n - 1)(1 - r) '" (1 _ r'l 
s/ (n - 2) 

if n is at all Jarge. Thus r2 may be deseri'bed as the proportion of the 
variance of Y that can be attriouted to its (inear regression on X, while 
(I - r') is the proportion/ree from X. The quantities r' and (l - r') are 
shown in table 7.3.1 for a range of values of r. 

, 

±O.I 
±0.2 
±O.3 
±0.4 
±0.5 

TABLE 7.3.1 
ESTIMATED PROPORTIONS OF THE VARIANCE OF Y ASSOnATED AND 

NOT AssociATED WITH X IN A LINEAJl REGRESSION 

Proportion Proportion 
AsS(X;iatcd No' Associated No, 

r' (I - ,') " (I - r') 

om 0.99 iO.6 0.36 0.64 
0.04 0.96 ±O.7 0.49 0.51 
0.09 0.91 iO.S 0.64 0.36 
0.16 0.84 iO.9 0.81 0.19 
0.25 0.75 ±0.95 0.90 0.10 

-
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When r is 0.5 or less, only a minor portion of the variation in Y can 
be attributed to its linear regression on X. At r = 0.7, about half the 
variance of Y is associated with X, and at r = 0.9, about 80%. In a sample 
of size 200, an r of 0.2 would be significant at the I % level, but would 
indicate that 96% of the variation of Y was not explainable through its 
relation with X. A verdict of statistical significance shows merely that 
there is a linear relation with non-zero slope. Remember also that con­
vincing evidence of an association, even though close, does not prove 
that X is the cause of the variation in Y. Evidence of causality must 
come from other sources. 

Another relation between the sample regression and correlation coeffi­
cients is the following. With Yas the dependent variable, 

b = 1:xy = 1:xy . .Jl:y2 = r 2 
l:x2 .J(l:x2)(1:y2) .J'E.x2 

Sx 

Or, equivalently, r = b.x/s,. Thus b is easily obtained from r, and vice 
versa, if the sample standard deviations are known. 

In some applications, a common practice is to use the sample stan­
dard deviatio~ as the scale units for measuring the variates x = X - X 
and y = Y - Y. That is, the original variates X and Yare replaced by 
x' = xis, and y' = y/s" said to be in slumlard units. The sample regres­
sion line 

t - Y= b(X - X) 

then becomes 
bs 

P'S), = bx'sx. or ~' = ~ x' = rx ' 
, s, 

where'p' is the predicted value of Yin standard units. In standard measure, 
r is the regression coefficient, and the distinction between correlation and 
regression coefficients disappears. 

7.4-The bivariate Don",11 distributiOD. The popUlation correlation 
coefficient p and its 'sample estimate rare intimat('ly connected with a 
bivariate population known as the bivariate normal distribution. This 
distribution is illustrated by table 7.4.1 which shows the joint frequency 
distributions of height (X,) and length of forearm (X2 ) for 348 men. The 
data are from the article by Galton (18) in 1888 in which the term "co-rela­
tion" was first proposed. 

To be observed in the table are five features: 
(i) Each row and each column in the body of the table is a frequency 

distribution. Also, the column at the right, headed Ii, is the total fre­
quency distribution of X2 , length of forearm, and the third-to-the-last 
row below is that of X" height. 

(ii) The frequencies ate concentrated in an elliptical area with the 
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major axis inclined upward to the right. There are no very short men 
with long forearms nor any, very tall men with short forearms. 

(iii) The frequencies pile up along the major axis, reaching a peak 
near the center of the distribution. They thin out around the edges, 
vanishing entirely beyond the borders of the ellipse. 

(iv) The center of the table is at X, = 67.5 inches, X2 = 18.1 inches. 
This point happens to fall in the cell containing the greatest frequency, 
28 men. 

(v) The bivariate frequency histogram can be presented graphically 
by erecting a column over each cell in the table, the heights of columns 
being proportional to the cell frequencies. The tallest column would be 
in the center, surrounded by shorter columns. The heights would de­
crease toward the perimeter of the ellipse, with no columns beyond the 
edges. A ridge of tall columns would extend along the major axis. 

The shape of the bivariate normal popUlation becomes clear if you 
imagine an indefinite increase in the total frequency with a corresponding 
decrease in the areas of the table cells. A smooth surface would over­
spread the table, ·rising to its greatest height at the center (il" 1'2)' fading 
away to tangency with the XY plane at great distances. 

Some properties of this new model are as follows: 
(i) Each section perpendicular to the X, axis is a normal distribution, 

and likewise, each section perpendicular to the X2 axis. This means that 
each column and each row in table 7.4.1 is a sample from a normal fre­
quency distribution. 

(ii) The frequency distributions perpendicular to the X, axis all have 
the same standard deviation, 0"2'" and they have means all lying on a 
straight regression line, 1'2" = ~2 + 1l2"X" The sample means and 
standard deviations are recorded in the last two lines of the table. While 
there i~cansiderdble '\tariaciorr in S2.t, each is iHf escimate aftlre-cammon 
parameter, ([2'1' 

(iii) The frequency distribution perpendicular to the X2 axis have a 
common standard deviation, 0",. 2 (note the estimators in tbe right-hand 
column of the table), and their means lie on a second-regression line, 
1"'2 =~, + 1l"2 X2' 

(iv) Each border frequency distribut,on is normal. That on the right 
is %(1'2' 0"2), while the one below the body of the table is%(il" 0",). 

(v) The distribution of the bivariate frequency distribution has the 
coefficient, 1/21<0,0"2,)(1 - p'), followed by e with this exponent: 

- [(X, -1',)2/0", ~ - 2p(X, -1',)(X2 - 1'2)/0",0"2 + (X2 -1'2f10",' 1/2(1- p2) 

This distribution has five parameters. four of them are familiar; 
Jit, 112' a l • ([2' The fifth is the correlation coefficient, p, of which r is an 
estimator. The parameter. P. measures the closeneSs of the popUlation 
relation between Xl and X2 ; it determines the narrowness of the ellipse 
containing the major portion of the observations. 

12 
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EXAMPLE IA.I-Make 8giaph ofXl . J in thenext-to~the-last line of table 7.4.1. The 
values of Xl are the class marks at the top of the columns. The first class mark may be taken 
as 59.5 inches. 

EXAMPLE 7.4.2-Graph the Xu on the same sheet with that of Xu' The class 
marks for Xl afe laid off on the vertical axis. The first class mark may be taken as 21.25 
inches. If you are surprised that the tWO regression lines are different, remember that Xl . l 
is the mean of a column while X l.l is the mean of a row. 

EXAMPLE 7 .4.3-Graph S2.1 against Xl' You will see that there is no ttend, indicating 
that aD thes2 . 1 may be random :;amplesfrorna common 11:3:.1' 

EXAMPLE 7.4.4-the data in example 6.9.3 may be taken as a random samp\e from a 
bivariate normal population. You had X = 83 gms., Y "'" 60 mg., l:x2 = l,OOO,l:y2 = 6,854, 
l:xy == 2,302. Calculate the regression of body weight. X, on comb weight, Y. Ans, 
g "'" 83 + 0.336 (Y ~'60) gms. Draw the graph of this line along with that of example 
6.9.4. Notice that the angle whose tangent is 0.336 is measured from the Yaxis. 

EXAMPLE 7 .4.5-ln the chick: experiment, estimate t1,.Jt' Ans. s,.1t. "'" 13.9 mg. Also 
estimate u q , Ans. j'Jt" = 15.1 gms. In $Jt • .,. lhe deviations from regression are measured 
horizontally, 

EXAMPLE 7.4.6-From the chick data, estimate p. Aos. r = 0.88, 

EXAMPLE 1.4.7-U y = a + bu and x = I: + dv. where D, b. c, and d arc constants, 
prove that r 1t.y "" r MI" 

EXAMPLE 7.4.8-Thirty students scored as follows in two mathematics achievement 
tests: 

1 73 41 83 71 39 60 51 41 85 88 44 71 52 74 SO 
II 29 24 34 27 24 26 35 18 33 39 27 35 25 29 13 

I 43 85 53 85 44 66 60 33 43 76 51 57 35 40 76 
II 13 40 23 40 22 25 21 26 19 29 25 19 17 17 35 

Calculate r = 0.774. 

From the formula for r we can derive a much used expression for p. 
Write 

Dividing both sides by (n - 1), we have 

(7.4.1) 

As n becomes large, X, and X2 tend to coincide with 1', and 1'2' respec­
tively, 5, and 52 tend to equal <1, and <12' and division by (n - I) becomes 
equivalent to division by n. Hence, when applied to the whole population, 
equation 7.4.1 becomes 

p = {Average value of (X, - I',)(X, - 1',»)/<1,<12 (7.4.2) 



'" The numerator of (7.4.2) is called the population covariance of Xl and 
X" This gives 

p = Cov. (XI X, )!I1 I I1, (7.4.3) 

7.5-SampIiDg variation of the correlatioa coeIIIclent. Common ele­
ments. A convenient way to draw samples from a normal bivariate popu­
lation is by use of an old device called common elements (17). You may 
go back to the random sampling scheme of section 3.3 (p. 69), or to 
samples already drawn from table 3.2.1. In a new table, such as 7.5.1. 
record some convenient number, say three. of the random pig gains. These 
gains, or elements, are written twice in the table. Then continue the draw­
ing, adding for example, one more randomly drawn gain to the left-hand 
column, and two more to the right. The sums constitute the paired values 
of XI and X" Three such pairs are computed in the table. It is clear that 
there is a relation between the two sums in each pair. If the three common 
elements all happen to be large, then both XI and X, are likely large ir­
respective of the extra elements contained in each. Naturally. owing to 
the non-common elements, the relation is not perfect. If you continue 

TABLE 7.5.1 
CALCULATION OF THllEE PAlllS OF ""LUES Of nil: V"RIABLES Xl AND X2 HAVING 

CoMMON ELEMENTS 

Pair 

2 

3 

(The elements are pig gains from table 3.2.1) 

Elements 

;!}- common -+ {;! 
43 43 

_: } - differenl _ {~ 

~}- common -+ {~ 
19 19 

30 } ..... different -+ 

Xl = 105 

23} 38 ...... common ---
37 

_~ J ..... different -+ 

XI = 128 

J 22 
)13 

{ 
23 
38 
37 

{ 
31 
41 
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this process, drawing a hundted or more pairs, and then compute the cor­
relation, you will get a value of r not greatly different from the population 
value, 

p = 3/.J(4)(5) = 0.67 

The numerator of this fraction is the number of common elements, while 
the denominator is the geometric mean of the total numbers of elements 
in the two sums, X, and X2. Thus, if n12 represents the number of com­
mon elements, with nil and n22 designating the total numbers of elements 
making up the. two sums, then the correlation between these two sums is, 
theoretically, 

p = nll/~nlln22 

Of course, there will be sampling variation in the values calculated from 
drawings. You may be lucky enough to get a good verification with only 
10 or 20 pair.s of sums. With 50 pairs we have usually got a coefficient 
within a few hundredths of the expected parameter, but once we got 0.28 
when the population was 

n12/';n,n2 = 61../(9)(16) = 0.5 

If you put the same number of elements into X, andX2 , thenn, = n2' 
Denoting this common number of total elements by n, 

p = n12ln, 

the ratio of the number of common elements to the total number in each 
sum. In this special case, the correlation coefficient is simply the fraction 
of the elements which are common. Roughly, this is the interpretation of 
the sister-brother correlation in stature (table 7.1.1), usually not far from 
0.5: an average of some 50% of the genes determining height is common to 
sister and brother. 

Another illustration of this special case arises from the determination 
of some physical or 'themic~l constant by two alternative methods. Con­
sider the estimation of the potassium content of the expressed sap of corn 
stems as measured by two methods, the colorimetric and the gravimetric. 
Two samples are taken from the same source, one being treated by each 
of the two techniques. The common element in the two results is the actual 
potassium content. Extraneous elements are differences that may eJrist 
between the potassium contents of the two samples that were drawn, and 
the errors of measurement of the two procedures. 

The concept of common elements has been presented because it may 
help you to a better understanding of correlation. But it is not intended 
as a method of interpreting the majority of the correlations that you will 
come across in your work, since it applies only' in the type of special cir­
cumstances that we have illustrated. 

When you have carried through some calculations of r with common 
elements, you are well aware of the sampling variation of this statistic. 
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FIG. 7.S.I-Distribution of sample correlation coefficients in samples of 8 pairs drawn 
from two normally distributed bivariate populations having the indicated values of p. 

However, it would be too tedious to compute enough coefficients to gain 
a picture of the distribution curve. This has been done mathematically 
from theoretical considerations. In figure 7.5.1 are the curves for samples 
of 8 drawn from populations with correlations zero and 0.8. Even the­
former is not quite normal. The reason for the pronounced skewness of 
the latter is not hard to see. Since the parameter is 0.8, sample values 
can exceed this by no more than 0.2, but may be less than the parameter 
""Iue by as much as 1.8. Whenever there is a limit to the variation of a 
statistic at one end of the scale, with practically none at the other, the dis­
tribution curve is likely to be asymmetrical. Of course, with increasing 
sample size this skewness tends to disappear. Samples of400 pairs, drawn 
from a population with a correlation even as great as 0.8, have little 
tendency to range more than 0.05 on either side of the parameter. Conse­
quently, the upper limit, unity, would not constitute a restriction, and the 
distribution would be almost normal. 

EXAMPLE 7.5.1-ln a tea plantation (5). the production of 16 pJots during one l4-week 
period was correlated with the production of the same plots in the following period of equal 
length. The correlation coefficient was 0.91. Can you interpret this in terms of comlnOD 
elements? 

EXAMPLE 7.5.2-To prove the result that with common elements, p = nll/"n;;n;;, 
start from the result (7.4.3), which gives p = Cov. (XIX)!O"ID".z. If XI is the sum of"11 inde· 
pendent drawings from a population with standard deviation (I. then (II = (lJ"II' Similarly. 
(11 = (lJnll' To find Cov. (XIX) write XI == C + "I' Xl = C + ".2' where c. the common 
part, is the sum of the same set of n 11 drawings. Assuming that the drawings are from a 



population with zero mean, XI and X2 will have zero means. Thus, Cov. (XI Xl) = Average 
value of (X1Xz) = Average value of (c + ",)(c + "2)' But this is simply the average of c2

• 

or in other words the variance of c, since the terms cu2• CUI and "IU2 all have averages zero 
because c.", and "2 result from independent drawings. Finally. the variance of cis (t2n12• 

giving p = D'2nu/(cry'n, ",cr.Jn22) = nI21"lnl1n].2' 

EXAMPLE 7.S.1-Suppose that ",. "2. "] are independent draws from the same 
population. and that Xl = lUi + "2. X2 = lUI + "]. What is the correlation p between X, 
and X/t Ans.0.9. More generally, if Xl =/U\ + U2' X 2 =fuJ + U]. then p =.f2lif + I). 
This result provides another method of producing pairs of correlated variates. 

7.6-Testing tile noH hypothesis p = O. From the distribution of r 
when p = 0, table A 11 gives the 5% and 1% significance levels ofr. Note 
that the table is entered by the degrees of freedom, in this case n - 2. 
(This device was adopted because it enables the same table to be used in 
more complex problems.) As an illustration, consider the value r = 0.597 
which was obtained from a sample of size 9 in diagram C of figure 7.2.1. 
For 7 dj, the 5% value of r in table A 11 is 0.666. The observed r is not 
statistically significant, and the null hypothesis is not rejected. This ex­
ample throws light on the difficulty of graphical evaluation of correlations. 
especially when the number of degrees of freedom is small-they may be 
no more than accidents of sampling. Since the distribution of r is sym­
metrical when p = 0, the sign of r is ignored when making the test. 

Among the following correlations, observe how conclusions are 
affected by both sample size and the size of r: 

Number of Degrees of Conclusion About 
Pairs Freedom Hypothesis. p = 0 

20 18 0.60 Reject at I % level 
100 98 0.21 Reject at 5% level 

10 8 0.60 Not rejected 
15 13 -0.50 Not rejected 

SOD 498 -0.15 Reject at I~'~ leloiel 

You now know two methods for testing whether there is a linear rela­
tion between the variables Yand X. The first is to test the regression 
coefficient h,.x by calculating I = b,.xis. and reading the t-table with 
(n - 2) df The second is the test of r. Fisher (8) showed that the two 
tests are identical. In fact, the table for r can be computed from the 
I-table by means of the relation 

1= b,.xj.,. = r../(n - 2)/../(1 - r'), df = n - 2 (7.6.1 ) 

(See example 7.6.1). To illustrate, we found that the 5~~ level of I' for 
7 df was 0:666. Let us compute 

1= (0.666)../7/../ (I - (O.666)'} = 2.365 

Reference to the I-table(p. 549) shows that this is the 5% level of I for 7 df 
In practice. use whichever test you prefer. 
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This relation raises a subtle point. The I-test of b requires only that 
Y be normally distributed: the values of X may be normal or they may be 
selected by the investigator. On the other hand. we have stressed that r 
and p are intimately connected with random samples from the bivariate 
normal distribution. Fisl!er proved, however, that in the particular case 
p = 0, the distribution of r is the same whether X is normal or not, pro­
vided that Y is normal. 

EXAMPLE 7.6.1-To prove relation (7.6.1) which connects the Hest of b with the 
test ofr, you need three relations: (i)b"" = rs,/s",(ii)S6 = s,."I.J~X2.(iij)s.,./ = (\ - r2)ty l 
fen - 2), as shown in equation (1.3.1), p. 176. Start with r = b,js. and make these substitu­
tions to establish the result. 

7.7~oofidetlCe limits and tests of hypotheses about p. The methods 
given in this section, which apply when p is not zero, require the assump­
tion that the (X, Y) or (X" Xl) pairs are a random sample from a bivariate 
normal distribution. 

Table A II or the t-table can be used only for testing the null hy­
pothesis p = O. They are unsuited for testing other null hypotheses, such 
as p = 0.5 for example, or p, = Pl' or for makin!', confidence statements 
aboutp. Whenp #' o the shape of the distribution ofrchanges, becoming 
skew, as was seen in figure 7.5.1. 

A solution of these problems was provided by Fisher (9) who de­
vised a transformation from r to a quantity z, distributed almost normally 
with standard error 

I 
U z = , 

.,f(n - 3) 

"practically independent of the value of the correlation in the population 
from which the sample is drawn." The relation of z to r is given by 

z = Hlo!!.(1 + r) -log,(1 - r)] 

Table A 12 (r to z) and A 13 (z to r) enable us to change from one to the 
other with sufficient accuracy. Following are some examples of the use 
of z. 

I. II is required to set confidence limits 10 the !'alue of p in the popula­
tion from which a sample r has been drawn. As an example, consider 
r = - 0.889, based on 9 pairs of observations, figure 7.2.1 F. From table 
A 12,: = 1.417 corresponds tor = 0.889. Sincen = 9,11, = I/J6 = 0.408. 
Since z is distributed almost normally, independent of sample size, 
zo.o, = 2.576. For P = 0.99, we have as confidence limits fotz, 

1.417 - (2576)(0.408) :$ Z :$ 1.417 + (2.576)(0.408), 
0.366 ,; Z ,; 2.468 

Using table A 13 to find the corresponding T, and restoring the sign. the 
0,99 confidence limits for p are given by 

-0.986'; I' <; -0.350 
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Emphasis falls on two facts: (i) in small samples the estimate, r, is not 
very reliable; and (ii) the limits are Dot equally spaced on either side of r, 
a cor.sequence of its skewed distribution. 

2. Occasionally, there is reason to test the hypothesis that p has some 
particular value, other than zero, in the sampled population (p = 0, you re­
call, is tested by use of table A II). An example was given in section 7.5, 
where r = 0.28 was observed in a sample of 50 pairs from p = 0.5. What 
is the probability of a larger deviation? For r = 0.28, z = 0.288, and for 
p = 0.5, z = 0.549. The difference, 0.549 - 0.288 = 0.261, has a standard 
error, I/.J(n - 3) = 1/.J47 = 0.1459. Hence, the normal deviate is 0.261/ 
0.1459 = 1.80, which does not reach the 5% level: the sample is not as 
unusual as a l-in-20 chance. 

3. To test the hypothesis that two sample values of r are drawn at 
random from the same population, convert each to z, then test the signifi­
cance of the difference between the two z's. For two lots of pigs the cor­
relations between gain in weight amount of feed eaten are recorded in 
table 7.7.1. The difference between thez-values, 0.700, has the mean square 

I I I I 
--+ --'" -+ -=0.611 
", - 3 ", - 3 2 9 

The test is completed in the usual manner, calculating the ratio of the dif­
ference of the z's to the standard error of this difference. With P = 0.37 
there is no reason to reject the hypothesis that the z's are from the same 
population, and hence that the r's are from a common population cor­
relation. 

4. To test the hypothesis that several r's are from the same p, and to 
combine them into an estimate of p. Several sample correlations may 
possibly be drawn from a common p. If this null hypothesis is not re­
jected, we may wish to combine the r's into an estimate of p more reliable 
than that afforded by any of the separate r's. Lush (14) was interested in 
an average of the correlations between initial weight and gain in 6 lots 
of steers. The computations are shown in table 7.7.2. Each z is weighted 
(multiplied) by the reciprocal of its mean square, so that small samples 

TABLE 7.7.1 
TFST OF SlGNlFlCANtE OF THE DlFFEJt.ENU BETWEEN Two Coit.RE:LA noNS OF GAIN 

WITH FEED EATEN AMONG SWINE 

Lo! 

I 
2 

Pigs in Lot 

5 
12 

, 
0.870 
0.560 

z 

1.333 
0.633 

Difference = 0.700 

1/(_ - 3) 

0.500 
0.111 

Sum =0:0.611 

u" '," ~ .jQ.611 ~ 0.782. 0.700/0. 782 ~ 0.895. P ~ 0.37 
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TABLE 7.7.2 
TEST OF HYPOTHESIS OF CoMMON P AND EsTIMATION OF p. CoiutELATlON BETWEEN 

INlTlAl. WEIGHT AND GAIN OF SlllERS 

I Weighted Cor-
No. Weighted z Square reeted 

Samples =n n-3 , , =(n-3}z =(n-3),' = 
1927 Herefords 4 I 0.929 1.651 \ 1.651 2.726 1.589 
1927 Brahmans 13 10 0.570 0.648 6.480 4.199 0.633 
1927 Backcrosses 9 6 0.455 0.491 2.946 1.446 0.468 
1928 Herefords 6 3 -0.092 -0.092 -0.276 0.Q25 -0.055 
1928 Brahmans II 8 0.123 0.124 0.992 0.123 0.106 
1928 Backcrosses 14 II 0.323 0.335 3.685 1.234 0.321 

57 39 15.478 I 9.753 14.941 
I 

Average z",= 0.397 i 6.145 z = 0.383 

Average r = 0.371 X' = 3.608 r = 0.365 

have little weight. The sum of the weighted z's, 15.478, is divided by the 
sum of the weights, 39, to get the average Zw = 0.397. 

The next column contains the calculations that lead to the test of the 
hypothesis that the six sample correlations are drawn from a common 
population correlation. The test is based on a general result that if the k 
normal variates z, are all estimates of the same mean iJ, but have different 
variances a?, then 

I:w,(z, - zw)2 = I:w,z.' - (I:w,Z,)2jI:w, 

is distributed as X2 with (k - I) dj., where w, = l/u,2
• In this application, 

Wi = ni - 3 and 

X' = I:(n - 3)Z2 - [I:(n - 3)z j2 jl:(n - 3) 
= 9.753 - (15.478)2/39 = 3.610, 

with 5 degrees of freedom. From table A 5, p. 550, P = 0.61, so that Ho 
is not rejected. . 

Since the six sample correlations may all have been drawn from the 
same population, we compute an estimate of the common p. This is got 
by reading from table A 13 the correlation 0.377 corresponding to the 
average Zw = 0.397. Don't fail to note the great variation in these small 
sample correlations .. The S.D. of;' is I/J39. 

Fisher pointed out that there is a small bias in z, each being too large 
by 

p 

2(n - I) 

The bias may usually be neglected. It might be serious if large numbers of 
correlations were averaged, because the bias accumulates, one bit being 
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added with every t. If there is need to increase accuracy in the calcula­
tion of table 7.7.2, the average r = 0.377 may be substituted for p; then' 
the approximate bias for each t may be deducted, and the calculation of 
the average z repeated. Since this will decrease the estimated r, it is well 
to guess p slightly less than the average r. For instance, it may be guessed 
that p = 0.37, then the correction in the first z is 0.37/2(4 - I) = 0.062, 
and corrected z is 1.651 - 0.062 = 1.589. The other corrected z's are in 
the last column of the table. The sum of the products, 

I:(n - 3)(corrected z) = 14.941, 

is divided by 39 to get the corrected mean value of z, 0.383. The cor­
responding correlation is 0.365. 

For tables of the distribution of r when p #. 0, see reference (4). 
EXAMPLE 7.7.1-To get an idea of how the selection of pairs affects correlation. try 

picking the five lowest values of test II (example 7.4.8) together with the six highest. The 
correlation between these II scores and 'the corresponding scores on test I turns out to be 
0.89, as against r = 0.77 for the original sample. 

EXAMPLE 7.7.2-Set 95% confidence limits to the correlation, 0.986. n = 533, be­
tween live and dressed weights of swine. Ans. 0.983 - 0.988. 

What would have been the confidence limits if the number of :iwine had been 25? 
Ans. 0.968 - 0.994. 

EXAMPLE 7.7.3--10 four studies of the correlation between wing and tongue length 
in bees, Grout (10) found values. of r = 0.731,0.354,0.690, and 0.740, each based on a sample 
of 44. Test the hypothesis that these are samples from a common p. Ans. X2 = 9. J 64. 
df = 3, P = 0.03. In only about three trials per 100 would you expect such diagreement 
among four correlations drawn from a common population, One would like to know more 
about the discordant correlation, 0.354, before drawing conclusions. 

EXAMPLE 7.7 .4·--Estimate p in the population from which the three bee correlations, 
0.731. 0.690, and 0.740, were drawn. Ans. 0.72], 

EXAMPLE 7.7 .5~-Set 99% confidence limits on the foregoing bee correlation. Note: 
r = 0.721 is based on (n ~ 3) = 3 x 41 = 123. The value of z is therefore equivalent to a 
single z from a sample of 123 + 3 = 126 bees. The confidence limits are: 0.590 - 0.815. 

7.S-Practical utility of correlation and regression. Over the last 
forty years, investigators have tended to increase their use of regression 
techniques and decrease their use of correlation techniques. Several 
reasons can be suggested. The correlation coefficient r merely estimates 
the degree of closeness of linear relationship between Yand X. and the 
meaning of this concept is not easy to grasp. To ask whether the relation 
between Y and X is close or loose may be sufficient in an early stage of 
research. But more often the interesting questions are: How much does 
Y change for a given change in X" What is the shape of the curve con­
necting Y and X" How accurately can Y be predicted from X" These 
questions are handled by regression techniques. 

Secondly, the standard results for the distribution of r as an estimate 
of a non-zero p require random sampling from a bivariate normal popula· 
tion. Selection of the values of X at which Y is measured. often done in· 
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tentionally or because of operational restrictions, can distort the frequency 
distribution of r to a marked degree. 

The correlation between two variables may be due to their common 
relation to other variables. The organic correlations already mentioned 
are examples. A big animal tends to be big all over, so that two parts are 
correlated because of their participation in the general size. Over a period 
of years, many apparently unrelated variables rise or fall together within 
the same country or even in different countries. There is a correlation of 
-0.98 between the annual birthrate in Great Britain, from 1875 to 1920, 
and the annual production of pig iron in the United States. The matter 
was discussed by Yule (19) as a question: Why do we sometimes get 
nonsense-correlations between time series? Social, economic, and tech­
nological changes produce the time trends that lead to such examples. 

In some problems the correlation coefficient enters naturally and use­
fully. Correlation has played an important part in biometrical genetics, 
because many of the consequences of Mendelian inheritance, and later 
developments from it, are expressed conveniently in terms of the correla­
tion between related persons or animals. 

A second example occurs when we are trying to select persons with 
high values of some skill Y by means of examination results X. If Yand 
X follow the bivariate normal distribution, the average Y value, say Y, 
of candidates whose exam score is X is given by the equation 

(Y - il-y)la y = p(X - il-x)lr1x 

Suppose we select the top P"10 in the exam. For the normal curve, the 
average value of (X - I'x)/r1x for the selected men may be shown to be 
HIP when there a;e many candidates, where H is the ordinate of the 
normal curve at the point that separates the top P"10 from the remaining 
(I - P)%. When P = 5%, the ordinate H = 0.1032, and HIP = 2.06. 
Thus the average Y value of the top 5% is 2.06p in standard units. If 
p = 0.5 this average is 1.03. From the normal tables we find that when 
HIP = 1.03, the corresponding P is 36%. This means that with p = 0.5, 
the5% most successful performers in the exam have only the same average 
ability as the top 36% of the original candidates. The size of p is the key 
factorin determining bow well we can select high values of Y by a screening 
process based on X. 

In hydrology, suppose tbat there are annual records Y of the flow 
of a stream for a relatively short period of m years,'and records X of a 
neighboring stream for a longer period of n years. Instead of using Ym 

as the estimate of the long-term mean I'y of Y, we might work out the 
regression of Yon X and predict I'y by the formula 

The proportional reduction in variance due to this technique, known 
as stream extension, is approximately 
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V(Ym ) - V(py) ,,}n - m)r
p1 _ (1 - p')] 

V(Ym ) n ~ m - 3 

Here again it is the value of P. along with the lengths of run available 
in the tWo streams. that determines whether this technique gives worth-
while gains in precision. ' 

7.9-Variances ofsums and differences of correlated variables. When 
XI and X, are independent. a resuil used previously is that the variance of 
their sum is the sum of their variances. When they are correlated. tne 
mOre general result is 

(7.9.1) 

Positive correlation increases the variance of a sum, negative correlation 
decreases it. The corresponding sample result is 

(7.9.2) 

This identity is occasionally used as a check on the computation of 5 1.5,. 

and r from a sample. For each member of the sample. XI + X, is written 
down and the sample variance of this quantity is obtained in the usual way. 

For the difference D = XI - X,. the variance is 

(7.9.3) 

With differences. positive correlations decrease the variance. In paired 
experiments. the goal in pairing is to produce a positive correlation p 
between the members XI' X, of a pair. The pairing does not affect the 
term (0'1' + 0'/) in (7.9.3). but brings in a negative term. 2pU I U 2 • 

If we have k variates, with Pi; the correlation between the ith and the 
jth variates, their sum S = Xl + X 2 + ... + X. has variance 

(J/ = 0'1
2 + (1/ + ... + (/,/ + 2PllO'l0'2 + 2P130'1(J3 + ... 

+ 2p._I •• Ut_IUt (7.9.4) 

where the cross-product terms 2pij(JjCTJ extend over every pair of variates. 
EXAMPLE 7.9.1~ To prove formula (7.9.1), note that by the definition of a variance. 

the variance of XI + X2 is the average value of (X, + X2 - PI - ,u2)2. taken over the popula­
tion. Write this as 

E{(XI - lid + (X2 - 1l2}}2 = E(X1 - Ild2 + E(X2 - JiI)l + 2E(Xj - JiI)(X2 - Ji2) 

where the symbol E (expected value) stands for ""the average value of." This gives 

since by equation (7.4.2) (p. 180), E(X1 - JJl)(X1 - Ji2) = /)tJltr l . Formulas (7.9.3) and 
(7.9.4) are proved in the same way. 
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EXAMPLE 7.9,2-ln a sample of 300 ears ofcaro (7), the weight of the grain. G, had a 
standard deviation s, = 24.62 gms.; the weight of the cob, C, had a standard deviation 
St = 4.19 gms.; andr" was 0.6906. Show that the total ear weight W = G + Chad ~w = 27.7 
gms. and that r .. , = 0.994. 

EXAMPLE 7.9.3-ln table 7.1. 1. subtract each sister's height from her brother's. then 
compute the corrected sum of squares of the differences. Verify by formula (7.9.3) that your 
result agrees with the values I:x 1

2 = 74 l:x/ "'" 66, I:x1Xl = 39. given under table 7.1.1. 

EXAMPLE 7.9.4-If rn = t. show that $n = .$, - 52' where $\ ~ S2' 

7.10-The calculation of r in a large sample. When the sample is 
large, the variates X and Yare often grouped into classes, as illustrated 
in table 7.10.1 for a sample of 327 ears of corn (20). The diameters X 
are in millimeter classes and the weights Y in 10-gram classes. The figures 
in the body of the table are the frequencies h, in each X and Y class. 
Looking at the class with diameter' 48 and weight 300, we see that there 
wereh, = 3 ears in this class, i.e., with diameters between 47.5 and 48.5 
mm., and weights between 295 and 305 gms. Correlation in these data 
is evidenced by the tendency of high frequencies to lie along the diagonal 
of the table, leaving two corners blank-there are no very heavy ears with 
small diameters. 

The steps in the calculation are as follows; 
1. Add the frequencies in each row, giving the column of valuesJ" 

and in each column, giving the row of values h. 
2. Construct a convenient coding of the weights and diam~ters. writ­

ing down the coded Y and X values. 
3. Write down a column of the values YJ, and a row of the values Xix, 
4. The quantities r,Xf., r, Yf" r,x' and r,y2 are now found on the 

calculating machine in the usual way, and are entered in table 7.10.2. 
5. The device for finding r,xy is new. In each row. multiply the 

Jx, by the corresponding coded X, and add along the row. As examples: 

(i) In the 4th row: 
(iii) In the 7th row: 

(1)(2) + (1)(4) = 6 
(1)( -2) + (3)( -I) + (7)(1) + (3)(3) + (.1)(4) = 23 

These are entered in the right-hand column, r,XIx,. Then form the 
sum of products or this column with the coded Y column. giving 
r,XYh, = 2,318. The correction term is subtract~d as shown in t.bie 
7.10.2 to give LXY = 2,323.20. ~ 

6. The value of r is now computed (table 7.1O.:n No de"oding is 
necessary for f. 

As partial checks. the hand 1, values hoth add to the sample sizo. 
while the column LXh, in step 5 adds to the value r, )(/, found in stop 4 

A large sample provides a good opportunity for checklDS the .5' 

sumptions required for the distribution of r. If each number LX!., in 
the right-hand column is divided by the correspondmgjy, we obtain the 
mean of X in each array (weight class). These may be plotted against Y 
to see whether the regression of X on Y app~ars linear. Similarly, by 
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TABLE 7.10.2 
CALCUl,.ATION OF COJUtELATJON COEFFJCIEN't IN TABLE 1.10. t 

:EX/. = 37 
:EX'!. = 2,279 

fr.X!.)'/. = 4.19 

:E Yf. = -46 
I Y'/, = 7,264 

Cr. Y/,)'/n = 6.47 

Ix' = 2,274.81 ty' = 7,257.53 

tXY!., = 2,318 
(IX/.)(I yr,)/. = - 5.20 

:Exy 2,323.20 
0.5718 ,= .j(txJ)(ty') = .J(t,274.81)(7,257.S3) 
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extra calculation the values 1: YIx, and the Y means may he obtained for 
each column and plotted against X. A test for linearity of regression is 
given in section 15.4. The model also assumes that the variances of Yin 
each column, sr/, are estimates of the same quantity, and similarly for 
the variances of sx./ of X within each row. Section 10.21 supplies a test 
of homogeneity of variances. 

EXAMPLE 7.10.1-Using the data in columns!, and Y. table 7.10.1. calculatel:yl 
= 7,257.53, together with the sample mean and standard error, 198.6 ± 2.61. 

EXAMPLE 7.1O.2--Calculate the sample mean, 44.1, and standard deviation. 2.64, 
in the 42-millimeter array of weights. table 7.10.1. 

EXAMPLE 7.10.3-10 the 200-gram array of diameters. compute X == 198.6 and 
5=47.18. 

EXAMPLE 7.1O.4---Compute the sample regression coefficient of weight on diameter. 
1.0213. together with the regression equation. f = I ,Oi'l3X + I S4.8 \. 

EXAMPLE 7.IO.S-Calculate the mean diameter in each of the 28 weight.arrays. Plot 
these means against the weight class marks. Does there seem to be any pronounced cuni· 
lineal ity in the regression of these mean diameters on the weight'? Can you write the regres­
sion equation giving estimated diameter for each weight? 

EXAMPLE 7.1O.6--Calculate the sample mean weight of the ears in each. of the 16 
diameter arrays of table 7.10.1. Present these means graphically as ordinates with the 
corresponding diameters as abscissas. Plot the graph of the regression equation on the 
same figure. Do you get a good fit'? Is there any evidence ofcurvilinearity in the regression 
of means'? 

"' 7.II-NOII-parametric methods. Rank correlation: Often, a bivariate 
population is far from normal. In that event. the computation of r as 
an estimate of p is no longer valid. In some cases a transformation of the 
variables X, and X, brings their joint distribution close to the bivariate 
normal, making it possible to estimate p in the new scale. Failing this. 
methods of expressing the amount of correlation in non-normal data by 
mean, of a parameter like p have not proceeded very far. 

Nevertheless, we may still want to examine whether two variables are 
independent, or whether they vary in the same or in opposite directions. 
For a test of the null hypothesis that there is no correlation. r may be used 
provided thalone of the variables is r ormal. When neilher variable seems 
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TABLE 1.11.1 
RANKINO Of SEVEN RATS BY Two OBSERVERS Of 'fIIEIR CoNDrnoN AFI'ER 1'HJtEE WI!IIXS 

ON A Dl!PiCII!NT DIET 

Rat to; Ranking by Difference, 
Number bserver 1 Observer 2 d d' 

1 I 4 4 0 0 
2 1 2 -1 1 
l 6 5 1 1 
4 5 6 -I 1 
5 l 1 2 4 
6 2 l -1 1 
1 1 1 0 0 

:Ed = 0 l:.da ,. 8 
---

rs = 1 -
6I.d2 6 x S 

-1-
n(n' - 1) 1(49 - 1) 

0.851 

normal, the best-known procedure is that in which X, and X, are both 
rankings. If two judges each rank 12 abstract paintings in order of at­
tractiveness, we may wish to know whether there is any degree of agree­
merit among the rankings. Table 7. 11.1 shows similar rankings of the 
condition of 7 rats after a period of deficient feeding. With data that 
are not initially ranked, the first step is to rank X, and X, separately. 

The ,ank correlation coefficient, due to Spearman (I I) and uSually 
denoted by,s, is the ordinary correlation coefficient, between the 
,anked values X, and X,. It can be calculated in the usual way as 
:E(x,x,)I.j(:Ex/)(I:x/). An easier method of computing' is given by 
the formula 

6I:d' 's = 1 - 1, , 
n(n - 1) 

whose calculation is explained in table 7.11.1. Like" the rank correlation 
can range in samples from -I (complete discordance) to + 1 (complete 
concordance). 

For samples of 10 or fewer pairs, the significance levels of,s, worked 
out by Kendall (12), (13), are given in table 7.11.2. In the rankings ofthe 
rats, 's = 0.857 with 7 pairs. The correlation is significant at the 5% level 
but not at the 1%. For samples of more than 10 pairs, the null distribu­
tion of,s is similar to that of" and table A II is used for testing 's' Re­
member that the degrees of freedom in table A II are two less than the 
number of pairs (size of sample). 

Another measure of degree of concordance, closely related to 's, is 
Kendall's f (12). To compute this, rearrange the two rankings so that 



TABLE 7.11.2 
SlGNGtCANCE LEVELs OF rS IN SMALL SAMPLES 

Size of Sample 

4 or less 
5 
6 
7 
8 
9 

10 
11 or more 

5% Level 1% Level 

none none 
1.000 none 
0.886 1.000 
0.750 0.893 
0.714 0.857 
0.683 0.833 
0.648 0.794 

Use tabl. A II (po 557) 

J'~ 

one of them is in the order I, 2, 3, ... n. For table 7.11.1, putting ob­
server 1 in this order, we have: 

Rat No. 

Observer I 
Observer 2 

2 

I 
2 

6 

2 
3 

5 

3 
I 

4 
4 

4 

5 
6 

3 

6 
5 

7 

7 
7 

Taking each rank given by observer 2 in turn, count how many of the 
ranks to the right of it are smaller than it, and add these counts. For the 
rank 2 given to rat No. 2 the count is I, since only rat 5 has a smaller 
rank. The six counts are I, I, 0, 0, I, 0, there being no need to count the 
extreme right rank. The total is Q = 3. Kendall's < is 

< = 1 _ 4Q = 1 _ 12 = ~ = 0.714 
n(n - 1) 42 7 

Like r" t lies between + 1 (complete concordance) and -I (complete 
disagreement). It takes a little longer to compute, but its frequency dis­
tribution on the nul) hypotheses is simpler and it can be extended to study 
partial correlation. For details, See (12). 

The quantities r, and t can be used as a measure of ability to appraise 
or detect something by ranking. For instance, a group of subjects might 
each be given bottles containing four different strengths of a delicate per­
fume and asked to place the bottles in order of the concentration of per­
fume. If XI represents the correct ranking of the strengths and X2 a 
subject's ranking, the value of r, Or t for this subject measures, although 
rather crudely, his success at this task. From the results for a sample of 
men and women, we could investigate whelher women are belter al lhis 
task than men. The difference between f or r, for women and men could 
be compared, approximately, by an ordinary I-test. 

7.12-The comparison or lwII correlaled variances. In section 4.15 
11'. 116) we showed how to test the null hypothesis that two indep'NiertI 

13 
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estimates of variance, S ~' and s,' , are each estimates of the same unknown 
population variance". The procedure was to calculate F= s/Is,', 
where s/ is the larger of the two, and refer to table 4.15.1 or table A 14. 

This problem arises also when the two estimates s/ and s,' are cor­
related. For instance, in the sample of pairs of brothers and sisters 
(section 7.1.), we might wish to test whether brother heights, X" are 
more or less variable than sister heights, X,. We can calculate s/ and 
s,', the variances of the two heights between families. But in our sample 
of II families the correlation between X, and X, waS found to be, = 0.558. 
Although this did nol reach the 5% level of, (0.602 for 9 df), the presence 
of a correlation was confirmed by Pearson and Lee's value of, = 0.553 
for the sample of 1,40 I families from which our data were drawn. In 
another application, a specimen may be sent to two laboratories that 
make estimates X" X, of the concentration of a rare element contained 
in it. Ifa number of specimens are sent, we might wish to examine whether 
one laboratory gives more variability in results than the other. 

The test to be described isvalid for a sample of pairs of values X,, X, 
that follows a bivariate normal. It holds for any value p of the population 
correlation between X, and X,. If you are confident that p is zero, the 
ordinary F-test should be used, since it is slightly more powerful. When 
p is not zero, the F-test is invalid. 

The test is derived by an ingenious approach due to Pitman (15). 
Suppose that X, and X, have variances" / and ",' and correlation p. 
The null hypothesis states that" / = ",': for the moment, we are nol 
assuming that the null hypothesis is necessarily true. Since X, and X, 
follow a bivariate normal, it is known that D = X, - X, and S = X, + X, 
also follow a bivariate normal. Let us calculate the correlation PDS be­
tween D Ilnd S. From section 7.9, 

(fD
2 

=' (Tt
2 + (12

2 
- 2fX1t(12 

(15
2 = 0'1

2 + (12
2 + 2pU t(12 

Cov.(DS) = Cov.(X, - X,)(X, + X,) = a,' - a,' 
since the two terms i!! Cov. (X,X,) cancel. Hence 

PDS = (a,' - a,')I.j{(uI' + a,')' - 4p'a ,'a,'} 

If I/> = a,' la,' is the variance-ratio of a I' to a,', this may be written 

POS = (I/> - 1)1.j{(1/> + I)' - 4p'l/>} (7.12.1) 

Under the null hypothesis, t/> = I, so that PDS = O. If a.' > a,', then 
I/> > I and PDS is positive, while if a,' < a,', PDS is negative. 

Thus, the null hypothesis can be tested by finding D and S for each 
pair, computing the sample correlation coefficient 'DS. and referring to 
table A II. A significantly positive value of 'os indicates a,' > a/, 
while a significantly negative one indicates (J 1 2 < q 22. 

Alternatively, by the same method that led to equation (7.12,1), r DS 
can be computed as 



rDS = (F - 1)/,j{(F + I)' - 4r'F}, 

where F = .,2/S/ and r is the correlation between X, and X,. 
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(7.12.2) 

In a sample of 173 boys, aged 13-14, height had a standard deviation 
" = 5.299, while leg length gave ., = 4.766, both figures being expressed 
as percentages of the sample means (16). The correlation between height 
and length was r = 0.878, a high value, as would be expected. To test 
whether height is relatively more variable than leg length, we have 

F = (5.299/4.766)' = 1.237 

and from equation (7.12.2), 

r". = (0.237)/,j{(2.237)' - 4(O.878)'(1.237)} = 0.237/1.136 = 0.209 

withdf = 173 - 2 = 171. This value OfrDS is significant at the 1% level, 
since table A II gives the 1% level as 0.208 for 150 df 

The above test is two-tailed: for a one-tailed test, use the 10"1. and 2% 
levels in table A II. 

This approach also provides confidence limits for 41 from a knowledge 
of Fand r. The variates D' = (X,/O", - X,/O",) and S' = (X,/O", + X,/O",) 
are uncorrelated whether 0", equals 0", or not. The sample correlation 
coefficient between these variates, say R, therefore follows the usual dis­
tribution of a sample correlation when p = O. As a generalization of 
formula 7.12.2, the value of R may be shown to be 

R = (F - q,)/,j{(F + 41)2 - 4r2Fq,} 

In applying this result, it is easier to use the t-table than that of r. The 
value of c is 

c = (F - q,)~/2,j{(1 - r2)Fq,} (7.12.3) 

If 41 is much smaller than F, t becomes large and positive: if 41 is much larger 
than F, c becomes large and negative. Values of 41 that make c lie between 
the limits ± to.o, form a 95% confidence intervaL The limits found by 
solving (7.12.3) for 41 are computed as 

41 = F{K ± ,j(K' - IH, 
where 

K I 
2(1 - ,')10.0'> =. + 

(n - 2) df for '0.0' = n - 2 
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* CHAPTER EIGHT 

Sampling from the binomial 
distribution 

8.1-lntroduction. In chapter I the sampling of attributes was used 
to introduce some common statistical terms and techniques----<!stimators, 
confidence intervals, the binomial distribution, tests of significance, and 
the chi·square test as applied to a simple proportion. We return to the 
sampling of attributes in order to fill In the mathematical background of 
these techniques. The binomial distribution and its relation to the normal 
distribution will be examined more thoroughly. Further, just as you 
learned how to compare the means of two normal samples, independent 
or paired, we shall study the comparison of two proportions from inde­
pendent samples and from paired samples. 

Suppose that an attribute is possessed by a proportion p of the mem­
bers of a population. A random sample of size n is drawn. The binomial 
distribution gives a formula for the probability that the sample contains 
exactly r members having the attribute. The formula is derived from some 
rules in the theory of probability, now to be explained. 

8.2-Some simple rules of probability. The study of probability 
began around three hundred years ago. At that time, gambling and games 
of chance had become a fashionable pastime, and there was much interest 
in questions about the chance that a certain type of card would be drawn 
from a pack, or that a die would fall in a certain way. 

In a problem in probability, we are dealing with a trial, about to 
be made. that can have a number of different outcomes. A six-sided die. 
when thrown, may show any of the numbers I, 2, 3, 4, 5, 6 face upward.­
these are the outcomes. Simpler problems in probability can often be 
solved by writing down all the different possible outcomes of the trial. 
and recognizing that these are equall>' likely. Suppose that the letters 
a, b, c, d, e.j, g are written on identical balls which are placed in a bag and 
mixed thoroughly. One ball is drawn out blindly. Most people would 
say without hesitation that the probability that an a is drawn is 117, 
because there arc 7 balls, one of them is certain to be drawn, and all are 
equally likely. In general terms, tbis result may be stated as follows. 
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Rule I. If a trial has k equally likely outcomes, of which one and 
only one will happen, the probability of any indiyidual outcome is Ilk. 

The claim that the outcomes are equally likely must be justified by 
knowledge of the exact nature of the trial. For instance, dice to be used 
in gambling for stakes are manufactured with care te ensure that they are 
cubes of even density. They are discarded by gambling establishments 
after a period of use, in case the wear, though not detectable by the naked 
eye, has made the six outcomes no longer equally likely. The statement 
that the probability is 1/52 of drawing the ace of spades from an ordinary 
pack of cards assumes a thorough shuffling that is difficult to attain, par­
ticularly when the cards are at all worn. 

In some problems the event in which we are interested will happen if 
anyone of a specific group of outcomes turns up when the trial is made. 
With the letters a, b, c, d, e,f, g, suppose we ask "what is the probability 
of drawing a vowel?" The event is now" A vowel is drawn." This will 
happen if either an a or an e is the outcome. Most people would say that 
the probability is 2/7, because there are 2 vowels present out of seven 
competing letters, and each letter is equally likely. Similarly, the prob­
ability that the letter drawn is one of the first four letters if 4/7. These 
results are an application of a second rule of probability. 

Rule 2. (The Addition Rule). If an event is satisfied by anyone of a 
group of mutually exclusive outcomes, the probability of the event is the 
sum of the probabilities of the outcomes in the group. 

In mathematical terminology, this rule is sometimes stated as: 

P(E) = P(O, or 0, or ... or Om) = P(O,) + P(O,l + ... + P(Om)' 

where P(O,) denotes the probability of the ith outcome. 

Rule 2 contains one condition: the outcomes in the group must be 
mutually exclusive. This phrase means that if anyone of the outcomes 
happens, all the others fail to happen. The outcomes "a is drawn" and 
"e is drawn" are mutually exclusive. But the outcomes "a vowel is drawn" 
and "one of the first four letters is drawn" are not mutually exclusive, 
because if a vowel is drawn, it might be an a, in which case the event "one 
of the first fOur letters is drawn" has also happened. 

The condition of mutual exclusiveness is essential. If it does not 
hold, Rule 2 gives the wrong answer. To illustrate, consider the prob­
ability that the letter drawn is either one of the first four letters or is a 
vowel. Of the seven original outcomes, a, b, c, d, e, f, g, five satisfy the 
event in question, namely a, b, c, d, e. The probability is given correctly 
by Rule 2 as 5/7, because these five outcomes are mutually exclusive. But 
we might try to shortcut the solution by saying ''The probability that one 
of the first four letters is drawn is 4/7 and the probability that a vowel is 
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drawn is 2/7. Therefore, by Rule 2, the probability that one or the other 
of these happens is 6/1." This, you will note, is the wrong answer. 

In leading up to the binomial distribution we bave to consider tbe 
results of repeated drawings from a population. The successive trials or 
drawings are assumed indepentknt of one anotber. Tbis term means that 
tbe outcome of a trial does not depend in any way on what happens in 
the other trials. 

With a series of trials the easier problems can again be solved by 
Rules I and 2. For example, a bag contains the letters a, b, c. In trial I a 
ball is drawn after thorough mixing. The ball is replaced, and in trial 2 
a ball is again drawn after thorough mixing. What is the probability that 
both balls are a? First, we list all possible outcomes of the two trials. 
These are (a, a), (a, h), (a, c), (h, a), (b, b), (b, c), (e, a), (e, b), (e, c), where 
the first letter in a pair is the result ofttiall and tbe second that of trial 2. 
Then we claim that these nine outcomes of the pair of trials are equally 
likely. Challenged to support this claim, we might say: (i) a, b, and 
are equally likely at the first draw, because of the thorough mixing, and, 
(ii), at the second draw, the conditions of thorough mixing and of inde­
pendence make all nine outcomes equally likely. The probability of (a, a) 
is therefore 1/9. 

Similarly, suppose we are asked the probability that the two drawings 
contain no c's. This event is satisfied by four mutually exclusive out­
comes: (a, a), (a, h), (b, a), and (b, h). Consequently, the probability 
(by Rule 2) is 4/9. 

Both the previous results can be obtained more quickly by noticing 
that the probability of the combined event is the product of the prob­
abilities of the desired events in the individual trials. In the first problem 
the probability of an a is 1/3 in the first trial and also 1/3 in the second trial. 
The probability that both events happen is 1/3 x 1/3 = 1/9. In the second 
problem, the probability of not drawing a cis 2/3 in each individual trial. 
The probability of the combined event (no c at either trial) is 2/3 x 2/3 
= 4/9. A little rellection will show that the numerator of this product 
(I or.4) is the number of equally likely outcomes of the two drawings that 
satisfy the desired combined event. The denominator, 9, is the total 
number of equally likely outcomes in the combined trials. The prob­
abilities need not be equal at the two drawings. For example, the probabil­
ity of getting an {I at the first trial but not at the second is 1/3 x 2/3 = 2/9, 
the outcomes that produce this event being (a, b) and (a, c). 

Rule 3. (The Multiplication Rule). In a series of independent trials. 
the prObability that each of a specified series of events happens is the 
product of the probahilities of the individual events. 

I n mathematical terms, 
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In practice. the assumption that trials are independent, like the as­
sumption that outcomes are equally likely. must be justified by knowledge 
of the circumstances of the trials. In complex probability problems there 
have been disputes about the validity of these assumptions in particular 
applications. and some interesting historical errors have occurred. 

This account of probability provides only the minimum background 
needed for working out the binomial distribution. Reference (1) is recom­
mended as a more thorough introduction to this important subject at an 
elementary mathematical level. 

EXAMPLE 8.2.J-A bag contains the Jetters..4, b, c, D, e,f, G, h. 1. If each leiter is 
equally likely to be drawn. what is the probability of drawing: (i) a capital letter, (ii) a vowel, 
(iii) either a capital or a vowel. Ans. (i) 4/9, (ii) 1/3, (iii) 5/9. Does Rule 2 apply to the two 
events mentioned in (iii)? 

EXAMPLE 8.2.2-Three bags contain, respectively, the letters at b; c, d, e;[, g, h, i. 
A letter is drawn independently from each bag. Write down aJl24 equally likely outcomes of 
the three drawings. Show that six of them give a consonant from each bag. Verify that 
Rule 3 gives the correct probability of drawing a consonant from each bag 0/4). 

EXAMPLE 8.2.3-Two six-sided dice are thrown independently. Find the probability: 
(i) that the first die gives a 6 and the second at least a 3, (il) that one die gives a 6 and the 
other at least a 3, (iii) that both give at least a 3, (iv) that the sum of the two scores is not 
more than 5. Ans. (i) IJ9. (ii) 2/9. (iii) 4/9. (iv) 5/18. 

EXAMPLE 8.2.4-From a ba8 with the letters a, b, c, d, e a letter is drawn and laid 
aside, then a second is drawn. By writing down all equally likely pairs of outcomes, show 
that the probability that both letters are vowels is 1/10. This is a problem to which Rule 3 
does not apply. Why not? 

EXAMPLE 8.2.5-If two trials are not independent, the probability that event El 
happens at the first trial and E1 at the second is obtained (1) by a generalization of Rule 3; 
P(EJ and E2) = P(EJ)P(El , given that EJ has happened). This last factor is called the condi­
tional probability of E2 given £J' and is usually written P(E2jE1). Show that this rule gives 
the answer. 1(10. in example 8.2.4, where E 1• E2 are the probabilities of drawing a vowel at 
the first and second trials, ·respectively. 

In many applications, the probability of a particular outcome must 
be determined by a statistical study. For instance, insurance companies 
are interested in the probability that a man aged sixty will live for the next 
ten years. This quantity is calculated from national statistics of the age 
distribution of males and of the age distribution of deaths of males. and 
is published in actuarial tables. Provided that the conditions of inde­
pendence and of mutually exclusive outcomes hold where necessary. Rules 
2 and 3 are applied to probabilities of this type also. Thus. the probability 
that three men aged sixty, selected at random frem a population, will all 
survive for ten years would be taken as p3. where p is the probability that 
an individual sixty· year-old man will survive for ten years. 

8.3-The binomial distribution. A proportion p of the members of a 
population possess some attribute. A sample of size n = 2 is drawn. Tbe 
result of a trial is denoted by S (success) if the member drawn has the 
attribute and by F (failure) if it does not. In a single drawing, p is the 
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TABLE 8.3.1 
THB BINOMIAL DIsTRIBUTION FOIl n = 2 

(I) (2) (3) (4) 

Outcomes of Trial No. of 
I 2 Probability SlWCCSOCS Probability 

F F 99 0 tI 
F S :} 2pq 
s F 

S S pp 2 p' 

Total 

probability of obtaining an S, while q = I - P is the probability of ob­
taining an F. Table 8.3.1 shows the four mutually exclusive outcomes of 
the two drawings, in terms of successes and failures. 

The probabilities given in column (2) are obtained by applying 
Rule 3 to the two trials. For example, the probability of two successive 
F's is qq, or q'. This assumes, of course, that the two trials are inde­
penoent, as is necessary if the binomial distribution is to hold. Coming 
to the third column, we are now counting the number of successes. Since 
the two middle outcomes, FS and SF, both give I success, the probability 
of I success is 2pq by Rule 2. The third and fourth columns present the 
binomial distribution for n = 2. As a check, the probabilities in columns 
2 and 4 each add to unity, since 

q' + 2pq + p' = (q + p)' = (1)2 = I 

TABLE 8.3.2 
THE BINOMIAL DISTRibUTION FOR n = 3 

(I) 12) (3) (4) 

Outcomes of Trial No. of , 
I 2 3 Probability Successes Probability 

F F F qqq 0 q' 

F F S qqp } 
F S F qpq 3pq' 
S E F pqq 

F S S <lPP} s F S pqp , 3p2q 
S S F ppq 

S oS S ppp 3 p" 
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In the same way, table 8.3.2 lists the eight relevant outcomes for n = 3. 
The probabilities in the second and fourth columns are obtained by Rules 
3 and 2 as before. Three outcomes provide 1 success, with total prob­
ability 3pq2, while three provide 2 successes with total probability 3p2q. 
Check that the eight outcomes in the first column are mutually exclusive. 

The general structure of the binomial formula is now apparent. The 
formula for the probability of r successes in n trials has two parts. One 
part is the term p'if -, This follows from Rule 3, since any outcome of 
this type must have r S's and (n - r) F's in the set of n draws. The 
other part is the number of mutually exclusive ways in which the r S's 
and the (n - r) Fs can be arranged. In algebra this term is called the 
number of combinations of, letters out of n letters. It is denoted by the 
symbol G). The formula is 

(
n) ~ n(n - l)(n - 2) ... (n - , + 1) 

r ,(r - 1)(, - 2) ... (2)(1) 

For small samples these quantities, the binomial coefficients, can be 
written down by an old device known as Pascal's triangle, shown in table 
8.3.3. 

Each coefficient is the sum of the two just above it to the right and 
the left. Thus, for n = 8, the number 56 = 21 + 35. Note that for any 
n the coefficients are symmetrical, rising to a peak in the middle. 

Putting the two parts together, the probability of r successes in a 
sample of size n is 

(
n) , "_, _ n(n - l)(n - 2) ... (n - , + 1) _, 
, p q - ,(, - l)(r - 2) ... (2)(1) p'q" 

These probabilities are the successive terms in the expansion of the bi­
nomial expression (q + p)". This fact explains why the distribution is 
called binomial, and also verifies that the sum of the probabilities is I, 
since (q + p)" = (l)" = 1. 

TABLE 8.3.3 
BINOMIAL COEFFICIENTS GIVEN BY PASCAL'S TRIANGLE 

Size of Sample Binomial Coefficients 

n 
I 
2 2 
3 3 3 
4 4 6 4 
5 5 10 10 5 
6 6 15 20 15 6 
7 7 21 35 35 21 7 
8 8 28 56 70 56 28 8 

eOC. 
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FIG. 8.3. I-Binomial distributions for n = 8. Top: p = 0.2. 
Middle: p = 0.5, Bottom: p = 0.9. 

For n = 8, figure 8.3.1 shows these distributions for p = 0.2,0.5. and 
0.9. The distribution is positively skew for p less than 0.5 and negatively 
skew for p greater than 0.5. For p = 0.5 the general shape. despite the 
discreteness, bears some resemblance to a normal distribution. 

Reference (16) contains extensive tables of individual and cumulative 
terms of the binomial distribution for n up to 49: reference (\7) has cumu-, .-­
lative terms up to n = 1,000. 

8,4-Sampling the binomial distribution. As usual, you will find it 
instructive to verify the preceding theory by sampling. The table of 
random digits (table A I, p. 543) is very convenient for drawing samples 
from the binomial with n = 5, since the digits in a row are arranged in 
groups of 5. For instance, to sample the binomial with p = 0.2, let the 
digits 0 and I represent a success, and all other digits a failure. By record­
ing the total number of O's and I's in each group of 5, many samples 
from n = 5, p = 0.2 can be drawn quickly. Table 8.4.1 shows the results 
of 100 drawings of this type. and illustrates a common method of tallying 
the results. A slanting line is used at every fifth tally. so that W11 repre­
St"nJs 5 drawings of a partjcular number of successes. 

To fit the corresponding theoretical distribution. first calculate the 
terms p'q"-'. For r = a (no successes) this is q" = (0.8)' = 0.32768. For 
r = I, it is pq"-' = (0.2)(0.8)4. To obtain a shortcut, notice that this term 
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TABLE 8.4.1 
TALLYING OF 100 DRAWINGS FIlOM. TliE BINOMIAL WITH n "'" S,p "'" 0.2 

No. of 
Successes 

I.-H1 u-n I I 

Total 

o 
1 
2 
) 

4 
5 

u-n u-n u-n u-n 
u-n u-n 
I 

I.-H1 
I.-H1 
II 

u-n u-n I.-H1 u-n I I I I 
)2 
44 
17 
6 
I 
o 

100 

cal] be written: (q")(P/q). It is computed from the previous term by 
multiplying by p/q = 0.2/0.8 = 1/4. Thus for r = 1 the term is 
(0.32768)/4 = 0.08192. Similarly, the term for r = 2, p'q"-', is found by 
multiplying the term for r = 1 by (P/q), and so on for each successive term. 

The details appear in table 8.4.2. The binomial coefficients are read 
from Pascal's triangle. These coefficients and the terms in p'q"-' are 
multiplied to give the theoretical probabilities of 0, I, 2, ... 5 successes. 
Finally, since N = 100 samples were drawn, we multiply each probability 
by 100 to give the expected frequencies of 0, I, 2, ... 5 successes. 

TABLE 8.4.2 
FITTTho'G THE THEoRETICAL BINOMIAL FOil n == 5, p = 0.2 

No. of I Term Binomial (;)p'r' Expected Observed 
Successes (r) P'<r' Coefficient Frequency Frequency 

0 0.32768 I 0.32768 32.77 32 
I 0.08192 5 0.40960 40.96 44 
2 0.02048 10 0.20480 20.48 17 
3 0.00512 10 0.05120 5.12 6 
4 0.00128 5 0,00640 0.64 I 
5 0.0(0)2 I 0.00032 0.03 0 --r 1.00000 100.00 100 

--
Because of sampling variation, the expected and observed frequencies 

do not agree exactly, but their closeness is reassuring. Later (section 9.4) 
a method is given for testing whether the observed and expected fre­
quencies differ by no more than is usual from sampling variation. In the 
present example, the agreement is in fact better than is usually found in 
such sampling experiments (example 9.4.1). 

EXAMPLE 8.4.l-With n = 2, P == 1/2, show that the probability of onc success is 
1/2. If p differs from 1/2. does the probability of one success jncrease or decrease? 
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EXAMPLE 8.4.2-A railway company claims that 95% of its trains arrive on time, Ifa 
man travels on three of these trains, what is the probability that: (i) all three arrive on time, 
(ii) one of the three is late. assuming that the claim is correct. Ans. (i) 0.851, (ti) 0.135. 

EXAMPLE 8.4.~Assuming that the probability that a child is male is 1/2, find the 
probabiJity that in a family of 6 children there are: {i) no boys, (ii) exactly 3 boys, (iii) at 
least 2 girls, (iv) at least on. girl and 1 boy. Ans. (i) 1/64, (ii) 5/16, (iii) 57/64, (iv) 31/32. 

EXAMPLE 8.4.4-Work out the terms of the binomial distribution for n = 4, p == 0.4. 
Verify that: (i) the sum of the terms is unity. Oi) I and 2 successes are equally probable, 
(ill) 0 successes is about five times as probable as 4 successes. 

EXAMPLE 8.4.5-B), extending Pascal's triangle, obtain the binomial coefficients for 
11'" 10. Hence compute and graph the binomial distribution forn = IO,p = 1/2. Does the 
shape appear similar to a normal distribution'! Hint: when p "" 1/2, the teon P'lf - r == 1/2" 
for any r. Since 210

:a: 1,024 == 1,000, the distribution is given accurately enough for 
graphing by simply dividing the binomial coefficients by 1,000. 

8.S-Mean IUId standard denadon of the binomial distribution, If 

}; = n(n - 1) ... (n - r + 1) p'q"_' 
r(r - 1) ... (2)(1) 

denotes the binomial probability of r successes in a sample of size n, the 
mean and variance of the distri bution of the number of successes rare 
defined by the equations 

• 
,,, = L (r - Jl.)lt. (8,5.1) 

,-0 
Note the formula for ,,1. In a theoretical distribution, ,,, is the average 
value of the squared deviation from the population mean. Each squared 
deviation, (r - Jl.)l. is multiplied by its relative frequency of occurrence};. 
The concepl of number of degrees of freedom does not come in. 

By algebra. it is found from (8.5.1) thai 

Jl. = np : 17' = npq : 17 = .Jiiiii 18.S.l} 

These results apply to the lIUmber of successes. Often, interest centers in 
the proportion of successes, r/n. For this, 

Jl. = p : 17' = pq/n : 17 = Jpq/n (8.5.3) 

Sometimes results are presented in terms of the percentage of sua:esses 
l00rln. Formulas (8.5.3) also hold for the percentage of successes if p now 
stand& for the percentage in the population and q = 100 - p. 

As illustrations. the formulas work out as follows for n = 64, p = 0.2: 

Number: Jl. = (64)(0.2) = 12.8 : ,,= J{(64)(O.2)(O.8l} = JlO.24 = 3.2 
Proportion: Jl. = 0.2 : ,,= J{(0.2)(O.8)/64} = JO.0025-0.os 
Percentage: Jl. = 20 : ,,= J i (20)(80)/64) = J 25 - S 
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For a sample of fixed size n, the standard deviations .[iiiiij for the 
number of successes and ffqin for the proportion of successes are greatest 
whenp = 1/2. Asp moves towards either 0 or I, the standard deviation 
declines, though quite slowly at first, as the following table of Jpq shows. 

p 0.5 0.4 or 0.6 0.6 or 0.7 0.2 or 0.3 0.1 or 0.9 

0.500 0.490 0.458 0.400 0.300 

EXAMPLE S.5.I-Forthe binomial distribution of the number of successes with n = 2 
{g,ven '" tab1e 8.3.1, p. 203), verify from formulas 3.5.1 that J1 = 2p, cJ2 = 2pq. 

EXAMPLE 8.S.2-For the binomial distribution with n = 5, p -= 0.2, given in table 
8.4.2, compute 'f.rfr and I.(r - IN!. and verify that the results are J1 "'" 1 and (Jl = O.SO. 

EXAMPLE 8.S.3-For n = 96,p = 0.4. calculate the S.D.'s of: (i) the number. (ii) the 
percentage of successes . .Ans. (i) 4.8, Oi) 5. 

EXAMPLE 8.S.4-An investigator intends to estimate. by random sampling from a 
large file of house records, the percentage of houses in a town that have been sold in the 
last year. He thinks thatp is about 10% and would like the standard deviation of his esti­
mated percentage to be about I %, How large should n be'? ADS, 900 houses. 

There is an easy way of obtaining the results JJ. = p and ,,' = pqln for 
the distribution of the proportion of successes rln in a sample of size n. 
Attach the number 1 to every success in the population and the number 0 
to every failure. Instead of thinking of the population as a large collection 
of the letters Sand F, we think of it as a large collection of I's and O's. 
It is the population distribution ofa variable X that takes only two values: 
I with relative frequency p and 0 with relative frequency q. The popula· 
tion mean and variance of the new variate X are easily found by working 
out the definitions (8.5.1), 

JJ.x = 'I:.XJx "I = 'I:.( X - JJ.)'Jx 

where the sum extends only over the two values X = 0 and X = I, as 
shown below: 

x 
o 
I 

I. 

q 
p 

XI. 

o 
p 

PI"'" P 

X-p 

-p 
I-p 

(X - PI' (X - pl'!x 

p'q 
q'p 

The variate X has population mean p and population variance pq. 
Now draw a random sample of size n. If the sample contains r suc­

cesses, then 'I:.X, taken over the sample, is r, so that X = 'I:.X/n is rln, the 
sample proportion of successes. But we know that the mean of a random 
sample from any distribution is an unbiased estimate of the population 
mean, and has variance ,,'In (section 2.11). Hence X = 'In is an unbiased 
estimate of p, with variance "Vn = pqln. 
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FlG. S.6.1-The solid vertical lines show the binomial distribution of the number of suc­
cesses for n = 10, P = 0.5. The curve is the normal approximation to this distribution, 

which has mean np = S and S.D . .j(npq) = I.S8!. 

Further, since X = rln is the mean of a sample from a population 
that has a finite variance pq, we can quote the Cen~ral Limit Theorem 
(section 2.12). This states that the mean X ofa random sampie from any 
population with finite variance tends to normality. Hence, as n increases, 
the binomial distribution of rln or of r approaches the normal distribution. 

For p = 0.5 the normal is a good approximation when n is as low as 
10. As p approaches 0 or I, some skewness remains in the binomial 
distribution until n is large. 

8.6--The normal approximation and the correction for continuity. The 
solid vertical lines in figure 8.6.1 show the binomial distribution of r for 
" = 10, P = O.S. Also shown is the approximating normal curve, with 
mean np = 5 and S.D. JiiPfi = I.S81. The normal seems a good ap' -

proximation to the shape of tbe binornial. 
One difference,' however, is that the binomial is discrete, baving 

probability only at the values r = 0, 1,2, ... 10, while the normal has 
probability in any interval from - ~ to 00. This raises a problem: 
in estimating the binomial probability of, say, 4 successes, what part of 
the normal curve do we use as an approximation? We need to set up a 
correspondence between the set of binomial ordinates and the areas under 
the normal curve. 

The simplest way of doing this is to regard the binomial as a grouping 
of the normal into unit class intervals. Under this rule the binomial 
ordinate at 4 corresponds to the area under the normal curve from 3t 
to 41. The ordinate at S corresponds to the area from 4t to st and SO 
on. The ordinate at 10 corresponds to the normal area from 9t to cD. 

These class boundaries are the dotted lines in figure 8.6.1. 
In the commonest binomial problems we wish to calculate the prob-
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abilities at the ends of the distribution; for instance, the probability of 8 
or more successes. The exact result, found by adding the binomial prob­
abilitie, for, = 8, 9, 10, is 56/1024 = 0.0547. Under our rule, the cor­
responding area under the normal curve is the area from 7t to 00, not 
the area from 8 to 00. The normal deviate is therefore z = (7.5 - 5)/1.581, 
which by a coincidence is also 1.581. The approximate probability from 
the normal table is P = 0.0570, close enough to 0.0547. Use of 
z = (8 - 5)/1.581 gives P = 0.0288, a poor result. 

Similarly, the probability of4 or fewer successes is approximated by 
the area of the normal curve from -00 to 4t. The general rule is to de­
crease the absolute value of (, - np) by t. Thus, 

z, = (IT - npi - t>lJ(npq) 

The subtraction of t is called the correction fo, continuity. It is simple to 
apply and usually improves the accuracy of the normal approximation, 
although when n is large it has only a minor effect. 

If you are working in terms of Tin instead of " then 

z = 1,-,' I_n _-.,.;.p,,-I-;--..,.:ic..:/2:::n 
, J(Pqln) 

EXAMPLE 8,6.I-For n = 10. p = 1!2. calculate: (i) the cxact probability of 4 or 
fewer successes, and the normal approximation, (U) corrected for continuity, (iii) uncor· 
reeted. An •. (i) 0.377, (ii) 0.376, (iii) 0.263. 

EXAMPLE 8.6.2-10 a sample ofsi7.e 49 withp = 0.2. the expected number of successes 
is 9.8. An investigator is interested in the probability that the observed number of successes 
will be (i) 15 or more, or (ii) 5 or less. Estimate these tWO probabilities by the corrected 
normal approximation. Ans. (i) 0.0466 (ii) 0.0623. The exact answers by summing the 
binomial are: (i) 0,0517, (ii) 0.0547. Because of the skewness (p = 0.2). the normal curve 
underestimates in the long tail and overestimates in the short tail. For the sum of the two 
tails the normal curve does beuer, giving 0.1089 as against the exact 0.1064, 

EXAMPLE 8.6.3-With n = 16., = 0.9, estim,are by the normal curve the probability 
tlfat 16 successes are <Jbtained. The exact result is, of course. (0.9)16 = 0.185. An'. 0,180. 

8.7-Confide";;. limits for. proportion. If, members out of a sample 
of size n are found to possess some attribute. the sample estimate oC the 
proportion in the population possessing this attribute is p = ,111. In large 
samples, as we have seen, 'the binomial estimate p is approximately 
normally distributed about the population proportion p with standard 
deviation ,j(pq/n). For the true but unknown standard deviation j(pq/n) 
we substitute the sample estimate J(pqln). Hence, the probability is 
approximately 0.95 that p lies between the limits 

p - 1.96.J(Ptl/II) and p + 1.96J(pqln) 

But this statement is equivalent to saying that p lies between 

fJ - 1.96J(pqfn) and p + 1.96.J(Mln) (8.7.1) 

unless we were unfortunate In drawing one of the extreme samples that 
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turns up once in twenty times. The limits 8.7.1 are therefore the ap­
proximate 95% confidence limits for p. 

For example. suppose that 200 individuals in a sample of 1,000 
possess the attribute. The 95% confidence limits for pare 

0.2 ± I.96J(O.2)(O.8)/1000 = 0.2 ± 0.025 

The confidence interval extends from 0.175 to 0.225; that is, from 17.5% 
to 22.5%. Limits corresponding to other confidence probabilities are of 
course obtained by inserting the appropriate values of the normal deviate 
z. For 99% limits, we replace 1.96 by 2.576. 

If the above reasoning is repeated with the correction for continuity 
included, the 95% limits for p become 

Il ± {1.96J(Il4/n) + 1/2n} 

The correction is easily applied. It amounts to widening the limits a 
little. We recommend that the correction be used as a standard practice,. 
although it makes little difference when n is large. To illustrate the cor­
rection in a smaller sample, suppose that 10 families out of 50 report 
ownership of more than one car, giving Il = 0.2. The 95% confidence 
limits for pare 

0.2 ± {1.96JO.l6/50 + 0.01} = 0.2 ± 0.12, 

or .08 and .32. More exact limits for this problem, computed from the 
binomial distribution itself, were presented in table 1.4.1 (p. 6) as 0.10 
and 0.34. The normal approximation gives the correct width of the 
interval, 0.24, but the normal limits are symmetrical about Il, whereas the 
correct limits are displaced upwards because an appreciable amount of 
skewness still remains in the binomial when n = 50 and p is not near 1/2. 

If you prefer to express /l and p in percentages, the 95% limits are 

/l ± {1.96Jil(IOO - il)/n + 50/n} 

You may verify that this formula gives 8% and 32% as the limits in the 
above problem. 

8.11-Test of sigDilkance of a bioomial proportion. The normal ap­
proximation is useful also in testing the null hypothesis that the population 
proportion of successes has a known value p. If the null hypothesis is 
true, p is distributed approximately normally with mean p and S.D. 
,j(pq/n). With the correction for continuity, the normal deviate is 

t, = (Ill - pi - 1/2n)I,j(pq/n) 

= (Ir - npl - tl!,j(npq) 

This can be referred to the normal tables to compute the probability of 
getting a sample proportion as divergent as the observed one. 

To take an example considered in chapter I, a physician found 480 
men and 420 women among 900 admitted to a hospital with a certaie. 
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disease. Is this result consistent with the hypothesis that in the population 
of hospital patients, half the cases are male? Taking r as the number of 
males, 

Z = 1480 - 4501 - ! = 29.5 = 1967 
, y' {(900)(t)(tll 15 . 

Since the probability is just on the 5% level, the null hypothesis is rejected 
at this level. 

If the alternative hypothesis is one-tailed, for instance that more than 
half the hospital patients are male, only one tail of the normal distribution 
is used. For this alternative the null hypothesis in the example is rejected 
at the 2t% level. 

In sections 1.10--1.12 you were given another method of testing a null 
hypothesis about p by means of chi-square with I degree of freedom. In 
the notation of chapter I, 

1 = " (Obs. - Exp.)' =" (f - F)' , 
X £... Exp. £... F . 

the sum being taken over the two classes, male and female. The X' test 
is exactly the same as the two-tailed z test, except that the above formula 
for X2 contains no correction for continuity. To show the relationship, 
we need to translate the notation of chapter I into the present notation, as 
follows: 

Notation of Chapter 1 

Oboetvcd nos. : 
Expected nos. : 
Obo. - Exp. 

Hence, 

f 
F 

f-F 

Males 

, 

Present Notation 

Class 
Females 

n-, 
nq="-ttp 
-(r - lIP) 

x' = L (f - F)' = (r - np)' + (r - np)' 
F np "'l 

(r - np)' ( (, - np)' 
= q + p) = = Z', 

npq npq 

since the normal deviate z = (r - np)/y'(npq) if no correction lor continu­
ity is used. Further, the:x' distribution, with I dj., is the distribution of 
the square of a normal deviate: the 5% significance level of X', 3.84, is 
simply the square of I .96. Thus, the two tests are identical. 

To correct X' for continuity, we use the square of z, corrected for 
continuity. 



1./ = (/r - npi - W 
npq 
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As with:, we recommend that the correction he applied routinely. For 
one-sided alternatives the = method is preferable, since I.' takes no a~­
count of the sign of (r - np) and is basically two-sided. 

EXAMPLE 8.8.1--Two workers A and B perform a task in which carelessness leads to 
minor accidents. In the firs( 20 acclden's. 13 happened to A and 7 to B. In a previous ex~ 
ampl~ (1.15.1) you were asked to calculate X2 for testing the null hypothesis that A and B 
are equally likely to have accidents. the answer being X2 = 1.8. with P about 0.18. Re~ 
calculate X2 and P, corrected for continuity. Ans. 1./ = 1.25, P slightly greater than 0.25. 

EXAMPLE 8.8.2~A question that is asked occasionally is whether the 1/2 correction 
should be applied in ,~ if )r - npl is less than 1/2. This happens for instance, if r = 6, 
n = 25 and the null hypothesis is p = 1,4. because np = 6.25 and Ir - np) = 0.25. Strictly. 
the answer in such cases is that the corrected value of 1.2 is zero. When n = 25, the result 
r = 6 is the: sample result that gives the closest possible agreement with the null hypothesis. 
np = 6.25. Hence, all possible samples with n = 25 give results at least as divergent from the 
null hypothesis. The significance P is therefore I, corresponding to X2 = O. 

8.9-The comparison of proJNlrtions in paired samples. A comparison 
of two sample proportions may arise either in paired or in independent 
samples. To ,illustrate paired samples,'suppose that a lecture method is 
heing compared with a method that uses a machine for programmed 
learning but no lecture, the objective heing to teach workers how to per­
form a rather complicated operation. The workers are first grouped into 
pairs by means of an initial estimate of their aptitudes for this kind of task. 
One memher of each pair is assigned at random to each method. At the 
end, each student is tested to see whether he succeeds or fails in a test on 
the operation. 

With 100 pairs, the results might he presented as follows: 

Result for Method 
A B 

s 
S 
F 
F 

TOIaI 

S 
F 
S 
F 

No. of Pairs 

52 
21 
9 

18 

100 

In 52 pairs, both workers succeeded in the test; in 21 pairs, the 
worker taught by method A succeeded, but his partner taught by method 
B failed, and so on. 

As a second illustration (2), different mellia for growing diphtheria 
bacilli were compared. Swabs were taken from the throats of a large 
numher of patients with symptoms suggestive of the presence of diphtheria 
bacilli. From each swab, a sample was grown on each medium. After 
allowing time for growth, each culture was examined for the presence or 
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absence of the bacilli. A successful medium is one favorable to the 
growth of the bacilli so that they are detected. This is an example of self­
pairing, since each medium is tested on every patient. It is also an example 
in which a large number of FFs would be expected, because diphtheria 
is now rare and many patients would actually have no diphtheria bacilli in 
their throats. 

Consider first the test of significance of the null hypothesis that the 
proportion of SUccesses is the same for the two methods or media. The 
SS and FF pairs are ignored in the test of significance, since they give no 
indication in favor of either A or B. We concentrate on the SF and FS 
pairs. If the null hypothesis is true, the population must contain as many 
SF as FS pairs. In the numerical example there are 21 + 9 = 30 pairs of 
the SF or FS type1;. Under the null hypothesis we expect 15 of each type 
as against 21 and 9 observed. 

Hence, the null hypothesis is tested by either the X2 or the z test of 
the preceding section. (In the z test we take n = 30, r = 21, P = 1/2). 
When p = 1/2, ~2 takes the particularly simple form (section 5.4), 

2 = <121 - 91 - 1)2 = 121 = 403 
Xc 30 30' 

with I df The null hypothesis is rejected at the 5% level (3.84). Method 
A has given a Significantly higher proportion of successes. Remember 
that in this test, the denominator of X2 is always !)Ie total number of SF 
and FS pairs. This test is the same as the sign test (section 5.4). 

The investigator will also be interested in the actual percentages of 
successes given by the two methods. These were: 52 + 21 = 73% for A 
and 52 + 9 = 61% for B. If the task is exceptionally difficult, he might 
conclude that although A is s.ignificantly better than D, both methods are 
successfui €iivilgh to be useful. In other circumstances, he might report 
that neither method is sati.factory. This might be the case if A and B 
were two new techniques for predicting some featur~ of the weather, and 
if standard techniques were known to give !nore than 85% successes. 

When there is clearly a difference between the performances of the 
two methods, we may wish to report this difference. (73% - 61%) = 12"/ .. 
along with its standard error. Let 

Ps. = proportion of SF pairs = :~ = 0.21 

P .. = proportion of FS pairs = I ~ = 0.09 

When the difference is expressed in percentages (12%), a simple formula for 
its standard error is 



S.E. = 100 J{PSF + p,. -"(PSF - PTS)'} 

= 100 J{0.21 + 0.09 ~~0.21 - O.OO)'} 

= 10,.10.2856 = 5.3 
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If the difference is expressed in proportions, the factor 100 is omitted. 
Note: If you record only that A. gave 73 successes and B gave 61 

successes out of) 00, the test of significance in paired data cannot be made 
from this information alone. The classification of the results for the in­
c1ividual pairs must be available. 

8.IO-Comparisoo of proportions in two independent _pies: the 
2 x 2 table. This problem occurs very often in investigative work. Many 
controlled experiments which compare two procedures or treatments are 
carried out with independent samples, because no effective way of pairing 
the subjects or animals is known to the investigator. Comparison of 
proportions in different groups is also common in non-experimental 
studies. A manufacturer compare~ the proportions of defective articles 
found in two separate sources of supply from which he buys these articles, 
or a safety engineer compares the proportions of head injuries sustained 
in automobile accidents by passengers with seat belts and those without 
~at belts. 

Alternatively, a single sample may be classified according to two dif­
ferent attributes. The data used to illustrate the calculations come from 
a large Canadian study (3) of the relation between smoking and mor­
tality. By an initial questionnaire in 1956, male recipients of war pensions 
were classified according to their smoking habits. We shall consider two 
claMes: (i) non-smokers and (ii) those who reported that they smoked 
pipes only. For any pensioner who died during the succeeding six years, 
a report of the death was obtained. Thus, the pensioners were classified 
also according to their status (dead or alive) at the end of six years. Since 
the probability of dying depends greatly on age, the comparison given 
here is confined to men aged ~ at the beginning of the study. The 
numbers of men falling in the four claMeS are given in tahle 8.10.1, called 
a 2 x 2 contingency table. 

It will be noted that ) 1.0"1. of the non-smokers had died, as against 
13.4% of the pipe smokers. Can this difference be attributed to sampling 
error, or does it indicate a real difference in the death rates in the two 
groups? The null hypothesis is that the proportions dead, 117/1067 and 
54/402, are estimates of the same quantity. 

The test can be performed by X'. As usual, 

X' = L (f - F)2, 
F 
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TABLE 8.10.1 
MEN CLASSIFIED BY SMOK.ING HABIT AND MORTALITY IN SIX YEARS 

Non-smokers Pipe Smokers Total 

Dead 117 54 171 
Alive 950 348 1,298 

Total 1,067 402 1,469 

% dead 11.0 13.4 

where the!'s are the observed numbers 117,950,54,348 in the four cells. 
The Fs are the numbers that would be expected in the four cells if the 
null hypothesis were true. 

The Fs are computed as follows. If the proportions dead are the 
same for the two smoking classes, our best estimate of this proportion is 
the proportion, 171/1469, found in the combined sample. Since there are 
1067 non-smokers, the expected number dead, on the null hypothesis, is 

(1067)(1711 = 242 
1469 I.. 

The rule is: to find the expected number in any cell, multiply the cor­
responding column and row totals and divide by the grand total. The 
expected number of non-smokers who are alive is 

(1067)( 1298) = 942.8 
'1469 ' 

and so on. Alternatively, having calculated 124.2 as the expected number 
of non_smokers who are dead, the expected number alive is found more 
easily as 1067 - 124.2 = 942.8. Similarly, the expected number of pipe 
smokers who are dead is 171 - 124.2 = 46.8. Finally, the expected num­
ber of pipe smokers who are alive is 402 - 46.8 = 355.2. Thus, only one 
expected number need be calculated; the others are found by subtraction. 
The observed numbers, expected numbers, and the differences (/ - F) 
appear in table 8.10.2. 

Except for their signs, all four deviations (f - F) are equal. This result 
holds in any 2 x 2 table. 

TABLE 8.10.2 
VAL.UES OF /lOBSERVEO), F(EXPECTEO), AND (f - F) IN THE FoUlt CELlS 

117 

950 

f 

54 

)48 

F 

124.2 

942.8 

46.8 

355.2 

f-F 

-7.2 

+7.2 

+ 7.2 

-7.2 
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Since (/ - F)' is the same in all cells, X' may be written 

, ,~ I 
X = (f - F) L.--

i=1 Fi 
(8.10.1) 

= 72 -- -- --+--,( I I I I) 
( .) 124.2 + 46.8 + 942.8 355.2 

= (51.84)(0.0333) = 1.73 

A table of reciprocals is useful in this calc\Jlation. since the four reciprocals 
can be added directly. 

How many degrees of freedom has X2 ? Since all four deviations are 
the same except for sign. this suggests that X' has only I dI. as was 
proved by Fisher. With I d,r, table A 5 shows that a value of x' greater 
than 1.73 occurs with probability about 0.20. The observed difference 
in proportion dead between the non-smokers and pipe smokers may well 
be due to sampling errors. 

The above X' has not been corrected for continuity. A correction is 
appropriate because the exact distribution ofX 2 in a 2 x 2 table is discrete. 
With the same four marginal totals, the two sets of results that are closest 
to our observed results are as follows: 

(i) (ii) 
118 53 171 116 55 171 
949 349 1298 951 347 1298 

1067 402 1067 402 

/- F= ±6.2 / - F = ±8.2 
Since the expected values do not change. the values If- F) are ±6.2 in 
(i) and ± 8.2 in (ii). as against ± 7.2 in our data. Thus, in the exact dis­
tribution of X' the values of If - FI jump by unity. The correction for 
"ontinuity is made by deducting 0.5 from If - Fl. The formula for cor­
rected Xl is 

x/ = (If - FI - O.5)'l:I/F, (8.10.2) 
= (6.712 (O.03J3) = 1.49 

The corrected P is about 0.22. little changed in this example because the 
samples are large. In small samples the correction -nl(lkes a substantial 
difference. 

Some workers prefer an alternative formula for computing X2
. The 

2 x 2 table may be represented in this way: 

a 
c 

h 
d 

a + h 
c + d 

a+(' h+d, N=a+b+('+d 

. , _ N(lad - bel - N12)' 
X, - (a + b)(c + d)(a +"~)(b + d) 

(8.10.3) 
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The subtraction of NI2 represents the correction for continuity. 
In interpreting the results of these X2 tests in non-experimental 

studies, caution is necessary, particularly when X2 is significant. The two 
groups being compared may differ in numerous ways, some of which 
may be wholly or partly responsible for an observed significant difference. 
For instance, pipe smokers and non-smokers may differ to some extent 
in their economic levels, residence (urban or rural), and eating and drink­
ing habits, and these variables may be related to the risk of dying. Before 
the investigator,can claim that a significant difference is caused by the 
variable under study, it is his responsibility to produce evidence that 
disturbing variables of this type could not have produced the difference. 
Of course, the same responsibility rests with the investigator who has done 
a controlled experiment. But the device of randomization, and the greater 
flexibility which usually prevails in controlled experimentation, make it 
easier to ensure against misleading conclusions from disturbing influences. 

EXAMPLE 8.lD.I-In a stud) as to whether cancer of the breast tends to "run in 
families," Murphy and Abbey (4) investigated the frequency of breast cancer found in rela­
tives of (0 women with breast cancer. (ii) a comparison group of women without breast 
cancer. The data below, slightly altered for easy calculation, refer to the mothers of the 
subjects. 

Breast Cancer in Subject 
Yes No Total 

Breast Cancer Yes 7 3 10 
in Mother No 193 197 390 

Total 200 200 400 

Calculate X' and P (i) without correction, (ii) with correction for continuity. for testing the 
null hypothesis that the frequency of cancer in mothers is the same in the two classes of 
subjects. Ans. (i) Xl = 1.64, P = 0.20 (ii) x/ :: 0.92, P = 0.34. Note that the correction 
for continuity always increases P, that is, makes the difference less significant. 

EXAMPLE 8.1O.2~ln the previous example, verify tbat the alternative fonnula 
8.10.3 for l.f l_gives the same result, by showing that Xt lin 8.10.3 comes out as 12/13 = 0.92. 

EXAMPLE "g-,-lP.3-Dr. C. H. Richardson bas furnished the following numbers of 
aphids (Aphis tumicis. L) dead and alive after spraying with two concentrations of solutions 
of sodium oleate: 

Concentration of Sodium Oleate 
(percentage) 

0.65 1.10 Total 

Dead 55 62 117 
Alive 13 3 16 

Total 68 65 133 
Per Cent Dead 80.9 95.4 

Has the higher concentration given a significantly different per cent kill? Ans. Xc 1 = 5.31, 
P < 0.025. 
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EXAMPLE 8.10.4-10 examining the effects of sprays in the control of codling moth 
injury to apples, Hansberry and Richardson (5) counted the wormy apples on each of 48 
trees. Two trees sprayed with the same amount of lead arsenate yielded: 

A: 2,130 apples, 1,299 or 61% ofwbich were injured 
B: 2.190 apples, 1,183 or 45% ofwhlch were injured 

Xl = 21.16 is conclusive evidence that the cb3.nce of injury was different in these two trees. 
This r~ult is characteristic of spray experiments. For some unknown reasons, injuries 
under identical experimental treatments differ significantly. Hence it is undesirable to 
compare sprays on single trees. because a difference in percentage of injured apples might be 
due to these unknown sowces rather than to the treatments. A statistical determination of 
the homogeneity or heterogeneity of experimental material under identical conditions, 
sometimes called a lest of technique. is often worthwhile, particularly in new fields of research. 

EXAMPLE 8,10.S~rove that fonnulas 8.10.2 and 8.10.3 for X} are the same, by 
showing that 

If - FI = lad - bcl/N 
1:(1/1) = N'/(a + b)(c + d)(a + c)(b + d) 

8.11-Test of the independence of two attributes. The preceding test 
is sometimes described as a test of the independence of two attributes. A 
sample of people of a particular ethnic type might be classified into two 
classes according to hair color and also into two classes according to color 
of eyes. We might ask: are color of hair and color of eyes independent? 
Similarly, the numerical example in the previous section might be re­
ferred to as a test of the question: Is the risk of dying independent of 
smoking habit? . 

In this way of speaking, the word "independent" carries the saine 
meaning as it does in Rule 3 in the theory of probability. Let P .. be the 
probability that a member of a population possesses attribute A, and PB 
the probability that he possesses attribute B. If the attributes are inde­
pendent, the probability that he possesses both attributes is P.<PB' Thus. 
on the null hypothesis of independence, the probabilities in the four cells 
of the 2 x 2 contingency table are as follows: 

Attribute A 
(I) (2) 

Present Absent Total 

(I) Present PAP, gAP, '- p, 
Attribute B . 

(2) Absent PAil. qAq. q. 

Total P. g, I 

Two points emerge from this table. The null hypothesis can be 
tested either by comparing the proportions of cases in which B is present 
in columns (1) and (2), or by comparing the proponions of cases in which 
A is present in rows (I) and (2). These two X' tests are exactly the same. 
This is not obvious from the original expressions (8.10.1) and (8.10.2) given 
for X2 and x/, but expression (8.10.3) makes it clear that the statement 
holds. 
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Secondly, the table provides a check on the rule given for calculating 
the expected number in any cell. In a single sample of size N, we expect 
to find Np"pB members possessing both A and B. The sample total in 
column (1) will be our best estimate of Np., while that in row (I) similarly 
estimates NpB' Thus the rule, (column total)(row total)/(grand total) 
gives (NfJ.)(NfJB)/N = NfJ.fJ. as required. 

8.12-A test by means of the normal deviate %. The null hypothesis 
can also be tested by computing a normal deviate z, derived from the 
normal approximation to the binomial. The z and X' tests are identical. 
Many investigators prefer the z form, because they are primarily interested 
in the size of the difference PI - p, between the proportions found in two 
independent samples. For illustration, we repeat the data from table 
8.10.1. 

TABLE 8.12.1 
MEN CLASSIFIED BY SMOKING HABIT AND MORTALITY IN SIX YEARS 

Sample (I) Sample (2) 
Non-smokers Pipe Smokers Tota) 

Dead 117 S4 171 
Alive 950 348 1,298 

Total n1 = 1,067 "l "'" 402 1,469 

Proportion dead p, = 0.1097 p, = 0.1343 P = 0.1164 

Since fJI = 0.1097 and fl, = 0.1343 are approximately normally dis­
tributed, their difference P, - p, is also approximately normally dis­
tnl'mte<f. I'Iie vanance o(tros aii:lerence IS tne sum OI'tne (wo vanimces 
(section 4.7). 

V(fJ fJ ) -" '+ ' - PI q 1 + p,q, 1 - 1 - A CT.. - _- --
yl Y 2 nl n

2 

Under the null hypothesis, PI = p, = p, so that P, - p, is approximately 
normally distributed with mean 0 and standard error 

The null hypothesis does not specify the value of p. As an estimate, 
we nalurally use {J = 0.1164 as given by the combined samples. Hence. 
the normal deviate z is 



p, - p, = _-;-:--_~0'c..109--'...:.7_-~0'c..134:....::.3 __ ~ 
Z=-;=~~~7 

Me, + ~,) J {(0.1I64)(O.8836)C~67 + ~2)} 
= -1.31 
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-0.0246 

0.DI877 

In the normallable, ignoring the sign of z, we find P = 0.19, in agreement 
with the value found by the original X' test. 

To correct z for continuity, subtract 1 from the numerator of the 
larger proportion (in Ihis case p,) and add t to the numerator of the 
smaller proportion. Thus, instead of p, we use p, = 53.5/402 = 0.1331 
and instead of p, we use p, = 117.5/1067 = 0.1101. The denommator of 
Z, remains the same, giving z, = (0.1101 - 0,1331)/0.01877 = -1.225. 
You may verify that, apart from rounding errors, Z2 = Xl and z/ = X(:2. 

If the null hypothesis has been rejected and you wish 10 fmd confidence 
limils for the population difference p, - p" the standard error of p, - p, 
should be computed as 

The ,',e. given by the null hypothesis is no longer valid. Often the change 
is small, but it can be material if n t and n 2 are very unequal. 

EXAMPLE 8,12.1-- Apply the z test and tbe =" lest to the d.ita on breast cancer gi"en 
in example 8.10.1 and verify that =2. z X2 and =.2 = Xc 1, Note: when calculatmg 2 or =. 
it is often more conltenien1 to express PI> P2 and p as percentages. Just remember tha['in 
this event, q = toO ~ p. 

EXAMPLE 8.12.2-ln 1943 a sample of about 1 in 1,000 families in Iowa was asked 
about the canning of fruits or vegetables during the preceding season. Of the 392 rural 
families. 378 had done canning, while of the 300 urban families. 274 had canned. Calculate 
95"{, confidence limits for the difference in the percentages of rural and urban families who 
had canned. ADS. 1.42"1" and 8.78%. 

The preceding X' and z methods are approximate. the approximation 
becoming poorer as the sample size decreases. Fisher (14) has shown 
how to compute an exact test of significance. For accurate work the exact 
test should be used if (i) the total sample size N is less than 20, or (ii) if N 
lies between 20 and 40 and the smallest expected number is less than 5. 
For those who encounter these conditions frequently, reference (15), 
which gives tables of the exact tests covering these cases, is recommended. 

8,13-Sample size for comparing two proportions. The question: 
How large a sample do I need? is naturally of great interest to investigators. 
For comparing two means, an approach thai is often helpful was given 
in section 4.13, p. III. This should be reviewed carefully, since the same 
principle applies to the comparison of two proportions. The approach 
assumes that it is planned to make a tesl of significance of the difference , 
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between the two proportions, and that future actions will depend on 
whether the test shows a significant difference or not. Consequently, if the 
true difference P2 - p, is as large as some amount Ii chosen by the in­
vestigator, he would like the test to have a high probability P' of declar­
ing a significant result. 

For two independent samples, formula (4.13.1) (p.113) for n, the size 
of each sample, can be applied. Putb=p, -p,andun2=(p,q, +P,q,), 
This gives 

(8.13.1) 

where Z, is the normal deviate corresponding to the significance level to 
be used in the test, fJ = 2( I - P'), and Z~ is the normal deviate correspond­
ing to the two-tailed probability p. Table 4.13.1 gives (Z, + Z~)2 for the 
commonest values of a and p. In using this formula, we substitute the 
best advance estimate of (p,q, + P2Q2) in the nurr.erator. 

For instance, suppose that a standard antibiotic has been found to 
protect about 50% of experimental animals against a certain disease. 
Some new antibiotics become available that seem likely to be superior. 
In comparing a new antibiotic with the standard, we would like a prob­
ability P' = 0.9 of finding a significant difference in a one-tailed test 
at the 5% level if the new antibiotic will protect 80% of the animals in 
the population. For these conditions, table 4.13.1 gives (Z, + Z~)l as 8.6. 
Hence 

n = (8.6J{(50)(50) + (80)(20)}/(30)2 = 39.2 

Thus, 40 animals should be used for each antibiotic. 
Some calculations of this type will soon convince you of the sad fact 

IMI mrs" samples an: necessary to detec'! sma!! differences between two 
percentages. When resources are limited, it is sometimes wise, before 
going ahead with the experiment" to calculate the probability that a sig­
nificant result will be found. Suppose that an experimenter is interested 
in the values p, = 0.8, P2 = 0.9, but cannot make n > 100. If formula 
(8.13.1) is solved for Z~, we find 

Z~ = (P2 - p,).Jn _ Z = (0.1)(10) _ Z = 2 - Z 
.j {p,q, + P2q2} , 0.5 ' , 

If he intends a two-tailed 5% test Z, '" 2, so that Z~ '" O. This gives 
fJ = I and P' = I - PI2 = 0.5. The proposed experiment has only a 
50-50 chance of finding a significant difference in this situation. 

Formula (8.13.1), although a large-sample approximation, should be 
accurate enough for practical use, since there is usually some uncertainty 
about the values of p, and P2 to insert in the formula. Reference (6) gives 
tables of n based on a more accurate approximation. 
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EXAMPLE 8.13.I-Ooe difficulty in estimating sample size in biological work is that 
the proportions given by a standard treatment may vary over time. An experimenter has 
found that his standard treatment has a failure rate lying between PI = 30010 andpl = 4()0/... 
With a new treatment whose failure rate is 20% lower than the standard. what sample sizes 
are needed to make P' = 0.9 in a two-tailed S% test? Ans. n = 79 when PI = 30"/0 and 
n = lOS when PI == ~I.,. 

EXAMPLE 8.13.2-10 planning the 1954 trial of the Salk poliomyelitis vaccine (7), 
the question of sample size was critical, since it was unlikely that the trial could be repeated 
and since an extremely large sample of children would obviously be necessary. Various esti­
mates of sample size were therefore made. I n one of these it was assumed that the probability 
that an unprotected child would contract paralytic polio was 0.0003, or 0.03%. Ifthevaccine 
was SlY'1o effective (that is, decreased this probability to O.OOOlS, or 0.015%). it was desired 
to have a 90% chance of finding a 5~~ significance difference in a two-tailed test. How many 
children are required? Ans. 210.000 in each group (vaccinated and unprotected}. 

EXAMPLE 8.13.3-An investigator has P1 = 0.4. and usually conducts experiments 
with, n := 25. In a one-tailed test at the 5% level, what is the chance of obtaining a s.ignificant 
result if (i) p, - 0.5, (ii) p, - 0.6? Ans. (i) 0.18, (ii) 0.42. 

8,I4-The Poisson distribution, As we have seen, the binomial dis­
tribution tends to the normal distribution as n increases for any fixed value 
of p. The value of n needed to make the normal approximation a good 
one depends on the values of p, this value being smallest when p = 1/2. 
For p < 1/2, a general rule, usually conservative, is that the normal ap­
proximation is adequate if the mean J.' = np js greater than 15. 

In many applications, however, we are studying rare events, so that 
even if n is large, the mean np is much less than 15. The binomial distribu­
tion then remains noticeably skew and the normal approximation is un­
satisfactory. A different approximation for such cases was developed by_ 
S. D. Poisson (8). He worked out the limiting form of the binomial dis­
tribution when n tends to infinity and p tends to zero at the same time, in 
such a way that Il = np is constant. The binomial expression for the 
probability of r successes tends to the simpler form, 

Il' Per) = - e-· 
r! 

, = 0, 1, 2, ... , 

where e = 2.71828 is the base of natural logarithms. The initial terms in 
the Poisson distribution are: 

P(O) = e-' : P(l) = IU'-' 
l 

: P(3) = (~(3) e-' 

Table 8.14.1 shows in column (I) the Poisson distribution for Il = I. 
The distribution is markedly skew. The mode (highest frequency) is at 
either 0 or I. these two having the same probability when Il = I. To give 
an idea of the way in which the binomial tends to approach the Poisson. 
column (2) shows the binomial distribution for n = 100, P = 0.01, and 
column (3) the binomial for n = 25, p = 0.04, both of these having 
np = I. The agreement wi,h the Poisson is very close for n = 100 and 
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Total 

TA8LE 8.14.1 
THE POlSSON DISTRIBUTION FOR j1. = I COMPARED WITH THE BINOMIAL 

DISTRIBUTIONS FOR n = 100, p = 0.01 AND n = 25. p = 0.04 

Relative Frequencies 

(I) (2) (3) 
poisson Binomial Binomial 

I n = lOO,p = 0.01 n _ 25,p - 0.1>4 

0 0.3679 0.3660 0.3604 
I 0.3679 0.3697 0.3754 
2 0.1839 0.1849 0.1877 
3 0.0613 0.0610 0.0600 
4 0.0153 0.0149 0.0137 
5 0.0031 0.0029 0.0024 
6 0.0005 0.0005 0.0003 

,,7 0.0001 0.0()()1 0.0000 

I.()()OO 1.0000 0.9999 

quite close for n = 25. Tables of individual and cumulative terms of the 
Poisson are given in (9) and of individual terms up to Jl. = 15 in (10). 

The fitting of a Poisson distribution to a sample will be illustrated by 
the data (II) in table 8.14.2. These show the number of noxious weed 
seeds in 98 sub-samples of Phleurn praetense (meadow grass). Each sub­
sample weighed 1/4 ounce, and of course contained many seeds, of which 
only a small percentage were noxious. The first step is to compute the 
sample mean. 

fJ = (r.jr)/(l:.f) = 2%/98 = 3.0204 noxious seeds per sub-sample 
TA8LE 8.14.1 

DISTRIBUTI()N Of NVMBER OF NOXIOUS WEED SEEDS FOUND IN N ==' 98 

SUB-SAMPLES. WITH FITTED PolSSON DISTRIBUTION 

Number of 
Noxious Seeds FrequcfICY Poissoll Expttted 

r f Multipliers Frequency 

0 3 I - 1.0000 4.781 
I 17 P - 3.0204 14.440 
2 26 P!2 - 1.5102 21.801 
3 16 Pl3 - 1.0068 21.955 
4 13 pj4 - 0.'551 16.5'3 
5 9 PIS - 0.6041 10.015 
6 3 Al6 - 0.5034 5.042 
7 5 jl(7 - 0.4315 2.116 
8 0 iJ/8 - 0.3156 0.811 
9 I PI9 - 0.3356 0.214 

10 0 PliO - 0.3020 0.083 
11 or more 0 PIli - 0.2746 0.030 

Total 98 91.998 
-__ ,_ 
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Next, calculate the successive terms of the Poisson distribution with 
mean p. The expected number of sub-samples with 0 seeds is 
Ne-' = (98)(e- ,.0204). A table of natural logs gives e-'·0204 = 1/20.5, 
and 98/20.5 = 4.781. Next, form a column of the successive multipliers 
I, p, p.J2, ... as shown in table 8.14.2. recording each to at least four 
significant digits. The expected number of sub-samples with r = I is 
(4:781)(p.) = 14.440. Similarly, the expected number with r = 2 is 
(14.44O)(P/2) = (14.440)(1.5102) = 21.807. and so on. The agreement be­
tween observed and expected frequencies seems good except perhaps for 
r = 2 and r = 3, which have almost equal expected numbers but have ob­
served numbers 26 and 16. A t~t of the discrepancies between observed 
and expected numbers (section 9.6), shows that these can well be accounted 
for by sampling errors. 

Two important properties hold for a Poisson variate. The variance 
of the distribution is equal to its mean, 1'. This would be expected, since 
the binomial variance, npq, tends to np when q tends to I. Secondly. if a 
series of independent variates X" X 2 , X" ... each follow Poisson distribu-
tions with means 1'" 1'2' 1'" ... , their sum follows a Poisson distribution 
with mean (I', + 1'2 + 1', + ... ). 

In the inspection and quality control of manufactured goods. the 
proportion of defective articles in a large lot should be small. Conse­
quently, the number of defectives in the lot might be expected to follow a 
Poisson distribution. For this reason, the Poisson distribution plays an 
important role in the development of plans for inspection and quality 
contro!. Further, the Poisson is often found to serve remarkably well as 
an approximation when I' is small, even if the value of n is ill-defined and 
if both n andp presumably vary from one sample to another. A much­
quoted example of a good fit of a Poisson distribution, due to Bortke­
witch, is to the number of men in a Prussian army corps who were killed 
during a year by the kick of a horse. He had N = 200 observations, one 
for each of IO corps for each of 20 years. On any given day, some men 
were exposed to a small probability of being kicked, but is not clear what 
value n has, nor that p would be constant. 

The Poisson distribution can also be developed by reasoning quite 
unrelated to the binomial. Suppose that signals are being transmitted, 
and that the probability that a signal reaches a given point in a tiny time­
interval r is ).r, irrespective of whether previous signals have arrived 
recently or not. Then the number of signals arriving in a finite time­
interval of length T may be shown to follow a Poisson distribution with 
mean j.T (example 8.14.4). Similarly, if particles are distributed at 
random in a liquid with density). per unit volume, the number found in a 
sample of volume V is a Poisson variable with mean ,lV. From these 
illustrations it is not surprising that the Poisson distribution has found 
applications in many fields, including communications theory and the 
estimation of bacterial densities. 

EXAMPLE 8.14.1---n = 1.000 independent trials are made of an event with probability 
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0.001 at each trial. GiYe approximate results for the chances that (i) the event does not 
happen. (ii) the event happens twice, (iii) the event happens at least five times. Am. (i) 0.368. 
(ii) 0.184, (iii) 0.0037. 

EXAMPLE 8.14.2-A. G. Arhous and J. E. Kerrich (l2) report the numbers ofacci­
dents sustainod during their first year by ISS engine shunters aged 31-35, as follows: 

No. of accidents 
No. of men 

o 
80 

1 
61 

2 
13 

3 
I 

4 or more 
o 

Fit a Poisson distribution to these data. Note: the data were obtained as part ora study 
of accident proneness. If some men arc particularly liable to ao;idents, this would imply 
that the Poisson would not be a good fit. since p would vary from man to man. 

EXAMPLE 8.l4.3-Student (13) counted the number of yeast cells on each of 400 
squares ofa hemacytometer. In two independent samples, each of which gave a satisfactory 
fit to a Poisson distribution, the total numbers of cells were 529 and 720. (i) Test whether 
these totals are estimates of the same quantity, or in other words whether the density of 
yeast cells per square is the same in the two populations. (ii) Compute 95% limits for the 
difference in density per square. Ans. (i) z = 5.41. Pvery small. (ii) 0.30 toO.65. Note: the 
nonnal approximation to the Poisson distribution, or to the difference between two inde­
pendent Poisson variates. may be used when the observed numbers exceed 15. 

EXAMPLE 8.14 4~ The Poisson process formula for the number of signals arriving in a 
finite time-interval T requires one result in calculus, but is othct:Wise a simple application of 
probability rules. Let per, T + f) denote the probability that exactly r signals have arrived 
in the interval from time 0 to the end of time (T + f). This event can happen in one of two 
mutually exclusive ways: (I) (r - I) signals have arrived by time T, and one arrives in the 
small interval T. Tbe probability of these two events is A TP(r - I, n. (ii) r signals have 
already arrived by time T, and none arrives in the subsequent interval t. The probability 
of these two events is (I - At)P(r, n. The interval T is assumed. so small that more than one 
signal cannot arrive in this interval. Hence. 

P(', T+ ,) ~ .!,P(, - I, n + (I - .!,)P(', n 
Rearrangmg. we have 

(P(" T + ,) - P(', n}/' = .!{P(, - I, n - P(', n} 
Letting' tend to zero, wo get apt', 1)laT = .!{P(, - I, n - P(" n}. By differentiating, 
it will be found that per, n = e-,l.T (In·;r! satisfies this equation. 
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* CHAPTER NINE 

Attribute data with more than 
one degree of freedom 

9.I-JulJoductioa. In chapter 8 the discussion of attribute data was 
confined to the cases in which the population contains only two classes of 
individuals and in which only one or two populations have been sampled. 
We now extend the discussion to populations classified into more than 
two classes. and to samples dl"llWD from more than two populations. 
Section 9.2 considers the ~mplest situation in which the expected numbers 
in the classes are completely specified by the null hypothesis. 

9.1-Slagle cbsslficatioas wltb more tbaa two classes. In crosses 
betweeo two types of maize. lindstrom (l) found four distinct types of 
plants in the second geoeration. In a sample of 1.301 plants. there were 

I. = 773 green 
12 = 231 golden 
I. = 238 green-striped 
_~ = ~ J!olden:JUeen-stqoed 

1301 

According to a simple type of Meodelian inheritance. the probabilities 
of obtaining these four Iypes of plants are 9/16. 3/16. 3/16, and 1/16, 
respectively. We select this as the null hypothesis. 

The X2 lesl in chapter 8 is applicable to any number of classes. Ac­
cordingly, we calculate the numbers of plants that would be expected in 
the four classes if the null hypothesis were true. These numbers, and the 
deviations (j - F), are shoWD below. . 

F. = (9(16)(1301) = 
F2 = (3/16)(1301) = 
F. = (3/16)(1301) = 
F. = (1/16)(1301) = 

731.9 
243.9 
243.9 

81.3 
1301.0 

Substituting in the formula for chi-square, 
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I. - F. +41.1 
12 - F, = -12.9 
I. - F. = - 5.9 
f. - F. = -22.3 

---0:0 



X' = r.u - £)'/E 

2 (41.1)' (-12.9)' (-5.9)' (-22.3)' 
X = 731.9 + 243.9 + 243.9 + 81.3 

= 2.31 + 0.68 + 0.14 + 6.12 
= 9.25 

In a test oflhis type, the number1)f "egrees offreedoin in X' = (Num.­
ber of classes) - I = 4 - I = 3 .. To remember this rule, note that there 
are four deviations, one for each class. However, the sum of the four 
deviations, 41.1 - 12.9 - 5.9 - 22.3, is zero. Only three of the devia­
tions can vary at will, the fourth being fixed as zero minus the sum of the 
first three. 

Is X2 as large as 9.25, with dj. = 3, a common event in sampling from 
the population specified by the null hypothesis 9: 3: 3: I, oris it a rare one? 
For the answer, refer to the X2 table (table A 5, p. 550), in the line for 
3 dJ, You will find that 9.25 is beyond the 5% point, neaf the 2.5% point: 
On this evidence the null hypothesis would be rejected. 

When there are more than two classes, this X' test is usually only a 
first step in the examination of the data. From the test we have learned 
that the deviations between observed and expected numbers are too large 
to be reasonably attributed to sampling fluctuations. But the X' test does 
not tell us in what way the observed and expected numbers differ. For 
this, we must look at the individual deviations and their contributions to 
'1'. Note that the first class, (green), gives a large positive deviation +41.1 
and 15 the only class giving a positive deviation. Among the other classes, 
the last class (golden-green-striped) gives the largest deviation, - 22.3, 
and the largest contribution to X', 6.12 out ofa total of 9.25. Lindstrom 
commented that the deviations could be largely explained by a physio­
logical cause, namely the weakened condition of the last three classes due 
to ~heir chlorophyll abnormality. He pointed out in particular that the 
last class (golden-green-striped) was not very vigorous. 

To illustrate the type of subsequent analysis that is often necessary 
with more than two classes, let us examine whether the data are consistent 
with the weaker hypothesis that the numbers in the first three classes are 
in the predicted Mendelian ratios 9: 3: 3. If so, one interpretation of the 
results is that the significant value of X2 can be attributed to poor survivor­
ship of the golden-green-striped class. 

The 9: 3 : 3 hypothesis is tested by a x' test applied to the first three 
classes. The calculations appear in table 9 .. 2.1. 

In the first class, FI = (0.6)(1242) = 745.2. and SO on' The value of 
i is now 2.70, with 3 - I = 2 dj. Table A 5 shows that the probability 
is about 0.25 of obtaining a X' as large as this when tbere are 2 dj. 

We can also test whether the last class (golden-green-striped) has a 
frequency of occurrence significantly less than would be e~pected from 
ils Mendelian probability 1/16. For this we observe that 1242 plants fell 
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TABLE 9.2.1 
TEU OF THE MENDELIAN HyPOlHESIS IN THE FIllST TliltJ$ CLASSI!S 

Hypothetical 
Class f Probability F f-F (f - F)'/F 

gr<en 773 9/15 - 0.6 745.2 +27.8 1.04 
golden 231 3/15 = 0.2 248.4 -17.4 1.22 
green-striped 238 3/15 = 0.2 248.4 -10.4 0.44 

Total 1242 15/15 _ 1 1242.0 0.0 2.70 

into the first tqree classes, which have total probability 15/16, as against 
59 plants in the fourth class, with probability 1/16. The corresponding 
expeCted numbers are 1219.7 and 81.3. In this case the X' test reduces to 
that given in section 8.8 for testing a theoretical binomial proportion. We 
have 

, (1242 - 1219.7)' (59 - 81.3)' 
X ~ 1219.7 + 81.3 

( + 22.3)' ( - 22.3)3 
~ 1219.7 + 81.3 "" 6.53, 

with I dj. The significance probability is close to the I % level. 
To summarize, the high value of X' obtained initially, 9.25 with 3 

df, can be ascribed to a deficiency in the number of golden-green-striped 
plants, the other three classes not deviating abnormally from the Men­
delian probabilities. (There may be also, as Lindstrom suggests, some de­
ficiencies in the second and third classes relative to the first class, which 
would show up more definitely in a larger sample.) 

This device of making comparisons among sub'groups of the classes 
is useful in two situations. Sometimes, especially in exploratory work, the 
investigator has no clear ideas about the way in which the numbers in the 
classes will deviate from the initial null hypothesis: indeed, he may con­
sider it likely that his first x' test will support the null hypothesis. The 
finding of a significant X' should be followed, as in the above example, 
by inspection of the deviations to see what can be learned from them. 
This process may lead to the construction of new hypotheses that are 
t!'Sted by further x' tests among sub-groups of tho classes. Conclusions 
drawn from this analysis must be regarded as tentative. because the new 
hypotheses were constructed after seeing the data and should be strictly 
tested by gathering new data. 

In the second situation the investigator has some ideas about the 
types of departure that the data are likely to show from the initial null 
hypothesis; in other words, about the nature of the alternative hypothesis. 
The best procedure is then to construct tests aimed specifically at these 
types of departure. Often, the initial X' test is omitted in this situation. 
This approach will be illustrated in later sections. 

When calculating X' with more than 1 df, it is not worthwhile to 
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make a correction for continuity. The exact distribution of X' is still 
discrete, but the number of different possible values of X' is usually large, 
so that the correction, when properly made, produces only a small change 
in the significance probability. 

EXAMPLE 9.2.1--10 193 pairs of Swedish twins (2), 56 were of type MM (both male), 
'72 of the type M F (one male, one female), and 65 of the type FF. On the hypothesis that a 
twin is equally likely to be a boy or a girl and that the sexes of the two members of a twin 
pair are determined independently. the probabilities of MM. MF, and FF pairs are 1/4, 1/2, 
1/4. respectively. Compute the value of'/ and the signifieance probabIlity. Ans. x.l. = 13.27. 
with 2 d,{. P < 0.005. 

EXAMPLE 9.2.2-,~(n the pr~eding example we would expect the null hypothesis to 
be false for two reasons. The probability that a twin is male is not exactly 1/2. This dis. 
crepancy produces only minor effects in a sample of size 193. Secondly, identical twins are 
always of the same sex. The presence of identical twins decreases the probability of ME 
pairs and increases the prObabilities of M M and FF pairs. Construct Xl tests to answer the 
questions: (i) Are the relative numbers of MM and FF pair~ (ignorinJl the MF pairs) in 
agreement wlth the null hypothesis? (jj) Are the rel~fjvc numbers of tWJhs of like sex (M M 
and FFcombined) and unlike sex (MF) in agreement with the null hypothesis'! Ans. 0).,2 
(uncorrected) = 0.67, with I tI.f P> 0.25, (ii) X2 = 12.44. with I tI.f P very small. The 
failure of the null hypothesis is due. as anticipated. to an excess of twm~ of like sex. 

EXAMPLE 9.2.3-·ln section 1.14. 230 samples from binomial distributions with known 
p were drawn, and ·f was computed from each sample. The observed dmi expected numbers 
of .,! values in each of seven classes (taken from table 1.14.1) are as follows: 

Obs. 
Exp. 

57 
57.5 

59 
57.5 

62 
57.5 

32 
34.5 

\4 
\1.5 

3 
9.2 

3 
2.3 

230 
230.0 

Test whether the deviations of observed from expected numbers are of a size that occurs 
frequently by chance. Ans. X2 = 5.50. d,f = 6. P about 0.5. 

EXAMPLE 9.2.4·- In the Lindstrom example in the lext, we had x/ (3 df) = 9.25. 
This was followed by 122 (2 dI) = 2.70, which compared the first three cla~ses. and 1,2 == 6.53. 
which compared the combined first three classes with the fourth class. Note that 122 + X,2 
= 9.23, while x/ = 9.25. In examples 9.2.! and 9.2.2. x/ == I.ln. while the sum of the two 
I-dj. chi-squares is 0.67 + 12.44 = 13.11. When a classification is divided into sub-groups 
and a Xl is computed within each sub-group. plus <I X2 which compares the total frequencies 
in the sub-groups. the df add up 10 the d), in the initial Xl, bUI the values 01';(2 do not add 
up exactly to the initial i~. They usually add to a value that is fairly close. and worth noting 
as a.clue to mistakes in calculation. " 

9.3-Single c1assillcations with equal expectations. Often, the null 
hypothesis specifies that all the classes have equal probabilities. In this 
case, X2 has a particularly simple form. As before, let./; denote the ob· 
served frequency in the jth class, and let n = I.J, be the total size of sample. 
If there are k classes, tbe null hypothesis probability that a member of the 
population falls into any class is p = Ilk. Consequently. the expected 
frequency F; in any class is np = nlk = j, the mean of the J,. Thus. 

with (k - I) df 
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This test is applied to any new table of random numbers. The basic 
property of such a table is that each digit has a probability 1/10 of being 
chosen at each draw. To illustrate the test, the frequencies of the first 
250 digits in the random number table A I are as follows: 

Digit o 2 3 4 5 6 7 8 9 Total 

22 24 28 23 18 33 29 17 31 25 250 

Only 17 sevens and 18 fours have appeared, as against 31 eights and 
33 fives. The mean frequency f = 25. Thus, by the usual shortcut 
method of computing the sum of squares of deviations, :Elf. - f)', given 
in section 2.10, 

l' = ;5 [(22)' + (24)' + ... + (25)' - (25O)i/l0] = 10.08, 

with 9 d.f. Table A 5 shows that the probability of a x' as large as this 
lies between 0.5 and 0.3: X' is not unusually large. 

This test can be related to the Poisson distribution. Suppose that· 
the t. are the numbers of occurrences of some rare event in a series of k 
independent samples. The null hypothesis is that thet. all follow Poisson 
distributions with the same mean p. Then, as shown by Fisher, the 
quantity :Elf. - f)' If is distributed approximately as X' with (k - I) d.f. 
To go a step further, the test can be interpreted as a comparison of the 
observed variance of the t. with the variance that would be expected from 
the Poisson distribution. In the Poisson distribution, the variance equals 
the mean p, of which the sample estimate is f. The observed variance 
among the f, is " = :Elf. - f) /(k - I). Hence 

X' = (k - I) (observed variance)/(Poisson variance) 

This X' test is sensitive in detecting the alternative hypothesis tbat 
tbe f, follow independent Poisson distributions with dilfer~nt means p,. 
Under tbis alternative, tbe expected value of x' may be shown to be, 
approximately, 

• 
B(X') '" (k - I) + L (p, - WI", 

i-I 

wbere fi is tbe mean of tbe 1',. If the null bypotbesis bolds, 1', = fi and X' 
has its usual average value (k - 1). But any differences among tbe 1', 
increase tbe expected value of X' and tend to make it large. Tbe test is 
sometimes called a variance test of the bomogeneity of tbe Poisson dis­
tributi'on. 

Sometimes the number of Poisson samples k is large. When com­
puting the variance, time may be saved by grouping the observations, 
particularly if they take only a limited number of distinct values. To avoid 
confusion in our notation, denote the numbers of occurrences by y, in-
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stead of j" since we have used f's in previous chapters to denote the fre­
quencies found in a grouped sample. In this notation, 

X' = ± (y, -:: ji)l = f fj(YJ- jill = ~r f fiY/ _ (LJjYj)'/l:}}. 
1=1 Y )=1 Y yL.l ~ 

where the second sum is over the m distinct values of Y. and Ii is the fre­
quency with which the Jth value of y appears in the sample. The df. are, 
as before, (k - I). 

If the d f. in Xl lie beyond.the range covered in table A 5, calculate 
the approximate normal deviate 

Z = N - -/2(df.1 - 1 (9.3.1 ) 

The significance probability is read from the normal table, using 
only one tail. For an illustration oftbis case, see examples 9.3.2 and 9.3.3. 

EXAMPLE 9.3.1-ln 1951, the number of babies born With a harelip in Birmingham, 
England. are quoted by Edwards (3) as follows: 

Month Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. 
Number 8 19 II 12 16 8 7 5 8 3 8 8 

Test the null hypothesis that the probability ora baby with tlarelip is the same in each month. 
Ans .. / = 23.5, d.f -== II. P between 0.025 and 0.0t. Strictly, the variable that should 
be examined in studies of this type is the ratio: (number of babies with harelip)!(total number 
of babies born), because even if this ratio is constant from month to month, the actual 
number of babies with harelip will vary if the total number born varies. Edwards points out 
that in these data the total number varies little and shows no relation to the variation in 
number with harelip. He proceeds to fit the above data by a periodic (cosine) curve. which 
indicates a maximum in March. 

EXAMPLE 9.3.2-Leggau (4) counted the number of seeds of the weed poterttilla 

found in 98 quarter-ounce batches of the grass Phleumpraetense. The 98 numbers varied 
ftom 0 tp 7, and were grouped into the following frequency distribution. 

Number of seeds o 2 J 4 567 Total 

Number of batches 37 32 16 9 2 0 98 

CaJculate ./. = l:.Jj(yj - y)2jy. Ans. l! = 145.4. with 97 dj. From table A 5, with 
100 df.. P is clearly Jess than 0.005. The high value of X2,is du:e to the batches with six 
and seven seeds. '. 

EXAMPLE 9.3.3-Compute the significance probability in the preceding example by 
finding the normal deviate Z given by equation 9.3.1. Ans.:z = 3.16. P "" 0.0008. The cor­
rect probability. found from a larger table of X1., is P = 0.0010. 

9.4-Additiooal tests. As in section 9.2, the X' test for the Poisson 
distribution can be supplemented or replaced by other tests directed more 
specifically against the type of altel1lative hypothesis that the investigator 
bas in mind. If it is desired to examine wbether a rare meteorological 
event occurs more frequently in the summer months, we migbt compare 
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the total frequency in June, July, and August with the total frequency in 
the rest of the year, the null hypothesis probabilities being very close to 
1/4 and 3/4 . .If a likely alternative hypothesis is that an event shows a 
slow but steady increase or decrease in frequency over a period of nine 
years, construct a variate !, = I, 2, 3, . , . 9 or alternatively - 4, - 3, 
-2, ... +3, +4 (makmg X = 0), to represent the years. The average 
change in the'.r. per year is estimated by the regression coefficient 
'f.[,x Jr.x.', where as usual x, = X, - X, The value of X' for testing this 
coefficient, against the null hypothesis that there is no change, is 

X' = ('f.[,x,)' / Jr.x.', 

with 2 d.f. 
Another example is found in an experiment designed to investigate 

various treatments for the control of cabbage loopers (insect larvae) (5). 
Each treatment was tested on four plots. Table 9.4.1 shows, for five of 
the treatments, the numbers of loopers counted on each plot. The objec­
tive of the analysis is to examine whether the treatments produced dif­
ferences in the average number of loopers per plot. 

TABLE 9.4.1 
NUMBER OF looPERS ON 50 CABBAGE PLANTS IN A PLor 

(Four plots treated alike; five treatments) 

No. of Loopers Plot Plot 
Treatment Per Piot Total Mean X' df 

1 11, 4,4, 5 24 6.00 5.6) 3 
1 6, 4,3. 6 19 4.75 1.41 3 
j 8, 6.4,11 29 7.25 3.69 3 
4 14,27,8. 18 67 16.75 11.39 3 
S 7, 4,9,14 34 8.50 6.24 3 

Total 173 28.41 ' 15 

Since the sum of a number of independent Poisson variables also 
follows a Poisson distribution (section 8.14). we can compare the treat­
ment totals by the Poisson variance test, provided we can adopt the 
assumption that the counts on plots treated alike follow the same Poisson 
distribution. To test this assumption, the X' values for each treatment are 
computed in table 9.4.1 (second column from the right). Although only 
one of the five X' values is significant at the 5% level, their total, 28.41, 
d.f. = IS, gives P of about 0.Q2. This finding invalidates the use of the 
Poisson variance test for the comparison of treatment totals. Some addi­
tional source of variation is present, which must be taken into account 
when investigating whether plot means differ from treatment to treat­
ment. Problems of this type, which are common, are handled by the 
technique known as the analysis of variance. The analysis of these data 
is completed in example 10.3.3, p. 263. 
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Incidentally, the Poisson variance X' for comparing the treatment 
totals would be computed as 

X' = l:Cr, - f)'1f 
= [(24)' + (19)' + " . + (34)' - (173)'/5]/34.6 = 41.5, 

with 4 dj. The high value of this x' suggests that the variation between 
treatments is substantially greater than the variation within trealmenls­
the point 10 be examined in the analysis of variance tesl. 

EXAMPLE 9.4.I-In section 8.4. random numbers were used to draw 100 samples 
from the binomial It = 5, p = 0.2. The observed and expected frequencies (taken from 
table 8.4.1) are as follows: 

No. of Successes 

Observed frequency 
Expected frequency 

o 2 3 4 5 

32 44 17 6 1 0 
32.77 40.96 20.48 5.12 0.64 O.Q3 

Total 

100 
100.00 

Compute ·l and test whether the deviations can be accounted fot by sampling errors. 
Ans. 1.2. = 1.09, df. == 3. P about 0.75. (Combjne classes 3, 4,5 before computing _il.) 

9.5-The X' test when the expectations are SIIlall. The X' test is a 
large-sample approximation, based on the assumption that the distribu­
tions of the observed numbers;; (or y,) in the classes are not far from 
normal. This assumption fails when some or all of the observed numbers 
are very small. Historically, the advice most of len given was that the 
expected number in any class should not be less than 5, and that, if neces­
sary, neighboring classes should be combined to meet this requirement. 
Later research, described in (6), showed that this restriction is too strict. 
Moreover, the combination of classes weakens the sensitivity of the X' 
test. 

We suggest that the X' test is accurate enough if the smallest expecta­
tion is at least I, and Ihat classes be combined only to ensure this condition. 
This recommendation applies to the X2 tests of single classifications de­
scribed in sections 9.2, 9.3, and 9.4. When counting the df. in x', the 
number of classes is the number after any necessary combinations have 
been made. 

In more extreme cases it is possible to work out the exact distribution 
of 1'. The probability that;; observations fall in the ith class is given 
by the muitilWmiai aistribution 

II' 
--;-:-:--;-._--::-: pI, P h P I. 
fl!/,! ... I.! I 1 ... • , 

where the Pi are the probabilities specified by the null hypothesis. This 
distribution reduces to the binomial distribution when there are only two 
classes. This probability is evaluated, along with the value of x', for 
every possible set of fi with t;; ~ n. 

When the expectations are equal (section 9.3), Chakravarti and Rao 
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(7) have tabulated the exact 5% levels of X' for samples in which n = 'i:.j. 
S 12 and the number of classes, k, ~ 100. Our 'i:.f, is their Tand. our k 
is their! Their tabulated criterion (in their table I) is our 'i:.P, which is 
equivalent to X' and quicker to compute. 

EXAMPLE 9.S.I-When 5 dice were tossed 100 times. the observed and expected 
numbers of 2'5 out of 5 were as follows (data from example 1.9.8): 

Number of 2's f F 

5 2 0.013 
4 3 0.322 
3 3 3.214 
2 18 16.075 
I 42 40.188 
0 32 40.188 

Total 100 100.000 

Applying the rule that the smallest expectation should be at ieast 1, we would combine 
classes 5. 4, 3. Verify that this gives 12 = 7.56, dj. = 3, P slightly above 0.05. Note that 
if we combined only the first two classes, this would give X2 = 66.45, df. = 4. 

9.6-Single classifications with estimated expectations. In sections 
9.2 and 9.3, the null hypothesis specified the actual numerical values of 
the expectations in Ihe classes. Often the null hypothesis gives these ex­
pectations in terms of one or more population parameters that must be 
estimated from the sample. This is so, for instance, in testing whether 
the observed frequencies of 0, I, 2, ... occurrences will fit the successive 
terms of a Poisson distribution. Unless the null hypothesis provides the 
value of Jl. this must be estimated from the sample in order to calculate 
the expected frequencies. The estimate of Jl is. of course, the sample 
mean. 

The data of table 8.14.2, to which we have already fitted a Poisson 
distribution, serve as an example of the test of goodness of fit. The data 
and subsequent calculations appear in table 9.6.1. Having obtained the 
expected frequencies. we combine the last four classes (8 or more) so as 
to reach an expectation of at least 1. The deviations (f - F) and the 
contributions (f - F)'/F to X' are calculated as usual and given in the 
last two columns. We find X' = 8.26. 

The only new step is the rule for counting the number of df in /: 

df = (No. of classes) - (No. of estimated parameters) - I 

In applying this rule, the number of classes is counted after mak­
ing any combination of classes that is necessary because of small ex­
pectations. Each estimated parameter places one additional restriction on 
the sizes of the deviations (j - F). The condition that 'i:.(j - F) = 0 
also reduces the likely size of X'. In this example the number of classes 
(after combining) is 9, and one parameter, Jl, was estimated in fitting the 
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TABLE 9.6.1 
Xl TEST OF GOODNFSS OF FIT OF THE PoiSSON DISTRIBUTION, ApPLIED TO THE NUMBERS 

OF NOXIOUS WEED SEEDS FOUND IN 98 BATCHES 

Observed Contribution 
No. of Observed Expected - Expected to Xl. <1- F)l 

Noxious Seeds Frequency U,) Frequency (F) (f-F) . F 

0 3 4.78 -1.78 0.66 
I 17 14.44 +2.56 0.45 
2 26 21.81 +4.19 0.80 
3 16 21.96 -5.% 1.62 
of 18 16.58 + 1.42 0.12 
5 9 10.02 -1.02 0.10 
6 3 5.04 -2.04 0.83 
7 5 2.18 +2.82 3.65 
8 

~}I 082 } 9 0.27 1.20 -0.20 0.03 
10 0.08 

11 or more 0.03 

Total 98 98.01 -0.01 8.26 

distribution. Hence, there are 9 - I - I = 7 df The P value lies be­
tween 0.50 and 0.25. The fit is satisfactory. 

Tests of this kind, in which we compare an observed frequency dis­
tribution with a theoretical distribution like the Poisson, the binomial, 
or the normal, are called goodness of fit tests. For the binomial, tbe d.!. 
are 2 less than the number of classes if p is estimated from the data, and I 
less than the number of classes if p is given in advance. With the normal, 
both parameters I' and u are usually estimated, so that we subtract 3 from 
the number of classes. 

You now have two methods of testing whether a sample follows the 
Poisson distribution, the goodness of fit test of this section and the vari­
ance test of section 9.3. If the members of the population actually follow 
Poisson distributions with different means, the variance test is more sensi­
tive in detecting this than the goodness of fit test. The goodness of fit 
test is a general-purpose test, since any type of difference between the 
observed and expected numbers, if present in sufficient· force, makes X' 
large. But if something is known about the nature of the alternative 
hypothesis, we can often construct a dilkrent test that is more powerful 
for this type of alternative. The same remarks apply to the binomial 
distribution. A variance test for the binomial is given in section 9.8. 

EXAMPLE 9.6. I-The numbers of tomato plants attacked by spotted wilt disease 
were counted in each of 160 areas of9 plants (8). In all, 261 plants were diseased out of 

9 x 160 = 1440 plants. A binomial distribution with n = 9, P = 261/1440. was fitted to the 
distribution of numbers of diseased plants out of9. The observed and expected numbers are 
as follows. 
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No. of Diseased 
Plants 

Observed frequency 
Expected frequency 

o 2 3 4 5 6 7 

364838231.0311 
26.45 52.70 46.67 24.11 8.00 1.77 0.25 0.03 

Total 

160 
159.98 

Perform the Xl goodness of fit test. ADS. Xl = 10.28, with 4 dJ. after combining. 
p < 0.05. 

EXAMPLE 9.6.2-ln a series of trials a set of r successes, preceded and followed by a 
failure, is called a run of length r_. Thus the series FSFSSSF contains one run of successes 
of length I and one of length 3. If the probability of a success is p at each trial, the prob­
ability of a run of length r may be shown to be pr~ lq. In 207 runs of diseased plants in a field. 
the frequency distribution of lengths of run was as follows: 

Length of run 
Observed frequency 

, 
f. 

I 
164 

2 
33 

3 
9 

4 
I 

5 
o 

Total' 
207 

The estimate of p from these data is ft = (T - N)/T, where N = I./, = 207 is the total number 
of runs and T = l:rf, is the total number of successes in these runs. Estimate p: fit th~ dis­
tribution, called the geomerric distriburion; and test the fit by X2 . Ans. x2 = 0.96 with 2 df 
P> 0.50. Note: the expression (T - N)/T. used for estimating p. is derived from a general 
method of estimation known as the method of maximum likelihood. and is not meant to 
be obvious. The expected frequency of runs of length r is Np' - I q. 

EXAMPLE 9.6.3-ln table 3.4.1 (p. 71) a normal distribution was fitted to·511 means 
of samples of pig weight gains; Indicate how you would combine classes in making a good­
ness of fit test. How many df. does your X2 have? Ans. 17 df. 

EXAMPLE 9.6.4-Apply the variance test for the Poisson distribution to the data in 
table 9.6.1. Ans. x. 2 = 105.3 with 97 df. P > 0.25. 

9.7-Two-wayclassifications. The 2 X CCOIItingencytabie. Wecome 
now to data classified by two different criteria. The simplest case (the 
2 x 2 table), in which each classification has only two classes, was dis­
c",~~~d ,,., ,""c\'o,., £.. \\\. lbe "'0"\ ~'mp\e>\ ca-.e """un wben o,.,e c\a~~'nca­
tion has only two classes, the other having C > 2 classes. In the example 
in table 9.7.1, leprosy patients were classified at the start of an experiment 
according as to whether they exhibited little or much infiltration (a mea­
sure of a certain type of skin damage). They were also classified into five 

TABLE 9.7.1 
196 PATIENTS CLASSIFIED AcCOIlOlNG TO CHANGE IN HEAUH AND ~It.EE OF INflLTIlATION 

Change in Health 
Impr-ovement Stationary WorSA! Total 

Dqreeof 
Infiltration Marked lI6o<krate Slight 

Litt~ II 27 42 53 II 1401 
Much 7 IS 16 13 I 52 

Total 18 42 58 66 12 196 
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classes according to the change in their general health during a subse­
quent 48-week period of treatment (9). The patients did not all receive 
the same drugs. but since no differences in the effects of these drugs could 
be detected. the data were combined for this analysis. The table is called 

·a 2 x 5 cOnlingency tab/e. 
The question at issue is whether the change in health is related to the 

initial degree of infiltration. The X' test extends naturally to 4 x C tables. 
The overall proportion of patients with little infiltration is 144/196. On 
the null hypothesis of no relationship between degree of infiltration and 
change in health. we expect to find (18)(144)/196 = 13.22 patients with 
little infiltration and marked improvement. as against II observed. As 
before. the rule for finding an expected number is (row total)(column 
total)/(grand total). The expected numbers F and the deviations (f - F) 
are shown in table 9.7.2. Note that only four expected numbers need be 
calculated: the rest can be found by subtraction. 

TABLE 9.7.2 
EXPECTED NUMBERS AND DEVIATIONS CALCULATED FROM TABLE 9.7.1 

Change in Health 
Improvement Stationary Worse Total 

Degree of ~-. 

Infiltration Marked Moderate Slight 
_ .. 

Expected numbers, F 
little 13.22 30.86 42.61 4H.49 8.82 144.00 
Much 4.78 11.14 15.39 17.51 3.18 52.00 

Total 18.00 42.00 58.00 66.00 12.00 196.00 

Det'ialions. (J - F) 
Little -2.22 - 3.86 -0.61 +4.51 +2.18 0.00 
Much +2.22 +3.86 +0.61 -4.51 -2.18 0.00 

The value o(X' is 

x' = E(f - F)'/F . 
= (-2.22)'/13.22 + (+2.22)'/4.78 + '" + (-2.18.)'/3.18 = 6.87. 

taken over the ten cells in the table. The number of df. is (R - I)(C - I). 
where R. C are the numbers of rows and columns. respectively. In this 
example R = 2. C = 5 and we have 4 df This rule for df is in line with 
the fact that when four of the deviations in a row are known. all the rest 
can be found. With X' = 6.87. df. = 4. the probability lies between 0.25 
and 0.10. 

Although this test has not rejected the null hypothesis. the devia­
tions show a systematic pattern. In the "much infiltration" class. the ob­
served numbers are higher than expected for patients showing any degree 
of improvement, and lower than expected for patients classified as sta-
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tionary or worse. The reverse is, of course, true for the "little infiltration" 
class. Contrary to the null hypothesis, these deviations suggest that 
patients with much infiltration progressed on the whole better than those 
with little infiltration. This suggestion will be studied further in section 
9.10. 

9.8-The variance test for homogeneity of the binomial distribution. 
In the preceding example we obtained a 2 x C contingency table because 
the data were classified into 2 classes by one criterion and into C classes by 
a second criterion. Alternatively, we may have recorded some binomial 
variate PI = a,/n, in each of C independent samples, where i goes from 
I to C and ", is the size of the itb. sample. The objective now is to examine 
whether the true Pi. vary from sample 10 sample. Data of this type occur 
very frequently. 

A quicker method of computing X' which is particularly appropriate 
in this situation was devised by Snedecor and Irwin (10). It will be illus­
trated by the preceding example. Think of the columns in table 9.8.1 
as representing C = 5 samples. 

TABLE 9.8.1 
ALTERNATIVE C."LCVLATlON(Jf."':1. fOR THf DATA IN TABLE 9.7.1 

Intprovement 
Degree of 
Infikration Marked Moderate Slight Stationary Wo"" Total 

Lita. II ~7 42 53 II 144 
Mucb(.~ 7 15 16 13 I 52 (Al 

Talal (n,) 18 42 58 66 12 196 (N) 
p,=a,/", 0.3889 0.3571 0.2759 0.1970 0.0133 0.26531 (p) 

First calculate the proportion PI = a'/", of "much infiltration" pa­
tients in each column, and the corresponding overall proportion p = A/ N 
- 52/196 = 026531. Then, 

1.2 = (:Ep,a, - PA)/N 
= 1(0.3889)(7) + ... + (0.0833)(1) 

- (0.26531 )(52) 1/(0.26531)(0.73469) 

= 6.1111, (9.S.I) 
as before, with 4 df. 

If p, is the variable of interest, you will want to calculate these values 
anyway in order to examine the results. Extra decimals should be carried 
to ensure accuracy in computing X2, particularly when the al are large. 
The computations are a little simpler when the p, are derived from the row 
with the smaller numbers. 

This fonnula for X' can be written, alternatively. 
X' = :En,(p, - p)'/N (9.8.2) 
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If the binomial estimates p, are all based on the same sample size n, 
X' becomes 

c 
X' = ~ (p, - iW/(pij/n) = (e - l)s.'/(pij/n) (9.8.3) 

i'= I 

In this form, x> is essentially a comparison of the observed variance 
s/ among thep, with the variance pij/n that thep, would have if they were 
independent samples from the same binomial distribution. The same 
interpretation can be shown to apply to expression (9.8.2) for X'. A high 
value of X' denotes that the true proportions differ from sample to sample. 

This test, sometimes called the variance test for homogeneity of the 
binomial distribution, has many applications. Different investigators 
may have estimated the same proportion in different samples, and we 
wish to test whether the estimates agree, apart from sampling errors. In 
a stl\dy of an attribute in human families, where each sample is a family, 
a high value of X' indicates that members of the same family tend to be 
alike with regard to this attribute. 

When some of the sample sizes n, are small, some of the expectations 
njJ and n,li will be small. The X' test can still be used with some expecta­
tions as low as I; provided that most of the expectations (say 4 out of 5) 
are substantially larger. (Recent results [II J suggest that this advice is 
conservative.) In some genetic and family studies, all the n, are small. 
For this case a good approximatioD to the significance levels of the exact 
X' distribution has been given by Haldane (12), though the computations' 
are laborious. When X' has more than 30 dj and the n, are all equal 
(= n) the exact X' is approximately normally distributed with 

Mean = (e - I)N/(N - 1) 

l'8.-iBn«= 2{C - llf; I)(N _ I)'(:~ 2)(N _ 3) & - A~~ =- ~a 
= 2(e - l)f" ~ 1)[1 + ~(7 - ;q)} 

where C is the number of samples and N = Cn. 
When the p, vary from column to column, as indicated by a high 

value of X', the binomial formula .J(pii/N) underestilllates the standard 
error of the overall proportion p for the combined sample. A more 
nearly correct formula (section 17.5) for the standard error of Ii in this 
situation is 1 

s .•. (p) = Ii J(:ta,' - 2p:ta,n, + p':tn,')/C(C - I), (9.8.4) 

where C is the number of samples and 

°i Pi =-­
n, 

_ N 
n=-

C 
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EXAMPLE 9.8. I-Ten samples of 5 mice from the same laboratory were injected with 
the same dose of bact. /yphi, murium (13). The numbers of mice dying (out of 5) were as 
follows: 3, 1, 5, 5, 3, 2, 4,,2, 3, 5. Test whether the proportion dying can be regarded as 
constant from sample to sample. Ans. X2 = 18.1, df. = 9. P < 0.05. Since the death rate 
is found so often to vary within the same laboratory, a standard agent is usually tested along 
with each new agent, because comparisons made over time cannot be trusted. 

EXAMPLE 9.8.2-Uniform doses of Danysz bacillus were injected into rats, the sizes 
of the samples being dictated by the numbers of animals available-at the dates of injection. 
These sizes. the numbers of sur:viving rats, and the proportion surviving, are as follows: 

Number in sample 
Number surviving 

Proportion surviving 

40 
9 

0.2250 

12 
2 

0.1661 

22 
3 

0.1364 

II 
1 

0.0909 

31 
2 

0.0541 

20 
3 

0.1500 

Test the null hyPOthesis'that the probability of survival is the same in all samples. Ans. 
X' - 4.91, df. - 5, P - 0.43. 

EXAMPLE 9.8.3-ln another test with four samples of inoculated rats, X2 was 6.69, 
P = 0.086. Combine the values of Xl for the two tests. Ans. Xl = 11.66. df. = 8, P = 0.17. 

EXAMPLE 9.8.4-Burnett (14) tried the effect affive storage locations on the viability 
of seed corn. In the kitchen garret, 111 kernels germinated among 120 tested; in a closed 
toolshed, 55 out of 60; in an open toolshed. 55 out of 60; outdoors, 41 out of 48; and in a 
dry garret, 50 out of 60. Calculate Xl = 5.09, df. = 4, P = 28?~. 

EXAMPLE 9.8.5-10 13 families in Baltimore. the numbers of persons (n j ) and the 
numbers (a;) who had consulted a doctor during-the previous'12 months were as follows: 
7,0; 6, 0; 5, 2; 5, 5; 4,1; 4, 2; 4, 2; 4, 2; 4, 0; 4, 0; 4,4;4,0; 4, O. Compute the overall per­
centa:ge who had consulted a doctor and the standard error of the percentage. Note: One 
would expect the: proportion who had seen a doctor to vary from family to family. Verify 
this by finding l = 35.6, df = 12, P < 0.005. Consequently, fonnula 9.8.4 is used to 
estimate the s.e. of p. Ans. Percentage = 1001' = 30.5%. S.e. = 10.5%. (These data were 
selected from a large sample for illustration.) 

9.9-Further examination of the data, When the initial X2 test shows 
a significant value, the remarks made in section 9.2 about further examina­
tion of the data apply here also. Subsequent tests are made that may help 
to explain the high value of Xl. Frequently, as already remarked, the in­
vestigator proceeds at once to these tests, omitting the initial X' test as not 
informative. 

Decker and Andre (15) investigated the effect of a short, sudden ex­
posure to cold on the adult chinch bug. Since experimental insects had 
to be gathered in the field, the degree of heterogeneity in the insects was 
unknown, and the investigators faced the problem as to whether they 
could reproduce their results. Ten adult bugs were placed in each of 50 
tubes and exposed for 15 minutes at - soc. Forthis illustration the counts 
of the numbers dead in the individual tubes were combined at random 
into 5 lots of 10 tubes each; that is, into lots of 100 chinch bugs. The 
numbers dead were 14, 14, 23, 17, and 20 insects. From these data. 
X' = 4.22, df. = 4, P = 0.39. The results are in accord with the hy­
pothesis that every adult bug was subject to the same chance of being 
killed by the exposure. 
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In a second sample of 500 adults, handled in the same manner except 
that they were exposed at - 9'C., the numbers dead in groups of 100 were 
38, 30, 30, 40, 27. The X' value of 5.79 again verifies the technique, 
showing only sampling variation from the estimated mortality of 33'}~. 

The gratifying uniformity in the results leads one to place some con­
fidence in the surprising finding that the death rates at - 8"C and - 9'C. 
were markedly different. The total numbers dead in the two samples 
of 500 were 88 and 165. The result, X' = 31.37 with df. = I, P less than 
0.0002. provides convincing evidence that a rise in mortality with the 
lowering of temperature from - 8'C. to - 9' C is a characteristic of the 
population, not merely an accident of sampling. 

The ease of applying a test of experimental technique makes its use 
almost a routine procedure except in highly standardized processes. It is 
necessary merely to collect the data in several small groups, chosen with 
regard to the types of experimental variation thought likely to be present, 
instead of in one mass. The additional information may modify conclu­
sions and subsequent procedures profoundly. 

In this example the sum of the three values ofX2 is 4.22 + 5.79 + 31.37 
= 4.1.38, with 9 df If the initial X' is calculated from the 2 x 10 con­
tingency table formed by the complete data, its value is also found to be 
41.38, with 9 d,t: This agreement between the two values is a fluke. which' 
does not hold generally in 2 x C tables. For 2 x C and R x C tables, a 
method of computing the component parts so that they add 10 the initial 
total X2 is available (16). In these data this method amounts to using the 
same denomipator pij = (0.253)(0.747), calculated from the total mortal­
ity. in finding all X' values. Instead. for the 4 df. X' at _8°C. we used 
pij = (0.176)(0.824), appropriate to that part of the data, and at -9"C. 
we used pq = (0.330)(0.670). The additive x2 values give 3.24 + 6.77 
+' 31.37 = 41.38. However, when it has been shown that the mortality 
differs at - 8 C and - 9"C .. use of a pooled p for the individual homo­
geneity tests at - 8 C and - 9"C. is invalid. The non-additive method 
is recommended. except in a guick preliminary look at the data. 

9. to-Ordered classifications. In the leprosy example of section 9.7, 
the classes (marked improvement, moderate improvement, slight im­
provement. stationary, worse) are an example of an ordered da"Ss(ficalion. 
Such classifications ate common in the study of human behavior and 
preferences, and more generally whenever different degrees of some phe­
nomenon can be recognized. The problem of utilizing the knowledge 
that we posses~ about this ordering has attracted considerable attention 
in recent years. 

With a single cla&sification of Poisson variables, the ordering might 
ledd us to expect that itthc null hypothesis!(; = I' does not hold, an alterna­
t.ve 1'. s 1'2 S 1'" s should hold, where the subscripts represenl the 
order. For instance, if working conditions in a factory have been classi­
fied as Excellent, Good, Fair. we might expecuhat if the number of defec­
tive articles per worker varies with working conditions. the order should 

16 
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be III ,; 11, ,; 11,· Similarly, with ordered columns in a 2 x C contingency 
table, the alternative P, ,; p, ,; p, ,; might be expected. X' tests designed 
to detect this type of alternative have been developed by Bartholomew 
(I 7). The computations are quite simple. 

Another approach, used by numerous workers (9), (18), (19), is to 
attach a score to each class so that an ordered scale is created. To ilIus· 
trate from the leprosy example, we assigned scores of 3,2, I, respectively, 
to the Marked, Moderate, and Slight Improvement classes, 0 to the Sta­
tionary class, and - I to the Worse class. These scores are based on the 
judgment that the five classes constructed by the expert represent equal 
gradations on a continuous scale. We considered giving a score of + 4 
to the Marked Improvement class and -2 to the Worse class, since the 
expert seemed to examine a patient at greater length before assigning him 
to one of these extreme classes, but rejected this since our impression may 
have been erroneous. 

Having assigned the scores we may think of the leprosy data as 
consisting of two independent samples of 144 and 52 patients, respec­
tively. (See table 9.10.1.) For each patient we have a discrete measure 
X of his change in health, where X takes only the values 3, 2, 1,0, -I. 
We can estimate the average change in health for each sample, with its 
standard error, and can test the null hypothesis that this average change is 
the same in the two populations. For this test we use the ordinary two­
,ample I-test as applied to grouped data. The calculations appear in 
table 9.10.1. On the X scale the average change in health is + 1.269 for 
patients with much infiltration and + 0.819 for those with little infiltration. 
The difference, D, is 0.450, with standard error iO.I72 (194 df), com­
puted in the usual way. The value of I is 0.450/0.172 = 2.616, with 
P < 0.01. Contrary to the initial X' test, this test reveals a significantly 
greater amount of progress for the patients witb much infiltration. . 

The assignment of scores is appropriate when (i) the phenomenon 
in question is one that could be measured on a continuous scale if the 
instruments of measurement were good enough, and (ii) the ordered classi­
fication can be regarded as a kind of grouping of this continuous scale, or 
as an attempt to approximate the continuous scale by a cruder scale that is 
the best we can do in the present state of knowledge. The process is 
similar to that which occurs in many surveys. The householder is shown 
flve specific income classes and asked to indicate the class within which 
his income falls, without naming his actual income. Some householders 
name an incorrect class, just as an expert makes some mistakes in classi· 
fication when this is difficult. 

The advantage in assigning scores is that the more flexible and power­
ful methods of analysis that have been developed for continuous variables 
become available. One can begin' to think of the sizes of the average 
differences between different groups in a study, and compare the dif­
ference between groups A and B WIth that between groups E and F. 
Regressions of the group means X on a further variable Z can be worked 



TABLE 9.10.1 
ANAL "SIS Of TltE LEPROSY D,4, T" BY AssIGNED ScOilES 

(Data with assigned sc:o~) 

Infiltration Change in 
Heallh Little: Much 

No. 01 palienlS 
x 

J 
2 
1 
o 

-I 

Total : 'If 

f 

II 
27 
42 
53 
II 

144 

(ComputatiollS) 
Liltlr 

IIX 118 
J( - 'IIX/II 0.819 
'IIX1 260 
('I/X)l/tf 96.7 

tfxl 163.3 
J,J. 143 
$ 1 1.142 
Pooled $1 ).J3) 

SlJl (J.'JI)(~ + _!_) _ 0.0296 
144 52 

slJ 0.172 

D 1.269 - 0.819 .. 6 
, - - - - ... 61 sa 0.172 

til - 194. P < 0.01 

f 

7 
15 
16 
13 

) 

52 

Much 
66 

1.269 
140 
83.8 

56.2 
51 

1.102 

24.5 

out. The relative variability of different groups can be examined by 
computing s for each group. 

This approach assumes that the standard methods of analysis of 
continuous variaoJes, like the I-leSt, can be used with an X variable that 
is discrete and takes only a few values. As noted in section 5.8 Qn scales 
with limited values, the standard methods appear to work well enbugh for 
practical use. However, heterogeneity of variance and correlation be­
tween .r and X are more frequently encountered because of the discrete 
scale. If most of the patients in a I(oup show marked improvement, 
most of their X's will be 3, and r will be small. Poolin& of variances 
should not be undertaken without examining the individual Sl. In the 
leprosy example the two.r1 were J.J42 aDd J.J02 (rable 9.10.1), and this 
difficulty was not present. 
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The chief objection to the assignment of scores is that the method 
is more or less arbitrary. Two investigators may assign different scores 
to the same set of data. In our experience, however, moderate differences 
between two scoring systems seldom produce marked differences in the 
conclusions drawn from the analysis. In the leprosy example, the alterna­
tive scores 4, 2, 1,0, -2 give 1= 2.549 as against t = 2.616 in the analysis 
in table 9.10.1. Some classifications present particular difficulty. If the 
degrees of injury to persons in accidents are recorded as slight, moderate, 
severe, disabling. and fatal, there seems no entirely satisfactory way of 
placing the last two classes on the same scale as the first three. 

Several alternative principles have been used to construct scores. In 
studies of different populations of school children, K. Pearson (20) as­
sumed that the underlying continuous variate was normally distributed 
in a standard population of school children. If the classes are regarded as 
a grouping of this normal distribution, the class boundaries for the normal 
variate are easily found. The score assigned to a class is the mean of the 
normal variate within the class. A related approach due to Bross (21) also 
uses a standard population but does not assume normality. The score 
(ridil) given to a class is the relative frequency up to the midpoint of that 
class in the standard population. When the experimental treatments are 
different doses of a toxic or protective agent in biological assay. Ipsen (21) 
shows how to assign scores so that the resulting variate has a linear regres­
sion on some chosen function of the dose, the ratio of the variance due 
to regression to the total variance being maximized. Fisher (23) assigns 
scores so as to maximize the F-ratio of treatments to experimental error 
as definod in section 10.5. The maximin method of Abelson and Tukey 
(24), maximizes the square of the correlation coefficient " between the 
assigned scores and the set of true scores, consistent with the investigator's 
knowledge about the ordering of the classes, that gives a minimum cor­
relation with the assigned scores. This approach, like Bartholomew's, 
avoids any arbitrary assumptions about the nature of the true scale. 

EXAMPLE 9.10.1 -·In the leprosy data, verify the value of t = 2.549 quotedJor the 
~oring 4, 2, I, D. - 2. 

9.11-Test for a linear trend in proportions. When interest is centered 
on th~ proportions p; in a Z x C contingency table, there is another way 
of viewing the data. Table 9.11.1 shows the leprosy data with the assigned 
scores X;, but in this case the variable that we analyze is p;, the proportion 
of patients with much infiltration. The contention now is that if these 
patients have fared better than patients with little infiltration, the values 
of p; should increase as we move from the Worse class (X = - I) towards 
the Marked Improvement class (X = 3). 

If this is so, the regression coefficient of p; on X; should be a good test 
criterion. On the null hypothesis (no relation between p; and X;) each p; 
is distributed about the same mean, estimated by p. with variance pq/n;. 
The regression coefficient b is calculated as usual, except that each p; 
must be weighted by the reciprocal of the sample size n; on which it is 
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TABLE 9.11.1 
TESTING A LINEAR REGRf.SSrON OF Pi ON THE SCORE (LEPROSY DATA) 

Improvement Stationary Worse Total 
Degree of --~.---. 

Infiltration Marked Moderale Slight 

Little 11 27 42 53 II 144 
Much (a,) 7 15 16 13 I 52 

Tota) (n,) 18 41 58 66 12 196(N) 

Pi = oJn; 0.3889 0.3571 0.2759 0.1970 0.08:n 0.26531.) 

Score X; 3 2 I 0 -I 

based. The numerator and denominator of h are computed as follows: 
Num. = l:n,(p, - pH Xi - X I 

= "'L.niPiXi - CEl1IP/){L.I1IXj)/I:nj 
= l:a,X, - (l:a,)(l:n,XyN 
= 66 - (52)(184)/196 = 66 - 48.82 = 17.18 

Den. = I'niX_.z - (~niXi)2/N 
= 400 - (184)'/196 = 400 - 172.8 = 227.2 

This gives h = 17.18/227.2 = 0.0756. Its standard error is 

s, = J(pij/Den.) = ,!:(O.2653)(O.7}47)/(227.1): ~ 0.029.1 

The normal deviate for testing the null hypothesis Ii = 0 is 

Z ~ his. = 0.0756/0.0293 = 2.SHO. P = 0.0098. 

f\.Wi'I'\'A\%,r, \\ ~ 'i't\)\ w'(il'Otr":l '0\ fm,'\ '~:Iglfl\, '( '(t\t:':~ , \ ~ ',. "'ShO'w~ \'ua\ \ TI;L'~ 
regression test is essentially the 3ame as the I-test in section 9.10 of !he 
difference between the Inean scores in the Little and Much infiltration 
classes. In this example the reg.ression test gave Z = 2.580 while the 
I-Iest gave 1 = 1.616(194 d,t:). The dIf1cren,'c in resulls arises because the 
two approaches use slightly ditferentl"rge-sample approximations to the 
exact distributions of Z and t with these discrete data. 

EXAMPLE 9.11.1 Armitage (19\ quote~ the following data by Holmes and Williams 
(or the relation in children between l';ize of lon:.d" and {he proportion of children who are 
carriers of slr('pltl(·nCl'u.~ p\'og,'ne.~ in the nose 

x = Score Given to Size of Tonslls 
Types ofC'hlldren (I [ 2 Tota! Children 

Carriero; {II,) 19 29 24 72 c4 \ 
N(ln-carrier~ 497 560 ~f,9 132('1 

Tot<ll {II,) 516 589 29~ 1~9R (,V\ 

Carrier-ratc (p,) 0.0:\68 0.0492 0,0819 O_O)I)O~ (pI 
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Calculate: (i) the normal deviate Z for testing the linear regression of the proportion of car· 
riers on size ofl005i15. (ti) the value of t for comparing the difference between the mean size 
of tonsils in carriers and non-carrien. Ans. (i) z,.. 2.681, (ii) t = 2.686. with 1396 df 

EXAMPLE 9. t-l.2-When the regression of p, on X, is us~ as a test criterion, it is of 
interest to examine whether the regression is linear, Armitage (19) shows that this can be 
done by first computing 'l "'" I:nj(p; - p)2/pq = {I:aJ'! - A 2/N}/pq. This Xl, with (C - I) 
df" measures the total variation among the C values of Pi' The x. Z for linear regression, with 
1 d/. is found by squaring Z, since the square of a normal deviate has a x. 2 distribution with 
I d! The difference. 'X.€C- 1)2 - XI Z, is a X2 with (C - 2) df for testing the deviations of the 
P. from their linear regression on the Xj • Compute this Xl for the data in example 9.1t.l. 
Ans. The total Xl is 7.85 with 2 df., while Zl is 7.19 with J df. Thus the,;l for the devia· 
tions is 0.66 with 1 df., in agreement with the hypothesis of linearity. 

9.12-Heterogeoeity Xl in testing Mendelian ratios. It is often ad­
visable to collect data in several small samples rather than in a single large 
one. An example is furnished by some experiments on chlorophyll in­
heritance in maize (I), reported in table 9.12.1. The series cone.isted of 
11 samples of progenies of heterozygous green plants, self-fertilized, segre­
gating into dominant green plants and recessive yellow plants. The hypo­
thetical ratio is 3 green to 1 yellow. We shall study the proportion of 
yellow-theoretically 1/4. 

TABLE 9.12.1 
NUMBER OF YELLOW SEEDLINGS IN It SAMPLI:S OF MAIZE 

No. in Sample No. Yellow 

n, a, 

122 24 
149 39 
86 18 
55 13 
71 17 

179 38 
150 3() 

36 9 
91 21 
53 14 

III 26 

N~ 1103 A ~ 249 

Heterogeneity )!l (10 df.) 
X' ~ (!:a,p, - Ap)/Pii = (0.5779)/(0.2258)(0.7742) ~ 3.31 
Pooled Xl (I dj.) 
X/ ~ (iA - Npl- il'/Npq 

~ ((249 - 275.751- !)'/(llOl)(O.25HO.75) ~ l.ll 

-Proportion Yellow 

0.1967 
0.2617 
0.2093 
0.2364 
0.2394 
0.2123 
0.2000 
0.2500 
0.2308 
0.2642 
0.2342 

P = 0.22575 

The data may fail to satisfy the simple Mendelian hypothesis in two 
ways. First, there may be real differences among the p, (proportion of 
yellow) in different samples. This finding points to some additional Source 
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of variability that must be explained before the data can be used as a 
crucial test of the Mendelian ratio. Second, the p; may agree with one 
another (apart from sampling errors) butthe;r overall proportion p may 
disagree with the Mendelian proportion p. The reason may be linkage or 
crossing-over, or differential robustness in the dominant and recessive 
plants. 

The first point is examined by applying to the p; the variance test for 
homogeneity of the binomial distribution (section 9.8). The value of X' 
shown under table 9.12.1, is 3.31, with 10 df, P about 0.97. The test 
gives no reason to suspect rea1 differences among the Pi" We therefore 
pool the samples and compare the overall ratio, p = 0.22575, with the 
hypothetical p = 0.25, by the X2 test for a binomial proportion (section 
8.8). We find X2 (corrected for continuity) = 3.33, P about 0.07 There 
is a hint ofa deficiency of the recessive yellows. 

In showing the relation between these two tests, the following alge­
braic identity is of interest: 

ccc 
L n;(p; - p)2 = ('[ n;l(p - p)~ + '[ ";(p; - P)' 

(9.12.1 ) 
pq pq pq 

The quantity n;(p, - p)2/pq measures the discrepancy between the ob­
served p; in the ith sample and the theoretical value p. [fthe null hypothe­
sis is true, this quantity is distributed as X2 with I df and the sum of these 
quantities over the C samples (left side of equation 9.12.1) is distributed 
as X2 with C df The first term on the right of(9.12.1 ) compares the pooled 
ratio p with p, and is distributed as x' with I df The second term on the 
right measures the deviations of the p; from their own pooled mean p, 
and is distributed as X2 with (C - I) df To sum up, the totalX2 on the 
I~ft, with C df, splits into a X2 with I df which compares the pooled 
sample p and the theoretical p, and a heterogeneity X2, with (C - I) df. 
which compares the p; among themselves. These X' distributions are of 
course followed only approximately unless the n; are large. 

In practice, this additive feature is less useful. Unless the poored 
sample is large, a correction for continuity in the I df for the pooled x' 
is advisable. This destroys the additivity. Secondly, the expression for 
the heterogeneity X2 assumes ·that the theoretical ratio p applies in these 
data. If there is doubt on this point, the heterogeneity X2 should be 
calculated, as in table 9.12.1, with pq in the denominator instead of pq. 
In this form the heterogeneity X2 involves no assumption that p = p 
(apart from sampling errors). 

EXAMPLE 9.12.1--From a population expected to segregate I: 1, four samples with 
the following ratios were drawn. 47:33. 40:26. 30:42. 24:34. Note the discrepancies 
among the sample ratios. Although the pooled X2 does not indicate any unusual departure 
(rom the theoretical ratio, you will find a large heterogeneity Xl equal to 9.01. P = 0.03, for 
which some explanation should be sought. 
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EXAMPLE 9.J2.2-Fisher (25) applied X2 tests to the experiments conducted by 
Mendel in 1863 to test different aspects of his theory, as follows: 

Experiment X' df. 

Trifactorial 8.94 17 
Sifactorial 2.81 8 
Gametic ratios 3.67 15 
Repeated 2: I test 0.13 I 

Show that in random sampling the probability of obtaining a total 1.. 2 lower than that ob­
served is less than 0.005 (use the 12 table). More accurately, the probability is less than I in 
2000. Thus. the agreement of the results with Mendel's laws looks too good to be true. 
Fisher gives an interesting discussion of possible reasons. 

9.I3-The R x C table. If each member of a sample is classified by 
one characteristic into R classes, and by a second characteristic into C 
classes, the data may be presented in a table with R rows and C columns. 
The entry in any of the RC cells is the number of members of the sample 
falling into that cell. Strand and Jessen (26) classified a random sample 
of farms in Audubon County, Iowa, into three classes (Owned, Rented, 
Mixed), according to the tenure status and into three classes (I, II, III), 
according to the level of the soil fertility (table 9.13.1). 

TABLE 9.13.1 
NUMBERS Of FARMS ON THREE SOIL FERTlLITY GROUPS IN AUDUBON CoUNTY, IOWA, 

CLASSIFIED ACCORDING TO TENloU 

Soil Owned Rented Mixed Total 

I f 36 67 49 152 
F 36.75 62.92 52.33 

-- -- --
f-F -0.75 4.08 -3.33 

II f 31 60"- 49 140 
F 33.85 - 57.95 48.20 

--- -- _.-
f- F -2.85 2.05 0.80 

III f 58 87 80 225 
-_ F 54.40 93.i3 77.47 

'- --- -- --
f-i 3.60 -6.13 2.53 

Total 125 214 178 517 

, '<" (f - F)' ( -0.75)' (2.53)1 
l ~ L.. -1'- ~ 36~75- + ... + 77:47 ~ 1.54. df. ~ (R - 1)(C - I) = 4 

Before drawing conclusions about the border totals for tenure status, 
this question is asked: Are the relative numbers of Owned, Rented. and 
Mixed farms in this county the same at the three levels of soil fertility? 
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This question might alternatively be phrased: Is the distribution of the 
soil fertility levels the same for Owned, Rented, and Mixed farms? (If a 
little reflection does not make it clear that these two questions are equiva­
lent, 'see example 9,13.1.) Sometimes the question is put more succinctly 
as: Is tenure status independent of fertility level? 

The X' test for the 2 x C table extends naturally to this situation. 
As before, 

x2 = '£(f - F)'/F, 

wherefis the observed frequency in any cell and Fthe frequency expected 
if the null hypothesis of independence holds. 

As before, the expected frequency for any cell is computed from the 
border totals in the corresponding row and column: 

F = (row total)(column total) 
n 

row total 
= . (column total) 

n 

Examples: For the first row, 

row total = 152 = 0 29400 
n 517' 

FI = (0.29400)(125) = 36.75 
F2 = (0.29400)(214) = 62.92 
F 3 = (0.29400)( 178) = 52.33 

This procedure makes the computation easy with a calculating machine. 
For verification. notice that (i) the sum of the F in any row or column is 
eQ)lalto the observed total, and consequently (ii) the sum of the deviations 
in each row and in each column is zero. 

The facts just stated dictate the number of degrees of freedom. One 
is free to put R - I expected frequencies in a column, but the remain­
ing cell is then fixed as the column total minus the sum of the R - I values 
of F Similarly, when we have inserted expected frequencies lnthis way 
in (e - I) columns, the expected frequencies in the las.,! column are fixed. 
Therefore, df = (R - II(C - I). . 

The calculation of x' is given in the table. Since P > 0.8, the null 
hypothesis is not rejected. If you do not need to examine the contribution 
of the individual cells of X', up H> half the time in computation can be 
saved by a shortcut deVIsed by P. H. Leslie (27). This is especially useful 
if many tables are to be calculated. 

When X2 is significant, the next step is to study the nature of the de­
parture from independence in more detail. Examination of the cells in 
which the contribution to X' is greatest, taking note of the signs of the 
deviations (f - F), furnishes clues, but these are hard to interpret because 
the deviations in different cells are correlated. Computation of the per-
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centage distribution of the row classification within each column, fol­
lowed by a scrutiny of the changes from column to column, may be more 
informative. Further X' tests may help. For instance, if the percentage 
distribution of the row classification appears the same in two columns, a 
X' test for these two columns may confirm this. The two columns can 
then be combined for comparison with other columns. Examples 9.13.2, 
3, 4, 5 illustrate this approach. 

EXAMPLE 9.13.1 "-Show that jf the expected distribution of the column classification 
is the same in every row, then the expected distribution of the row classification is the sarr'!'" 
in every COIUffirl. For the ith row. let F:.I' F.z •... F:.c be the expected numbers in the respec­
tive columns. Let Fi~ "" a2Fil' Fn =:: Q)Fil' ... Fie == aCFH' Then the numbersu2. Q3,' . Qe 
must be the same in every row, since the expected distribution of the column c1asslficatlon 
is the same in every tow. Now the expected row distribution in the first column is FII • 

F 21 •. . F RJ . In the second column it is F;1 ""'" Q2 FIl , F22 ~ Q2F21' . FR2 = a2F,O' Since 
02 is a constant multiplier, thjs is the same distribution as in the tirst column, and similarly 
for any other column. 

EXAMPLE 9.13.2-~ln a study of the relation between blood type and disease, large 
samples'of patients with peptic ulcer, patients with gastric cancer, and control persons free 
from these diseases were classified as to blood type (0, A, B, AB). (n this ex.a.mple, the 
relc.ttively small numbers. of AB patients were omitted for simplkity. The observed numbers. 
are as follows: 

Blood Type I Peptic Ulcer 

o ; 983 

~ I 679 

~~~ 

Gastric Cancer 

38) 
416 
84 

883 

Controls 

2892 
2625 

570 

6087 

Totals 

4528 
3720 

788 

8766 

Compute 1: to test the null hypothesis that the distribution of blood types is the samc> for 
the three samples. Ans.·C ~ 40.54, '"' dj, P very small. 

EXAMPLE 9.13.3-To examine this Question further. compute the percentage dis­
tribution of blood types.Jor each sample, as shown below. 
_----_. 

Blood Type Peptic Ulcer Gastric Cancer Controls 

0 54.7 43.4 47.5 
A 37.8 47.1 43.1 
B 15 9.5 9.4 

Totals 100.0 100.0 100.0 

This suggests (i) there is little difference between (tte blood type distributions for gastric 
cancer patients and controls, (ii) peptic ulcer patients differ principally in having an excess of 
patients of type O. Going back to the frequencies in example 9.13.2, test the hypothesis 
that the blood type distribution is the same for gastric cancer patients and controls. Ans. 
X' ~ 5.64 (2 df)· P about 0.06. 

EXAMPLE 9. I 3.4--Col11bine the gastric cancer and control samples. Test (i) whether 
the distribution of A and B types is the same in this combined sample a.s in the peptic ulcer 
sample (omit the 0 types). Ans..·; -= 0.68 (1 df) P > 0.1. (ii) Test whether proportion 
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or 0 types versus A + B types is the same for the combined sample as for the gastric cancer 
samples. Ans.·i = 34.29 (l df). P very small. To sum up, the high value of the original 
4 df Xl is due primarily to an excess of 0 types among the peptic ulcer patients. 

EXAMPLE 9.13.5-The preceding X2 tests may be summarized as follows: 

Total 

Comparison 

0, A. B types in gastric cancer (g) and controls (c) 
A, B types in peptic ulcer and combined (g. c) 
0, A and B types in peptic ulcer and combined (g, c) 

d.f. 

2 
I 
I 

4 

x' 

5.64 
0.68 

34.29 

40.61 

The total X2
• 40.61, is close to the original"l, 40.54, because we have broken down the original 

4 d.f. into a series of independent operations that account for all 4 df. The difference be­
tween 40.61 and 40.54, however, is not just a rounding error; the two quantities differ a little 
algebraically. 

9.14-8ot. of 2 X 2 tables. Sometimes the task is to combine the 
evidence from a number of 2 x 2 tables. The same two treatments or 
types of subject may have been compared in different studies, and it is 
desired to summarize the combined data. Alternatively, the results of a 
single investigation are often subclassified by the levels of a factor or 
variable that is thought to influence the results. The data in table 9.14.1. 
made available by Dr. Martha Rogers (in 9), are of this type. 

The data form part of a study of the possible relationship between 
complications of pregnancy of mothers and behavior problems in children. 
The comparison is between mothers of children in Baltimore schools who 
had been referred by their teachers as behavior problems and mothers of 
control children not sO referred. For each mother it was recorded whether 

TABLE 9.14.1 
A SEt' Of THP.E£ 2 x 2 TABUS: NUMBERS OF MOTHEltS WrtK PREVIOUS INFA.NT LOSSES 

No. of Mothers with: 
Birth Type of 
Order Children Losses No Losses Total % Loss X' (I d.f.) 

2 Problems 20 &2 \02 = "I·r... 19.6"'" PI' 
Controls 10 54 64 = nil . 15.6"'" '12 
Total 30 136 166=n, 18.1"'" p, 0.42 

3-4 Problems 26 41 67 = 1121 , 38.8:;: P21 
Controls 16 30 46 = n 21 

i 
34.8:;: fin 

Total 42 71 113 = n2 37.2 = P2 0.19 
I 

I 

5+ Problems 27 22 49 = nll 55.1 = Pl' 
[ Controls 14 23 37 = nll I 37.8 = PH 

Total 
I 

41 45 86 =nl I 47.7 = p, j 2.52 
I , 
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she had suffered any infant losses (e.g .. stillbirths) prior to the birth of the 
child. Since these loss rates increase with the birth order of the child, as 
table 9.14.1 shows, and since the two samples might not be comparable 
in the distributions of birth orders. the data were examined separately for 
three birth-order classes. This is a common type of precaution. 

Each of the three 2 x 2 tables is first inspected separately. None of 
the X' values in a single table, shown at the right, approaches the 5% sig­
nificance level. Note, however, that in all three tables the percentage of 
mothers with previous losses is higher in the problem children than in the 
controls. We seek a test sensitive in detecting a population difference 
that is consistently in one direction, although it may not show up clearly 
in the individual tables. 

A simple method is to compute X (the square root of X') in each table. 
Give any Xi the same sign as.the difference di = Pi! - Pi2' and add the 
Xi values. From table 9.14.1. 

X, + X, + Xl = +0.650 + 0.436 + 1.587 = +2.673, 

each x, being + because all the differences are +. 
Under Ho, any Xi is a standard normal deviate: hence, the sum of the 

3 is is a normal deviate with S.D. = .j3. The test criterion is };xil.jg, 
where g is the number df tables. In this ca.e we have 2.673!.j3 = 1.54. 
In the normal table, the two-tailed P value is just above O.ID. For this 
test the is should not be corrected for continuity. 

This test is satisfactory if (i) the n, do not vary from table to table by· 
more than a ratio of 2 to I, and (ii) the p, are in the range 20~; to 75%. 
If the n, vary greatly, this test gives too much weight to the small tables, 
which have relatively poor power to reveal a falsity in the N.H. If the 
P's in some tables are close to zero or 100%, while others are around 50%, 
the popUlation differences hi are likely to be related to the level of the Pij' 

Suppose that we are comparing the proportions of cases in which body 
injury is suffered in auto accidents by seat-belt wearers and non-wearers. 
The accidents have been classified by severity of impact into mild, mod­
erate, severe, extreme, giving four 2 x 2 tables. Under the mild impacts, 
both Pit and P12 may be small and 0, also small, since injury rarely occurs 
with mild impact. Under extreme impact, P., and P., may both be close 
to 100%. making 8. also small. The large b's may occur in the two 
middle tables where the P's are nearer 50%. 

In applications of this type, two mathematical models have been 
used to describe how 0, may be expected to change as p" changes. One 
model supposes that the difference between the two populations is con­
stant on a IO?,it scale. The logit of a proportion P is log, (P!q). A constant 
difference on the logit scale means that log, (Pil!qil) - log, (Pi2!qi2) is 
constant as Pi2 varies. The second model postulates that the difference is 
constant on a normal deviate (2) scale. The value of 2 corresponding to 
any proportion P is such that the area of a ,tandard normal curve to the 
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left of Z is p. For instance, Z = 0 for p = 0.5, Z = 1.282 for p = 0.9, 
Z = -1.282 for p = 0.1. 

To illustrate the meaning of a constant difference on these trans­
formed scales, table 9.14.2 shows the size of difference on the original 
percentage scale that corresponds to a constant difference on (a) the logit 
scale (b) the normal deviate scale. The size of tile difference was chosen 
to equal 20% at pz = 50%. Note that (i) the differences diminish towards 
both ends ofthep scale as in the seat belts example, (ii) the two transforma­
tions do not differ greatly. 

TABLE 9.14.2 
SIZE Of DIFFERENCE {J = Pl - P2 }lOR A RANGE OF VALUES OF P2 

Pz% 1 5 10 30 50 70 90T 95 I 99 

Constant logit 2.6 8.1 12.4 20.0 20.0 15.3 6.4 I 3.5 I 0.8 
Constant Z 1.3 6.0 10.6 20.0 20.0 14.5 5.5 2.8 0,6 

A test that gives appropriate weight to tables with large n, and is 
sensitive if differences are constant on a logit or a Z scale was developed 
by Cochran (9). If p, is the combined percentage in the ith table, and 

we compute 

and refer to the normal table. For the data in table 9.14.1 the computa­
tions are as follows (with the d, in proportions to keep the numbers 
smaller). 

Birth 
Order Wi d, Wid, P. fjAi ",M, 

2 39.3 +0.040 + 1.57 0.181 1l.14X2 S.8.~4 
3-4 27.3 +0.040 +l.09 0.372 0.2336 6.377 
5+ 21.1 +0.173 +3.65 0.477 0.2494 5.262 

Sum +6.31 17.463 

The test criterion is 6.311.)(17.463) = LSI. This agrees closely with 
the value 1.54found by the LX test, for which these tables are quite suitahle. 

There is another way of computing this test. In the jth table. let 0, 
be the observed number of Problems losses and E, the expected number 
under H •. For birth order 2 (table 9.14.1) . .0, = 20. E, = {~J)(\02)/I66 
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TABLE 9.14.3 
THE MANTEL·HAESSZEL TEST FOR THE. INFANT Loss DATA IN TABLE 9.14.1 

Birth Order 0, E, nntlilCnC;1/n,2(n; - 1) 

2 20 18.43 5.858 
3-4 26 24.90 6.426 
5+ 27 23.36 5.321 

Sum 73 66.69 17.605 

Z - (73 - 66.69 - tlij17.605 - 1.38 

= 18.43. Then (0, - E,) = + 1.57, which is the same as w,d,. This re­
sult may be shown by algebra t() hold in any 2 x 2 table. The criterion can 
therefore be written 

:I:(O, - E,)I.j!.w,ft.1/, 
This form of the test has been presented by Mantel and Haenszel 

(28,29), with two refinements that are worthwhile when the n's are small. 
First, the variance of w,d, or (0, - E,) on H. is not w;{Vl, but the slightly 
larger quantity n"n"p,II,/(n" + nil - I). If the margins of the ;2 x 2 table 
are nil' ni 2. cll • and cu, this variance can be computed as 

nU njlCj1Ci2 /n/(n, - 1), (n; = nu + ni2). 

a form that is convenient in small tables. 
Secondly, a correction for continuity can be applied by subtracting 

1/2 from the absolute value of :I:(O, - E,). This version of the test is 
shown in table 9.14.3. The correction for continuity makes a noticeable 
difference even with samples of this size. -

The analysis of proportions is discussed further in sections 16.8-16.12. 

REFERENCES 

1. E. W. LlNDSTROM. Cornell Agrie. Exp. StD" Memoir J3 (1918). 
2. A. W. F. EDWAIU>S. Ann. Hum. Gen., 24:309 (1960). 
3. l. H. EDWARDS. Ann.'lium. Gen., 25:89 (1%1), 
4. C. W. UGGATf. Comptes rendus de fassociation inlernationaie tlessais de semencts, 

5:27 (1935). 
5. D. J. CAFfREY and C. E. S~. Bureau of Entomology and Plant Quarantine. USDA 

(Baton Rouge) (1934). 
6. W. G. CocHRAN. A,.,. Millh. Slatist., 23:315 (1952). 
7. 1. M. OuKllAVA.lI.TI and C. R. RAo. Sankhyo, 21: 315 (l959). 
8. W. G. CoCHllAN. J. R. St.tist. Soc. Suppt., 3:49(1936). 
9. W. G. COCHR .... N. Biometrics, 10:417 (1954). 

10. G. W. SNEDECOR and M. R.lIlWIS. Iowa SI4ft Coil. J. Sci .. 8: 75 (1933). 
R. C. LEWONTIN and J. F£lSENSTEIN. Biometrics. 21: 19 (1965), 

12. J. B. S. HALDANE. Biometrika. 33:234(1943-46). 
13. J. O. IRWiN and E. A. CHEESEMAN. J. K Statist. Soc. Suppl. 6: 174 (19'39). 
14. L C. BURNETT. M.S. Thesis. low;! State College (1906). 
15. G. C. DECKER and F. ANDRE. lo .... a State J. Sci .. 10:403 (1936). 



257 

16. A. W. KIMBALl.. Biometrics, 10:452 (1952). 
17. D. J. BARTHOLOMEW. Biometrika, 46:328 (1959). 
18. F. YATES. Biometrika, 35'.116(1948), 
19. P. ARMITAGE. BiomelriCJ, II :375 (1955). 
20. K. PEARSON. Biometrika, 5: 105 (1905-06), 
21. l. D. J. BROSS. Biometrics, 14: 18 0958). 
22. J. IPSEN. Biometrics, 12:465 (1955). 
23. R. A. FISHER. Statistical Methods for Re.5earch Workers. Oliver and Boyd, Edin-

burgh (1941). 
24. R. P. ABELSON and J. W. TUKEY. Proc. Soc. Statist. Sect. Amer. SlUtis!. Ass. (1959), 
25. R. A. FISHER. Ann. Sci., I: 117 (1936). 
26. N. V. Strand . .md R. J. Jessen. IOJ.\'uAgr. Exp. Slat. Res. Bul. 315 (1943). 
27. P. H. LESLIE. Biometrics. 7: 283 (1951). 
2%. N. MkN"I'il.. and W. H .... EN'.>2H.. J. Nat. eanar Jnst., 22:,19 (1959). 
29. N. MANTEL. J. Amer. Slatisl. Ass., 58:690(1963). 



* CHAPTER TEN 

One-way classifications. 
Analysis of variance 

IO.I-Extension from two samples to many. Statistical methods for 
two independent samples were presented in chapter 4, but the needs of the 
investigator, are seldom confined to the comparison of two samples only. 
For attribute data, the extension to more than two samples was made in 
the preceding chapter. We are now ready to do the same for measure­
ment data, 

First, recall the analysis used in the comparison of two samples. In 
the numerical example (section 4.9, p. 102), the comb weights of two 
samples of II chicks were compared, one sample having received'sex 
hormone A, the other sex hormone C. Briefly, the principal steps in the 
analysis were as follows: (i) the mean comb weights X" X2 were computed. 
(ii) the within-sample sum of squares of deviations LX2

, with 10 d.!, 
was found for each sample, (iii) a pooled estimate ,,2 of the within-sample 
variance was obtained by adding the two values of 1:x2 and dividing by 
the sum of the df., 20, (iv) the standard error of the mean difference, 
X, - X2, was calcula~d as ..}(2s2/n), where n = II is the size of eacb 
sample. (v) finally, a test of the null hypothesis 1', = 1'2 and confidence 
limits for 1', - 1'2 were given by the result that the Quantity 

{X', - X2 - (1', - 1'2)}i..}(2s'jn) 

follows the (-distribution with 20 df. 
In the next section we apply this method to an experiment with four 

treatments. i.e., four independent samples. 

IO.2-An experiment witb' four samples. During cooking, doughnuts 
absorb fat in various amounts. Lowe (I) wished to learn if the amount 
absorbed depends on the type of fat used. For each of four fats, six 
batches of doughnuts were prepared, a batch consisting of 24 doughnuts. 
The data in table 10.2.1 are the grams of fat absorbed per batch, coded by 
deducting 100 grams to give simpler figures. Data of this kind are called 
a single or one~ll'ay classification, each fat representing one class. 

Before beginning the analysis, note that the totals for the four fats 
dift'er substantially, from 372 for fat 4 to 510 for fat 2. Indeed, there is a 

258 
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TABLE 10.2.1 
GRAMS Of FAT ABsoilBED PElt BATCH (MINUS 100 GRAMS) 

Fat 1 2 ) 4 Total 

64 78 75 55 
72 91 93 66 
68 97 78 49 
77 82 71 64 
56 85 63 70 
95 77 76 68 

l:X 432 510 456 372 1,7m = G 
X 72 85 76 62 295 
:EX' 31,994 43,652 35,144 23,402 134,192 
(:EX)'/" 31,104 43,350 34,656 23,064 132,174 

:Ex' 890 302 488 338 2,018 
df. 5 5 5 5 20 

Pooled " = 2,018/20 = 100.9 
'. = ../(2s'/") = ../~(2:;")(~I()()~.9~)/~6 _ 5.80 

clear separation between the individual results for fats 4 and 2, the highest 
value given by fat 4 being 70, while the lowest for fat 2 is 77. Every other 
pair of samples, however, shows some overlap. 

Proceeding as in the case of two samples, we calculate for each sample 
the mean X and the sum of squares of deviations !:x2 , as shown under 
table 10.2.1. We then fonn a pooled estimate S2 of the within-sample 
variance. Since each sample provides 5 df for LX', the pooled S2 = 100.9 
has 20 (if. This pooling involves. of course, the assumption that the vari­
ance between batches is the same for each fat. The standard error of the 
mean of any batch is JS'i6 = 4.10 grams. 

Thus far, the only new problem is that there are four means to com­
pare instead of two. The comparisons that are of interest are not neces­
sarily confined to the differences Xi - Xj between pairs of means: their 
exact nature will depend on the questions that the experiment is intended 
to answer. For instance, if fats I and 2 were animal fats and fats 3 and 4 
vegetable fats, we might be particularly interested in the difference 
(Xt + X,)/2 - (X, + X.)/2. A rule for making planned comparisons of 
this nature is outlined in section 10.7, with further discussion in sections 
10.8, 10.9. 

Before considering the comparison of means, we present an alterna­
tive method of doing the preliminary calculations in this section. This 
method, of great utility and flexibility, is known as the analysis of variance 
and waS developed by Fisher in the 1920's. The analysis of variance per-
forms two functions: ' 

1. It is an elegant and slightly quicker way of computing the pooled 
Sl, In a single classification this advantage' in speed is minor, but in the 

17 
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more complex classifications studied later, the analysis of variance is 
the only simple and reliable method of determining the appropriate 
pooled error variance S2. 

2, It provides a new test, the F-test, This is a single test of the null 
hypothesis that the population means 1'" fll' fl" fl., for the four fats are 
identical. This test is often useful in a preliminary inspection of the results 
and has many subsequent applications. 

EXAMPLE IO.2.I-Here are some data selected for easy computation. Calculate the 
pooled "l: and state how many df. it has. 

================ 

II 
4 
6 

Sample number 
2 3 

IJ 
9 

14 

21 
18 
IS 

Am. Sl = 21.5. with S dJ. 

4 

W 
4 

19 

10.3-The analysis of variance. In the doughnut example, suppose 
for a moment that there are no diffe,ences between the average amounts 
absorbed for the four fats. In this situation, all 24 observations are dis­
tributed about a common mean fl with variance (f'. 

The analysis of variance develops from the fact that we can make 
three different estimates of ,,' from the data in table 10.2.1. Since we are 
assuming that all 24 observations come from the same popUlation, we 
can compute the total sum of squares of deviations for the 24 observations 
as 

64' + 72' + 68' + ... + 70' + 68' - (1770)'/24 
= 134,192 - 130,538 ~ 3654 (10.3.1) 

This sum of squares has 23 d./ The mean square, 3654/23 ~ 158.9, is 
the first estimate of ([' . 

The second estimate is the pooled s' already obtained. Within each 
fat, we computed the sum of squares between batches (890, 302, etc.), 
each with 5 df. These sums of squares were added to give 

890 + 302 + 488 + 338 = 2018 (10.3.2) 

This quantity is called the sum of squares between batches within fats, or 
more concisely the sum of squares within fats. The sum of squares is 
divid-ed by its dj., 20, to give the second estimate,.' = 2,018/20 = 100.9. 

For the third estimate, consider the means for the four fats, 72, 85, 
76, and 62. These are also estimates of fl, but have variances ,,'/6, since 
they are means of samples of 6. Their sum of squares of deviations is 

72' + 85' + 76' + 62' - (295)'/4 '" 272.75 
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with 3 df, The mean square, 272.75/3, is an estimate of u'/6. Conse­
quently, if we multiply by 6, we have the third estimate of u'. We shall 
accomplish this by multiplying the sum of squares by 6, giving 

6{72' + 85' + 76' + 62' - (295)' /4} = 1636 (10.3.3) 

the mean square being 1636/3 = 545.3. 
Since the total for any fat is six times the fat means, this sum of squares 

can be computed from the fat totals as 

432' + 510' + 456' + 372' 
6 

= 132,174 - 130,538 = 1636 

(l77W 
24 

(10.3.4) 

To verify this alternative form of calculation, note that 432'/6 = (6 x 72)'/6 
= 6(72)', while (1770)'/24 = (6 x 295)'/24 = 6(295)'/4. This sum of 
squares is called the sum of squares beMeen fats. 

Now list the df, and the sums of squares in (10.3.3), (10.3.2), and. 
(10.3.1) as follows: 

Source of Variation 

Between fats 
Between batches within fats 

Total 

Degrees of Freedom 

3 
20 

Sum of Squares 

1,636 
2,018 

),654 

Notice a new and imponant-resuit-: the df. amt-tl1estimsof squa~~s for 
the two components (between fats and within fats) add to the correspond­
ing total' figures. These resuhs hold in any single Ci'as;ification. Tire 
result for the df is not hard to verify. With a classes and n observations 
per class. the df are (a - I) for Between fats, a(n - I) for Within fats, 
and (all - I) for the total. But 

" 

(a - 1) + a(n - 1) = a-I -to an - a = .an ~ 1 

The result for the SUms of squares follows from an algebraic identity 
(example 10.3.5). Because of this relation, the standard practice in the 
analysis of variance is to compute only the total sum of squares and the 
sum of squares Between fats. The sum of squares Within fats, leading to 
the pooled s', is obtained by subtraction. 

Table 10.3.1 shows the usual analysis of variance table for the dough­
nut data, with general computing instructions for a classes (rats) with n 
observations per class. The symbol T denotes a typical class total, while 
G = 1: T = 1:l:X (summed over both rows and columns) is the grand total. 
The first step is to calculate the correction/or the mean, 
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e = G'/an = (1770)'/24 = 130.538 

This is done because e occurs both in formula (1O.3.t) for the lotal sum 
of squares and in formula (10.3.4) for the sum of squares between fats. 
The remaining steps should be clear from table 10.3.1. 

TABLE 10.3.1 
FOJU(ULAS FOIl CALCULATING THE ANALYSIS OF V AlliANCE TABLE 

(ILLUSTRATED BY 1HE DoUGHNUT DATA) 

Source of Variation 

Between classes (fats) 
Within classes (fats) 

Total 

Degrees of Freedom 

a-I = 3 
0(0 - I) = 20 

Sum of Squares Mean Square 

(r.T'/01 - C = 1.636 545.3 
Subtract = 2,018 100.9 

r.r.x' - C = 3.654 

Since the analysis of variance table is unfamiliar at first. the beginner 
should work a number of examples. The role of the mean square between 
fats, which is needed for the F-test, is explained in the next section. 

EXAMPLE 1 O.3.t-From the formulas in table 10.3.1, compute the analysis of variance 
for the simple data in example 10.2.1. Verify that you obtain 21.5 for the pooled $2, as 
found by the method of example 10.2.1. 

Source of Variation 

Between samples 
Within samples 

Total 

df. 

l 
8 

II 

Sum of Squares 

186 
172 

358 

Mean Square 

62.0 
21.5 

32.5 

~XA.~"H~i...E !a.J2-As part of a larger experiment (2), three ievels of vitamin BIl were 
compared, each level being fed to tnn:t Jint:rC:li~ pigs. ine average daily gains in weight of 
the pigs (up to 7S lbs. live weight) were as follows: 

Level of 8 u (mg.jlb. 
5 10 

1.52, 1.63 
1.56 1.57 
1.54 1.54 

Analyze the variance as follows: 

Source of Variation 

Between levels 
Within levels 

Total 

Degrees of Freedom 

2 
6 

8 

ration) 
20 

1.44 
1.52 
1.63 

Sum of Squares 

0.0042 
0.0232 

0.0274 

Mean Square 

0.0021 
0.0039 

0.0034 
------------_ 

Hint: If you subtract 1.00 from each gain (or 1.44 if you prefer it) you will save time. Sub­
traction of a common figure from every observation does not alter any of the results in the 
analysis of variance table. ... 
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EXAMPLE 10.3.3-10 table 9.4.1 there were recorded the Dumber of loopers (insect 
larvae) on 50 cabbage plants per plot after the application offive treatments to each of four 
plots. The numbers were: 

Treatment 
2 3 4 5 

II 6 8 14 7 
4 4 6 27 4 
4 3 4 8 9 
5 6 II 18 14 

With counts like these. there is some question whether the assumptions required for the 
analysis of variance are valid. But for iUustration, analyze the variance as follows: 

Source of Variation 

Between treatments 
Within treatments 

Total 

Degrees of Freedom 

4 
15 

19 

Sum of Squares 

359.30 
311.25 

670.55 

Mean Square 

89.82 
20.75 

EXAMPLE 10.3.4-The per<:entage of clean wool in seven bags was estimated by 
taking three batches at random from each bag. The percentages of clean wool in the batches 
were as follows: 

Bag Number 
2 3 4 5 6 7 

41.8 33.0 38.5 43.7 34.2 32.6 36.2 
38.9 37.5 35.9 38.9 38.6 38.4 33.4 
36.1 33.1 33.9 36.3 40.2 34.8 37.9 

Ca]culate the mean squares for bags 01.11) and batches within bags (8.22). 

EXAMPLE 1O.3.5-To prove the result that the sums of squares within and between 
classes add to the total sum of squares. we use a no~tion that has become common for this 
type of data. Let Xi) be the observation for thejth member of the ith class. XI' is the total 
of the ith class and X .. the grand total. 

The sum of squares within the ith class is ' ...... 

L Xi/ - Xi·l/n 
j- 1 

On adding this quantity over all classes to get the numerator of the pooled 51, we obtain. 
for the sum of squares within classes . 

L L xu' - L X,'/n III 
1= I j~ I i" 1 

The sum of squares between classes is computed as 

• 
LX/II-X.Z"m' III 
i~ I 
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The sum of (J) and (2) gives . . 
L: L X'/ - X . .'/an 
i_I i-I 

But this is the total sum of squares of deviations for the overaU mean. 

lO.4-Effect of differences between the population means. If the 
popUlation meam for the four fats are identical, we have seen that the 
mean square between fats, 545.3, and the mean square within fats, 100.9, 
are both estimates of the population variance ,,'. What happens when the 
population means are different? In order to illustrate from a simple 
example in which you can easily verify the calculations, we drew (using 
a table of random normal deviates) six observations normally distributed 
with population mean," = 5 and (J = l. These were arranged in three 
sets of two observations, to simulate an experiment with a = 3 treatments 
and n = 2 observations per treatment. 

Case 1. 

I 

4.6 
5.2 

9.8 

Case II. 

I 

3.6 
4.2 

7.8 

Case Ill. 

I 

2.6 
3.2 

5.8 

TABLE 10.4.1 
A SIMULATED EXPERIMENT WITH THREE TREATMENTS A:-<n 

Two OBSERVATIONS PER TREATMENT 

Data Analysis of Variance 

}Jl = 1-12 =}J3 = 5 df. 5.5. 

Treatment Treatments 2 1.66 
2 3 Error 3 3.37 

3.3 6.3 Total 5 5.03 
4.7 4.2 

8.0 10.S 

11~ = 4'-/).2 "" 5, 11~ = 7 df. S.S. 

Treatment Treatments 2 14.53 
2 3 Error 3 3.37 

3.3 8.3 Total 5 17.90 
4.7 6.2 

8.0 14.5 

PI =::: 3, J..t]. ,,: 5, JlJ = 9 df S.S. 

Treatment Treatments 2 46.06 
2 3 Error 3 3.37 

3.1 10.3 Total 5 49.43 
4.7 8.2 

. ~ 

8.0 18.5 

M.S. 

0.83 
1.12 

M.S. 

7.26 
1.12 

M.S. 

23.03 
1.12 
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The data and the analysis of variance appear as Case I at the top of 
table 1004.1. In the analysis of variance table, the Between classes sum of 
squares is labeled Treatments, and the Within classes sum of squares is 
labeled Error. This terminology is common in planned experiments. 
The mean squares, 0.83 for Treatments and 1.12 for Error, are both 
estimates of 0'2 = 1. 

In Case II we subtracted I from each observation for treatment I 
and added 2 to each observation for treatment 3. This simulates an ex­
periment with real differences in the effects of the treatments, the popula­
tion means being III = 4, Il, = 5, 113 = 7. In the analysis of variance, 
notice that the Error Sum of squares and mean square are unchanged. 
This should not be surprising, because the Error 5.5. is the pooled LX' 
within treatments, and subtracting any constant from all the observations 
in a treatment has no effect on LX'. The Treatments mean square has, 
however, increased from 0.83 in Case I to 7.26 in Case II. 

Case III represents an experiment with larger differences between 
treatments. Each original observation for treatment I was reduced by 2. 
and each observation for treatment 3 was increased by 4. The means are 
now III = 3, 112 = 5, 113 = 9. As before, the Error mean square is un­
changed. The Treatments mean square has increased to 23.03. Note 
that the samples for the three treatments have now moved apart, so that 
there is no overlap. 

When the means Il, differ, it can be proved that the Treatments mean 
s-quare is an unbiased estimate of 

,,2 + n L (p, - fi)'/(a - 1) 110.4.1 ) 
j=1 

In Case II, with III = 4, 5, 7, L(p, - ji)2 is 4.67, while n and (a - I) are 
both 2 and ,,' = I, so that (1004.1) becomes I + 4.67 = 5.67. Thus the 
Treatments mean square, 7.26, is an unbiased esttmate of5.67. If we drew 
a large number of samples and calculated the Treatments mean square for 
Case Ii for each sample, their average should be close to 5.67. 

In Case Ill, L(Il, - fi)' is 18.67, so that the Treatments mean square, 
23.03, is an estimate of the popUlation value 19.67. 

lO,S-The variance ratio, F. These resultsslIggest that the quantity, 
Treatments mean square Mean square between classes 

F = = • 
Error mean square Mean square within classes 

should be a good criterion for testing the null hypothesis that the popula­
tion means are the same in all classes. The value of F should be around 
I when the null hypothesis holds, and should become large when the Il, 
differ substantially. The distribution was first tabulated by Fisher in the 
form z = lo&v' F. In honor of Fisher. the criterion was named F by 
Snedecor (3). Fisher and Yates (4) designate F as the variance ratio. 

In Case I, Fis 0.83/1.12 = 0.74. In Case II. Fincreases to 7.261.12 
= 6048 and in Case III to 23.03/1.12 = 20.56. When you have learned 
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how to read the F·table, you will find that in Case II, F, which has 2 and 
3 degrees offreedom, is significant at the 10% level but not at the 5% level. 
In Case III, F is significant at the 5% level. 

To give some idea of the distribution of F when the null hypothesis 
holds, a sampling experiment was conducted. Sets of 100 observations 
were drawn at random from the table of pig gains (table 3.2.1, p. 67), 
which simulates a normal population with J.I = 30, a = 10. Each set wal> 
divided into a = 10 classes, each with n = 10 observations. The F ratio 
therefore h;js 9 df. in the numerator and 90 df. in the denominator. 

TABLE 10.5.1 
OJ5TRIBUTJON OF FIN 100 SAMPLES FROM TABLE 3.2.1 

(Degrees of freedom 9 and 90) 

Class Interval Frequency Class Interval 

O. ..{).24 7 1.5Q..1.74 
O.25..{).49 16 I. 75-1.99 
O.5()..{).74 16 2.OQ..2.24 
O.75..{).99 26 2.25-2.49 
1.OQ..1.24 II 2.5Q..2.74 
1.25-1.49 8 2.75-2.99 

Frequency 

5 
2 
4 
2 
2 
1 

Table 10,5.1 displays the sampling distribution of 100 values of F. 
One notices first the skewness; a concentration of small values and a long 
tail of larger values. Next, observ, that 65 of the F are less than I. If 
you remember that botb terms of the ratio are estimates of "l, you may 
be surprised that I is not the median. The mean, calculated as with 
grouped data, is 0.96: the theoretical mean is slightly greater than 1. 
Finally, 5% of the values lie beyond 2.25 and 1% beyond 2.75, so that these 
points are esthoates of the 5% and I % levels of the theoretical distribution. 

Table A I( Part t, eontains the theoretical 5% and 1 % points of Ffor 
convenient combinations of degrees of freedom. Across the top of the 
table is found!. degrees of freedom corresponding to the number oftreat­
ments (classes):/t = a-I. At the left is!" the degrees of freedom for 
individuals, a(n - I). Since the F-table is extensively used. table A 14, 
Part II, gives the 25%, 10%, 2.5%, and 0.5% levels. 

To find the 5?1" and 1 % points for the sampling experiment, look in the 
column headed by.!, = 9 and down to the rows!, = 80 and 100. The re­
quired points are 1.98 and 2.62, halfway between those in the table. To be 
compared with these are the points experimentally obtained in table 10.5.1, 
2.25 and 2.75; not bad estimates from a sample of 100 experiments. In 
order to check the sampling distribution more exactly, we went back to 
the original calculations and found 8% of the sample F's beyond the 5% 
point and 2% beyond the 1%. This gives some idea of the variation to be 
encountered in sampling. 

For the doughnut experiment, the hypothesis set up-that the batches 
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are random samples from populations with the same II--may be judged by 
means of table A 14. From the analysis of variance in table 10.3.1, 

F = 545.3/100.9 = 5.40 

For f, = 3 and j; = 20, the I % point in the new table is 4.94. Thus from 
the distribution specified in the hypothesis there is less than one chance 
in 100 of drawing a sample having a larger value of F. Evidently the 
samples come from populations with different p's. The conclusion is that 
the fats have different capabilities for being absQrbed by doughnuts. 

EXAMPLE JO,5.1--Four tropical feedstuffs were each fed to a lot of 5 baby chicks (9), 
The gains in weight were; 

Lot 
2 
3 
4 

I 
I 
! 

55 
61 
42 

169 

49 
112 
97 

137 

42 
30 
81 

169 

21 
89 
95 
85 

52 
63 
92 

154 

Analyze the variance and test the equality of the p. ADs. Mean squares: (i) lots. 8,74;; 
(i1) chicks within lots. 722. F = 12.1. Since the sample Fis far beyond the tabular I % point, 
there is lillIe doubt that the feedstuff populations have different /J's. 

EXAMPLE 10.5.2-10 the wool data of example 10.3.4, test the hypothesis that the 
bags. are aU from populauons with a common mean. Ans. F = 1.3S, FO•03 = 2.8S, There 
is not .... ttong evidence against the hypothesis-the bags may all have the same percentage of 
dean wool. 

EXAMPLE 10,5.3-·ln the vitamin Bt2 experime-nt of example 10.3.2. the mean gains 
for the three levels differ less than is to be expected from the mean square within levels. 
Allhough there is no reason for computing it. the value of Fis 0.54. There is, of course, no 
evidence of differences among the Ji. 

EXAMPLE 10.5.4--10 example 10.3.3, test the hypothesis that the treatments have no 
effec.:t on the number of loopers. Aos. F = 4.33. What do you conclude? 

IO.6-Analysis of variance with only two classes. When there are only 
two classes. the F-test is equivalent 10 the t-Ie~t which we used in chapter 
4 to compare the two means. With two classes, the relation F = [2 holds. 
We shall verify this by computing the analysis of variance for the numeri­
cal example in table 4.9.1, p. 103. The pooled .,' = 16,220/20 = 811, 
has already been computed in table 4.9.1. To complete the analysis of 
variance, compute the Between samples sum of squares, Since the sample 
totals were 1067 and 616, with n = II, the sum of squares is. 

(1067)' + (616)' (1683)' -;-:-'--- - --- = 9245.5 
II 22 

(10.6.1) 

With only two samples. this sum of squares is obtained more quickly as 

i~X, - LX,)' 11067 - 616)' 
= 9245.) 

2n 1211111 
110.62) 



268 Chapter 10: One-Way Classifications. Analysis of Vorianc. 

TABLE 10.6.1 
ANALYSIS OF VARIANCE OF CHICK EXPERIMENT, TABLE 4.9.1 

Source of Variation ! Degrees of Freedom 

Between samples 
Within sampc5 I 1 

20 

Sum of Squares 

9,245.5 
16,220.0 

F ~ 9,245.5/811.0 ~ 11.40 .jF~ 3.38 ~ t 

Mean Square 

9,245.5 
811.0 

-------
Table 10.6.1 shows the analysis of variance and the value of F, 11.40. 

Note that JF= 3.38, the value of I found in table 4.9.1. Further, 
in the F table with!, = I, the significance levels are the squares of those 
in the I table for the same!2. While it is a matter of choice which one is 
used, the fact that we are nearly always interested in the size and direction 
of the difference (X, - X 2) favors the I-test. 

EXAMPLE 1O.6.1--Hansberry and Richardson (5) gave the percentages of wormy 
apples on two groups of 12 trees each. Group A, sprayed with lead a.rsenate, had 19,.26, 
22, J 3, 26, 25, 38, 40, 36, 12, 16; and 8~<) of apples wormy. Those of group B, sprayed with 
calcium arsenate and buffer materials, had 36, 42, 20, 43, 47, 49, 59, 37, 28, 49, 31, and 39% 
wormy. Compute the mean square Within samples, 111.41, with 22 d.f.; and that Between 
samples. 1650.04, with 1 df. Then, 

F ~ 1650.04/111.41 ~ 14.8 
Next, test the sjgnlfic&nce of the difference between the sample me&ns as in section 4.9. The 
value of tis 3.85,.., JI4.8. 

EXAMPLE IO.6.2-Forfl = l./l = 20, verify that the 5% and 1% significance levels 
of F are the squares of those of I with 20 df. 

EXAMPLE \O.6.3-?rove that the methods used in equations (lO.6.1) and (10.6.2) in 
the text for finding the Between samples sum of squares. 9245.5, are equivalent. 

EXAMPLE 1O.6.4-From equation (10.6.2) it follows that F = tl. For F 
= (IXI - IX2)21.2n,~2, while t = (XI - X2)/J(2sl /n). Since Xl = IXd"ll, Xl = I.Xl/n, we 
have t ~ (l:X, - tX,);J<2ns') ~ .jF. 

10,7-Colllparisons among class means, The analysis of variance is 
only the first step in studying the results. The next step is to examine the 
class means and the sizes of differences among them. 

Often, particularly in controlled experiments, the investigator plans 
the experiment in order to estimate a limited numher of specific quantities. 
For instance, in part of an experiment on sugar heet, the tilree treatments 
(classes) were: (i) mineral fertilizers (PK) applied in April one week hefore 
sowing, (ii) PK applied in December before winter ploughing, (iii) no 
minerals. The mean yields of sugar in cwt. per acre were as follows: 

. PK in April, X, = 68.8, PK in Decemher, X 2 = 66.8, NQ PK, X, = 62.4 

The objective is to estimate two quantities: 
Average effect of PK: t(X, + X2 ) - X, = 67.8 - 62.4 = 5.4 cwt. 
April minus December application: X, _. X 2 = 2.0 CWt. 



269 

A rule for finding standard errors and confidence limits of estimates 
of this type will now be given. Both estimates are linear combinations of 
the means, each mean being multiplied by a number. In the first estimate, 
the numbers are 1/2, 1/2, -1. In the second, they are 1, -1,0, where we 
put 0 because X, does not appear. Further, in each estimate, the sum 
of the numbers is zero. Thus, 

(1)+(1)+(-1)=0 : (I)+(-I)+(O)~O 

Definition. Any linear combination, 

L = ,11X1 + A,X, + .. ' + i.,X" 
where the A's are fixed numbers, is called a comparison of the Ireatment 
means if 1:A, = O. The comparison may include all a treatment means, 
(k = a). or only some of the means (k < a). 

Rule 10.7.1. The standard error of Lis .J1:i.'(u/..jn). and the esti­
mated standard error is .JLi.'(s/.Jn), with degrees .of freedept equal to 
those in s. where n is the number of observations in each mean X j. 

In the example the value of sl.J" was 1.37 with 24 df Hence. for 
the average effect of PK, with Al = 1/2.,(, = 1/2.), = -I. the estimated 
standard efror is 

vro(j:C")"+-(:l-')'~+--'(-_--'I")'(I.37) ~ j1.5(I.37) = 1.68. 

with 24 <if The value of r for testing the average effect of PK is' 
r = 5.4;1.68 = 3.2, significant at the I~{ level. Confidence limits (95'%,) 
are 5.4 ± (2.06)(1.68), or 1.9 and 8.9 ewl. per acre. 

For the difference between the April and December applications. / 
with AI. = I. ;" = -1. the estimated standard error is ,/2 (1.37) = 1.24:' 
The difference is not significant at the 5'jo level. the confidence limits 
being C.O ± (2.06)(1.94). or -2.0 and +6.0. 

In view of the importance of Rule 10.7.1. we shall sketch the proof of 
this result. Since the A, are fixed numbers. the population mean of L is 

Ji.L = A1,uJ + ;'2112 + ... + AkPk. 

where Jii is the population mean of Xj' Hence, 

L - /1, = A1(X1 - /1d + A,(X, - /1,) + '" + A,(X. - ",) 

By definition, the variance of L is the average value of(L - J.iL)2 taken over 
the popUlation. Now 

, , , 
(L - ,'d'.= L Ai'(X, - /1,)' + 2 L L !-,}fX, - /1,)(X, - I'j) 

i"" 1 i '" I j> i 

The average value of (X, - Iii)' over the popUlation is of course the 
variance of Xi' The average value ~f (X, -=- /1,) (Xj - II;) is the quantit) 
which we called the covariance of Xi and Xj (section 7.4. p. 181). This 
gives the general formula. 
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k k k 

VeL) = L i./ V(X,) + 2 L L A,).j cov (X,X) (10.7.1) 
i= 1 i= 1 j;..i 

When the ~ ~re the means of independent samples of size n. VeX,) = (J'(n, 
and Cov. (X,X j ) = 0, giving 

V(L) = (I;i})(J2(n 
in agreement with Rule 10.7.1. 

When reporting the results of a series of comparisons. it is important 
to give the sizes of the differences, with accompanying standard errors or 
confidence limits. For any comparison of broad interest, it is likely that 
sc, era I experiments will be done, often by workers in different places. 
The be'st information on this comparison is a combined summary of the 
results of these experiments. In order to make this, an investigator needs 
to know the sizes of the individual results and their standard errors. If 
he is told merely that "the difference was not significant" or "the differ­
ence was significant at the I ~/~ level." he cannot begin to summarize effec­
tively. 

For the example, a report might read as follows. "Application of 
mineral fertilizers produced a significant average increase in sugar of 5.4 
cwt. per acre (± 1.68). The yield of the April application exceeded that 
of the December application by 2.0 cw!. (± 1.94), but this difference was 
not significant." 

Comments: (i) Unless this is already clear, the report should state the 
the amounts of P and K that were applied; (ii) there is much to be said for 
presenting, in addition, a table of the treatment (class) means, with their 
standard error, ± 1.37. This allows the reader to judge whether the gen­
erallevel of yield was unusual in any way, and to make other comparisons 
that interest him. 

Further eXB,[llples of planned comparisons appear in the next two 
chapters. Common cases are the comparison of a '"no minerals" treat­
ment with minerals applied in four different ways (section 11.3), the com­
parison of different levels of the same ingredient. usually at equal intervals, 
where the purpose is to fil a curve that describes the relation between yield 
and the amount of the ingredient (section /1.8), and factorial experimenw­
tion. which forms the subject of chapter 12. 

I ncidcntaliy, when several different comparisons are being made. one 
or two of the comparisons may show significant effects even if1he initial 
F-test shows non-significance. 

The rule that a comparison L is declared significant at the S'!:" level 
if L/s,. exceeds 10 .0 , is recommended for any comparisons that the experi­
ment was designed to make. Sometimes, in examining the treatment 
means. we notice a combination which we did not intend to test but which 
seems unexpectedly large. If we construct the corresponding L. use of the 
Hest for testing LisL is invalid, since we selected L for testing solely be­
cause it looked large. 
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Scheff" (11) has given a general method that provides a conservative 
test in !his situation. Declare L/SL significant only if it exceeds 
J(u - l)Fo.o" where Fo.o, is the 5% level of F for degrees of freedom 
(, = (a - 1 ).!2 '= a(n - 1). In more complex experiments.!, is the num­
ber of error df. provided by the experiment. Scheff,,'s test agrees with 
the Hest when a = 2, and requires a substantially higher value of LlsL 
for significance when a > 2. It allows us to test any number of compari­
sons, picked out by inspection, with the protection that the probability 
of finding any erroneous significant result is at most 0.05. 

EXAMPLE 10.7.1--10 an experiment in which mangolds were grown on acid soil «(), 
part of the treatments were: (i) chalk, (ii) lime, both applied at the rate of 21 cwt. calcium 
oxide (CaO) per acre, and (iii) no liming. For good reasons, there were twice as many "no 
lime" plots as plots with chalk or with lime. Consequently, the comparisons of interest may 
be expressed algebraically as 

Effect of CaO: yX\ + X2 ) - !(X) + X.d 

where .\"3' X4 represent the two "no lime" classes. 
Chalk minus. lime: X! - X 2' 

The mean yields were (tons per a~re): chalk. 14.82;.lime. 13.42; no lime, 9.74. The 
I".e. of any Xi was ± 2.06 tons, with 25 df Calculate the two comparisons and their standard 
errors, and write a report on the results. Ans. Effect of CaO, 4.38 ± 2.06 tons. Chalk 
minus lime. 1.40 ± 1,98 tons. 

EXAMPLE 10.7.2--An experiment on sugar beet (7) compared time~ and methods of 
applying mixed artificial fertilizers (NPf...·). The mean yields of sugar (cwt. per acre) were as 
follows: 

No 
Artificials 

38.7 
X, 

Jan. (Ploughed) 

48.7 
X, 

Artificials applied in: 
Jan. (Broadcast) Apr. (Broadcast) 

48.8 
X, 

45.0 
X, 

--~~----'--~~~~~~--~~-----~-~~-----

Their s.c. was ± 1.22, with 14 d,f. Calculate 95% confidence limits for the following com­
parisons: 

Average effect of artificials i(X2 + X3 + X4 ) - XI 
January minu, April application: i(X 2 + X J) - X 4 

Broadcast minus Ploughed in J,,1.: X J - X I 

An,.: (i) (5.8. 11.8); (ii)lO.6. 7.0); liii) (- 3.6. + 1.8)";': per '«e. 

EXAMPLE to.7 .3--0ne can encounter linear combinations of the means that are not 
comparisons as we have defined them. but this seems to be rare. For in~tance, in early 
experiments on vitamin 8 12 , rats were fed on a 8 12-<ieficient diet until they ceased to gain in 
weight. If we then compared a smgle and a double supplement of B ll' measuring the subse­
quent gains in weight produced, it might be reasonable to calculate (X 2 - 2X I)' which should 
be zero if the gain in weight is proportional to the amount of B ll . Here).1 + )'2 oF- O. The 
formula for the standard error stiB holds. The s.c. is ..j5(J/Jii In this ex.ample. 

IO.8~lnsJl«'tion of aU differences between pairs of means. Often, 
the investigator has no specific comparisons, chosen in advance, that 
he proposes to make. Instead, he looks at all the means to see which 
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differences among them appear to he real. The most frequent example 
is when the treatments are qualitatively similar, as in tests on working 
gloves made by different manufacturers. 

Taking the doughnut data from table 10.2.1 as an illustration, the 
means for the four fats (arranged in increasing ordel) are as follows: 

TABLE 10.8.1 

Fat 4 I J 2 LSD D 

Mean grams absorbed 62 72 76 85 12.1 16.2 

The standard error of the difference between two means, ,/(2s' /n), is 
±5.80, with 20 dj. (table 10.2.1). The 5~~ value of t with 20 dj. is 2.086. 
Hence, the difference between a specific pair of means is significant at the 
S~. level if it exceeds (2.086)(5.8) = 12.1. 

The highest mean, 85 for fat 2. is significantly greater than the means 
Ti for rat I and 62 for fat 4. The mean 76 for fat 3 is significantly greater 
than the mean 62 for fat 4. None of the other three differences between 
pairs reaclies 12.1. The quantity 12.1 which serves as a criterion is called 
the Least Significant Difference (LSD). Similarly, 95~/. confidence limits 
for the popUlation difference between any pair of means are given by 
adding ± 12.1 to the observed difference. 

Objections to indiscriminate use of the LSD in significance tests 
have been raised for many years. Suppose that all the population means 
1', are equal, so that there are no real differences. With five types of gloves, 
for instance, there are ten possible comparisons between pairs of means. 
The probability that at least one of the ten exceeds the LSD is bound to 
be greater than 0.05: it can he shown to he about 0.29. With ten means 
(45 comparisons among pairs) the probability of finding at least one sig­
nificant difference is about 0.63 and with 15 means it is around 0.83. 

When the J.I; are all equal, the LSD method still has the basic property 
of a test of significance, namely that about 5°~ of the tested differences 
will erroneously be declared significant. The trouble is that when many 
differences are tested, some that appear significant are almost certain to be 
found. If these are the ones that are repocted and attract attention, the 
test procedure loses its valuable property of protecting the investigator 
against making erroneous claims. 

Commenting on this issue. Fisher (8) wrote: "When the z test (i.e .. 
the F-test) does not demonstrate significance. much caution should be 
used before claiming significance for special comparisons." In line with 
this remark, investigators are sometimes advised to use the LSD method 
only if Fis significant. . 

Among other proposed methods, perhaps the hest known tS one 
which replaces the .!:SD bt_a criterion based on the tables of the ~tudent­
ized Range, Q = (Xm" - Xmin)!SX' Table A IS gIves the upper 5% levels 
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of Q, i.e., the value exceeded in 5~'-; of experiments. This value depends 
on the number of means, a, and the number f of dj. in Sr. Having read 
QO.05 from table A 15, we compute the difference D between two means 
that is required for 5% significance as Qo.o,sx. 

For the doughilUts, a = 4, f = 20, we find Qo.o, = 3.96. Hence 
D = Qo.o,S)1 = (3.96)(4.1) = 16.2. Looking back at table 10.8.1, only 
the difference between fats 2 and 4. is significant with this criterion. When 
there are only two means, the Q method becomes identical with the LSD 
method. Otherwise Q requires a larger difference for significance than 
the LSD. 

The Q method has the property that if we test some or all of the 
differences bqtween pairs of means, the probability that no erroneous 
daim of significance will be made is ~0.9S. Similarly, the probability that 
all the confidence intervals (X; - X;) ± D will correctly indude the differ­
ence 1'; - I'j is 0.95. The price paid for this increased protection is, of 
course. that fewer differences 1'; - I'j that are real will be detected and 
tha~ confidence intervals are wider. 

EXAMPLE 10.&.1-1n Case,m of the constructed example in table 10.4.1. with,ul =:: 3, 
)12 = 5, JlJ = 9, the observed means are Xl = 2.9, Xl == 4.{), X3 = 9.25. with s.l'. = "i(.~2In) 
= 0.75 t3 dJ.}. Test the three differences by (i) the LSD test, (ii) the Q test. Construct a 
confidence interval for each difference by each method. (iii) Do at{ the confidence intervals. 
include (Ill - Ilj)? Ans. (i, LSD -,.::. 3.37. X J significantly greater than Xl and X I' (ii) Re­
quired difference = 4.43. Same significant differences. (iii) Yes. 

EXAMPLE I 0.8.2-ln example 10.5.1, the mean gains in weight of baby chicks under 
four (eeding treatments were -"I = 43.8, X2 = 71.0. Xl = 81.4, X4 = 142.8 while ,,/(S2,'n) 

= 12.0with 16df Compare the means by the LSD and the Qmethods. Ans. Both methods 
show that X4 differs significantly from any other mean. The LSD method gives XJ sig­
nificantly greater than XI' 

Hartley (30) showed that a sequential variant of the Q method, 
originally due to Newman (10) and Keuls (31), gives the'same type of 
protection and is more powerful; that is, the variant will detect real dif­
ferences more frequently than the original Q method. 

Arrange the means in ascending order. For the doughnut fats, these 
means are as fOllows: 

" Fat J 2 I S.D. 

62 76 85 ±4.10 (20 dfj 

As before, first test the extreme difference, fat 2 - fat 4 = 23, against 
D = 16.2. Since the difference exceeds D, proceed to test fat 2 - rat 
1= 13 and rat 3 - rat 4 = 14 against the D value for a = 3, because these 
comparisons are differences between the highest and lowest of a group of 
three means. For a = 3.[ = 20, Q is 3.58, givingD = (3.58)(4.10) = 14.7. 
Both the differences, 13 and 14, fall short of D. Consequently we stop; 
the difference between fats 2 and 4 is the only significant difference in the 
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experiment. If fat 3 - fat 4 had been. say. 17. we would have declared 
this difference significant and next tested fat 3 - fat I and fat I - fat 4 
against the D value for a = 2. 

Whenever the highest and lowest of a group of means are found not 
significantly different in this method, we declare that none of the members 
of this group is distinguishable. This rule avoids logical contradictions in 
the conclusions. The method is called Iequenlial because the testing fol­
lows a prescribed order or sequence. 

Since protection against false claims of significance is obtained by 
decreasing the ability to detect real differences, a realistic choice among 
these methods requires a judgment about the relative seriousness of the 
two kinds of mistake. Duncan (32) has examined the type of policy that 
emerges if the investigator assigns relative costs to (i) declaring a signifi­
cant result when the true difference is zero, (ii) declaring non-significance 
when there is a true difference, (iii) declaring a significant result in the 
wrong direction. His policy is designed to minimize the average cost of 
mistakes in such verdicts of significance or non-significance. These costs 
are not necessarily monetary but might be in terms of utility or equity. 
His optimum policy resembles an LSD rule with two notable differences. 
In its simplest form, which applies when the number of treatments exceeds 
15 and dj: in s exceed 30, a difference between two means is declared 
significant ifit exceeds Svl" jF/(F - I). The quantity I (not Student's /) 
depends on the relative costs assigned to wrong verdicts of significance or 
non-significance. If Fis large, indicating that there are substantial differ­
ences among the population means of the treatments, .J F/(F - I) is 
nearly I. The rule then resembles a simple LSD rule, but with the size 
of the LSD determined by the relative costs. As F approaches I, suggest­
ing. that differences among treatment means are in general small, the 
difference required for significance becomes steadily larger, leading to 
greater caution in declaring differences significant. The F-value given by 
the experiment enters into the rule because F provides information as to 
whether real differences among treatment means are likely to be large or 
small. In Duncan's method, the investigator may also build into the rule 
his a priori judgment on this point. 

In a large sampling experiment with four treatments, Balaam (33) 
compared (i) the LSD method, (ii) the revised LSD method in which no 
significant differences are declared unless Fis significant, (iii) the Newman­
Keuls method (as well as other methods). Various sets of values were 
assigned to the population means 1'" including a set in which all /I, were 
equal. For each pair of means, a test procedure received a score of + I 
if it ranked them correctly, a score 0 if it declared a significant difference 
when /Ii = Pi or found no difference when p, oF Pj, and a score - I if it 
ranked the means in the wrong order. These scores were added over the 
six pairs of means. 

When all /I, were equal, the average scores were: LSD, 5.76: Re­
vised LSD, 5.91; NK, 5.94. With three means equal, so that three of the 
six differences between pairs were equal and three unequal, average scores 



175 

were: LSD, 3.80; Revised LSD, 3.57; NK, 3.51. With more than three 
inequalities between pairs, average scores were: LSD, 1.92; Revised 
LSD, I. 73; N K, 1.63. To sum up for this section, no method is uniformly 
best. In critical situations, try to judge the relative costs of the two kinds 
ofinistakes and be guided by these costs. For routine purposes, thought­
ful use of either the LSD or the Newman-Keuls method should be satis­
factory. Remember also Scheff"'s test (p. 271) for a comparison that is 
picked out just because it looks large. 

IO.9-8bortcut computation using ranges. An easy method of testing 
all comparisons among means is based on the ranges of the samples (13). 
In the doughnut experiment, table 10.2.1, the four ranges are 39. 20, 30, 21 ; 
the sum is 110. This sum of ranges is multiplied by a factor taken from 
table 10.9.1. In the column for a = 4 and the row for n = 6. take the fac­
tor 0.95. Then 

D' = (Fac\or)(Sum of Ranges) = (0.95)(!IO) = 174 
n 6' 

D' is used like the D in the Q-test of the foregoing section. Comparing it 
with the six differences among treatments, we conclude, as before, that 
only the largest difference, 23, is significant. 

TABLE 10.9. I 
CltmcAL FAClOJt,5 FOR. AU.I)WANCES, 5% R15K'* 

Sample Number of Samples. Q 

Site. 
n 2 3 4 5 6 1 3 9 JQ 

2 3.43 2.35 1.74 1.J9 US 0.99 0.37 0.77 0.70 
3 1.90 1.44 1.14 .94 .80 .10 .62 .56 .51 
4 1.6Z 1.25 LOI .84 .72 .63 .57 .51 .47 
5 J.S) 1.19 .96 .81 .70 .61 .55 .SO .45 

6 1.5Q 1.17 .95 .80 .69 .61 .55 .49 .45 
7 1.49 1.17 .95 .80 .69 .61 .55 .SO .45 
8 1.49 1.18 .96 .81 .70 .62 .55 .SO ,46 
9 1.50 J.19 .97 .82 .71 .62 .56 .51 .47 

10 1.52 1.20 .98 .83 .72 063 .57 .52 .47 , 
• Extracted from a more extensive table by Kurtz. Link. Tukey. and Wallace (Il). 

EXAMPLE 1O.9.I-Using the shortcut method. examine all differences in the chick 
experiment of e",mple 10,5.1 (p. 167). ADS. D' = 49. Same conclusions as for the Q 
method in example )0,8.2. 

lO.IO-Modell. Fixed Ireatm""t elfects. It is time to make a more 
formal stalement about lhe assumptions underlying the analysis of vari­
ance for single classifications. A notation common in statistical papers 
is to use the subscript i to denote the class, where i takes on the values 
I. 2 .... a. The subscript j designates theimembers of a class, j going 
from I to II. 
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Within class i. the observations X'j are assumed normally distributed 
about a mean J.li with variance (12, The mean J.li may vary from class to 
class. but ,,' is assumed the same in all classes. We denote the mean of 
the a values pf 1', by 1', and write 1', = I' + <x,. It follows, of course, that 
I:<x, = O. Mathematically, the model may be written: 

Xii = J.l + a j + Gij; i = I ... a, j = 1 ... n, Hi)' = %(0,0). 

In words: 
Any obser.ed value is the sum of three parts: (i) an overall mean, (il) 

a treatment or class deviation, and (Iii) a random element from a normally 
distributed population with mean zero and standard deviation a, 

The artificial data in table lOA. I were made up according to this 
model. In Case II, with 1', = 4, 5, 7. we have I' = 16/3, <x, = - 4/3. 
'" = - 1/3, <x, = + 5/3. The 'if were drawn from a table of normal de­
viates with" = I. 

This model is often called model I, the fixed effects model. Its dis­
tinctive feature is that the effects of the treatments or classes, measured 
by the parameters" " are regarded as fixed but unknown quantities to be 
estimated. 

lO.ll-Effects of error.; in the _umptions. For the user of the analy­
sis of variance, two relevant questions are: (i) Are the assumptions satis­
fied in my data? (ii) Does it make any difference if they are not satisfied? 

Real data are seldom, if ever, exactly normally distributed. Often 
they exhibit some skewness; if symmetrical, they may have longer tails 
than the normal distribution. Three situations in which one should be 
on the lookout for non-normality are: (i) with small whole numbers, 
whose distribution may approximate the Poisson rather than the normal, 
(ii) with proportions or percentages that cover a range extending nearly 
to zero or 100%, and (iii) cases in which the treatments (or classes) pro­
duce multiplicative effects. Model I assumes that the effect of the ith 
class is to alld <x, to any existing value. If, instead, the effect is to multiply 
the existing value by, say, 60%, the observations are likely to approximate 
a distribution called the lognormal. This is a skew distribution of values 
X such that log X is normally distributed. 

In a single classification with equal n, various mathematical studies 
agree in showing that the F-test is little affected by moderate non-normal­
ity. However, with non-normal data, the variance a;' within a class is 
often related to the mean 1', of the class. For the Poisson distribution, 
you may recall that";' = 1',. With a proportion, the variance may be­
have like I'll - 1',), and with the lognormal distribution, ".' tends to 
vary as 1'/. It follows that with non-normal data, the use of a pooled 
estimate of error S2 in comparin~ pairs or subgroups of means can be 
seriously misleading. With two treatments A and B that produce small 
means, ,,' might be about 20, while with C and D, which give large means, 
a' is about 60. The pooled s' will be about 40. For comparing A with 
D, the pooled s' gives a I-value that is too small by a factor -./2 = 1.41, 
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while for comparing C with D. 1 is toO large by a factor J3/2 . . Heteroge­
neous variance also occurs occasionally because some treatments by their 
nature produce erratic effects-sometimes they work well, sometimes not. 
Here there may be no clear relatIon between (1/ and jJj. 

When comparing two classes. a safe rule is to calculate S2 from the 
data for these two classes only. The disadvantage is that the number of 
dj. is reduced (see also section 4.14). With a single erratic treatment 
(the ith). a pooled S2 can be calculated and used for comparisons amo<:,g 
the remaining treatments, and a separate s/ for the erratic one. The s.e. 
of (X, - X) is estimated as 

J(s/ + s2)/n 

When the relation between a/ and 1', is caused by non-normality. 
a knowledge of the type of data. plus a look at the relation between X, 
and R, (the range within the class) helps in deciding whether the data are of 
the Poisson type (R, ex J X,), the quasi-binomial type (R, 0'. .jX;iT - X,). 
orthe lognermal type, R,:x X,. For these three types. transformations will 
be given later (sections 11.l4-11.17) that bring the data closerto normality 
and often permit the use of a pooled error variance for all comparisons-

IO.12-Samples of unequal sizes. In planned experiments, the sam­
ples from the classes are usually made of equal sizes, but in non-experi­
mental studies the investigator may have little control over the sizes of 
the samples. As before, X'j denotes the jth observation from the ith 
class. The symbol X,. denotes the class total of the x,j, while X .. = !:X,. 
is the grand total. The size of the sample in the ith class is n,. and N = tn, 
is the total size of all samples. The correction for the mean is 

c = X .. 2/N 

Algebraic instructions for the dj. and sums of squares in the analysis 
of variance appear in table 10.12.1. 

TABLE 10.12.1 , 
ANAL YSlS Of V .... RI"'NCE WITH SAMPLES Of UNEQUAL.s,ZES 

Source of Variation Degrees of Freedom Sum of Squares Mean Square 

Between classes a-I L'r,.' s,' --c 
" 

Within classes N - a ' LX,.' r Subtract = l:I:XI} - --, ., 
Total N-I 1:1:%1/ - c 

The Fratio, s//s', has (a - I) and (N - oj df The s.e. of the dif­
ference between the ith and the kth class means, with (N - a) df, is 
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The s.e. of the comparison I;i.;X; is 

With unequal n;, the F- and t-tests are more affected by non-normality 
and heterogeneity of variances than with equal n; (14). Bear this in mind 
when starting to analyze the data. 

EXAMPLE 1O.12.I-Tbe numbe:rs of days survived by mice inoculated with three 
strains of typhoid organisms are sumnlarized in the following frequency distributions. Thus. 
wllhstrain9D,6micesurvlvtdfor2d;l),s,etc. Wehaven J = 31, I'll = 60.1'1) = 133. N = 224. 
The purpose of the analysis is to estimate and compare the mean numbers of days to death 
for the three strains. 

Since the \'ariance fOT strain 9D looks much smaller than that for the other strains, it 
seems wise to calculate s,I separately for each strain, rather than use a pooled S2 from the 
analysis of variance. The calculations are given under the table. 

Numbers of Mice Inoculated 
With Indicated Strain 

Days to Death 9D IIC DSCI Total 

2 6 I 3 10 
1 4 3 5 12 
4 9 3 5 17 
5 8 6 8 22 
6 3 6 19 28 
7 I 14 23 38 
8 II 22 33 
9 4 14 18 

10 6 14 20 
lJ 2 7 9 
12 3 8 11 
13 I 4 5 
14 I I 

Total 31 60 133 224 

LX 125 442 1.037 1.604 
tx' 561 3.602 8,961 13,124 

" 31 60 III 224 
X,. 125 442 1,037 1.604 
Xi· 4.03 7.37 7.80 
I:X(/ 561 3,602 8,961 13,124 
X,.2jn; 504 3,256 8,085 

I:(X
1j 

_ X1·)l 57 346 876 
Si

l 1.90 5.86 6.64 
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The difference In mean days to death for strains lie and 9D is 3.34 days. with 

J 11.90 5.86} 
S.t'. = f31 + 60 = ,/0,1591 = ±O.399. 

for strains DSCI and lie the difference is 0.43 days ± 0.384. 

EXAMPLE 10.12.2 As an exercise. calculate the analysis of variance for the preceding 
data. Show that F = 179.5 5.79 = J 1.0, /= 2 and 221. Show that if the 'pooled .1'2 were 
used. the J.e. of the mean difference between strains II C and 9D wlluld be estimated as 
±O.532 instead of _!:O.J91J. 

IO.I3-Model II. Random effects. With some types of Single classi­
fication data. the model used and the objectives of the analysis differ from 
those under model I. Suppose that we wish to determine the a\'erage 
content of some chemical in a large population or batch of leaves. We 
select a random sample of a leaves from the population. For each 
selected leaf. n independent determinations of the chemical content are 
made giving IV' = an observations in all. The leaves are the classc:-.. and 
the individual determinations are the members of a clas~. 

In model II, the chemical content found for the jth determination 
from the ith leaf is written as 

Xlj = J1 + Ai + Cij • i = .. , (.1, j = I ... n. (10.13.11 

where 

The symbol !1 is the mean chemical content of the population of 
leaves. This is the quantity to be estimated. The symbol A; represents 
the difference between the chemical content of the ith leaf and the average 
content· over the popUlation. By including this term. we take account of 
the fact that the content varies from leaf to leaf. Every lea fin tbe popula­
tion has its value of Ai' so that we may think of Ai as a random vaTiable 
with a distribution over the population. This distribution has mean O. 
since the A i are defined as deviations from the population mean. In the 
simplest version of model II. it j:-, assumed in addition that the Ai are 
normally distributed with standard deviation GA' H~c,e. we have writ­
ten A; = .#"(0, "A). 

What about the term [; ij? This term is needed because', 
(i) the determination is subject to an error of mca:-,urement. and 
(ii) if the determination is made on a small piece of the leaf. its con~ 

tent may differ from that of the leaf as a whole. The f.ij and the A; arc 
assumed independent. The further assumptIOn cij = ;V(O, (1) IS often 
made. 

There are some similarities and some differencl?s netWL'L'n model II 
and model I. In model I 

~; fixed, 
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Note tho following points: 
(i) The "" are fixed quantities to be estimated; the A, are random 

variables. As wiJI be seen. their variance 0'.,/ is often of interest. 
(ii) The null hypothesis "" = 0 is identical with the null hypothesis 

crA = 0, since in this event all the A, must be zero. Thus. the Ftest holds 
also in model II, being now a test of the null hypothesis UA = O. 

(iii) We saw (in section 10.4). that when the null hypothesis is false, 
the mean square between classes under model! is an unbiased estimate of 

E(M.S. Between) = 11' + n"E.",,'/(a - I) (10.13.2) 

There is an analogous result for model II, the mean square estimating 

E(M.S. Between) = 11' + nl1A' (10.13.3) 

Neither result requires the assumption of normality. 
(iv) In drawing repeated samples under model I, we always draw 

from the same set of classes with the same "',. Under model II, we draw a 
new random sample of a leaves. A consequence is that the general dis­
tributions of F (when the H, is false) differ. With model I, this distribu­
tion, the power function, is complicated: tables by Tang (J 5) and charts 
by Pearson and Hartley (16) are available. With model II, the prob­
ability that the observed variance ratio exceeds any value Fo is simply 
the probability that the ordinary F exceeds FolO + nl1.' la'). . 

To turn to an example of model II, the data for calcium in table 
10.13.1 Come from a large experiment (17) on the precision of estimation 
of the chemical content of turnip greens. To keep the example small, 
we have used only the data for n = 4 determinations on each of a = 4 
leaves. In the analysis of varia nee (shown below table 10.13.1), the mean 
square between leaves SL 

2 is an unbiased estimate of (12 + nO'./ = (12 

+ 40 A 2. Consequently, an unbiased estimate of (J A 2 is 

SA' = (SL' - s')/4 = (0.2961- 0.0066)/4 = 0.0724 

The quantity 11.' is called the component of variance for leaves. The 
value of F = 0.2961/0.0066 = 44.9 (highly significant with 3 and 12 dJ.) 
is an estimate of {cr' + 4a A ')/G' . 

We now consider the questions: (i) How precisely has the mean 
calcium conlent been estimated? (ii) Can we estimate it more economical­
ly? With n determinations from each of a leaves, the sample mean X .. 
is, from equation 10.13.1 for model II, 

X .. = I' + A. + iL , 

where A. is the mean of a independent values of A, (one for each leaf), 
and E .. is the mean of an independent £ij' Hence the variance of X .. as 
an estimate of Ii is 

q ~ q2 q2 + nu 2 
V(X .. ) = ~ + _ = A 

a an an 
(10.13.4) 



Leaf 

I 3.28 
2 3.52 
3 2.88 
4 3.34 

Source of Variation 

Between Jeave~ 
Determination\> 

TABLE 10.13.1 
C"LCfUM CO .... CfNTRA nON IN TURNiP GREENS 

(per cent of dry wc)ght) 

Per Cent of Calcium Sum 

3.09 3.03 3.03 12.43 
348 3.38 3.38 13.76 
2.80 2.81 2.76 11.25 
3.38 3.23 3.26 13.21 

281 

Mean 

3.11 
3.44 
1.81 
3.30 

Degrees of F rc;edom Mean Square Parameters Estimated 

3 0.2961 (11 + 4c"/ 
12 0.0066 .' 

52 = 0.0066 estimates 1J2, s/ = (0.2961 - O.{)()66)/4 = 0.0724 estimates (fA
J 

In the analysis of variance, the mean square between leaves, 0,2961. 
is an unbiased estimate of (0'2 + 40'/), Hence, vO.' .. ) = (0,2961)/16 
= 0,0185. This is an important result, The estimated variance of the 
sample mean is the Between classes mean square, didded by the tofal 
numher of obserrations. 

Suppose that the experiment is to be redesigned, changing n and a to 
n' and a', As in equation 10,13.4, the variance of X .. become; 

, _ (1/ (12 0,0724 0,0066 
V(X .. ) = ~- + -~- _ -~- + ---, 

a' a'n' a' a'n' 

where the -. sign means "is estimated by. ,. Since the larger numerator 
is'0,0724, it seems clear that a' should be increased and n' decreased if this 
is possible wilhout increasing the total cost of the expenmenL If a de­
termination costs to times as much as a leaf, the choice of 11 = I and 
0: = 1 Swill cos.t about the ume a' 0'" o'(g("a\ data. f '" tl\(, "e'l< 
design our estimate ofthe variance of X .. is 

ti'(X,.) = 0.072~ + 0.0066 = 0.0053-
15 lS 

The change reduces the variance of the mean from 0.0185 to 0.005:;, 1.< .. 
to less than one-third. This is because the costly determinations wnh 
small variability have been utiliz.ed to sample more leaves whose variation 
is large, A formula for determining the best values of a' and n' in a given 
cost situation will be found in sections 17, II and 17.12, 

With model II, the difference I Xi, - 11) between a single observation 
and the popUlation mean is the sum of the two terms Ai and t,J' Hence. 
the variance of Xjj is (a ,/ + 0'2). The two parts are cal1ed the compolli!nts 
o_(t1Qriam'e. The previous example illustrates how these components are 
used in problems of measurement the objective being \0 estimate .u as 
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economically as possible. In plant breeding. n replications of each of a 
inbred lines may be grown in an experiment. The component 0'.' 
represents differences in yield that are due to differences in the genotypes 
(genetic characteristics) of the inbreds. while a' measures the effect of 
non-genetic influences on yield. The ratio a.'I(O'/ + a') of genetic to 
total variance gives a guide to the possibility of improving yield by selec­
tion of particular inbreds. The same concepts are important in human 
family studies, both in genetics and the social sciences, where the ratio 
0'/1(<1.' + a') now measures the proportion of the total variance that 
is associated with the family. The interpretation is more complex, how­
ever, since human families differ not only in genetic traits but also in 
environmental factors that affect the variables under study. 

EXAMPLE 10.13.1-The foUowingdata were abstracted from records of performance 
of Poland China swine in a single inbred line at the Iowa Agricultural Experiment Station. 
Two boars were taken frotn each of four litters with common sire and fed a standard ration 
from weaning to about 225 pounds. Here are the average daily gains: 

Utter 

Gains 1.18 
1.11 

2 

1.36 
1.65 

J 

1.37 
1.40 

4 

1.07 
0.90 

Assuming rhar Ihe litter variable is normally distributetl. show Ihal til( 2 differs significantly 
from zero (F = 7.41) and that 0.0414 estimates it. 

EXAMPLE to.t3.2-Tbcre is evtdence tbat persons estimating the crop yields of6elds 
by eye tend to underestimate high yields and overestimate loW yields, If so, and if two 
estimators make separate estimates of the yidds of each of a number of fields. what will be 
the effect on: (i) the model II assumptions, til} the estimate.r/ of the variance q/ between 
fields. (iii) the eSlimate Sl of rrl'; 

EXAMPLE IO.13.3~ To prove the result (10.13.3) for tbe eXpCcted value ofthc mean 
square between classes, show that under modd II, 

(x" - X,,) ~ lA, - A) + (' •. - ,,,) 
'-

L~' "IX",.:_-__::Xcc"):_' ilA, - A)' ii'"~ - i..)' 2i(A, - A)(i,. - i..) - = + +~"-''-;--'':7------' 
(a-I) la-I) (a-I) fo-tl 

where Xj' is the mean of the tI determinations in class i. and X .. is the overall sample mean, 
If a random sample of leaves has been drawn. the first term on the right is an unbiased 
estimate of rJ A ~,and the second of rJl/tI. since Gj. is the mean of tI independent determinations. 

The third term vanishes, on the average in repeated sampling, if the Ai and eli are inde~ 
pendent Multiplying by n to obtain the mean square between classes. tbe result follow':>. 
See if you can obtain the corresponding result (10.13.2) foe model I, 

1O.14--Structure of model II illustrated by sampling, It is easy to 
construct a model II experiment by sampling from known populations. 
One population can be chosen to represent the individuals with variance 
(12 and another to repres'ent the variable class effects with variance G ,,1 ~ 
then samples can be drawn from each and combined in any desired 
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TABLE 10.14.1 
GAINS IN WEIGHT Of ::!O PIGS IN T[N LITTERS OF Two PIGS EACH 

(Each gain is the sum of three components. The component for litters is a sample 
with a/ ""- 25. that for individuals IS from table 3.2.1 with (Jl = 1(0) 

Litter P'g 
Litter Component Component 

Number A, Lj) 

(I) (2) ill 

- I 7 
9 

2 2 - 4 
-23 

3 - I 0 
19 

4 0 2 
2 

5 - 4 3 
12 

6 -10 9 
3 

7 10 5 
- 4 

8 2 -19 
-10 

9 4 - 4 
18 

10 - 2 15 
- ~ 

SOlJn:e of Variation Degrees of Freedom 
-----+---
tillers 
Individuals 

9 
10 

Sample of 
Pig Gains Sample of 

X,} = Jl + .4; + t'j Litter Gains 

(4) ~ ]0 + (l) + (3) (5) 

36 
]8 74 

28 
9 37 

29 
48 n 

32 
32 64 

29 
38 ~7 

29 
23 52 

45 
36 81 

13 
22 35 

30 
52 82 

43 
22 65 

Mean SqUlolrP Parameters Estimated 

144.6 
96.5 

s' = 96.5 estimates 100. \/ = 044.6 - 96.5)/2 = 24.0 es.timates 25 

proportion. In table 10.14.1 is such a drawing. The sample consists 
of two pigs from each of ten litters, the litters simulating random class 
efl'ecb. Individual pig gain> were taken from table 3.2. I with (12 = 100. 
two of these per litter. The litter component~ were drawn from a popula­
tIOn with (1/ = 25 (table 3.10.1 in the fifth edition of thIS book) 
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The usual analysis of variance is computed from table 10.14.1, then 
the components of variance are separated. From the 20 observations we 
obtained estimates S2 = 96.5 of q2 = 100 and s/ = 24.0 of q.' = 25, 
the two components that were put into the data. 

This example was chosen because of its accurate estimates. An idea 
of ordinary variation can be got from examination of the records of 25 
similar samples in table 10.14.2. One is struck immediately by the great 
variability in the estimates of qA2, some of them being negative! These 
latter merely indicate that the mean square for litters is less than that for 
individuals; the litters vary less than random samples ordinarily do if 
drawn from a single, normal population. Clearly, one cannot hope for 
accurate estimates of q2 and q A 2 from such small samples. 

TABLE 10.14.2 
EsTIMATES OF .,. A 1 = 25 ArID_.,.l = 100 MADE FROM 25 SAMPLES ORA WN LIKE 

THAT OF TABLE 10.14.1 

Sample Estimate of Estimate of Sample Estimate of Estimate of 
Number qA

1 = 25 (/1 = 100 Number u/ = 25 17
1 = 100 

I 60 127 14 56· 112 
2 56 104 15 -11 159 
1 28 97 16 67 54 
4 6 91 17 -18 90 
5 18 60 18 11 65 
6 - 5 91 19 -21 127 
7 7 53 20 -48 126 
8 - I 87 21 4 43 
9 0 66 22 1 145 

10 -78 210 23 49 142 
II 14 148 24 75 21 
12 7 162 25 77 106 
11 68 76 

Mean 17.0 102.6 

EXAMPLE 10.14.I~In table 10.14.2, how many negative estimates of U.(2 would be 
expected? Ans. A negative estimate occurs whenever the observed F < l. From section 
10.13, the probability that the observed F < t is the probability that the ordinary 
F < 1/(1 + 20"//0"1), or in this example, < 1/1.5 = 2/3, where Fhas9 and IOdj. A property 
of the F distribution is that this probability is the probability that F, with 10 and 9 dr, 
exceeds 3/2. or 1.5. From table A 14. with!! = IO,./l = 9, we see that Fexceeds 1.59 with 
P = 0.25. Thus about (0.25)(25) = 6.2 'negative estimates are expected. as against 7 found in 
table 10.14.2. 

IO.IS-Confidence limits for q/. Assuming normality, approxi­
mate confidence limits for q.' have been given by Moriguti (18). We 
shall illustrate from the turnip greens example (table 10.13.1) for which 
n = 4'/1 = 3'/2 = 12, SA

2 = 0.0724, and S2 = 0.0066. It is necessary to 
look up four entries in the F-table. If the table of 5% significance levels 
is used, these determine a two-tailed 90% confidence interval, with 5% on 
each tail. The 5% values of Fneeded are as follows: 
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F, = FJ,.h = F,." = 3.49 
F2 == FI.,Xl = F3,,..; :::::: 2.60 
F, = Ff,,f, = F12., = 8.74 
F4, = F~.fl = FCI';).3 = 8.53 
F = observed value of F = 44.9 

The limits are given as multipliers of the quantity s'/n = (0.0066)/4 
= 0.00165. The lower limit for 0'.' is 

• , (F -F,)(F+F,-F,) s' (44.9-3.49)(44.9+3.49-2.60) 
O'AL = FF, n = (44.9)(2.60) (0.00165) 

(41.41)(45.79) 
= (44.9)(2.60) (0.00165) = 0.027 

As would be expected. the lower limit becomes zero if F = F,; that is, if 
F is just significant at the 5% level. 

The upper limit is 

IJ 2 = {FF _ 1 (F, - F4)}S2 
.tu 4 + FF31 n 

= {(44.9)(8.53) - I + (0.21)/(44.9)(8.74)'}(0.00165) = 0.63 

Frequently, as in this example, the rather unwieldy second term inside the 
curly bracket is negligible and need not be computed. 

To summarize, the estimate is s1 = 0.0724, with 90% confidence 
limits 0.027 and 0.63. Earlier, Bross (19) gave approximate fiducial limits, 
using the same five values of F. His limits agree closely with the above 
limits whenever F is significant. 

If the distributions of Ai and 'ij are non-normal, having positive 
kurtosis, the variance of 51 is increased, and the above confidence inter­
vals are too narrow. 

EXAMPLE 10.IS.l-ln estimating the amount of plankton in an area of sea, seven 
runs (called hauls) were made, with six nets on each run (20). Estimate the component of 
variance between hauls and its 90% confidence limits. 

Between hauls 
Within hauls 

Degrees of Freedom 

6 
3S 

Ans. $,/ = 0.01>4, with limits (0.0044, 0.053). 

Mean Square 

0.1011 
0.0208 

IO.16-Samples within samples. Nested classilkations. Each sample 
may be composed of sub-sampl~s and these in turn may be sub-sampled. 
etc. The repeated sampling and sub-sampling gives rise to nested or 
hierarchal classifications. as they are sometimes called. 
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In table 10.16.1 is an example. This is a part of the turnip greens 
experiment cited earlier (17). The four plants were taken at random, then 
three leaves were randomly selected from each plant. From each leaf 
were taken two samples of 100 mg. in which calcium was determined by 
microchemical methods. The immediate objective is to separate the 
sums of squares due to the sources of variation, plants, leaves of the 
same plant, and determinations on the leaves. 

The calculations are given under table 10.16.1. The total sums of 
squares for determinations, leaves, and plants are first obtained by the 
usual formulas. The sum of squares between leaves oj Ihe same plant is 
found by subtracting the sum of squares between plants from that be­
tween leaves. as shown. Similarly, the sum of squares between delermina-

TABLE 10.16.1 
CALCIUM CONCENTRATION (PER CENT. DRY BASIS) IN b = 3 LEAVES FROM EACH OF 
a = 4 TUR.NIP PLANTS. n = 2 DETERMINATIONS PER Lt:AF. ANALYSIS OF VAR.IANCE 

Plant. i Leaf. ij 
;= 1 ... 0 j=I ... b Determinations. X ij1 X'J' Xi" 

1 1 3.28 3.09 6.37 
2 3.52 3.48 7.00 
3 2.88 2.80 5.68 19.05 

2 I 2.46 2.44 4.90 
2 1.87 1.92 3.79 
3 2.19 2.19 4.38 13.07 

3 I 2.77 2.66 5.43 
2 3.74 3.44 7.18 
3 2.55 2.55 5.10 17.71 

4 I 3.78 3.87 7.65 
2 4.07 4.12 8.19 
3",," 3.31 3.31 6.62 22.46 

Total Size = ahn = (4)(3)(2) == 24 determinations 

c = (X ... )2/abn = (72.29)2/24 _ 217.7435 
Determinations: IX, j12 - C = 3.28 2 + ... + 3.311 - C = 10.2704 
Leaves: l:XiJ"2/n - C = (6.372 + .. + 6.622)/2 - (" = 10.1905 
Plants: r.X, .. l/hn - C = (19.052 + .. + 22.462 )/6 - C = 75603 
Leaves of the same plant = Leaves - Plants = 10.)905 - 7.5603 = 2.6302 

X ... 

72.29 

Determinations on same leaf"", Determinations - Leaves = 10.2704 - 10.1905 = 0.0799 

Source of Variation Degrees of Freedom Sum of Squares Mean Square 

Plants 3 7.5603 2.5201 
Leaves in plants 8 2.6302 0.3288 
Determinations in leaves 12 0.0799 0.0061 

Total 23 10.2704 
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lions on the sall'e leaf is obtained by deducting the total sum of squares 
between leaves from that between determinations. This process can be 
repeated with successive sub~sampling. 

The model being used is, 

X'j' = I' + A, + B'j + '"" i = I ... a. j = I ... b, k = I ... n, 
A, =. nO, <7A ), B" = %(0.<78),0", =. no, (7), (10.16.1) 

where A refers to plants and B to leaves. The variables Ai; Bjj , and f;;j/c 

are all assumed independent. Roman letters are used to denote plants 
and leaves because they are random variables, not constants. 

TABLE 10.16.2 
COMPLETED ANALYStS Of VARIANCE OF TVRNlP GREENS DATA 

--,-
Source of Variation Degrees of Freedom Mean Square Parameters Estimated 

Plants 
Leaves in plants 
Determinations in leaves 

3 
8 

12 

2.5201 
0.3288 
0.0067 

(12 + nUBI + hna/ 
q2+nO'sl 

u' 
n=2. h=.3. 0=4 . . ~1=O.0067 estimates aI, 5/'=(0.3288-0.0067)/2=0.1610 estimates 
(Ja~. s/ = (2.5201 - 0.3288)/6 = 0.3652 estimates 0'./ 

In the completed analysis of variance, table 10.16.2. the components of 
variance are shown. Each component in a sub-sample is included among 
those in the sample above it. The estimates are calculated as indicated. 

Null hypotheses which may be tested are: 
25201 .;" + 11<7.' + nll<7 ' 

I.<7A ' =0; F= ---= 7.66 estImates --- ~--"'--, f=3,8. 
0.3288 (/2 + nu.' -

-2. <7/ = 0; 
0.3288 . <7' + ntJ.' 

F = 0.0067 = 49 estImates ,,' ' f = 8, 12. 

For the first, with degrees of freedom, f, = 3 arid f, = 8. F is almost on 
its I~';' point, 7.59; for the second, with degrees of freedom 8 and 12. F is 
far beyond its I~~ point, 4.50. Evidently, in the sampled population the 
per cent calcium varies both from leaf to leaf and from plant to plant. 

As with a single sub-classification (plants and leaves in section 10.13), 
it may be shown that the estimated variance of the sample mean per 
determination is given by the mean square between plants, divided by the 
number of determinations. This estimated variance can be expressed in 
terms of the estimated components of variance from table 10.16.2, as 
follows: 

.,.' = 2_}~OI = 0.105 = ~J~l6 7 + 11(0.1610) +hll(0_:?652) 
24 nah 

0.0067 0.1610 0.3652 
= -.--- + --- + 

nah ah a 
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This suggests that more information per dollar may be got by decreasing 
n, the number of expensive determinations per leaf which have a small 
component, then increasing b or a, the numbers ofleaves or plants, Plants 
presumably cost more than leaves, but the component is also larger. How 
to balance these elements is the topic of section 17,12, 

Confidence limits for <1/ and <1 s' are calculated by the method 
described in section 10,15, 

EXAMPLE IO.16.I~Verify that· the sum of squares for Determinations in leaves. as 
found by subtraction in table 10 16.1, is the sum of squares of deviations of the determina· 
tions from their respective leaf means; Ans. Since the C term cancels, Determinations 
- Leaves is equal to 

L L LX".' - L L X,j.'/n ~ L L L (X". - X'j')' 
; j It. , J ' ) It. 

by the usual shortcut rule for finding a sum of squares of deviations, where X;)' is the mea,J'1oof 
the n determinations on the jth leaf of the ith plant. 

EXAMPLE 10.16.2~From,equation 10.16.1 for the model. show that the variance of 
the sample mean is (a- l + MB2 + bnt! /)/abn. and that an unbiased estimate of it is given by 
the mean square between plants, divided by abn, i.e., by 2.5201/24 = 0.105, as_ stated in 
section 10.16. 

.-~-------EXAMPLE 10.16.3-lf one determination were made OD. each of two leaves from each 
of ten plants, what is your estimate of the variance of the sample mean? Ans. 0.045. 

EXAMPLE 10.16.4~With one determination on one leaf tram each plant, how many 
plants must be taken in order to reduce sr to 0.21 Ans. About 14. (This estimate is very 
rough, since the mean square between plants has only 3 d!), 

IO,17-8ampies witltin samples. Mixed model, In some applications 
of sub-sampling, the major classes l>ave fixed effects that are to be esti­
mated. An instance is an evaluation of the breeding, value ofa set of five 
sires in pig-raising. Each sire is mated to a random group of dams, each 
mating producing a litter of pigs whose characteristics are the criterion. 
The model is: 

X'j' =!" T~, + B'j + "j' (10.17.1) 

The ~, are constants (I:~, = 0) associated with the sires but the B'j and 
the e'j' are random variables corresponding to dams and offspring. Hence 
the model is called mixed. 

Table 10.17.1 is an example with b = 2 dams for each sire and n = 2 
pigs chosen from each litter for easy analysis (from records of the Iowa 
Agricultural Experiment Station). The calculations proceed exactly as in 
the preceding section. The only change is that in the mean square for 
sires, the term nbK', where K' = I:~'/(a - I). replaces IIb<1/. 

In a mixed model of this type, two points must be noted. From equa­
tion 10.17.1, the observed class mean may be written 

Xi" = J.l + /Xi + Bj • + ii" 
where H,. is the average of b values of the Bij and ', .. is the average of nb 
values of the BUk.' Thus the variance of Xi'.' considered as an estimate of 

It + il: j • is 
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TABLE 10.17.1 
AVERAGE DAILY GAIN OF Two PIGS OF EACH LITTER 

Sire Dam Pig Gains Sums 

1 I 2.77 1.38 5.15 
2 2.58 2.94 5.52 10.67 

2 I 2.28 2.22 4.50 
2 3.01 2.61 5.62 10.12 

3 1 2.36 2.71 5.07 
2 2.72 2.74 5.46 10.53 

4 I 2.87 2046 5.33 
2 2.31 2.24 4.55 9.88 

5 t 2.74 2.56 5.30 
2 2.50 2.48 4.98 10.28 51.48 

-
Source of Variation Degrees of Freedom Mean Square Parameters Estimated 

Sires 4 0.0249 ti" + ntJ,/ + nbK2 
Dams-Same Sire 5 0.1127 (/1 + M.l 

Pairs-Same Dam 10 0.0387 a' 

n::;; 2, b = 2, J'2 = 0.0387 estimates 112 , s/ := {O.1l27 - 0.0387)/2 = 0.0310 estimates (/.2, 

o estimates 1(2 

To test (1.1 = 0, F ==: 0.1127;0.0387,., 2.91. FOM "'" 3.33. 

(J B 2 (12 1 2 2 
vrXi ··) = - + -b = -b' (a + nl18 ) 

h » n 

The analysis of variance shows that the mean square between dams oj 
the same sire is the relevant mean square. being an unbiased estimate of 
(a' + neT.'). The standard error of a sire mean is ~(0.1127/4) = 0.168, 
with 5 df. Secondly. the F ratio for testing the null hypothesis that all 
a; are zero is the ratio 0.0249/0.1127. Since this ratio is substantially less 
than I, there is no indication of differences between sires in these data. 

IO.IS-8amples of unequal sizes. Random effects. This case occurs 
commonly in family studies in human and animal genetics and in the 
social sciences. The model being used is a form of model II: 

X;j=!, + A; +.E;i' i= I, ... a.} = I, ... n" A; =.},"(O.I1.), E,j=.'((O.I1} 

The new feature is that "" the size of sample of the ith class. varies from 
class to class. The total sample size is N = :En;. All A, and .'i are assumed 
independent. 

The computations for the analysis of variance and the F-test of the 
null hypothesis 11 • 7' 0 are the same as for fixed effects. as given in section 
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10.12. With equal n i( = n). the mean square between classes was found to 
be an unbiased estimate of (1' + n(1/ (section 10.13). With unequal ni, 

the corresponding expression is {12 + noO' A 
2

• where 

J ( :r.n.,) no = -_ N - --' =;; - :r.(n - ;;)'1(0 - J)N 
(0 - 1) N ' 

The first equation is the form used for computing no. The second equa­
tion shows that no is always less than the arithmetic mean ii of the nj , 

although usually only slightly less. 
Consequently, if Sb 

2 and S2 are the mean squares between and within 
classes., respectively, unbiased estimates of the two components ofvariance 
(12 and q A. 2 are given by 

{j.' = (s.' - s')/no 

With unequal n j • some mathematical complexities arise that have not 
yet been overcome, in a form suitable for practical usc. The estimate 
{j /, while unbiased whether the Aj and Ejj are normally distributed or 
not, is not fully efficient unless (1 A 2 is small. The method given for finding 
confiMnce limits for a/with equal n (section 10.15) does not apply. An 
ingenious method of finding confidence limits for the ratio (J//u 2 was, 
however, given by Wald (21). Whenever feasible, it pays to keep the 
sample sizes equal. 

EXAMPLE 1O.18.1~ln research on artificial insemination of cows. it series of semen 
samples from a bull are sent out and tested (or their ability to produce conceptions. The 
following data from a larger set kindly supplied by Dr. G. W. Salisbury. show the per· 
centages of conceptions obtained from the samples for six bulls. In the analysis or ... ariance. 
the total sum of squares, uncorrected, was 111,076. Venfy the analysis ohariance. the value 
of no. and the estimates of the two variance components. (Since the data are percentages 
based on slightly differing numbers of tests, the assumption that (J1 is constant in these data 
is not quite correct) 

Bull (i) 

Total 

1 
2 
3 
4 
5 
6 

Source 

Between bulls 
Within bulJs 

Percentages of Conceptions to Services 
for Successive Samples 

46,31,37.62, JO 
70, 59 
52, 44, 57, 40, 67; 64, 70 
47,21,70,46, 14 
42,64, SO, ffJ, 77, 81, 87 
35,68,59,38,57,76,57,29,60 

d,f. 

5 
29 

S.S. 

3.772 
6,750 

n, 

5 
2 
7 
5 
7 
9 

35 

M.S. 

754 
233 

.\,1 = 233 estimates 0'1: (154 _ 233)/5.67::: 92 estimates (1 ... 1 

X,. 

206 
129 
394 
198 
470 
479 

1876 

ElM.S.) 

(11 + 5.67(1 ... l .. ' 
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EXAMPLE 10. 18.2-The preceding example is one in which we might consider either 
fixed or random effects of bulls, depending on the objectives. If these si:l bulls were available 
for an artificial insemination program, we would be interested in comparing the percentages 
of success of these specific bulls in a fixed effects analysis. 

IO.19-Sampies witltiD samples. Unequal sizes. Both samples and 
sub-samples may be of unequal sizes. Computational methods for any 
number of levels (samples, sub-samples, sub-sub-samples, etc.) have been 
developed by Gower (22) and by Gates and Shine (23), following earlier 
work by Ganguli (24). The analysis of variance is straightforward al­
though tedious. A general procedure for finding unbiased estimates of 
the components of variance at each level will be given. 

Our example is from a small survey of wheat yields in six districts in 
England (25). One or more farms were selected in each district, and from 
one to three wheat fields from each selected farm. Strictly, this is a mixed 
model, since the districts are fixed; further, the farms within districts were 
not randomly selected. The data serve, however, to illustrate the com­
putations. 

The computations are most easily followed if the data are set out as 
in table 10.19.1. The lowest level (fields) is denoted by O. The yield. 
Xo., and tlie number of observations in each yield are written down. 
In this example, as in most applications, the No. are all I, each observa­
tion being tbe yield of one field. 

The Xo• and the No. are added to give the totals, X" and N", at the 
next lowest level, farms. Similarly, the X" and the N" are added to give 
the district totals, X,. and N,.. Finally. the district totals are added to 
give X" and N", the grand total and the total number of recorded ob­
servations, respectively. 

To obtain the sum of squares in the analysis of variance, first calculate 
for each level the quantity 

Si = 2.: Xi/IN" , 

S J' for instance. is (1063)' :36. = 31.388.0, the usual correction for the mean. 
At.level 2 (Districts) we have 

S2 = 1102/4 + 91'13 + ... + 4322;13 = 31,849.3 

To obtain the df" count the number of classes C, at each level. These are 
Co = 36. C, = 25, C, = 6, C, = 1, as shown at the foot of table 10.19.1. 
The C, and the S. provide the df, and the sums of squares in the analysis of 
variance. as shown in table 10.19.2 on p. 293. 

The rule for cal~'Ulating the d,f and the sums of squares is a straight­
forward extension of the rule for two levels given in table 10.121. 

We now express the expected values of the three mean squares in 
terms of the components of variance for districts ("/)' farms (",'), and 
field, ("0'). For this we use two sets of auxiliary quantities, 1,; and k ij • 
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TABLE 10.19.1 
WHEAT YIELDS (GMS. PER 0.0000904 ACRE) TO ILLUSTlt.ATE EsrtMATiON OF CoMPoNENTS 

Of VARIANCE IN NESTED CussmcAnoNS WITH UNEQUAL NUMBEIt.S 

LevoI 0 Level I Level 2 . Level 3 
Fields Farms Districts GA.nd Total 

X" N .. XII Nil X" N" X .. N .. 

23 1 
19 1 42 2 
31 1 
37 1 68 2 110 4 
33 I :!9 62 2 
29 I 29 1 91 3 
36 1 
29 1 
.33 I 98 3 98 3 
II 1 
21 I 32 2 
23 I 
18 I 41 2 
33 I 33 1 
23 I 23 1 
26 1 26 1 
39 I 39 1 
20 I 20 1 
24 I 24 1 
36 I 36 1 274 II 
25 I 
33 I 58 2 58 2 
28 1 
31 1 59 2 
25 I 
42 I 67 2 
32 \ 
36 I 68 2 
41 I 4\ I 
35 I 35 "' 1 
16 , 16 'I 
30 1 30 1 
40 1 40 1 
32 I 32 1 
44 I 44 I 432 \3 1063 36 

C, 36 2S 6 1 

For the y,j,·i and j take the values.O, 1,2,3, with i <':.j. In the diagonal, 
y" always equals the total number of observations, in this case 36. Further, 
when .11 No. are I, YiO = C" the number of classes at level i. Thus, we 
write I, 6, 25, and 36 in the column YiO in table 10.19.3. For the remaining 
l'u, the rule is (using table 10.19.1): 

Sum the squares of the Nil' each square divided by Ihe nexl enlry N Ii. 
at level i. It sounds puzzling but should be clear from the examples. 
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TABLE 10.192 
ANAL VSIS OF V AlUANCE Of WHEAT YlELD5 

Source of Variation IlJegrees of freedom I Sum of Squares I,. Mean Squares 
I , 

Districts (level 2) 
Farms within districts (level I ) 
Fields within farms (level 0) 

C.-,c,- 5 
C, _·C. -19 
Co'_ C1 -I1 

I 
S1 - S3 = 461.3 92.3 

71.0 
28.2 l

SI - S2 = 1.349.5 
5. - 5, - 310.2 -L __ _ 

'l:ABLE 10.19.3 
VAl.tlES Of AUXlLlARY QuANTITIES Y'J AND kif 

j j 

'" 2 
k" 

0 3 0 1 

3 1 1.67 9.11 36 2 5 9.82 
2 6 11.49 36 1 19 2451 
1 25 36 0 11 
0 36 

y" = (4' +.~' + 3' + II' + 2' + 13')/36 = 9.11 

For the k,p i and j take the values 0, I, 2, with i ? j, and 

kij = Yij - 1',+ 1.) 

2 

26.89 

That is, to find any ku, start with Y'J and subtract the number immediately 
above it. Thus, k" = 36 - 9.11 = 26.89. 

The quantity k,; is the coefficient of (1/ in the expected value of the 
sum of squares at level i in the analysis of variance. To find the expected 
values of the corresponding mean squares, divide by the number of df. 
at level i. These mean squares (from table 10.19.2) and their expected 
values appear in table 10.9.4. For example, the coefficient 1.290 of (II' 
in the farms mean square is k ll/19 = 24.51/19, and so on. 

TABLE 10.19.4 

EXPECTED VALUES OF THE MEAN SQUARES 

levd Degrees of Freedom Mean Square E>pected Value 

Districts (j = 2) 5 92.3 1101 + 1.964a1
1 +5.3780/ 

Farms (i = 1) 19 71.0 (10 1 + 1.29Ocf 1
1 

Field, (i = 0) 11 28.2 6.' 

A new feature is that the coefficient of (I,' is no longer the same in 
the Districts and Farms mean squares. Thus, the ratio 92.3/71.0 cannot 
be used as an F-test of the null hypothesis (1/ = O. However, unb,ased 
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estimates of the three components are obtained from table 10.19.4 as 
follows: 

S02 = 28.2 : S1 2 =(71.0 - 28.2)/1.290= 33.2 
s/ = [92.3 - 28.2 - (1.964)(33.2»)/5.378 = -0.02 

The data give no evidence of real differences in yield between districts. 
This method of calculation holds for any number of levels. For 

large bodies of data the computations may be programmed for an elec­
tronic computer. 

10.ZO-Inuaclass correJatioo. We revert to a single classification 
with n members per class. When the component (fA 2 > 0, we have seen 
that members of the same class tend to act alike. An alternative to model 
II for describing this situation is to suppose that the observations x,j are 
all distributed about the same mean p. with the same variance (f2, but that 
any two members of the same class (i ~ constant) have a common cor­
relation coefficient PI' called the intraclass correlation coefficient. Actually, 
this model antedates the analysis of variance. 

With this model it can be shown by algebra that the expected values 
of the mean squares in the analysis of variance are as follows: 

Source of Variation 

Bctwecn'claSscs 
Within classes 

Mea_Square Expected Value 

~'{l +(n-I)p,) 
~'(l - p,) 

This model is useful in applications in which it is natural to think of mem­
bers of the same class as correlated. It is frequently employed in studies of 
twins (n ~ 2). The model is more general than the components of 
variance model. If PI is negative, note that S,2 has a smaller expected 
value than S.

2
• With model II, this cannot happen. But if, for instance, 

four young animals in a pen <:!Impete for an insufficient supply of food, 
the stronger animals may drive away the weaker and may regularly get 
most of the food. For this reason the variance in weight within pens 
may be larger than that between pens, this being a real phenomenon 
and not an accident of sampling. We say that there is a negative correla­
tion PI between the weights within a pen. One restriction on negative 
values of PI is that PI cannot be less than - J/(n - I). This is so because 
the expected value of S,2 must be greater than or equal to zero. 

From the analysis of variance it is clear that (s.' - sw2 ) estimates 
npJ<12, while {S,2 + (n - l)s.') estimates ",,2. This suggests that as an 
estimate of PI we take 

rl ~ (s.' - sw2)/{s/ + (n - l)sw2
) (10.20.1) 

As will be seen presently. a slightly different estimate of P, is obtained 
when we approach the problem from the viewpoint of correlation. 

The data on identical twins in table 10.20.1 illustrate a high positive 
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NUMBER OF FINGE:R RIDGES ON BoTH HANDS Of INDIVIDUALS IN l2 PAIRS 

Of FEMALE IDENTICAL TWINS 
[Data from Newman. Freeman. and Holzinger (34)] 
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Finger Ridges Finger R.idges Finger Ridges 
Pair of Individuals Pair of Individuals Pair of Individuals 

I 71. 71 5 76. 70 9 114. 113 
2 79. 82 6 83. 82 10 94. 91 
3 105. 99 7 114. 113 II 75. 83 
4 115. 114 8 57. 44 12 76. 72 

Analysis of Variance 

Source of Variation Degrees of Freedom Mean Square 

Twin pairs 
Ind;viduals 

II 
12 

$1 = 14.29, s,,/ = 401.51. rJ = 0.966 

817.31 
14.29 

correlation. The numbers of finger ridges are nearly the same for the two 
members of each pair but differ markedly among pairs. From the analysis 
of variance. the estimate of p, is (n = 2) 

" = (817.31 - 14.29)/(817.31 + 14.29) = 0.966 

In chapter 7. the ordinary correlation coefficient between X and Y 
was estimated as 

, = 1:(X - X)(Y - Y)/.j{1:(X - X)'1:(Y _ Y)'} 

With twin data, which member of a pair shall we call X and whi~h 
Y? The solution is to count each point twice, once with the first member 
of a pair as X, and once with the first member as Y. Thus, pair 2 is entered 
as (79,82) and also as (82, 79), while pair I, where the order make, no 
difference, is entered as (71, 71) twice. With this method the X and Y 
samples both have the same mean and the same variance. If (X, X') 
denote the observations for a typical pair, you may verify that the cor­
relation coefficient becomes 

'r' = 2l:(X - X)(X' - X)/I1:(X - X)' + 1:(X' - X)'} 

where the sums are over the a pairs and X is the mean of all observations. 
For the finger ridges, ,,' = 0.962. 

With pairs (n = 2). intraclass correlations may be averaged and may 
have confidence limits set by using the transformation from, to z in 
section 7.7. The only changes are: (i) the variance of z, is 1/(0 - 3/2). 
where a is the number of pairs. as against I/(a - 3) with an ordinary z, 
(ii) the cOrIection for the bias in =, is to add 1/(20 - I). 

With triplets (n = 3), each trio X, X', X" specifies six points: (X. X'), 
(X', X), (X. X"), (X", X). (X', X"), (X", X'). The number of points rises 
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rapidly as n rises, and this method of calculating ,,' becomes discouraging. 
In 1913, however, Harris (26) discovered a shortened process similar to 
the analysis of variance, by showing in effect that 

, (a - I)s.' - aSw
2 , -

, - (a - I)s.' + a(n - l)sw2 

Comparison with equation 10.20.1 shows that 'r differs slightly from '" 
the difference being trivial unless a (the number of classesl is small. Since 
it is slightly simpler, equation (10.20.1) is more commonly used now as 
the sample estimate of Pl. 

IO.21-Tests of homogeneity ohariance. Fromtime to time we have 
f'dised the question as to whether two Or more mean squares differ signifi. 
cantly. For two mean squares an answer, using the two·tailed F·test, 
was given in section 4.15. With more than two independent estimates of 
variance, Bartlett (27) provided a test. 

If there are a estimates S,', each with the same number of degrees of 
freedom/. the test criterion is 

M = 2.3026/(a log" - :E log s/) (.2 = ts/la) 

The factor 2.3026 is a constant (log. 10). On the null hypothesis that each 
S( is an estimate of the same (1', the quantity MIC is distribllted approxi­
mately as X' with (a - I) df, where 

C-I a+1 - +--3aj 

Since C is always slightly greater than I, it need be used only if M lies 
close to one of the critical values of x' 

In table 10.21.1 this test is applied to the vanances of grams of rat 
absorbed in the four types'o( fat in the doughnut example of table 10.2.1. 
Here a = 4 and 1 = 5. The value of M is 1.88, clearly not significant 
with 3 d,j. To illustrate the method, X2 = MjC ~ 1.74 has also been 
computed. 

When the degrees of freedom differ, as with samples of unequal 
sizes, the computation of x' is more tedious though it follows the same 
pattern. The formulas are: 

M = (2.3026)[(!:};) log,' - !:f. log s,z] W = !:f,s,'/!:f,) 

C=I+ 1 [!:_1_ __ I] 
3(a - I) !. :Ef, 

.,_' = M IC with (a - 1) degrees of freedom 

In table 10.21.2 this test is applied to the variances of the birth weights 
oftive litters of pigs. Since s' is the po.qled variance (weighting by degrees 
of freedom), we need a column of the sums of squares. A column of the 
reciprocals Ilfi of the degrees of freedom is also useful in finding C. Tbe 



Fa' 

I 
2 
3 
4 

Total 

TABLE 10.21.1 
CONPVTATlO'f'iI Of 8AltTLETT'S Tan Of HOIIIIQG.£NI!:I"n Of VltklA'NCE 

Au. EST ..... rES HA ""'" r - 5 DIImuiIIs 01' FREEDOM 

,,' lOB $,2 

178 2.2504 
60 1.7781 
91 1.991 ! 
61 1.8375 

404 7.8522 

" = 1.00.9 lOS 51 = 2.0038 

M = (2.3026)(5)[<1(2.0038)- 7.85221- 1.&8. (df. = 3) 

x' = 1.&8/1.083 ~ ).74 (d., = 31. P > 0.5 
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computations give 'I.' = 16.99 with 4 d,[.. showing that the innalitter 
variances differ from litter to litler in these data. 

When some or all of the s.' are less than I. as in these data. it is 
worth noting that X' is unchanged if all s;' and 5' are multiplied by-tbe 
the same number (say 10 or 100). This enables you to avoid logs that are 
negative 

Litter 
(S&mpl<1 

I 
2 
J 
4 
5 

a-5 

TABLE to.21.2 
COMPUTA.lION OF BAR TLFTT'S TEST Of HOMOOENEIfY OF.V ,uIANCE. 

SAMPLES DlFFU1NG IN SIZE 

Sum of o.grees of Moon 
Square') Freedom Squares 

j{./ J. S;l lOISjl 1; log s/ 

8.18 9 0.909 -0.0414 - 0.3726 
3.48 7 0.497 -0.3036 -'2.1252 
0.68 9 0.076 - 1.1 192 -10:0728 
0.72 7 0.103 -O.9R72 - 6.9104 
0.7.1 5 0.146 -0.8357 - 4.1785 

13.79 37 - 23.6595 

,'= Ir,s,'/!.r. = 13.79/37 = 0.3727 
(!J;) Jog -" = (37)( -0.4286) = - IHj8~ 

At = (2.J026)(!J.) ~,' -l:.f,lo! ','1 
= (2.302611- 15.85'2 .- (-23.6595)] = 17.96 

C = 1 .... _I__ fO.7080 - .!.] = 1.057 
(3)(4) [ 37 

I' = MIC - 17.9611.057 = 16.9'>. (<if = 41.P< 0.01 

Reciproca Is 
I J. 

0.1111 
0.1429 
O.t I II 
0.1429 
0.2000 

0.7080 
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The X' approximation becomes less satisfactory if most of the I. are 
less than 5. Special tables for this case are given in (28). This reference 
also gives a table of the significance levels of s...,. 'ISm •• ', the ratio of the 
largest to the smallest of the a variances. This ratio provides a quick test 
cf homogeneity of variance which, though less sensitive than Bartlett's 
test, will often settle the issue. 

Unfortunately, both Bartlett's test and this test are sensitive to non­
normality. in the data, particularly to kurtosis (29). With long-tailed 
distributions (positive kurtosis) the test gives too many erroneous verdicts 
of heterogeneity. 
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* CHAPTER ELEVEN 

Lo-way classifications 

lI.I-lntroduction. The experimenter often acquires the ability to 
predict roughly the behavior of his experimental material. He knows 
that in identical environments young male rats gain weight faster than 
young female rats. In a machine which subjects five different pieces of 
cloth to simulated wearing, he learns from experience that the cloths placed 
in positions 4 and 5 will receive less abrasion than those in the other posi­
tions. Such knowledge can be used to increase the accuracy of an experi­
ment. If there are a treatments to be compared, he first arranges the 
experimental units in groups of a, often called replications. The rule is 
that units assigned to the same replication should be as similar in re­
sponsiveness as possible. Each treatment is then allocated by randomiza­
tion to one unit in each replication. This produces a two-way classifica­
tion, since any observation is classified by the treatment which it received 
and the replication to which it belonged. 

Two-way classifications are frequent in surveys also. We already en­
countered an example (section 9. L') in which farms were classified by soil 
type and owner-tenant status. In a survey of family expenditures on 
food, classification of the results by size of family and income level is 
obviously relevant. 

We first present an example to familiarize you with the standard 
computations needed to perform the analysis of vananee and make any 
desired comparisons. Later, the mathematical assumptions will be 
discussed. 

II.2-An experiment with two criteria of classification. In agricul­
tural experiments the agronomist tries to classify the plots into replications 
in such a way that soil fertility and growing conditions are as uniform as 
possible within any replication. In this proce"s he utilizes any knowledge 
that he has about fertility gradients, drainage, liability to attack by pests, 
etc. One guiding principle is that, in general, plots that are close together 
tend to give similar yields. Replications are therefore usually compact 
areas of land. Within each replication one plot is assigned to each treat­
ment at random. This experimental plan is called randomized blocks, the 
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replication being a block of land. The two criteria of classification are 
treatments and replications. 

Table 11.2.1 comes from an experiment (I) in which four seed treat­
ments were compared with no treatment (Check) on soybean seeds. The 
data are the number of plants which failed to emerge out of 100 planted in 
each plot. 

TABLE 11.2.1 
ANALYSIS OF VARIANCE OF A 2-WAY CLASSIFICATION 

(Number of failures out of 100 planted soybean seeds) 
==~~~T~======================9============= 

Replication 
Treatment 2 3 4 5 

Check 8 10 12 13 II 
Arasan 2 6 7 II 5 
Spergon 4 10 9 8 10 
Semesan. Jr. 3 5 9 10 6 
Fermate 9 7 5 5 3 

Total 26 38 42 47 35 

Correction: C _ (188)'(25 _ 1,413.76 

Total S.S.: 82 + 22 + ... + 6 2 + 32 
- C =- 220.24 

Treatments S.S.: 
542 + 31 2 +.,. + 292 

5 
- C= 83.84 

262 + 382 + 
Replications S.S.: 

5 

... + 3S1 

- C- 49.84 

Source of Variation Degrees of Freedom Sum of Squares 

Replications 4 49.84 
Treatments 4 83.84 
Residuals_(Error) 16 86.56 

Total .... 24 220.24 

Total 

54 
31 
41 
33 
29 

188 

Mean 

10.8 
6.2 
8.2 
6.6 
5.8 

MeanSquarc 

12.46 
20.96 

5.41 

The first steps are to find the treatment totals, the replication totals, 
the grand total, and the usual correction for the mean. The total sum of 
squares and the sum of squares for Treatments are computed just as in a 
one-way classification. The new feature is that the sum of squares for 
Replications is also calculated. The rule for finding this sum of squares 
is the saOle as for Treatments. The sum of squares of the replication totals 
is divided by the number of observations in each replication (5) and the 
correction factor is subtracted. Finally, in the analysis of variance, we 
compute the line 

Residuals = Total - Replications - Treatments 
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As will be shown later, the Residuals mean square, 5.41, with 16 df" 
is an unbiased estimate of the error variance per observation. 

The F ratio for treatments is 20.96/5.4J = 3.87, with 4 and J6 d.f, 
significant at the 5% level. Actually, since this experiment has certain 
designed comparisons, discussed in the next section, 11.3, the overall 
F-test is not of great importance. Note that the Replications mean 
square is more than twice the Residuals mean square. This is an indica­
tion of real differences between replication means, suggesting that the 
classification into replications was successful in improving accuracy. A 
method of estimating the amount of gain in accuracy will be presented in 
section 11.7. 

EXAMPLE 11.2.1-ln three species of citrus trees the ratio of leaf area to dry weight 
was determined for three conditions of shading (2). 

Shading Sbamouti Orange Marsh Grapefruit Clementine Mandarin 

Sun 
Halfohade 
Shade 

112 
86 
80 

90 
73 
62 

123 
89 
81 

Compute tbe analysis of variance. Ans. Mean squares for shading and error, 942.1 and 
21.8. F= 43.2, with 2 and 4 d.f. The shading was effective in decreasing the relative leaf 
area. See example 11.5.4 for further discussion. 

EXAMPLE 11.2.2-Wben there are only two treatments, the datil reduce to two flaired. 
samples, previously analyzed by the I·test in chapter 4. This ,-test is equivalent to the F-t~t 
of treatments as given in tbis section. Verify this result by perfonning the analysis of 
variance of the mosaic vitus example in section 4.3, p. 95, as follows: 

Replications (Pairs) 
Treatments 
Error 

Degrees of Freedom 

7 
I 
7 

Sum of Squares 

S7S 
64 
65 

F= 6.89, df. = 1,7. JF- 2.63 - t as given on p. 94. 

Mean Square 

82.2 
64.0 

9.29 

1l.3-Comparisoos among means. The "lliscussion of differenJ types 
of comparisons in sections 10.7 and 10.8 applies also to two-way classifica­
tions. To illustrate a planned comparison, we compare the mean number 
of failures for Ihe Check with the corresponding average for the four 
Chemicals. From table 11.2.1 the means are: 

Check 
10.8 

Arasan 
6.2 

Spergon 
8.2 

Semesan. Jr. 
6.6 

The comparison is, Iherefore, 

O 
_ 6.2 + 8.2 + 6.6 + 5.8 _ _ _ I 

1 .8 4 - 10.8 6.7 - 4. 

Fermate 
5.8 
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The experiment has five replications, with s = J 5.41 = 2.326 (16 dj.). 
Hence, by Rule 10.7.1, the estimated error of the above difference is 

s ) 2 1 1 I 1 _ (2.326»)5 
J5 1 + 4' + 4' + 4' + 4; -~ 4 

= 2.326/2 = 1.163 

with 16 df Thus 95?1. confidence limits for the average reduction in 
failure rate due to the Chemicals are 

4.1 ± (2.120)(1.163) = 4.1 ± 2.5, i.e., 1.6 and 6.6 

The next step is to compare the means for the four Chemicals. For 
this, the discussion in section 10.8 is relevant. The LSD is 

lo.o,S.j2/n = (2. I 20)(2.326),j275 = 3.12. 

Since the largest difference between any two means is 8.2 - 5.8 = 2.4. 
there are no significant differences among the Chemicals. You may verify 
that the Studentized Range Q-test requires a difference of 4.21 for sig­
nificance at the 5% level, giving, of course, the same verdict as the LSD 
test. 

1l.4-A1gebraic notation. For the results of a two-way classification 
table 11.4.1 gives an algebraic notation that has become standard in 
mathematical statistics. X'j represents the measurement obtained for the 
unit that is in the ith row (treatment) andjth column (replication). Row 
totals and means are denoted by X,. and Xi .. respectively, while X.; and 
X'j denote column totals and means. The overall mean is X ... General 
instructions for computing the analysis of variance appear under the 

TABLE 11.4.1 
ALGEBR.AiC REPRESENTATION OF A 2·W",y TABLE WITH a TREATMENTS ANb h REPlI(,ATlONS 

-.., (Computing instructions and analysis of variance) 

Treatments Replications. j = I .. . b 
i= I .. . Q' j h Sum Mean 

I Xu X" X" XI' X,. 
2 X" XlJ X" X,. r,. 

x" X" X,. Xi' 

X.; X. X,. X, 

X., X., x.. 
X, X., X .. 

Sum X' i 
Mean .v' l 
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TAoBLE 11.4.1 (Conzinuf>d) 

Correction: 
Total: 

Treatments: 

X'J 2 + ... +X./ C Replications: B = -
a 

Residuals: D = Total - (Treatments + Replications) 

Source of Variation Degrees of Freedom Sum of Squares Mean Square 

Treatments a-I A A/(a - I) 
Replications b-I B B/(b -, I) 
Residuals (a - I)(b - I) D D/(a - I)(b - I) 

Total ab-I A.+B+D 

table. Note thatthe number of dj. for Residuals (Error) is (a - I)(b - I), 
the product of the numbers of dJ. for rows and columns. 

In this. book we have kept algebraic symbolism to a minimum, in 
order to concentrate attention on the data. The symbols are useful, how­
ever, in studying the structure of the two-way classification in the next 
section. 

U.S-Mathematical model for • two-way c_iflcation, The model 
being used is 

Xi} = p. + ~, + Pi + "i' i = 1 ..• 'I. j = 1 ... b, 

where p. represents the overall mean, the ~, stand for fixed row (treatment) 
effects and the Il j for fixed column (replication) effects. The convention 

:E~, = :EPi = 0 

is usually adopted. 
This model involves two basic assumptions: 
I. The mathematical form (p. + el, + Ilj ) implies that row and column 

effects are additive. Apart from experimental errors, the difference in 
effect between treatment 2 and treatment I in replication j is 

(p. + "2 + Pi) - (p. + ct, + Pi) = ct2 - ", 

This difference is the ..arne in all replications. When we analyze real data, 
there is no assurance that row and column effects are exactly additive. 
The additive model is used because of its simplicity and because it is 
often a good approximation to more complex types of relationships. 

2. The tlj are independent random variables, normally distributed 
with mean 0 and variance ,,'. They represent the extent to which the 
data depart from the additive model because of experimental errors. 
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As an aid to understanding the model we shall construct a set of data 
by its use. Let 

Jl = 30 
(Xl = 10, tI2 == 3, tt) = 0, IX. =- -13; LlXj = 0 
fi, = I, fi2 = -4, fiJ = 3; 1:.P, = 0 

The e;j are drawn at random from table 3.2.1, each decreased by 30. This 
makes the e'j approximately normal with mean 0 and variance 25. 

In each cell of table 11.5.1, ~ = 30 is entered first. Next is the treat­
ment ai, differing from row to row. Following this is the replication 
effect, one in each column. In each cell, the sum of these three parts is 

TABLE 11.5.1 
ExPFJt.IMENT CoNSTllUCTED ACCORDING TO MODEL l. Jl = 30 

Replication 
Treatment p, -I p, =-4 p, = 3 

or: l = 10 30 30 30 
IO 10 10 
1 - 4 3 

-II - 7 3 

XII =30 Xu -29 Xu ..... 46 

«3 = 3 30 30 30 
3 3 3 
1 - 4 3 
1 5 - 3 

--- .---
Xu = 35 Xll:::lO: 34 Xll = 33 

CI) "" 0 30 30 30 
0 0 0 
1 - 4 3 

"-
0 4 - 1 

Xli = 31 X 12 == 30 Xu = 32 

1%4==-13 30 30 , 30 
-13 -13 -13 

1 - 4 3 
- 2 - 2 1 
---
X,41 z:: 16 X.:a '= II X.] = 21 

X'j 112 104 132 

X' I 28 26 33 

Source of Variation iDegrees of Freedom Sum of Squares 

Replications 
Treatments 
Residuals 

.' 
3 
6 

104 
702 
132 

-
X,. X,. 

105 35 

102 :14 

93 31 

48 16 

348 

29 

Mean Square 

52 
234 

22 
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fixed by 1', the ~i' and the Pi" Sampling variation is introduced by the 
fourth entry, a deviation drawn at random from table 3.2.1. According 
to the model, Xij is the sum of the four entries just described. 

Some features of the model are now apparent: 
(i) The effects of the treatments are not influenced by the Ili because 

the sum of the Pi in each row is zero. If there were no errors, check from 
table 11.5.1 that the sum for treatment I would be 41 + 36 + 43 = 120, 
the mean being 40 = I' + Ill' The observed mean, Xl = 35, differs from 
40 by the mean of the eii , namely (_ II _ 7 + 3)/3 = _ 5. This is an 
instance of the general result 

Xi' = I' + lXi + (ei! + e" + ... + e,,)lb 

This result shows that Xi. is an unbiased estimate of I' + ~i and that its 
variance is (['Ib, because the error of the estimate is the mean of b inde­
pendent errors, each with variance (12. 

(ii) In the same way, the replication means are unbiased estimates of 
i' + p" with variance ([' la. 

(iii) In the analysis of variance the Residuals mean square, 22, is an 
unbiased estimate of ([' = 25. More explanation on this point will be 
given presently. 

(iv) The mean square for Replications is inflated by the Pi and that 
for Treatments by the lXi . The expected values of these mean squares 
are shown in table 11.5.2, which deserves careful study. Note that the 
expected value of the Treatments mean square is the same as in a one-way 
classification with b observations ih each class (compare with equation 
10.4.1, p. 265). 

TABLE 11.5.2 
COMPONENT ANAL ¥SIS OF THE CONSTRUCTED EXPERIMENT 

Source of Variation Degrees of Freedom 

Replications 2 
Treatments 3 
Residuals 6 

, tp/ (I)' + (-4)' + (3)' 
1(. = -_ ~ 13 

h - 1 2 

Mean Square 

52 
214 

22 

, ta/ (10)' + (3)' + (0)' + (-13)' 
K, ~ -_ ~ ~ 92t 

u - I 3 

Expected Value 
(Pan,meters Estimated) , 

(12 + aK.2 

u2 + bK,./ .' 

Sa2 = (52 - 22)/4 = 8 estimates 13. SA
2 = (234 - 22l(3 == 71 estimates 92, 

Error Mean Square =. 22 estimates 25 
Replications Mean Square = 52 estlmates 25 + 4( 13) = 11 
Treatments Mean Square = 234 estimates 25 + 3(93) = 304 
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We turn to the estimates of )1, <XI and fJj. These estimates are 

{J. = X .. ; ~i = XI' - X .. ; Pi = X. J - X .. 
If we estimate any individual observation X IJ from the fitted model, 

the estimate is 

gij = {J. + ~I + PJ = X .. + (Xi' - X .. J + (X. J - X .. J 
= XI' + X. J - X.. . 

Table 11.5.3 shows the original observations Xi» the estimates gii' 

and the deviations ofthe observations from the estimates, DiJ = Xi) - gij' 
For treatment 1 in replication 2, for instance, we have from table 11.5.1. 

. 

Xu = 29, gil = 35 + 26 - 29 = 32, D" = - 3 

TABLE 11.5.3 
LINEAR MODEL FllTED TO THE OBSERVATIONS IN TABLE 11.5 I 

Replication 
Treatment 1 2 

I Xij 30 29 
gij 34 3i 

• D'I - 4 - J 

2 Xij 35 34 
kij 33 31 

D'I + 2 + 3 

3 X'I 31 30 
kiJ 30 28 

D'I + 1 + 2 

4 " Xii 16 11 
til 15 13 

Di) + I - 2 

The deviations Dij have three important properties: 

(i) Their sum is zero in any row or column. 
(ii) Their sum of squares, 

t - 4)2 + ( + 2)2 + ... + ( - J)' + ( + 1)' = 132. 

3 

46 
39 

+ 7 

33 
38 

- 5 

32 
)5 

- 3 

21 
20 

+ I 

is equal to 'he Residuals sums of square~ in the analysis of variance at the 
foot of table II 5.1. Thus the Residuals sum of squares measures the 
extent 10 which the linear additive model fails to fit the data. This result 
is a consequence qf a general algebraic identity: 
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Residuals S.s, = L L (Xu - X;, - X'j + X, ,)' 
i j 

= I I (Xu - X,,)' - bI (X" - X,,)' - aI (X'.j - X..)' 
j j j 

Total S,S, - Treatments S,S, - Replications S,S, 

This equation shows that the analysis of variance is a quick method 
of finding the sum of squares of the deviations of the observations from 
the fitted modeL When the analysis is programmed for an electronic 
computer, it is customary to compute and print the D ij' This serves two 
purposes, It enables the investigator to glance over the D;i for signs of 
gross errors or systematic departures from the linear model, and it pro­
vides a check on the Residuals sum of squares, 

(iii) From the constructed model you may verify the remarkable re­
sult that 

Dij = Eij - ei' - f.' j + i .. 
For example, for treatment 1 in replication 2 you will find fnlm table 11.5.1, 

e,l = -7; ." = -5; 8" = 0;." = -1 e,,'- t" - t'l +." = (-7) - (-5) - (0) + (-1) = -3, 

in agreement with DI2 = - 3 in table 11.5,3, Thus, if the additive model 
holds, each D;i is a linear combination of the random errors, It may be 
shown that any D,/ isan unbiased estimate of (a - 1)(6 - 1),,'ja6, It 
follows that the Residuals sum of '<tuares is an unbiased estimate of 
(a - l)(b - I),,', Tins gives the basic result that the Residuals mean" 
square, with (a - 1)(6.- I) d.f, is an unbiased estimate of ,,', 

To summarize the salient features, the additive model implies that the 
treatment effects a i are the same in every replication~ and vice versa. 
If additivity holds (apart from independent errors) the observed treatment 
means are unbiased estimates of the treatment effects, The F-test may be 
applied both to Treatments and Replications, The Residuals mean square 
measures the extent to which the additive model fails to fit the data and 
provides an unbiased estimate of (;2. 

EXAMPLE Il.5.l-Suppose that with a ~ b ::= 2, treatment and replication etfecls are 
mulfiplicQtivr. Treatment 2 gives results 20~~ higher than treatment I and reQtication 2 
gives results 10% higher than replication I. With no random errors, the observations would 
be as shown on the left below. 

Treatment 

I 
2 

Xli 

Replication 
I 2 

1.00 
1.20 

1.10 
1,]2 

Treatment 

I 
2 

g'l 
Replicatioll 

I 2 

0,995 
1.205 

1.105 
!.l15 

Verify that the g!j given by fitting the linear model are as shown iln the ri,hl above. 
Any DIj is only ±O.OOS. The linear model gives a good fillo a multiplicaUve model when 

20 
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treatment and replication effects are small or moderate. If, however, treatment 2 gives a 
100% increase and repli~tion 2 a Siflo increase. you will find Djj = ±O.125. not so good a fit. 

EXAMPLE 11.5.2-ln table 11.5.3, verify that tll = 35 Dl) = - 3. 

EXAMPLE II.S.3-Perform an analysis of variance of the gij in table 11.5.3. Verify 
that the Treatments and Replications sums of squares are the same as for the Xi}. but that 
the Residual sum of squares is zero. Can you explain these results? 

EXAMPLE 11.5.4-Calculate the DiJ for the 3 x 3 citrus data in example 11.2.1 and 
verify that the Residuals mean square, computed from the Dll• is 21.8. Carry onc decimal 
place in the DI). 

EXAMPLE 11.5.5-The resuit, 

Dt} = £1/- £,_ - 8.}+ i .. , 

shows that,DJ} is a linear combination of the form l:l:Af)tij' By Rule 10.7.1, its variance is 
11

1 l:l:Ai·· 
For D11 • for example, the Aij work out as follows: 

Observations No. of Terms AOj 

D" I (0 - I)(b - 1)lab 
Rest of DIj (b - I) -(0 - ll/ob 
Re~l. of Di1 (0 - I) -(b - 1)lab 
Rest of Dij (0 - I)(h - I) + Ilab 

It follows that l:I:)"ij 1 = (a - I )(b - I )/ab. Thus Dl12 ~ .. -simi1arlY·-any Di/ estimates 
(u - I)(b - I)ql,ab, as stated in the texL ~ 

1l.6-Partitlooing the treatments sum of squares. When the treat· 
ments contain certain planned comparisons, it is often possible to parti­
tion the. Treatments sum of squares in the analysis of variance in a way 
that is helpful. Some rules for doing this will now be given. In the 
analysis of variance. comparisons are usually calculated from the treat· 
ment totals Ti rather '"than the means, since this saves time and avoids 
rounding errors. 

Rule 11.6.1~1f L = ).1 T1 + ... + ).,T" (l:)', = 0) is a comparison 
among the treatment totals, then 

L'/nl:).' 

is a part of the sum of squares for treatments, associated with a single de· 
gree of freedom, where n is the number of observations in any treatment 
totaL· 

In the experiment on seed treatment of soybeans (table 11.2.1) the 
comparison Check vs. Chemicals may be represented as follows: 

Check Arasan Spergon Semesan, Jr. Fermate 
-------j--- ---
Total(T;) I 54 31 41 33 29 

Ai I 4 -I -I -I -I 
------.--- ----~---

To avoid fractions the..t, have been taken as 4, -1, -1, -1, -1 instead of 
as 1, - 1/4, - 1/4, - 1/4, - 1/4 in section 11.3. This gives 



L = 4(54) - 31 - 41 - 33 - 29 = 82 

Since n = 5, the contribution to the Treatments sum of squares is 

L'/n'£).' = (82)'/(5)(20) = 67.24 (1 dj.) 

The Treatments sum of squares was 83.84 with 4 dj. The remaining part 
is therefore 16.60 with 3 d.f. What does it represent? As might be guessed, 
it represents the sum of squares of Deviations of the totals for the four 
Chemicals from their mean, namely, 

31 2 + 41' + 33 2 + 29' 134' 
5 - 20 = 16 .. 60 

Thus, the original analysis of variance in table 11.2.1 might be reported 
as follows: 

Source of Variation I Degrees of Freedom Sum of Squares Mean Square 

Check vs. Chemicals I 67.24 61.24 
Among Chemicals 3 16.60 5.53 
Residuals (Error) 16 86.56 5.41 

The F ratio 67.24/5.41 = 12.43 (P < 0.01) shows that the average failur. 
rates are different for (;:heck and Chemicals (though as usual it does not 
tell us the size and direction of the effect in terms of means). The F ratio 
5.53/5.41 = 1.02 for Among Chemicals warns us that there are unlikely 
to be any significant differences among Chemicals. as was already verified .. 

As a second example, consider the data on the effect of shade on the 
ratio of leaf area to leaf weigh! in citrus trees (example 11.2.1). The 
"treatment" totals, n = 3, were as follows: 

Half i ! 
Sun Sbade Shade Comparison S.S. -

Totals T, 325 248 223 L; Divisor L'J'jIfI.).l 

-
Effect of shade A.li +1 0 -I 102 6 1734 
Half shade vs. Rest Ali +1 -2 +1 52 18 ISO 

--~-

We might measure the effect of shade by the extreme comparison 
L, = (Sun - Shade). We might also be interested in whether the results 
for Half Shade are the simple average of those for Sun and Shade. This 
gives the comparison L,. 

Rule 1l.6.2~Two comparisons: 

Ll = A.lIT} + A12T2 + ... + A1QT,. = 1:1 1;7;. 
L2'= )'HTI + ).22T2 + ... + A2.T. ~ LA1i 1j. 

are orthogonal if. 

A. 11 )'21 + A12).j2 + ... + ).10).211 = 0 .: i.e. l:).1jA,21 = 0 
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In applying this rule, if a total T, does not enter into a comparison, its 
coefficient is taken as zero. 

The comparisons L. and L2 are orthogonal, since 

(+-1)(+1) + (0)(-2) + (-1)(+1) = 0 

Rule I J .6.J-If two comparisons are orthogonal, their contributions 
L.2/nI)..2 and L//nI)'/ are independent parts of the sum of squares 
for treatments, each with I df 

This means that the Treatments S.S. may be partitioned into the 
contributions due to L. and L2 , plus any remainder (with (a - 3) df). 
A consequence of this rule is 

Rule II.6.4-Among a treatments, if (a - 1) comparisons are mu­
tually orthogonal (i.e., every pair is orthogonal), then 

L/ L/ L._.' 
~ + --, + ... + I.. 2 = Treatments S.S. 
nl:l 1j , n:E12t n (a-1)1 

The citrus data, with ii ". J, are an example. The sum of the squared con­
tributions for L. and L2 is 1734 + ISii = i 884, which may be verified to be 
the Treatments S.S. Thus, the relevant part of the analysis of variance 
can be presented as follows: 

Source of Variation Decrees of Freedom Sum of Squares Mean Square F 

Effect of_. 
Half shade \'S. Reat 
Error 

1 
1 
4 

1731 
ISO 
87 

1734 
ISO 
21.8 

79.S 
6.9 

The Fvalue for the ejfect of shade is highly significant. With I and 4 df, 
F = 6.9 for the comparison of half shade with the average of sun and 
shade does not quite reach the 5% level. There is a suggestion, however, 
that the results for half shade are closer to those for shade than to those 
for sun. Both th .... comparisons can, of course, be examined by I-tests 
on the treatment means. 

EXAMPLE 11.6.1-10 the following artificial example, two of the treatments were 
variants of one type of proce&s, while the other four were variants of a second type. The 
treatment totals (4 replications) were: 

Process 2 Process J 
59 68 70 S4 76 81 

Partition the Treatments S.S. as folloWS: 

Source of Variation ) Degrees of Freedom 

Between 'processes 1 
Variaats of process 1 1 
Variants of process 2 3 

Sum of SqU&CC$ 

67.69 
10.12 
28.19 

Mean Square 

67.69 
10.12 
9.40 
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1l.7-Efficieu.cy of blocking. When an experiment has been setout in 
replications, using the randomized blocks design, it is sometimes of in· 
terest to know how effective the blocking was in increasing the precision 
of the comparisons, particularly if there is doubt whether the criterion 
used in constructing the replications is a good one, or if the use of these 
replications is troublesome. From the analysis of variance of a random­
ized blocks experiment, we can estimate the error variance that would 
have been obtained if a completely random arrangement of the same ex­
perimental units (plots) had been used instead of randomized blocks. 

Call the two error variances sc.' and su'. With randomized blocks 
the variance of a treatment mean is s .. 'lb. To get the same variance of a 
treatment mean with complete randomization, the number of replications 
n must satisfy the relation , , 

SCR = SR. 

" b 

n SCR
2 

or - =--
b SRB

2 

For this reason the ratio .feR). iSRB
2 is used to measure the relative efficiency 

of the blocking. 
If M .and M, are the mean squares for blocks and error in the analysis 

of variance of randomized blocks experiment that has been performed, it 
has been shown (3.4) that 

sc.' (b - I)M. + bra - I)M, 
-5.-.' = (ab - I)M E 

Using the soybeans experiment as an example (table 11.2.1), 
M. = 12.46, M, = 5.41, a = b = 5, 

sc.' 4(12.46) + 20(5.41) 
SRBi = 24(5.41) 

1.22 

With complete randomization, about six replications instead of five would 
have been necessary to obtain the same standard error of a treatment 
mean. 

This comparison is not quite fair to complete randomization, which 
would provide 20 df for error as against 16 with randomized blocks and 
therefore require smaller values of I in calculating confidence intervals. 
This is taken into account by a formula suggested by Fisher (5), which 
replaces the ratio sc.'fsu ' by the following ratio: 

. .. (JR. + 1)1./<-. + 3) sc.' 
Relatlre amount of mformatlon = r 3 { --, 

. . (JAB + )(Je. + I) s •• 

= (16 + 1)(20 + 3) .22 = 1.20 
116+3)(20+1)(1 ) 

The adjustment for d.j. has little effect here but makes more difference in 
small experiments. 
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EXAMPLE 11.7 .I-In a randomized-blocks experiment which compared four strains 
of Gallipoli wheat (6) the mean yields (pounds per plot) and the analysis of variance were as 
follows: 

Strain A B C D 

Mean yield 34.4 34.8 33.7 28.4 

Source of Variation Degrees of Freedom Sum of Squares Mean Square 

Blocks 4 21..46 5.36 
Strains 3 134.45 44.82 
Error 12 26.26 2.19 

(i) How many replications were there? (ii) Estimate sci'/SIl..2, (iii) Estimate the relative 
amount of information by Fisher's fonnula. Ans. (ii) 1.3{), (iii) 1.26. 

EXAMPLE 11.7.2-(0 example 11.7.1, verify that the LSD and the Q methods both 
show D inferior to the other strains, but reveal no dift'erences among the other strains. 

n.s-Latin squares. In agricultural field experiments, there is fre­
quently a gradient in fertility running parallel to one of the sides of the 
field. Sometimes, gradients run parallel to both sides and sometimes, in a 
new field, it is not known in which direction the predominant gradient 
may run. A useful plan for such situations is the Latin square. With four 
treatments, A, B, C, D, it may be like this: 

ABC D 
CAD B 
DeB A 
B D A C 

The rows and columns of the square are parallel to the two sides of the 
field. Each treatment appears once in every row and once in every column, 
this being the basic property of a Latin square. Differences in fertility 
between rows and differences between columns are both eliminated from 
the comparison of the treatment means, with a resultant increase in the 
precision of the experiment. 

In numerous other situations the Latin square is also effective in 
controlling two sources of variation of which the investigator has predic­
tive knowledge. In psychology and medicine, the human subject fre­
quently comprises a replication of the experiment, receiving all the treat­
ments in succession, with intervening intervals in which the effects of pre­
vious treatment will have died away. However, a systematic effect of the 
order in which the treatments are given can often be detected. This is 
controlled by making the columns of the square represent the order, 
while rows represent subjects. In animal nutrition, the effects of both 
litter and condition of the animal may be removed from the estimates of 
treatment means by the use of a Latin square. 

To construct a Latin square, write down a systematic arrangement 
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of the letters and rearrange rows and columns at random. Then assign 
lrealments at random to the letters. For refinements, see (7). 

The model for a Latin square experiment (model I) is 

Xij' =!' + ai + Pj +y, + .ij'; i,j and k = I ... a; .ij, = .Y(O, u) 

where a, p, and y indicate treatment, row, and column effects, with the 
usual convention that their sumS are zero. The assumption of additivity 
is carried a step further than'with a two-way classification, since we assume 
the effects of all three factors to be additive. 

It follows from the model that a treatment mean X, .. is an unbiased 
estimate of J1 + ai' the offects of rows and columns canceling out because 
of the symmetry of the design. The standard error of X, .. is u/.Ja. The 
estimate ~i)' of the observation X,j, made from the fitted linear model is 

g,j1. = X ... + (X, .. - X ... ) + (X. j . - X ... ) + (X .. , - X ... ) 

Hence, the deviation from the fitted model is 

D,j1. = X'j1. - g'j' = XIj, - X, .. - X. j. - X .. , + 2X ... 

As in the two-way classification, the error sum of squares in the 
analysis of variance is the sum of the Dij,/ and the Error mean square is 
an unbiased estimate of a 2 . 

Table 11.8.1 shows the field layout and yields of a 5 x 5 Latin square 
experiment on the effects of spacing on yields of millet plants (8). In the 
computations, the sums for rows and columns are supplemented by sums 

TABLE 11.8.1 

Row 
---

I 
2 
3 
4 
5 

Sum 

YIELDS (GRAMS) OF PLoTS OF MILLET ARRANGEt> IN A. LATIN SQUARE 

(Spacings: A, 2-inch: B. 4: C, 6: D, 8: E, 10) 

Column 

I 2 3 4 5 

B: 257 E: 230 A: 279 C: 287 D: 202 
D: 245 A' 283 E: 245 B: 280 C: 260 
E: 182 B: 252 C: 280 D: 246 A: 250 
A: 203 C: 204 D: 227 E: 193 B: 259 
C: 231 D: 271 B: 266 A: 314 E: 338 

1,118 1,240 1.297 1.340 1,309 

Summary by Spacing 

A: 2" B: 4" C: 6' D: 8" E: 10" 

Sum 

1,255 
1,313 
1,210 
1,086 
1,440 

6,304 

~---_ -- - ------ - ----
Sum 1.349 1,314 1.262 I.191 1,188 6,304 

---- --- -.--------- ,-._------ -- -

Me-an 269.8 2h2.8 252 .• 238.2 237.6 15).] 

- -_---- --------
(C{,nlinued next pag(') 
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TABLE 11.8.1 (Continued) 

Correction: (6,304)'/25 ~ 1,589,617 
Total: (257)' + ... + (338)' - 1,589,617 = 36,571 

R . (1,255)' + ... + (1,440)' _ 1 589617 = 13 601 ows. 5 ,.. 

(1,118)' + ... + (1,309)' 
Columns: 5 1,589,617 = 6,146 

(1,349)' + ... + (1,188)' , 
Spacings: 5 1,589.617 = 4,106 

Error: 12,668 

Source of Variation Degrees of Freedom 

Total 24 
Ro~ 4 
Columns 4 
Spacings 4 
Error 12 

Sum of Squares 

)6,571 
13,601 
6,146 
4,156 

i2,668 

Mean Square 

3,400 
1,536 
1,039 
1,056 

and means for treatments (spacings). By the usual rules, sums of squares 
for Rows, Column, and Spacings are calculated. These are subtracted 
from the Total S.S. to give the Error S.S. with (a - I)(a - 2) = 12 df 

Table 11.8.2 shows the expected values of the mean squares, with the 
usual notation. For illustration we have presented the results that apply 
if the ftj and Y. in rows and columns represent random effects, with fixed 
treatment effects eli 

Source of Variation 

Rows, R 
Columns, C 
Treatments. A 
Error 

TABLE 11.8.2 
COMPONENT ANALYSIS IN LATIN SQuARE 

Degrees of Freedom 
.... 

4-1 
a-I 
.-1 

(.-1)(.-2) 

Mean Square Estimates of 

(12 + ooi 
(12 + Qae? 
6 2 +/IK",1 

.' 
This experiment is typical of many in which the treatments consist of 

a series of levels of a variable, in this case width of spacing. The objective 
is to determine the relation between the treatment mean yields, which we 
will now denote by 1,., and width of spacing Xi' Inspection of the mean 
yields suggests that the relation may be linear, the yield decreasing steadily 
as spacing increases. The Xi' x j, and Y" are shown in table 11.8.3. 

Spacing, XI 

Xi = Ai-X 
y,. (sms.) 

TABLE 11.8.3 

DATA FOR CALCULATING THE REGRESSION OF YIELD ON SPACING 

2"' 

-4 
269.8 

4" 

-2 
262.8 

6" 

o 
252.4 

8" 

2 
238.2 

10" 

4 
237.6 
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The regression coefficient of yield on spacing is 
1:(X, - X)(Y,. - Y..) 1:XiY,. 178.0 

b = 1:(X, _ X)' = 1:x,' = -~ = -4.45, 

the units being grams per inch increase in spacing. Notice that b is a 
comparison among the treatment means, with Aj = xJEx/. From Rule 
10.7.1, the standard error of b i. 

s. = ,j(s'1:).'/a) = ,j(s'/a1:x') = ,j{(1056)/(5)(40») = 2.298. 

With 12 dj., 95% confidence limits for the population regression are 
+0.6 and -9.5 grams per inch increase. The linear decrease in yield is 
not quite significant, since the limits include O. 

In the analysis of variance, the Treatments S.S. can be partitioned 
into a part representing the linear regression on width of spacing and a 
part representing the deviations of the treatment means from the linear 
regression. This partition provides new information. If the true regres­
sion of the means on width of spacing is linear, the Deviations mean square 
should be an estimate of ,,'. If the true regression is curved, the'Devia­
tions mean square is inflated by the failure of the fitted straight line to 
represent the curved relationship. Consequently, F = De~'iarions M.S,I 
Error M.S. tests whether the straight line is an adequate fit. 

The sum of squares for Regression (1 dj.) can be computed by the 
methods on regression given in chapter 6. In section 6.15 (p. 162) this 
sum of squares was presented as (1:xy)'/1:x' (table 6.15.3). In this exam­
plewe have already f01!nd l:xy = l:XiY., = -178.0, and I:x' = 40, giving 
(I:xy)'/I:x' = (178.0)'/40 = 792.1. Since, however, each fi' is the mean 
of five observations,. we mUltiply by 5 when entering this term in the 
analysis of variance, giving 3,960. The S.S. for Deviations from the re­
gression is found by subtracting 3,960 from the total S.S. for Spacings, 
4156 (table 11.8.4). 

TABLE 11.8.4 
ANALYSIS OF REGRESSION OF SPACING MEAN ON WIDTH,OF SPACING 

(Millet experiment) 

Source of Variation Degrees of Freedom Sum of Squares M~n Square 

Spacings (table 11.8.1) 4 4.156 
{ Regression U 3.%0 3.%0 

Deviations 196 66 
Error (table 11.8.1) 12.668 1.056 

F 

3,75 
0.06 

The F-ratio for Deviations is very small, 0.06, giving no indication 
that the regression is curved. The F for Regression. 3.75. is not quite 
significant, this test being the same as the Hest for b. 

The results of this experiment are probably disappointing. In trying 
to discover the !;lest width of spacing. an investigator hopes to obtain a 
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curved regression, with reduced yields at the narrowest and widest spac­
ings, so that his range of spacings straddles the optimum. As it is, assum­
ing the linear regression real, the best spacing may lie helow 2 in. Methods 
of dealing with curved regressions in the analysis of variance are given in 
chapter 12. 

Since the number of replications in the Latin square is equal to the 
number of treatments, the experimenter is ordinarily limited to eight or ten 
treatments if he uses this design. For four or less treatments, the degrees 
of freedom for error are fewer than desirable, (a - I)(a - 2) = (3)(2) = 6 
for the 4 x 4. This difficulty can he remedied by replicating the squares. 

The relative efficiency of a Latin square experiment as compared to 
complete randomization is 

MR + Me + (a - I) ME 
(a + liM. 

Substituting the millet data: 

. . sc,/ 
Relallve Efficiency = -,- = 

SL 

3400 + 1536 + (5 - 1)(1056) 
(5 + 1){1056} 

a gain of 45% over complete randomization. 

145%, 

There may be some interest in knowing the relative efficiency as com­
pared to a randomized blocks experiment in which either rows or columns. 
were lacking. In the millet experiment since the column mean square was 
small (this may have been an accident of sampling), it might have been 
omitted and the rows retained as blocks. The relative efficiency of the 

_ Latin square is 

Mc + (a - I}M. = 1536 + (5 - 1)1056 = 109% 
. aM. (5)(1056) 

Kempthor~~ (4) reminds us that this may.not he a realistic com­
parison. For the blocks experiment the shape of the plots would presum­
ably have heen changed, improving the efficiency of that experiment. In 
this millet experiment, appropriately shaped plots in randomized blocks 
might well have compensated for the column control. 

EXAMPLE 11.8.1~Here is a Latin square for easy computation. Treatments are 
indicated by A, B, and C. 
=====j'C========= .. ~=~· 

Columns 
1------------------

Rows 
-_ .. _---j---

2 
3 

B, 23 
A 16 
C 24 

2 3 

c: 29 
B: 16 
A, 12 

The mean squares are; rows, 2l, columns. 3; treatments, 93; remainder. 3. 
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EXAMPLEJ 1.8.2- - Fit the linear model for LatIn squares to the data of eumple 
11.8.1. Verify the fitting by the relation. I:.DiJ.l; 2 = 6. 

EXAMPLE 11.8.3---10 experiment~ affecting. the milk yield of dairy cows the great 
variation among indIviduals requires large numbers of animals for evaluating moderate dif­
ferences. Efforts to apply several treatments successively to the same cow are complIcated 
by the decreasing milk noV., by the shapes of the lactallon curves. by carry"()ver effects. and 
by presumed correlation among the errors, [;,jl- The effort was made to canITol these diffi­
culties by the use of several pairs of orthogonal latin squares (9). the columm representing 
COWs, the rows successive periods during lactation. the treatments being A = roughage. 
B = limited grain. C = full grain. 

For this example. a single square is presented. no effort being made to deal with carry­
over effects. The entries are pounds of milk for a 6-weck period. Compute the analysis of 
variance. 

Period ~ 
Cow 

2 

I 

I 
,4: 608 

II s: 715 
III C: 844 

s: 885 
C: 1087 
A: 711 

Source of Variation 1 Degrees of Freedom 
---t-------

Sum of Squares 

Periods I 2 
Cows I 2 
Treatments ! 2 
Error 2 

5.900 
47.214 

103.436 
4.843 

3 
-------

C: 940 
,4: 766 
s: 832 

Mean Square 

2.951) 
23,607 
51.718 

2.422 

11.9-Missiog data. Accidents often result in the loss of data. Crops 
may be destroyed. animals die. or errors made in the application of the 
treatments or in reco(ding. Although the least squares procedure can be 
applied to the data that are present, missing items destroy the symmetry 
and simplicity of the analysis. The calculational methods that have been 
presented cannot be used. Fortunately, the missing data can be estimated 
by least squares and entered in the vacant cells of the table. Application 
of the usual analysis of variance. with some modifications. then gives 
results that are correct enough for practical purposes. 

In these methods the missing items must not be due to failure of a 
treatment. If a treatment has killed the plants. producing zero yield, this 
should be entered as O. not as a missing value. 

In a one-way classification (complete randomization) the effect of 
missing values is merely to reduce the sample sizes in the affected classes. 
The analysis is handled correctly by the methods for one-way classifica­
tions with unequal numbers (section! 0.11). No substitution orthe miss­
ing data is required. 

In randomized blocks. a single missing value is estimated by the 
formula (26) 
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where 

a = number of treatments 
b = number of blocks 
T = sum of items with same treatment as missing item 
B = sum of items in same block as missing item 
S = sum of all observed items 

As an example, table 11.9.1 showsthe yields in an experiment on four 
strains of Gallipoli wheat, in which we have supposed that the yield for 
strain D in block 1 is missing. We have 

Strain 

A 
B 
C 
D 

Total 

T = 112.6, B = 96.4. S = 627.1, a = 4, b = 5. 

X _ 4(112.6) + (5)(96.4) - 627.1 _ 2 
- (3)(4) - 5.4 pounds 

TABLE 11.9.1 
YIELDS OF FOUIl STRAINS OF WHI::AT IN FIVE RANDOMIZED Bl.OCKS 

(PoUNDS Pat PLOT) WITH ONE MISSING VALUE 

Block 
I 2 3 4 5 

--.. --~~-~~. 

32.3 34.0 34.3 35.0 36.S 
33.3 33.0 36.3 36.8 34.5 
30.8 34.3 35.3 :12.3 35.& 

26.0 29.8 28.0 28.8 

%.4 127.3 135.7 132.1 135.6 

Analysis of Variance (With 25.4 Inserted) 

Total 
._-

172.1 
173.9 . 
16&.5 
112.6 

627.1 

Suurce of Variation Degrees of Freedom Sum of Squares Mean Squares 

Btocks 4 35.39 
Strains 3 171.36 57.12 (45.79) 
Error II 17.33 1.58 

.-----~---~ 

Total 18 224.08 

This value is entered in the table as the yield of tbe missing plot. All 
sums of squares in the analysis of variance are then computed as usual. 
However. the degrees of freedom in the Total and Error S.S .. are both 
reduced by I, since there are actually only 18 df for the Total S.S. and 
II for Error. 

This method gives the correclleast squares estimates of the treatment 
means and of the Error mean square. For the comparison of treatment 
means, the s.e. of the difference between Ihe mean with a missing value 
and another treatment mean is not..J(2s'/b) but the larger quantity 
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J' ,[2 a ] I [2 4] 
S b + bib _ I)(a _ I) = ~(1.58) 5 + (5)(4)(3) = ±O.859, 

as against ±O,795 for a pair of treatments with no missing values. 
The Treatments (Strains) mean square in the analysis of variance is 

slightly inflated, The correction for this upward bias is to subtract from 
the mean square 

{B - (a - I)X}' = {96.4 - (3)(25.4j)' = 11.33 
ala - I)' (4)(3)(3) 

This gives 57.12 - 11.33 = 45.79 for the correCI mean square, 
This analysis does nol in any sense recover the lost information, but 

makes the best of what we have. 
For the Latin square the formulas are: 

X = [a(R + C + T) - 2SJI(a - 1)(0 - 2) 

Deduction from Treatments mea" square for bias 

= [s - R - C - (a - I)T)'/ia - Il'(a - 2)' 

where a is the number of treatments, rows, or columns. 
To illustrate, suppose that III example 11.8,3 the milk yield, 608 

pounds, for Cow I in Period I was missing, Table 11.9,2 gives the result­
ing data and analysis. The correct Treatments mean square is (40, 408). 

X = 3(1825 + I 559__-+:.2477)_.::-_2(678()) = 512 pounds 
(2)(1 ) 

B' = (6780 - 1825 - 1559 - (2)(1477)]' = 24.420 
las (2)(2}(2)O)( \) 

TABLE 11.9.2 
3 x 3 LATIN SQUARE WITH ONE MISSING VALlIE 

I 
Period ! 

--+-
Cow 

2 

IIA 8885 
II 8 '715 C 1,087 

III I C 84.( A 711 

To~1 b_'S_9 ____ 2_,683 

Source of Variation 

Rows (Periods) 
Columns (Cows) 
Treatments 
Error 

Total 

I Dtgrees of Freedom 

I 2 
, 2 
I 2 
I I 

7 

3 Tota} Treatments 

C 9.40 1.825 I A 1,477 
A 766 2,568 I B 2.432 
8 8)2 U8± C2,871 

2.5)8 6.780 6.780 
~-- -

Sum of Squares Mean Squares 

9.847 
68,185 

129,655 64.828 (40.408) 
2,773 2.77) 

210,460 
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Of course, no worthwhile conclusions are likely to flow from a single 
3 x 3 square with a missing value, the Error M.S. having only I df The 
s.e. of the difference between the treatment mean with the mis.ing value 
and any other treatment mean i~ 

IS2{~ + __ I } 
\J a la-l)(a~2) 

Two or more missing data require more complicated methods. But 
for a few missing values an iterative scheme may be used for estimation. 

1'0 illustrate the iteration, the data in table 11.9.3 seem adequate. 
Start by entering a reasonable value for one of the missing data, say 
X,2 = 10.5. This could be X .. = 9.3. but both the block and treatment 
means are above average, so 10.5 seems better From the formula. X 31 is 

_ (3)(27) + (3)(21) - 75.5 = 17 1 
X" - (3 _ 1)(3 - 1) . 

Substituting X 31 = 17.1 in the table, try for a better estimate of X 22 by 
using the formula for X 22 missing: 

X" = (3)(23) + (3)(20) - 82.1 = 11.7 
4 

With this revised estimate of X 22 , re-estimate X'I: 

X, = (3)(2'2._+ (3)(21) - 76.7 = 168 
, 4 . 

.... 
Finally, with this new value of X" in the table, calculate X22 = 11.8. One 
stops because with X22 = 11.8 no change occurs when X" is recalculated. 

In the analysis of variance, subtract 2 df from the Total and Error 
sums of squares. The Treatments 5.5. and M.S. are biased upwards. To 
obtain the correct Treatments 5.5., reanalyze the data in table 11.9.3, 
ignoring the treatments and the missing values, as a one-way classification 
with unequal numbers, the blocks being the classes. The new Error 
(Within blocks) 5.5. will be found to be 122.50 with 4 dJ Subtract from 
this the Error 5.5. that you obtained in the randomized blocks analysis of 
the completed data. This is 6.40, with 2 d.! The difference, 122.50 - 6.40 
= 116.10, with 4 - 2 = 2 df, is the correct Treatments 5.5. The F ratio 
is 58.05/3.20 = 18.1, with 2 and 2 df. 

The same method applies to a Latin square with two missing values, 
with repeated use of the formula for inserting a missing value in a Latin 
square. Formulas needed for confidence limits and I-tests involving the 
treatment means are given in (3), For experiI1}ents analyzed by electronic 
computers. a general method of estimating missing values is presented in 
(10) 
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TABLE 11.9.3 
RANlX)MIZEJ) BLOCKS EXPER.IMENT Wll'H Two MISSING VA.LUl::::; 

Blocks 

Treatments 2 3 Sums 
--~--~ ~------

A 6 5 4 15 
B 15 X" 8 23 
C X" 15 12 27 

Sums 21 20 24 65 
--___ --

Il.IO-Non-cooI'ormity to llIOdeJ. In the standard analyses of vari­
ance the model specifies that the effects of the differenl fixed factors (treat­
ments, row, columns. etc.) are additive. and that the errors are normally 
and independently distributed with the same variance. [t is unlikely that 
these ideal conditions are ever exactly realized in practice. Much research 
has been done 10 investigate the consequences of various types of failure 
in the assumptions: for an excellent review. see (II). Minor failures do 
not greatly disturb the conclusions drawn from the standard analySis. In 
subsequent sections some advice is given on the detection and handling of 
more serious failures. For thi~ discussion the types offaiJure are classified 
into gross errors, Jack of independence of errors, unequal error variances 
due to the nature of the treatments, non-normality of errors, and non­
additivity. 

1l.II---(;ross errors: rejection of extreme observations. A measure­
ment may be read, recorded, or transcribed wrongly, or a mistake rna} be 
made in the way in which the treatment was applied for this measurement. 
A major error greatly distorts the mean of the treatment involved, and, 
by inflating the error variance. affects conclusions about the other treat­
ments as well. The principal safeguards are vigilance in carrying out the 
operating instructions for the experiment all..9 in the measuring and re­
cording process, and eye inspection of the data. 

If a figure in Ihe dala to be analyzed looks suspicious, an inquiry 
about this observation sometimes shows that there was a gross error and 
may also reveal the correct value for this observation. (One should check 
that the same source of error has not affected other observations also.) 
With two-way and Latin square classifications, it is harder to spot an 
unusual observation in the original data, because the expected value of 
any observation depends on the row, column, and treatment effects. In­
stead, look at the residuals of the observations from their expected values. 
In the two-way classification, the residual Dij is 

Dij = Xij - Xj. - X'j + X .. 
while in the Latin square, 

Du, = X", - Xi" - x. j . - X .. , + 2X ... 
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If no explanation of an extreme residual that enables it to be corrected 
is discovered, we may consider rejecting it and analyzing the data by the 
method in section 11.9 for results with missing observations. The discus­
sion of rules for the rejection of observations began well over a century 
ago in astronomy and geodesy. Most rules have been based on something 
like a test of significance. The investigator computes the probability 
that a residual as large as the suspect would occur by chance if there is no 
gross error (taking account of the fact that the largest residual was 
selected). If this probability is sufficiently small, the suspect is rejected. 

Anscombe (12) points out that it may be wiser to think of a rejection 
rule as analogous to an insurance policy on a house or an automobile. 
We pay a premium to protect us against the possibility of damage. In 
considering whether a proposed policy is attractive, we take into account 
the size of the premium, our guesses as to the probability that damage will 
occur, and our estimate of the amount of likely damage if there is a mishap. 

A premium is involved in a rejection rule because any rule occa­
sionally rejects an observation that is not a gross error. When this 
happens. the mean of the affected treatment is less accurately estimated 
than if we had not applied the rule. If these erroneous rejections cause 
the variances of the estimated treatment means to be increased by P%, 
on the average over repeated applications, the rule is said to have a pre­
mium of P%. 

Anscombe and Tukey (13) present a rule that rejects an observation 
whose residual has the value d if Idl > es, where e is a constant to be 
determined and s is the S.D. of the experimental errors (square root ofthe 
Error or Residuals mean square). For any small value of P, say 2t~/, 
or 5%, an approximate method of computing e is given (13). This 
method applies to the one-way, two-way, and Latin square classifications, 
as well as to other standard classifications with replication. The formula 
for e involves lhe number of Error dj., say f, and the lotal number of 
residuals, say N. In our notation the values of 1 and N are as follows: 

Classification 
One-way (a classes, n per class). 
TI1Io-way (0 rows, b columns). 
Latin square (a x a) 
The formula has three steps: 

J=a(n-I): N=on 
I=(a-I)(b-I): N=ab 
J=(a-l)(a-2): N=a' 

I. Find the one-tailed normal deviate z corresponding to the proba­
bility IP/IOON, where P is the premium expressed in per cents. 

2. Calculate K = 1.40 + 0.85z 

S K' 2}JI 3. e = K/ - 41 N 

In order to apply this rule, first analyze the data and obtain the values 
of d and s. To illustrate, consider the randomized blocks wheat data 
(table 11.9.1, p. 318) with a = 4, b = 5, that was used as an example of a 
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missing observation. This observation, for Strain D in Block I, was 
actually pre.ent and had a value 29.3. In the analysis of the complete 
data, this observation gave the largest residual, 2.3, of all N = 20 observa­
tions. For the complete data, s = 1.48 with/= 12. In a rejection rule 
with a 2t~t. premium, would this observation be rejected 0 

Since N = 20. we have /IN = 0.6, P = 2.5, so that /P/IOON = (0.6) 
(0.025) = 0.015. From the normal table, this gives Z = 2.170. Thus, 

K = 1.40 + (0.85)(2.170) = 3.24 

{ 
8.50} C = 3.24 I - 48 ,)0.6 = 2.07 

Since Cs = (2.07)(1.48) = 3.06, a residual of 2.3 does not call for rejection. 

EXAMPLE 11.11.1--·10 the 5 )( 5 Latin sQuare on p. 3D. the largC'st residual from the 
fitted model is + 55.0 for treatment E in row 5 and column 5. Would Ihis obst:rvation be 
rejected in a policy with a 5°0 premium '? ADS. No. Cs = 58.5. 

11.12-Lack of independence in the errors. If care is not taken, an 
experiment may be cond"uered in a way that ,induces positive correlations 
between the errors for different replicates of the same treatment. In an 
industrial experiment, all the replications of a given treatment might be 
processed at the same time by the same technicians. in order to cut down 
the chance of mistakes or to save money. Any differences that exist be­
tween the batches of raw materials used with different treatments or in 
the working methods of the technicians may create positive correlations 
within treatments, 

In the simplest case these situations are represented mathematically 
by supposing that there is an intraclass correlation Pr between any pair of 
errors within ihe same treatment. In the absence of real treatment effects, 
Ihe mean square between treatments is an unbiased estimate of 
0" f I + (n - I )P/}' where n is Ihe number of replications, while the error 
mean square is an unbiased estimate of 0"(1 - PI), as pointed out in sec­
tion 10.20. The F-ratio is an estimate of P + (n -'1)P/}/(i - PI)' With 
PI positive, this ratio can be much larger than I ; for instance. with PI = 0.2 
and n = 6, the ratio is 2.5. Thus, positive correlations among the errors 
within a treatment vitiate the F-test, giving too many significant results. 
The disturbance affects I-tests also, and may be major. 

In more complex situations the consequences of correlations among 
the errors have not been adequately studied, but there is reason to believe 
that they can be serious. Such correlations often go unnoticed. because 
their presence is difficult to detect by inspection of the data. The most 
effective precaution is the skillful use of randomization (section 4.12). If 
it is suspected that observations made within the same time period (e.g., 
morning or day) will be positively correlated, the order of processing oflhe 
treatments within, a replication should be randomized. A systematic pat­
tern of errors, if detected, can sometimes be handled by constructing an 

11 
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appropriate model fort he statistical analysis. Forexamples. see (14). (15). 
and (16). 

1I.13-Unequal error variances due to treatments. Sometimes one or 
more treatments have variances differing from the rest, although there is 
no reason to suspect non-normality of errors. If the treatments consist 
of different amounts of lime applied to acid soil. the smallest dressings 
might give uniformly low yields with a small variance. while the highest 
dressings. being large enough to overcome the acidity. give good yields 
with a moderate variance. Intermediate dressings might give good yields 
on some plots and poor yields on others. and thus show the highest vari­
ance. Another example OCCllrs in experiments in which the treatments 
represent different measuring instruments. some highly precise and some 
cruder and less expensive. The average readings given by different instru­
ments are being compared in order to check whether the inexpensive 
instruments are biased. Here we would obviously expect the variance to 
differ_ from instrument to instrument. 

,When the error variance is heterogeneous in this way. the F-test 
tends to give too many significant results. This disturbance is usually 
only moderate if every treatment has the same number of replications (II). 
Comparison of pairs or sub-groups of treatment means may, however. be 
seriously affected~ since the usual estimate of error variance, which pools 
the variance over all treatments, will give standard errors that are.too large 
for some comparisons and t~o small for others. 

For any comparison k;.jX j among the class means in a one-way classi­
fication.an unbiased estimate of its error varianj::e is V = LA;l Sj2 Inj. where 
nj is the number of replications in Xi and s/ is the mean square within the 
ith class. This result holds whether the (1.' are constant or not. If f; 
denotes ;./ s;' In;. an approximate number of dj are assigned to V by the 
rule (25): 

df. = (1:,,;)' Il: t r,' !(n; - I)} 

When the n;are all equal. this becomes dl = (n - IHLr;)'ILr;'. For a 
test of significance we take t = Li):;/ J V. with this number of df _ 

To obtain an unbiased estimate of the error variance of L = l:i.jX j , 

in a two-way classification. calculate thc_ comparison L j = l:;.jXij sepa­
rately in every block. (j = 1.2 .... h). The average of the h values L

J 
is. 

of course. L. "The siandard error of L is .j: l:(L j - L)' !h(h - I I}. with 
(b - I) d.f,. which will be scanty if b is small. 

If tlie trouble is caused by a few treatments whose means are sub­
stantially different from the rest, a satisfactory remedy is to omit these 
treatments from the main analysis, since conclusions about them are clear 
on inspection. With a one-way or two-way classification. the remaining 
treatments are analyzed in the usual way. The analysis ofa Latin square 
with one omitted treatment is described in (17). and with two omitted 
treatments in (18). 
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1I.14-Non-normality. Variance-stabilizing transformations. In the 
standard classifications. skewness in the distribution of errors tends to 
produce too many significant results in F- and t-tests. In addition. there 
is a loss of efficiency in the analysis. because when errors are non·normal 
the mean of the observed values for a treatment is. in general. not the most 
accurate estimate of the corresponding population mean for that treat­
ment. If the mathematical form of the frequency distribution of the errors 
were known. a more efficient analysis could be developed. This approach 
is seldom attempted in practice. probably because the exact distribution of 
non-normal errors is rarely known and the more sophisticated analysis 
would be complicated. 

With data in which the effects of the fixed factors are modest. there is 
some evidence that non-normality does not distort the condusions too 
seriously. However, one feature of non-normal distributions is that the 
variance is often related to the mean. In the Poisson distribution. the 
variance equals the mean. For a binomial proportion with mean p. the 
variance is p( I -.p)!». Thus. if treatment or replication effects are large. 
we expect unequal variances, with consequences similar to tbose discussed 
in the preceding section. 

If ux' is a known function of the mean I' of X. say ux' = <1>(1'). a 
transformation of the data that makes the variance almost independent 
of the mean is obtained by an argument based on calculus. Let the trans­
formation be Y = fIX). and let .1'( X) denote the derivative of fiX) with' 
respect to X. By a one-term Taylor expansion 

Y ,;, /(1') + f'(1')(X - 1') 

To this order of approximation. the mean value E(y) of Y is f(I') •. 
since E(X - 1') = O. With the same approximation. the variance of Yls' 

E{ Y - f(I')}' ,;, {j'(I');' E(X - 1')' = {j'(I'»)lqx ' = {f'(I')J't/>(I') 

Hence. to make the variance of Y independent of 1'. we choose/(I') 
so that the term on the extreme right above is a constant. This makes 
.1\1') the indefinite integral of lill ,,;q,(P). Forthe Poisson distribution. tbis 
gives f(11) = vI'. i.e., r = .JX. For the binomial. the method gives 
r = arcsin vP. that is. )' is th< angle whose sine is ";p. When f(X) has 
been chosen in this way. the value of the con~tant variance on the trans­
formed scale is obtained by finding {/'(P)}'q,(Il). For the Poisson. with 
cP(lc) = I'. lip) = vI'. we have [(1') = 1/2";)1. so that U'()1),'q,(Il) =, {. 
The vanance on the transformed scale is l. 

J LIS-Square root transformation for counts. Counts of rare events. 
such as numbers of defects or of accidents. tend to be distributed ap­
proximately in Poisson fashion. A transformation to V X is often e!Tee­
tive: the \'ariance,on the square root scale will be close to 0.25. If som~ 
counts are small. /)(-+ I or .jX + IX +1. (19). >labilizes the variance 
more effectively. 
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TABLE 11.15.1 
NUMBER Qf POppy PLANTS IN 0" TS 

(Plants per 3 3/4 square feet) 

Treatment 

Block A B C D E 

1 438 538 77 17 18 
2 442 422 61 11 26 
1 119 177 157 87 77 
4 380 liS S2 16 20 

Mea. 19S 413 87 18 lS 
Ranae 121 223 lOS 71 S9 

The square root transformation can also be used with counts in 
which it appears that ·the variance of X is proporlional to the mean of X, 
that is, "x' = kX. For a Poisson distribution of errors, k = I, but we 
often lind k larger than I, indicating that the distribution of errors has a 
variance greater than that of the Poisson. 

An example is the record of popPy plants in oats (20) shown in table 
11.15.1, where .the numbers are large. The differing ranges lead to a 
suspicion of heterogeneous variance. If the error mean square were 
calculated, it would be too large for testing differences among C, D, E 
and too small for A and B; 

In table 11.15.2 the square roots of the numbers are recorded and 
analyzed. The ranges in the several treatments are now similar. That 
there are differences ampng treatments is obvious; it is unnecessary to 
compute F. The 5% LSD value is 3.09, suggesting that D and E are 
superior to C, while, of course, the C, D, E group is much superior to A 
and B in reducing the numbers of undesired poppies. 

TABLE 11.15.2 
SQUARE ROOTS Of THE Poppy NUMBERS IN TABLE 11.15.1 

Block A B c- D E 

I 20.9 23.2 8.8 4.1 4.2 
2 21.0 20.5 7.8 5.6 5.1 
J 17.9 19.4 12.5 9.3 8.8 
4 19.5 17.7 7.2 4.0 4.5 

-.------

"""'" 
19.8 20.2 9.1 5.8 5.6 

Ranle '3.1 5.5 5.3 5.3· 4.6 

Source of Variation Degrees of Freedom Sum of Squares Mean Square 

Block, 1 22.65 
Treatments '4 865.44 216.36 
Error 12 48.69 4.06 
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The means in the square root scale are reconverted to the original 
scale by squaring. This gives (19.8)2 = 392 plants for A; (20.2)2 = 408 
plants for B; and so on. These values are slightly lower than the original 
means, 395 for A, 413 for B,ete., because the meanofa set of square roots 
is less than the square root of the original mean. As a rough correction 
for this discrepancy, add ihe Error mean square in the square root 
analysis to each reconverted mean. In this example we add 4.06, rounded 
to 4, giving 396 for A, and so on. 

A transformation like the square root affects both the shape of the 
frequency distribution of the errors and the meaning of additivity. If 
treatment and block effects are additive in the original scale, they will not 
be additive in the square root scale, and vice versa. However, unless 
treatment and block effects are both large, effects that are additive in one 
scale will be approximately so in the other, since the square root trans­
formation is a mild one. 

EXAMPl. f. II. I 5,1-The numbers of wireworm. counted in tae plots of B Latin square 
(21) following ~iJ fumigations in the pre\tioUi year were: 

Columns 
R .... 2 3 4 S 

I P 3 0 2 N S K I M • 2 M 6 K 0 0 6 N 4 P 4 
3 0 4 M 9 K I P 6 N S 
4 N17 P 8 M 8 0 9 K 0 
S K 4 N 4 P 2 M 4 0 8 

Since these arc such sman numbers, transfonn to .j(X + J). The fint number. 3. becomes 
q(3 + I) = 2, etc. 

Analyze the variance. Am. MeaD "luare for Tteatment1, t .4451; for ErrOl, 0.3259. 

EXAMPLE II.IS.2-CaJcuJat< tile Studentized Ran,e D - 1.06 and show thai K .... 
significantly fewer wireworms than M. N. and O. 

EXAMPLE 11.l5.3-.fstimate the average numbers of wireworms per plot for me 
several treatments. Ans. (with no bias correction) X. 0.99: M, 6.08; N. 6.40; O. 5.'.5: 
P.4.38. To make the bias correction, add 0.33. giving J( ... 1.32: M'= 6.4l. etc. 

EXAMPLE 11.1 S.4-lfthe error varhlOceof Xin the origillaJ scale is k times the mean 
of X. and if effects ate additive in the square root scale, it can be sfiown that the true error 
variance in the square root scale is approximately t, 4. Thus, the value of k can be estimated 
from the analysis in the square root scale. If k is close to I. this suggestS that the distribution 
of errors in the original scale may be close to the'Poisson distribution. In example 11.15.1. 
k is about 4(0.3259)::::: 1.3. suggesting that most of the variance in the original scale is of the 
Poisson type. With the poppy plants (table 11.15.2). k is about 16. indicating a variance 
much greater than the Poisson. 

1l.I6-Arcsin transformation for proportions. This transformation. 
also called the angular transformation, was developed for binomial pro­
portions. If ai; successes out of n are obtained in the jth replicate of the 
ilh treatment. Ihe proportion h = ai/" has variance Pij(l - pij)/n. By 
means of table A 16. due to C. I. Bliss, we replace Pij by the angle whOse 
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sine is ,j Pij' In the angular scale. proportions near 0 or 1 are spread out 
so as to increase their variance. If all the error variance is hinomial, the 
error variance in the angular scale is about 821jn. The transforrnation 
does not remove inequalities in variance arising from differing values of 
n. If the n's vary widely, a weighted analysis in the angular scale is 
advisable. 

With n < SO, a zero proportion should be counted as Ij4n before 
transforming to angles, and a 100% proportion as (n - Ij4)jn. This 
empirical device. suggested by Bartlett (22), improves the equality of 
variance in the angles. A more accurate transformation for small n has 
been tabulated by Mosteller and Youtz (19). 

Angles may also be used with proportions that are subject to other 
sources of variation in addition to the binomial, if it is thought that the 
variance of Pij is some mUltiple of P;j(l - Po)' Since, however, this 
product varies little for Pij lying between 30% and 70%, the angular trans­
forrnation is scarcely needed if nearly all the observed (iii lie in this range. 
I n fact, this transformation is unlikely to produce a noticeable change in 
the conclusions unless the (iii range from near zero to 30% and beyond 
(or from below 70% to 100%). 

Table 11.16.1. taken from a larger randomized blocks experiment 
(23), shows the percentages of unsalable ears of corn, the treatments being 
a control. A. and three mechanical methods of protecting against damage 

TABLE 11.16.1 
PERCE"T AGE Of UNSALABLE EA.P.S. Of CoI.N 

Block I 
Treatments 1 1 3 4 5 6 

A 42.4 "' 34.3 24.1 39.5 55.S 49.1 
B 33.3 33.3 5.0 26.3 30.2 28.6 
C 8.5 21.9 6.2 16.0 13.5 15.4 
D 16.6 19.3 16.6 2.1 11.1 11.1 

Angle = Arcsin ,/Proportion _ 

A 40.6 35.8 29.4 38.9 48.2 44.5 
B 35.2 35.2 12.9 30.9 33.3 32.3 
C 17.0 27.9 14.4 :!3.6 21.6 23.1 
D 24.0 26.1 24.0 8.3 19.5 19.5 i _ 

AnalySIS of Variance In Angles 

Degrees ~f Freedom Sum of Squares 

Blocks 
Treatments 
Error 

Total 1 
--___j__ 

5 
3 

15 

359.8 
1.458.5 

546.1 

Mean 
., 
I. 

39.6 40:6 
29.9 24.9 
21.) 13.2 
20.2 11.9 

Mean Square 

486.2 
36.4 
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by corn earworm larvae. The value of II, about 36, was not constant. but 
its variations were fairly small and are ignored. Note that the per cents 
range from 2.1 ~iO to 55.5°;;). 

In the analysis of variance of the angles (table 11.16.1). the Error 
mean square was 36.4. Since 821/11 = 821/36 = 21.8. some variation in 
excess of the binomial may be present. The F-value for treatments is 
large. The 5"" LSD for comparing two treatments is 7.4. B. C. and D 
were all superior 10 the control A, while C and D were superior to B. The 
angle means are retranslated to per cents at the right of the table. 

11.17-The logarithmic transformation. Logarithms are u,ed to stabi­
lize the variance if the standard deviation in the original scale varies di­
rectly as the mean; in other words, jfthecoefficient of variation is constant. 
There are mathematical reasons why this type of relation between standard 
deviation and mean is likely to be found when the effects are pruportiolUd 
rather than llddilire: for example. when treatment 2 gives results con­
sistently 23~." higher than treatment I rather than results higher by. say. 
18 units. In this situation the log transformation may bring about both 
additivity of effects and equality of variance. If some 0 values of X occur. 
log (X + I) is often used. 

TABLE ILl7.1 
ESTIMATED NU~1BI:RS Of- FOUR KI~us or PlANKTOI'O (I. ... IV) CAt.:GIIT 1:--; SIX IIAuI.s . 

WITH EACH 01-' Two Nns 

Estimated Numbers Logarilhms 

Haul I II III IV I II III IV 
-

t 895 1.520 43.)00 IIJMJO 2.95 3.IS 4.64 4.04 
2 540 1.610 3~)IO(l H.600 2.73 3.21 4.5~ 3.93 
3 1,020 1.900 :2~,800 g,260 ~.Ol 3.2)\ 4.46 3.92 
4 470 1.350 34.600 9.830 ~.67 1.1.1 4.54 J.9<J 
5 428 9~O 27,800 7,6()(1 ~.h3 2.99 H4 3.88 
6 620 1.710 l2.800 9.650 2.79 3.2l 4.52 ~.q& 

7 760 1.930 2H.IOO 8.900 2.XIl 3.29 4.45 3.95 
8 537 1.960 18.900 6.060 2,73 3.29 4 . .2~ 3.78 
9 845 U~*(J .11.400 10200 2.93 3.26 4.50 4.01 

10 1,050 2,410 39.500 IS.SOO J.U2 3..1R 4.60 4.19 
II 387 1.520 :29,000 \}.2S0 ~.59 1.18 4.4(1 197 
12 497 1.685 22.300 7,900 2.70 3.2.1 4.35 3.90 

Mean 671 1.701 JO.775 9.396 2.802 3.221 4.4l\() 3.%2 
Range 663 1.480 24,4(}0 9.440 0.43 0.39 0.36 0.41 

Anatysts ot Variance 01 Loganlhms 

Source of Variation Degrees of Freedom Sum of Square) Mean Square 

Kind of plankton 3 20.2070 6.7357 
Haul II 0.3387 0.0)08 
DiscrepancC' 33 0.2300 0.0070 
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The plankton catches (24) of table ILl7.1 yielded nicely to the log 
transformation. The original ranges and means for the four kinds of 
plankton were nearly proportional, the ratios of range to mean being 
0.99,0.87,0.79, and 1.00. After transformation the ranges were almost 
equal and uncorrelated with the means. 

Transforn ing back, the estimated mean numbers caught for the four 
kinds of plankton are antilog 2.802 = 634; 1,663; 30,200; and 9,162. 
These are geometric means. 

The means of the logs will be found to differ significantly for all 
fOllr kinds of plankton. The standard deviation of the logarithms is 
../0.0070 = 0.084, and the antilogarithm of this number is 1.21. Quot­
ing Winsor and Clark (page 5), "Now a deviation of 0.084 in the 
logarithms of the catch means that the catch has been multiplied (or 
divided) by 1.21. Hence we may say that one standard deviation in the 
logarithm corresponds to a percentage standard deviation, or coefficient 
Of variation, of 21% in the catch." 

EXAMPLE JJ.17.I-Thc: following data were abstracted rrom an experiment (27) 
which was more: complicated in design. Each entry ill the geom'etric mean of insect catches 
by a trap in three'suc:cessive nights, one night at each of three locatiom. Three types of 
trap are compared over five ,three-night periods. 'fhto itllC'lCU are macrolepidopt~ at 
Rotbamstcd Experimental Station. 

3-Nighl Periods. Au.,..., I~ 

Trap l6-t8 19-21 22-24 25-27 211-30 

I 19.1 23.4 29.S 23.4 16.6 
2 SO. I 166.1 223.9 58.9 64.6 
3 123.0 407.4 398.1 229.1 251.2 

WiUiams found the log trlnsformation effective in analyzinc bighly variable data like 
these. Transform to logarithms and analyze their variallCe. AnI. MeaD square for traps 
= i.44SS; for, error, 0.0172. 

Show that all differences between trap means Bre significant aDd that the geometric 
means for traps are 21.9,93,3, and 257,0 jnsects. 

1l.18-Non-additivity. Suppose that in a two-way classification, with 
2 rows and 2 columns, the effects of rows and columns are proportional 
or multiplicative instead of additive. In each row, column B exceeds 
column A by a fixed percentage, while in each column, row 2 exceeds row 
I by a fixed percentage. Consider column percentages of 20"1. and 100% 
and row percentages of 10% and 50"/.. These together provide four com­
binations. taking the observation in column A, row 1. as 1.0, the other 
observations are shown in table 11. J 8.1 for the four cases. 

Thus, in case I, the value of 1.32 for B in row 2 is l.l x 1.2. Since 
no experimental error has been added, the error mean square in a correct 
analysis should be zerO. The correct procedure is to transform the data 
to logs before analysis. In logs the effects become additive, and the error 
mean square is ·zero. From the analysis in logs, we learn that B exceeds 
A by exactly 20"1. in callClll 1 and 2, and by exactly 100% in cases 3 and 4. 
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TABLE 11.18.1 
HYf'OTHETICAl. D.HA FOR FOlTR CASES WITH MULTIPLICATIVE EFfECl'S 

Case I Case 2 Case 3 Case 4 
C 20'\, C 2~{, C IOO~/o C l000~ 
R lOo~ R S~,~ R 1O~~ R 50'1. -_ j--. 

Row A B A B A B A B 
-

I 1.0 1.2 1.0 1.2 1.0 2.0 1.0 2.0 
2 I.J 1.32 1.5 1.8 1.1 2.2 1.5 3.0 

Means 1.05 1.26 1.25 1.50 1.05 2.10 1.25 2.50 , 0.01 0.05 0.05 0.25 
'IX O.9,?~ 3.6% 3.2% 13.3,?~ 

If the usual analysis of variance is carried out in the original scale. the 
standard ecror, per observation (with I df.) is shown under each case. 
With 2 replications. 5 is also the 5.e. of the difference II _ A. Conse­
quently. in case I we would conclude from this analysis that H - A is o.il 
with a standard error of ±0.01. In case 4 we conclude that S - A 
= 1.25 ± 0.25. The standard errors. ±0.01 and ±0.25. are entirely a 
result of the fact that we used the wrong model for analysis. In a real 
situation where experimental errors are also present. this variance 5' due 
to non-additivity is added to the ordinary experimental error variance (1'. 

To generalize. the analysis in the original scale has two defects. It 
fails to discover the simple proportional nature of the relationship be­
tween row and column effects. It also suffers a loss of precision. since the 
error variance is inflated by the component due to non-additivity. If 
row and column effects are both small. these deficiencies are usually not 
serious. In case I. for example, the standard error s due to non-additivity 
only is 0.9,%, of the mean. If the ordinary standard error" were 5~~ ofthe 
mean (a low value for most data). the non-additivity would increase this 
only to J25.81 or 5.1%. The loss of precision from non-additivity is 
greater in cases 2 and 3 and jurnps markedly in case 4 in which both row 
and col~mn effects are large. 

11.19-Tukey's test ofadditivity. This is useful in a variety of ways: 
(il to help decide if a transformation is necessary: (ii) to suggest a suitable 
transformation: (iii) to learn if a transformation has been successful in 
producing additivity (28. 29). 

The lest is related to transformations of the form Y = x". in which 
X is the original scale. and we are seeking a power p of X such that effects 
are additive in the scale of Y ~ XP. Thus. p = 1/2 represents the square 
foot transformation and p = -- J a }'£'l'iprocal transformation. analyzing 
IIX instead of X. The value p = 0 is interpreted as a log transformation. 
I,,:cause the variable XP behaves like log X when p is small. 

The rationale of the test can be indicated by means of calculus. For 



332 Chaple. II: Two-Way CI_ilicatio .. 

the two-way classification. if effects are exactly additive in the scale of Y. 
we have, 

Y,j = Y.. + Cr.. - Y .. J + (Y.) - Y..J 
= f..[1 + {(Y;. - Y.) + (y. j - Y..lI/Y..] 

We suppose that row and column effects are small relative to the 
mean. This implies that ~i = (y,. - f..)if. and fJ j = (y. j - Y.lIY. are 
both small. 

Write Xij = Y,/i P and expand in the usual Taylor's series. This gives 

Xij = 1':.IIP[1 +~, + pj]I!P 

-Y lip [I 1 (l - pi 1 2 2 ] =.. I + P (~i + fJ,) + p -p- :2 (.xi + 2~'Pj + Pj ) + ... 

Now, in the X scale the terms in ~"~,' represent row effects and the terms 
in Pj' p/ represent column effects that are added together in the above 
expression. These terms are therefore still additive in the X scale. The 
first non-additive term is the one in a,p j • Written in full, this term is 

y.uPO - p)(y,. - Y.Hr. j - f.·I/p'Y.' (11.19.1) 

For our purpose we need to write this expression in terms of X rather 
than Y. By new single-term Taylor expansions we have. since Y = xp 

Y,.- Y.%pKFI(X,.-X .. ): Yj - Y.=pK._P'I(X.!-X .. I 

Substitution into (l1.l9.1) gives for the first non-additive term in Xii, 

(I - plY' PIX,. - X,,)(X' j - X .. )X .. 'p-"y..' 
Using Y. "" X .. p. this term may be expressed approximately as 

(I - p) _ -x::- (X,. - X .. HX'j - X .. \ " 1.19.21 

Since this term represents a non-additive effect of rows and columns. it 
will appear in the residual or Xij when an additive model is titted in the .\' 
scale. The conclusions from this rough argument are as follows: 

I. (I' this type of non-additivity is present in X. and Xi) is the fitted 
value given by the additive model. the residual X'j - Xi) has a linear re-
gression on the variate (Xi' - X .. )(X. j - X .. ). _ 

2. The regression coefficient B is an estimate of (I - pi/X ... Thus. 
the power p to which X must be raised to produce additivity is estimated 
by (I - BX .. ). Commenting on this result, Anscombe and Tukey (13) 
state (their k is our B(2): .. It is important to emphasize that the available 
data rarely define the 'correct' value of p with any precision. Repeating 
the analysis and calculation of k for each of a number of values of p may 
show the range of values of p clearly compatible with the observations, but 
experience and subject-matter insight are important in choosing a p for 
final analysis." 
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3. Tukey's test is a test of the null hypothesis that the population 
value of B is zero. A convenient way of computing B and making the 
test is illustrated by the data in table 11.19.1. The data are average insect 
catches in three traps over five periods. The same data were presented 
in example 11.l7.1 as an exercise on the log transformation. We now 
consider the additivity of trap and period effects in the original scale. The 
steps are as follows (see table 11.19.1 for calculations); 

TABLE 11.19.1 
MACROLEPIOOP'fERA C.UCHES BY THREE TRAPS 1'" FIVE PERIODS 

(Calculations for test of additivity) 

Trap Sum Mean 
Period 2 3 Xj' ~j' d, Wj = l:.X1r'i 

--------.. 
I 19.1 SO.1 123.0 192.2 64.1 -74.9 14.025 
2 23.4 166.1 407.4 596.9 199.0 +60.0 5].096 
3 29.5 223.9 398.1 651.5 217.2 +78.2 47.543 
4 23.4 58.9 229.1 311.4 103.8 -35.2 28.444 
5 16.6 64.6 251.2 332.4 1I0.S -28.1 32.243. 

Sum X'j 112.0 563.6 1408.8 2084.4 III'; = 173.351 
Mean X'I 22.4 112.7 281.8 139.0 
d, -116.6 -26.2 + 142.8 0.0 

(i) Find d; = XI_ -X .. and d) =X' j -X .. , both adding exactly to zero. 
(ii) 11'1 = (19.1)( - 116.6) + (50.1)( - 26.2) + (123.0)( + 14~.~) = 14.0~5 

,r, ~ (16.6)( -116.6) + (64.6)( -26.2) + (251.2)( + 142.8) ~ 31.243 
Check: 173.351 ~ (112.0)( -116.6) + (563.6)( -26.2) + (1408.8)( + 142.8). 

IV ='I:.w,ui =(l4.Q25)(-74.9)+ ", +(32.24J)(-2KH=3.8259xJOfl 

(iii) Id/ = (-'74.9,!+ ... +(_28.1)2 =17.354 
r.d/ = (-116.6)1 + ... + (+ 142.8)2 ~ 34.674 
D ~ (td.' )(td/) ~ (l7.JS4)(J4.674) ~ 601.7 x 10· 

. . .. .\'l (3.8259)20012) 
(IV) S.S. (or nOfl-addf[IV'[) = 75 = (601.7)(101i) 14.317 

(i) Calculate d, = X,. - X .. and dj = X. i-X ... rounding if neces­
sary so that both sets add exactly to zero. 

(ii) Compute w, = I:X,jdj and record them in the extreme right 

column; Then find 

N = 2: w,d, = I:I: X'jd,dj , 
N is the numerat,lr of B. 

(iii) Tho denominator D of IJ is (I:d.')(LI/). Thus. B = N·D. 
(iv) The contribution of non-additivity to tht: error sum of squares 

or Xis N'ID, with I elf This is tested by an F-tcst ag.inst the remainder 
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TABLE 11.19.2 
ANAL YSfS OF VARIANCE AND TEST Of ADDITIVITY 

======,===============-
Degrees of Freedom Sum of Squares 

------~r------------
Periods 
Traps 
Error 

4 
2 
8 

52,066 
173,333 
30.607 

Mean Square 

------~r----------------------------------
Non-additivity 
Remainder 

1 
7 

24,327 
6,280 

F- 24,327/897 z 27.1, d,f. - I. 7. P < om 

24,327 
897 

of the Error 5.5., which has {(T - J)(c - I) - I} dJ. The test is made in 
table 11.19.2. 

The hypothesis of additivity is untenable. What type of transforma­
tion is suggested by this test? 

N 3.8259 
B = D = -60 l. 7 = 0.006358 

P = I - BL = I - (0.006358)(139.0).= 1 - 0.88 = 0.12, 

The test suggests a one-tenth power of X. This behaves very much 
like log X. 

H.20-Non-addltivity In a Latin square. If the mathematical analysis 
of the previous section is carried out for a Latin square, the first non-addi­
tive term, corresponding to equation 11.19.2, is, as might be guessed. 

(I - p) 'X 'v - " - ~ - v "'1'-'-:-.-- ,( i" - A ... )(X. j . - " ... ) + (Xi" - X ... )(X .. , - " ... ) 

+ (X'j' - X ... ilK .. , - L.)l 

Conseqllcn!ly, Ihe lesl for addilivilY is carried oul by linding Ihe regression 
of (Xi.i4 - XU.,) on the variate in { ;- above. as illustrated in (28). Note 
that D is the ('ff'Or surn of $quares of the { } variable. 

We shall. instead. illustrate an alternative method of doing the com­
pUlalions. due to Tukey (29). Ihat generalizes to other classifications. 
Table 11.20.1 comes from an experiment on monkeys (30), the raw data 
being the number of responses to auditory or visual stimuli administered 
under tive conditions (A . ... 1:.1. Each pilir of monkeys received one Iype 
of stimulus per week. the order from week 10 week being determined by 
the randomized columns of the Latin square. 

It was discovered that the standard deviation of the number of 
responses was almost directly proportional to the mean, so the counts were 
transformed to logs. Each entry in Ihe table is Ihe mean of the log counts 
for tbe two members of a pair. Has additivily been attained? 



Pair 

1 
gill 

d jjl 

U"' 

2 

3 

4 

5 

X.J• 

X .. \ 
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TABLE 11.20.1 
LoGs OF NUMBERS Of RESPONSES BY PAIRS Of MONKEYS UNDER FIVE STJWUU 

(Test of additivi.ty in a Latin square) 

Wee. 
1 2 3 4 5 X", 

B 1.99 D 2.25 C 2.IS A 2.18 E 2.51 2.222 . 
2.022 2.268 2.220 2.084 2.518 
-- -- -- -- --

-0.032 -0.018 -0.040 0.098· -0.008 
37 3 a 17 92 

D 2.00 B 1.85 A 1.79 E 2.14 C 2.31 2.018 
1.9SG 1.932 1.852 2.152 2.206 
-- -- -- -- ~ 

0.052" -0.082 -0.062 -0.012 0.104 
70 80 132 4 0 

C 2.17 A 2.10 E 2.34 B 2.20 D 2.40 2.242 
2.132 2.082 2.348 2.178 2.472 
-- -- -- -- --
0,038 0.018 -0.006· 0.022 -0.072 

7 18 18 1 66 

E 2.41 C 2.47 B 2.44 D 2.53 A 2.44 2.458 
2.456 2.462 2.366 2.526 2.482 
-- -- -- -- --

-0.046 0.010" 0.074 0.004 -0.042 
58 61 23 97 71 

A 1.85 E 2.32 D 2.21 C 2.05 B 2.25 2.136 
1.862 2.248 2.176 2.162 2.234 
-- -- -- -- --

-0.012 0.072 0.034 -0.112 O.oJS" 
125 1 2 3 a 

2.084 2.198 2.192 2.220 2.382 2.215 
" 

A B C D E 
2.072 2.146 2.236 1.278 2.344 

• Denotes deviations that 'were adjusted in order to make the deviations add to zero 
over r:vcry row, column. and tttatment. 

The steps follow. 
I. Find the row. column. and treatment means. as shown; and the 

fitted values k ij, by the additive model 

gij, = Xi" +X. j • + X .. , - 2X ... 
For E in row 2. column 4. 

Kw = 2mS + 2.220 + 2.344 - 2(2.215) = 2.152 

2. Find the residuals du' = XiI' - g,1' as shown. adjusting if neees-
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sary so that the sums are zero over every row, column, and treatment. 
Values that were adjusted are denoted by an • in table 11.20.1. 

3. Construct the 25 values of a variate ViJl< = e,(X iJII - e,)', where 
e, and e2 are any two convenient constants. We took e2 = X ... = 2.215, 
which is often suitable, and c, = 1000, so that the V's are mostly be­
tween 0 and 100. For Bin row I,column I, 

V 11 , = 1000(2.022 - 2.215)' = 37 

4. Calculate the regression coefficient of the diJl< on the residuals of 
ihe Vi"" The numerator is 

N = -r.dijtVij, = (-0.032)(37) + ... + (0.018)(0) = -20.356 

The denominator D is the error sum of squares of the V ij,. This is found 
by performing the ordinary Latin square analysis of the V ij,. The value 
of D is 22,330. 

5. To perform the test for additivity. find the S.S .• 0.0731. of the 
d i , •• which equals the error S.S. of the X iji . The contribution due to non­
additivity is N'/D = (-20.356)2/22.330 = 0.0186. Finally. compare the 
mean square for Non-additivity with the Remainder mean square. 

Degrees of Freedom Sum of Squares Mean Square F 

Error S.S. 12 0.0731 
Non-additivity I 0.0186 0.01"6 3.76 (P ~ 0.08) 

Remaonder I II 0.0545 0.00495 

, 
The ""Iue of P is 0.08---a little low. though short of the 5% level. 

Since the interpretations are not critical (examples 11.20.4. 11.20.5). Ihe 
presence of slight non-additivity should not atfectthem. 

The above procedure applies also in more complex classifications. 
Note that if we expand the quadratic e,(XiPi - X ... f. the coefficient of 
terms like (Xi" - X ... j(X. j . - X ... ) is 2£',. Hence the regression co­
efficient B of the previous section is B = 2c,N/D. If a power transforma­
tion is needed, the suggested power is as before p = I - OX .... 

EXAMPLE 11.20.1-- The following data afe the number of lesions on eight pairs of 
half leaves inoculated with two strengths of tobacco virus (from table 4.3.J). 
~------ ---~--------

Replications 
Treatments 2 3 4 5 6 7 8 

31 20 18 17 9 8 10 7 
2 18 17 14 II 10 7 5 6 



Test for additivity by the method of section 11.19. Ans.; 

Error 
Non-addhivity 

Remainder 

Degrees of Fr«dom 

7 
1 

6 

Sum of Squares 

65 
38 

27 

337 

Mean Square F 

38 8.4 

4.5 

Fis significant at the 5% level. The non-additivity may be due to anomalous behavior 
of the 31.18 pair. 

EXAMPLE 11.2D.2-Apply .j(X + J) to tbe virus data. While F now becomes non­
significant. the pair (31. 18) stin appears unusual. 

EXAMPLE 11.20.3.-Thedata in example 11.2.1, regarded as a 3 x 3 two-way classifi­
cation, provide another simple exathple of Tukey's ~st. Ans. For non-additivity, F = 5.66. 

EXAMPLE 1 i.20.4--Analyze the variance of the logarithms of the monkey responses. 
You will get, 

Degrees of freedom Sum of Squares Mean Square F 

Monkey Pairs 4 0.5244 0.1311 
Weeks 4 0.2294 -0.0574 
Stimul,i 4 0.2313 0.0578 9.6 

Error 12 0.0725 0.00604 

EXAMPLE J 1.20.S-Test aU differences among the means in table 1 J .20.1. using the 
LSD method. Ans. E:> A, B. C; lJ > A. B; C> A. 

EXAMPLE 11.20.6---Calculate the sum of squares due to the regression of log re· 
sponse on weeks. It IS convenient to code the weeks asX := -2. -1.0,1,2. Then. taking 
the weekly means as Y, Ixy = 0.618 and (l:xy)l~Xl "'" 0.03819. On the per item basis, 
the sum of squares due to regression is 5(0.03819) = 0.19'l0. The line ror Weeks in example 
11.20.4 may now be separated into two pans: 

0.1910 
0.0128 

Comparing the mean squares with enor, it is seen that dtviaticns are not significant, most 
of the sum of squares for Weeks being due to the regression. 
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* CHAPTER TWELVE 

Rctorial expenments 

12.1-Introduction. A common problem in research is investigating 
the effects of each of a number of variables, or faclors as they are called, 
on some response Y. Suppose a company in the food industry proposes 
to market a cake mix from which the housewife can make a cake by adding 
water and then baking. The company must decide on the best kind of 
flour and the correct amounts of fat, sugar, liquid (milk or water), eggs, 
baking powder, and flavoring, as well as on the best oven temperature and 
the proper baking time. These are nine factors, anyone of which may 
affect the palatability and the keeping quality of the cake to a noticeable 
degree. Similarly; a research program designed to learn how to increase 
the yields of the principal cereal crop in a country is likely to try to measure 
the effects on yield of different amounts of nitrogen, phosphorus, and 
potassium whon added as fertilizers to the soil. Problems of this type 
occur frequently in industry: with complex chemical processes there can 
be as many as 10 to 20 factors that may affect the final product. 

In earlier times the advice was sometimes given to study one factor 
at a time, a separate experiment being devoted to each factor. Later, 
Fisher (I) pointed out that important advantages are gained by combin­
ing the study of several factors in the samejac/orial experiment. Factorial 
experimentation is highly efficient, because every observation supplIes 
information about all the factors included in the experiment. Secondly, 
as we will see, factorial experimentation is a workmanlike method of in­
vestigating the relationships between the effects of different factors. 

12.2-The single factor versus the factorial approach. To illustrate 
the difference between the "one factor at a time" approach and the fac­
torial approach, consider an investigator who has two factors, A and B. 
to study. For simplicity, suppose that only two levels of each factor, say 
aI' a1.' and hI' b2 are to be compared. In a cake mix, a!, a2 might be two 
types of flour and ht, b2 two amounts of flavoring. Four replications are 
considered sufficient by the investigator. 

In the single-factor approach, lhe first experiment is ~ comparison 
of a, with a,. The level of B is kept constant in the first exPeriment, but 
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the investigator must decide what this constant level is to be. We shall 
suppose that B is kept at bl : the choice made does not affect our argument. 
The two treatments in the first experiment may be denoted by the symbols 
alb l and a,b/:,' repli'bated ~.our times. The effect of A, that is, the mean 
difference Q2 1 - 0 1 l' is estimated with a variance 20'2/4 = (12/2. 

The second experiment compares b, with b l . If a, performed better 
than a l in the first experiment, the investigator is likely to use a, as the 
constant level of A in the second experiment (again, this choice is not vital 
to the argument). Thus, the second experiment compares u,h I with 
a2b2 in four replications, and estimates the effect of B with variance 0'2/2. 

In the two single-factor experiments, 16 observations have been made, 
and the effects of A and B have each been estimated with variance (J2/2. 

But suppose that someone else, interested in these factors, hears that 
experiments on.them have been done. He asks the investigator: In my 
work, I have to keep A at its lower level, a I' What effect does B have 
when A is at al? Obviously. the investigator cannot answer this question, 
since he measured the effect of B only when A was held at its higher level. 
Another persoo might ask: Is the effect of A the same at the two levels of 
B? Once again, the investigator has no answer, since A was tested at only 
one level of B. 

In the factorial experiment:the investigator compares all treatments 
that can be formed by combining the levels of the different factors. There 
are four such treatment combinations, alb l , alb!, G1hz, azhz. Notice 
that each replication of this experiment supplies two estimates of the 
effect of A. The comparison a,b, - alb, estimates the effect of A when 
B is held constant at its higher level, while the comparison a,b l - alb l 
estimates the effect of A when B is held const'lnt at its lower level. The 
average of the"" two e~t\mate~ i~ <:alled the main .ff<el of A, the adje<:tive 
main being a reminder that this is an average taken over the levels of the 
other factor. In terms of our definition of a comparison (section 10.7) 
the main effect of A may be expressed as 

(12.2.1 ) 

where (a,b,) denotes the yield given by the treatment combination a,b, 
(or the average yield if the experiment has r replications), and so on. By 
Rule 10.7.1 the variance of LA is 

2 , 

~ {(t)' + (W + (!)' + (W) = ~ 
r . r 

If the investigator useS 2 replications (8 observations), the main effect of A 
is estimated with a variance ,,'/2. 

Now consider B. Each replication furnishes two estimates. 
a,b, - a,b" and alb, - alb l , of the effect of B. The main effect of B is 
the comparison 

(12.2.2) 
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With two replications of the factOrial experiment (8 observations), LB, like 
L .. , has variance a2 /2. 

Thus, the factorial experiment requires only 8 observations, as against 
16 by the single-factor approach, to estimate the effects of A and B with 
the same variance (1'/2. With 3 factors, the factorial experiment requires 
only 1/3 as many observations, with 4 factors only 1/4, and so on. These 
striking gains in efficiency occur because every observation, like (a,b,), 
or (a,b,c,), or (a,b,c,d,), is used in the estimate of the effect of every 
factor. In the single-factor approach, on the other hand, an observation 
supplies information only about the effect of one factor. 

What about the relationship between the effects of the factors? The 
factorial -experiment provides a separate estimate of the effects of A at 
each level of B, though these estimates are less precise than the main 
effect of A, their variance being (1'. The question: Is the effect of A the 
same at the two levels of B?, can be examined by means of the com­
parison: 

{(a,b,) - (a,b,)) - {(a,b,) - (a,b,)} (12.2.3) 

This expression measures the difference between the effect of A when 
B is at its higher level and the effect of A when B is at its lower level. If 
the question is: Does the level of A influence the effect of B?, the relevant 
comparison is -

(12.2.4) 

Notice that (12.2.3) and (12.2.4) are identical. The expression is called 
the AB two-factor interaction. In this, the combinations (a,b,) and (a,b,) 
receive a + sign, the combinations (a,b,) and (a,b,) a - sign. 

Because of its efficiency and comprehensiveness, factorial experi­
mem.ati.on l~ e ... tensi"el~ u.sed to. research 9rQ\!.I~ 9afticu.l.arl~ in tn­
dustry. One limitation is that a factorial experiment is usually larger and 
more comrlex than a single-factor experiment. The potentialities of fac­
torial experimentation in clinical medicine have not been fully exploited, 
because it is usually difficult to find enough suitable patients to compare 
more than two or three treatment combinations. ..... ~ 

In analyzing the results of a 2' factorial, the commonest procedure is 
to look first at the two main effects and the two-factor interaction. Ifthe 
interaction seems absent, we need only report the main effects, with some 
assurance that each effect holds at either level of the other variate. A 
more compact notation for describing the treatment combinations is also 
standard. The presence of a letter a or b denotes one level of the factor 
il) question, while the absence of the letter denotes the other level. Thus, 
a,b, becomes ab, and a,h, becomes b. The combination a,b, is denoted 
by the symbol (I). In this notation, table 12.2.1 shows how to compute 
the main effects and the interaction from the treatment totals over r 
replications. 
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rABLE 12.2.1 
CALCULATION OF MAIN EFFECTS AND INTERACTION IN A 21 FACTORIAL 

Multiplier for Divisor Contribution 
Factorial Treatment Total to give to 

Effect (1) a b ab Mean Treatments S.S. 

A -1 1 -1 2r [AI'/4r 
B -1 -1 1 2r [BI'/4r 
A.B 1 -1 -1 2r [A.BI'/4r 

Thus, the main effect of A is: 

[AI/2r = [(ab) - (b) + (a) - (I)1I2r 

The quantities [A I, [BI, [AB] are called factorial effect totals. Use of 
the same divisor, 2r, for the AB interaction mean is a common convention. 

In the ana,lysis of variance, the contribution of the main etIect of A 
to the Treatments S.S. is [A ]'/4r, by Rule 11.6.1. Further, note that the 
three comparisons [AI~ [B] and [AB] in table 12.2.1 are orthogonal. By 
Rule 11.6.4, the three contributions in the right-hand column of table 
12.2.1 add up to the Treatments 5.5. 

EXAMPLE 12.2.1 ~ Yates (2) pointed out that the concept offactorial experimentation 
can be applied to gain accuracy when weighing objects on a balance with two pans. Suppose 
that two objects 'are to be weighed and that in any weighing the balance has an error dis­
tributed about 0 with variance (11 If the,two objects are weighed separately, the balance 
estimates each weight with variance (12. fnstead, both objc;:cts are placed in one pan, giving 
an estimate y\ of the sum of the weights. Tht!n the objects are placed in different pans, ' 
giving an estimate Y1 of the difference between the weights. Show that the quantities 
(YI + Y2)/2 and (Yl - yz)/2 give estimates of the individual weights with variance (12/2. 

EXAMPLE 12.2.2- If four objects are to be weighed. show how to conduct four weigh­
lngs so that the weight of each object is estimated with variance (12/4. Hint: First weigh 
the sum of the objects, then refer to table 12.2.1. 

12.3-Analysis of the 2' factorial experiment. The case where' no 
interaction appears is illustrated by an experiment (3) on the fluorometric 
determination of the riboflavin content of dried collard leaves (table 
12.3.1). The two factors were A, the size of sample (0.25 gm., 1.00 gm.) 
from which the determination was made, and B, the effect of the inclusion 
of a permanganate-peroxide clarification step in the determination. This 
was a randomized blocks 'design replicated on three successive days. 

The usual' analysis of variance into Replications, Treatments, and 
Error 'is computed. Then the factorial effect totals for A, B. and AB are 
calculated from the treatment totals. using the multipliers given in table 
12.3.1. Their squares are divided by 4r, or 12, to give the contributions 
to the Treatments 5.5. The P value corresponding to the F ratio 
13.02/8.18 for Interaction is about 0.25: we shall assume interaction ab­
sent. Consequently, attention can be concentrated on the main effects. 
The Permanganate step produced a large reduction in the estimated ribo­
flavin concentration. The effect of Sample Size was not quite significant. 
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TABLE 12.3.1 
ApPARENT RIBOFLAVIN CoNCENTIlATION (MCG,jGM.) IN CoLLARD LEAVES 

I Without 
I Pennanganate 
0.25gm. 1.00 gm. 

Replication Sample Sample 

1 39.5 38.6 
2 43.1 39.5 
3 45.2 33.0 

Total 127.8 111.1 
(I) a 

Sample Size (A) ! -I 1 
Permanganate (B)' -I -I 
Interaction (AD) -I 

Degrees of 
Source of Variation Freedom 

Replications 2 
Treatments (3) 

Sample size I 
Pennanganate I 
Interaction I 

Error 6 

With 
Permanganate 

0.25 gm. 1.00 gm. 
Sample Sample 

27.2 24.6 
23.2 24.2 
24.8 22.2 

75.2 71.0 
I 

b ab 

-I I 
I I 

-I 

Sum of Squares 

3.76 
(765.53) 

(-20.9)'/12 ~ 36.40 
(-92.7)'/12 ~ 716.11 
(12.5)'/12 13.02 

49.08 

Total 

129.9 
130.0 
125.2 

Factorial 
Effcct 
Total 

-20.9 
-92.7 

12.5 

Mean 
Square 

36.40 
716.11 

13.02 
8.18 

. 
I , 
, 

I 

Factorial 
Effect 

Mean S.E. 

1- 3.5 
-15.4 1.65 

p 

r.08 
<0.01 

0.25 

Instead of subdividing the Treatments S.S. and making F-tests, one 
can proceed directly to compute the factorial effect means. These are 
obtained by diViding the effect totals by 2r, or 6, and are shown in table 
12.3.1 beside the effect totals. The standard error of an effect mean is 
PF = J2.73 = 1.65. The t-tests of the effect means are of course the 
same as the F-tests in the analysis of variance. Use of the effect means 
has the advantage of showing the magnitude and direction of the effects. 

The principal conclusion from this experiment was that "In the 
fluorometric determination of riboflavin of the standard dried collard 
sample, the permanganate-hydrogen peroxide clarification step is essen­
tial. Withouttrus step. the mean value is 39.8 mcg. per gram, while with 
itthe more reasonable mean of24.4 is obtained." These data are discussed 
further in example 12.4.1. . 

EXAMPLE 12.3.1-From table 12.3.1, calculate the means of the four treatment 
combinations. Then calculate the main effects of A and B. and venfy that they are the same 
as the "Effect Means" shown in table 12.3.1. Venfy also that the AB interaction. ifcalcu­
lared by equations (12.2.3) or (12.2.4). is twice the effect mean in table 12.3.1. As alread) 
mentioned. the extra divisor 1 2 in the case of an interaction is a convention. 

EXAMPLE 12.3.2 ··,From a randomized blocks experiment on sugar beets in Iowa the 
numbers of surviving plants per plot were couhted as follows: 
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Blocks 
Treatments 2 3 4 Totals 

None 183 176 291 254 904 
Superphosphate, P 356 300 301 271 1228 
Potash, K 224 258 244 217 943 
P+K 329 283 J08 326 1246 

Totals 1092 1017 1144 1068 4321 

(i) Compute the sums of squares for Blocks, Treatments, and Error. Verify that the 
Treatments S.S. is 24,801, and the mean square for error is 1494. 

(ii) Compute the S.S. for P, K, and the PK interaction. Verify that these add to .the 
Treatments S.S. and that the only significant effect is an increase of about 34% in plant 
number due to P. This result is a surprise, since P does not usually have marked effects on 
the number of sugar-beet plants. 

(iill._ Compute the factorial effect means from the individual treatment means with their 
s.e . .J sl/r, and verify that I-tests of the factorial effect means are identical to the F-tests in 
the analysis of variance. 

EXAMPLE 12.3.3-We have seen how to calculate the factorial effect means (A), (B), 
and (AD) fcom the means (ah), (a), (h), and (1) of the individual treatment combinations. 
The process can be reversed: given the factorial effect means and the mean yield M of the 
experiment, we can recapture the means of the individual treatment combinations. Show 
that the equations are: 

lab) - M + t (fA) + (B) + (AB)) 

tal - M + t {(A) - (B) - (AB)) 

(b) - M + iI-tAl + IB)- (AB)) 

(1)- M + H -(A) - (B) + lAB)) 

12.4-The 2' factorial wben interaction is present. Wben interaction 
is present, tbe results of a 2' experiment require more detailed study. If 
both main effects are large, an interaction that is significant but much 
smaller than the main effects may imply merely that there is a minor 
variation in the effect of A according as B is at its higher or lower level, and 
vice versa. In this event, reporting of the main effects may still be an 
adequate summary. But in most cases we must revert to a report based 
on the 2 x.2 table. 

Table 12.4.1 contains the results (slightly modified) of a 22 experi­
ment in a completely randomized design. The factors were vitamin B'2 
(0,5 mg.) and Antibiotics (0, 40 mg.) fed to swine. A glance at the totals 
for the four treatment combinations suggests that with no antibiotics, 
B12 had little or no effect (3.66 versus 3.57), apparently because intestinal 
flora utilized the B,z, With antibiotics present to control the !'.ora, the 
effect of the vitamin was marked (4.63 versus 3.10). Looking at the table 
the other way, the antibiotics alone decreased gain O. IO versus 3.57), 
perhaps by suppressing intestinal flora that synth~~ize B12 ; but with B12 
added, the antibiotics produced a gain by dec~easing the activities of un­
favorable flora. 
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TABLE 12.4.1 
FACTORIAL EXPERIMENT Willi VITAMIN B 12 ANO ANTIBIOTICS. 

Antibiotics 

B" I 0 

I 
1.30 
1.19 
1.08 

Totals 3.57 
(I) 

B" -I 
Antibiotics -I 
Interaction 1 

Source of Variation 

Treatments 
Error 

0 

AVERAGE DAILY GAIN Of SWINE (PoUNDS) 

40 mg. 

5 mg. 0 5 mg. 

1.26 1.05 1.52 
1.21 1.00 1.56 
1.19 1.05 1.55 

3.66 3.10 4.63 
a b ab 

1 -I 1 
-I 1 1 
-I -I 1 

Degrees of Freedom 

3 
8 

I 
Factorial Factorial 

Effect Effect 
Total Mean s.E. 

1.62 0.270" 
0.50 0.083- ±0.035 
1.44 0.240" 

Sum of Squares Mean Square 

0.4124 
0.0293 0.00366 

--

The summary of the results of this experiment is therefore presented 
in the form of a table of the means of the four treatment combinations, 
as shown below: 

Antibiotics 0 40 mg. 
-
8" 0 5 mg. 0 5 mg. 
-
Means 1.19 1.22 1.03 1.54 

In the analysis of variance, S2 is 0.00366, with 8 d .. The s.e. of the differ­
ence between any two treatment means is (2s /3) = +0.049. You may . . . . ~ 
verIfy that the decrease due to antlblOllcs when B' 2 IS absent. and the 
increases to each additive when the other is present, are all clearly sig· 
nificant. 

If, instead, we begin by calculating the factorial effects, as shown in 
table 12.4.1, we learn from the factorial effect means that there is a sig­
nificant interaction at the I % level (0.240 ± 0.035). This immediately 
directs attention back' to the four individual treatment totals or means. 
in order to study the nature of the interaction and seek an explanation. 
The main effects both happen to be significant. but are of no interest. 

One way of describing the no-interaction situation is to say that the 
effects of the two factors are addilire. To illustrate, suppose that the 
population mean for the (1) combination (neither factor present) IS 11. 
Factor A, when present alone, changes the mean to (~+ ~): Factor B. 
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when present alone, to (p + Pl. If both factors are present, and if their 
effects are additive, the mean will become Il + a + p. 

With this model, the interaction effect is 

(AB) = t [tab) + (I) - (a) - (b») = t [Il + a + P + Il- Il- a - Il- III = 0 

Presence 01' an interaction denotes that the effects are not additive. 
With quantitative factors, this concept leads to two other possible 

explanations of an interaction found in an experiment. Sometimes their 
effects are additive, but on a transformed scale. The simplest example is 
that of multiplicative effects, in which a log transformation of the data 
before analysis (section 11.17) removeS the interaction. 

Secondly, if Xl> X, represent the amounts of two factors in a treat­
ment combination, it is natural to summarize the results by means of a 
response function or response surface, which predicts how the response Y 
varies as X, and X, are changed. If the effects are additive, the response 
function has the simple form 

Y = Po + p,X, + p,X, 

A significant interaction is a warning that this model is not an adequate 
fit. The interaction effect may be shown to represent a term of the form 
P12X,X, in the response function. The presence ofa term in X,X, in the 
response function suggests that. terms in X, ' and X, Z may also be needed 
to represent the function adequately. In other words, the investigator 
may require a quadratic response function. Since at least three levels of 
each variable are required to fit a quadratic surface, he may have to plan 
a larger factorial experiment. 

EXAMPLE 12.4.I---{)ur use of the riboflavin data in section 12.3 as an example with 
no interaction might be criticized on two grounds: (I) a P value of 0.25 in the test for inter· 
action in a small ex.periment suggests (he.possibiiity of an interaction thaclilargere~metIc 
might reveal, (2) perhaps the effects are multiplicative in these data. If you analyze the logs of 
the data in table 12.3:1. you will find that the F~value for interaction is now only 0.7. Thus 
the assumption of zero interaction seems better grounded on a log scaJe than on the original 
scale. 

12.5-The general two-factor experiment. Leaving the special case of 
two levels per factor, we now consider the general arrangement with 
a levels of the first factor and b levels of the second. As before, the layout 
oflhe experiment may be completely randomized, randomized blocks, or 
any other standard plan. 

With a levels, the main effects of A in the analysis of variance now 
have (a - I) df, while those of D have (b - I) d.! Since there are ab 
treatment combinations, the Treatments S.S. has (ab - I) df Conse-
quently, there remain • 

(ab - 1) - (a - 1) - (b - I) = ab - a - b + 1 = (a - I)(b - 1) 

df. which may be shown to represent the AD interactions. In the 2 x 2 
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factorial, in which the AB interaction had only one df, the comparison 
corresponding to this df was called the AB interaction. In the general 
case, the AB interaction represents a set of (a - I)(b - I) independent 
comparisons. These can be subdivided into single comparisons in many 
ways. 

In deciding how to subdivide the AB sum of squares, the investigator 
is guided by the questions that he had in mind when planning the experi. 
ment. Any comparison among the levels of A is estimated independently 
at each of the b levels of B. For a comparison that is of particular interest, 
the investigator may wish to examine whether the level of B affects these 
estimates. The sum of squares of deviations of the estimates, with the 
appropriate divisor, is a component of the AB interaction, with (b - I) 
df, which may be isolated and tested against the Error mean square. 
Incidentally, since the main effect 'of A represents (a - I) independent 
comparisons, these components of the AB interaction jointly account for 
(a - 1 )(b - I) df and will be found to sum to the sum of squares for A B. 

As an illustration, the data in table 12.5.1 show the gains in weight of 
male rats under s_x feeding treatments in a completely randomized experi­
ment. The factors were: 

A(3 levels): Source of protein: Beef, Cereal, Pork 
B(2 levels): Level of protein: High; Low 

Often the investigator has decided in advance how to subdivide the 
. comparisons that represent main effects and interactions. In more ex-

TABLE 12.5.1 
GAINS IN WEIGHT (GRAMS) OF RATS UNDER SIX DIETS 

High Protein Low Protein 
Beef Cereal Pork Beef Cereal _.. Pork , 

73 98 94 90 107 49 
102 74 79 76 95 82 
118 56 96 90 97 73 
104 III 98 64 80 86 
81 95 102 $6 98 81 

107 88 102 51 74 97 
100 82 108 72 74 106 
87 77 91 90 67 70 

117 86 120 95 89 61 
III 92 105 78 58 82 

Totals 1,000 859 995 792 839 787 

Source of Variation Degrees of Freedom Sum of Squares Mean Square F 

Treatments 5 4.613.0 
A (Source,ofprotei.n) 2 266.5 133.2 0.6 
B(Levelofprptein) I 3.168.3 3,168.3 14.8" 
AD 2 1.178.2 589.1 '2.7 

Error 54 11,585.7 214.6 
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ploratory situations, it is customary to start with a breakdown of the 
Treatments S.S. into the S.S. for A, B, and AB. This has been done in 
table 12.5.1. Looking at the main effects of A, the three sources of protein 
show no differences in average rates of gain (F = 0.6), but there is a clear 
effect of level of protein (F = 14.8), the gain being about 18% larger with 
the High level. 

For AB, the value of F is 2.7, between the 10% and the 5% level. In 
the general two-factor experiment and in more complex factorials, it often 
happens that a few of the comparisons comprising the main effects have 
substantial interactions while the majority of the comparisons have 
negligible interactions. Consequently, the F-test of the AB interaction 
sum of squares as a whole is not a good guide as to whether interactions 
can be ignored. It is well to look over the two-way table of treatment 
totals or means before concluding that there are no interactions, particu­
larly if F is larger than I. 

Another working rule tested by experience in a number of areas is 
that large main effects are more likely to have interactions than small 
ones. Consequently, we look particularly at tbe effects of B, Level of 
protein. From the treatment totals in table 12.5.1 we see that high pro­
tein gives large gains over low protein for beef and pork, but only a small 
gain for cereal. This suggests a breakdown into: (I) Cereal versus the 
average of Beef and Pork, and (2) Beef versus Pork. This subdivision is 
a natural one, since Beef and Pork are animal sources of protein while 
Cereal is a vegetable source, and would probably be planned from the 
beginning in this type of experiment. 

Table 12.5.2 shows how this breakdown is made by means of five 
single comparisons. Study the coefficients for each comparison carefully, 
and verify that the comparisons are mutually orthogonal. In the lower 
part of the table the divisors required to convert the squares of the factorial 
effect totals into sums of squares in the analysis of variance are given. 
Each divisor is n times the sum of squares of the coefficients in the com­
parison (n = 10). As anticipated, the interaction of the animal versus 
vegetable comparison with level of protein is significant at the 5% level. 
There is no sign of a difference between Beef and Pork at either level. 

The principal results can therefore be summarized in the following 
2 x 2 table of means. 

Level of 
Protein 

High 
Low 

Difference 
S.E. 

Mean Rat Gains in Weight per Week (Grams) 

Source of Protein 
Animal Vegetable 

99.8 
79.0 

+20.8" 
±"4.6 

85.9 
83.9 

+ 2.0 
± 6,5 

Difference 

+ 13.9-
- 4.9 

S.E. 

±5.67 
±S.67 
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TABLE 12.5.2 
SUSDfYlSlON OF TIlE 5S, FOil MAIN EfFECTS AND INTERACTIONS 

Comparisons I 
High Protein ! Low Protein Factorial 

Beef Cereal Pork Beef Cereal Pork Effect 
(Treatment Totals) 1000 859 995 792 839 787 Total 

Level of protein +1 +1 +1 -I -I -I I 436 
Animal vs. vegetable +1 -2 +1 +1 -2 +1 178 
Interaction with level +1 -2 +1 -I +2 -I 376 
Beef vs. pork +1 0 -I +1 0 -I 10 
Interaction with level +1 0 -I -I 0 +1 0 

Divisor Degrees of Sum or Mean 
Comparison for S.S. Freedom Squares Square 

Level of protein 60 1 3168.3·· 
Animal vs. vegetable 120 1 264.0 
Interaction with level 120 1 1178.1· 
Beef vs. pork 40 1 2.5 
InteractJon with level 40 0.0 

Error 54 214.6 

As a consequence of the interaction, the animal proteins gave sub­
stantially greater gains. in weight than cereal protein at the high level, but 
showed no superiority to cereal protein at the low level. 

12.6-Response Curves. Frequently, the levels of a factor represent 
increasing amounts X of some substance. It may then be of interest to 
examine whether the response Y to the factor has a linear relation to the 
amount X. An example has already been given in section 11.8, p. 313, 
in which the linear regression of yield of millet on width of spacing of the 
rows was worked out for a Latin square experiment. If the relation be­
tween Yand X is curved, a more complex mathematical expression is re­
quired to describe it. Sometimes the form of this expression is suggested 
by subject-matter knowledge. Failing this, a polynomial in X is often 
used as a descriptive equation. 

With equally spaced levels of X, auxiliary tables are vailable that 
facilitate the fitting of these polynomials. The tables are explained fully 
in section 15.6 (p. 460). An introduction is given here to enable them to 
be used in the analysis of factorial experiments. The tables are based 
essentially on an ingenious coding of the values of X, X", and so on. 

With three levels. the values of X are coded as - 1,0, + I, so that they 
sum to O. If Y" Y" Y, are the corresponding response torals over n 
replicates, the linear regression coefficient b, is :EXYlnI:X', or 
(Yj - Y,)/2n. The values of X' are I, 0, 1. Subtracting their mean 2/3 
so that they add to 0 gives 1/3, - 2/3, 1/3. Multiplying by 3 in order to 
have whole numbers, we get the coefficients 1, -2,1. In its coded form, 
this variable is X, = 3X' - 2. The regression coefficient of Yon X, is 
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b, ~ kX, YlnkX,', or (Y, - 2 Y, + Y1)/6n. The equation for the parab­
ola fitted to the level means of Y is 

(12.6.1) 

With four levels of X, they are coded - 3, - I, + I, + 3, so that they 
are whole numbers adding to O. The values of X' are 9, I, I, 9, with 
mean S. Subtracting the mean gives + 4, - 4, - 4, + 4, which we divide 
by4 to give the coefficients + I, -I, -I, + 1 for the parabolic component. 
These components represent the variable X, = (X' - 5)/4. The fitted 
parabola has the same form as (12.6.1), where 

hi = (3Y. + Y, - Y, - 3Y1)/20n : b, =(Y. - Y, - Y, + Y1)/4n, 

the r; being level totals. For the cubic component (term involving X') a 
more elaborate coding is required to make this orthogonal to X and X,. 
The resulting coefficients are - I, + 3, - 3, + I. 

By means of these polynomial components, the S.S. for the main 
effects of the factor can be subdivided into linear, quadratic, cubic com­
ponents, and so on. Each S.S. can be tested against the Error mean 
square as a guide to the type of polynomial that describes the response 
curve. By rule 11.6.1, the contribution of any component kA, Yo to the 
S.S. is (t)., YY/nkA(. If the component is computed from the level 
means, as in the following illustration, the divisor is (:1:.1. ')jn. 

Tabie 12.6.1 presents the mean yields of sugar (cwt. per acre) in an 
experiment (4) on beet sugar in which a mixture of fertilizers was applied 
at four levels (0, 4, 8, 12 cwt. per acre). 

TABLE 12.6.1 
LINEAR, QUADRATlC, AND CuBIC COMPONENTS OF REsPoNSE CUllVE 

Mixed Fertilizers (Cwt. Per Acre) 
o 4 8 12 umo f 

Mean Yields 34.8 41.1 42.6 41.8 i Component Squares F 

linear -3 -I +1 +3 i +22.5 202.5 17.0" 
Quadratic +1 -1 -1 +1 I 

- 7.1 100.8 8.S· 
CubiC -1 +3 -3 +1 I + 2.5 2.5 0.2 

, 

Total = Sum of Squares for Fertilizers = 305.8 

Error mean square (16 df) :0:; 11.9 
---------------------------~ 

Since each mean was taken over n = 8 replicates, the divisors are 
20/8 = 2.5 for the linear and cubic components and 4/8 = 0.5 for the 
quadratic component. The Error mean square was 11.9 with 16 df The 
positive linear component and the negative quadratic component are 
both significant, but the cubic term gives an F less than 1. The conclu­
sions are: (i) mixed fertilizers produced an increase in the yield of sugar, (ii) 
the rate of increase fell off with the higher levels. 

To fit the parabola, we compute from table 12.6.1, 
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b2 = -7.1/4 = -1.775 

The fitted parabola is therefore 

t = 40.08 -I- 1.125X - 1.775X2 , (12.6.2) 

where t is an estimated mean yield. The estimated yields for 0, 4, 8, 12 
cw!. of fertilizers are 34.93, 40.73, 42.98, 41.68 cw!. per acre. Uke the 
observed means, the parabola suggests that the dressing for maximum 
yield is around 8 cwt per acre. 

Table 12.6.2 shows the coefficients for the polynomial components 
and the values ofI:2' for factors having from 2 to 7 levels. With k levels 
a polynomial of degree (k - I) can be made to fit the k responses exactly. 

TABLE 12.6.2 
CoEFFICIENTS AND DIVISORS FOR SETS OF ORTHOGONAL CoMPoNENTS IN REGRESSION 

IF X Is SPACJID AT EQUAL INTfRVALS 

Degree of Number of Levels I 

Poly· Divisor 
nomial Comparison I 2 3 4 5 6 7 :EA' 

I Linear -I +1 2 

2 Linear 

I 
-I 0 + I 2 

Quadratic +1 -2 + I 6 

3 Linear 
I 

-3 -I + I + 3 20 
Quadratic +1 -I - I + I 4 
Cubic -I +3 - J + I 20 . 

4 Linear -2 -I 0 + I + 2 IO 
Quadratic +2 -I - 2 - I + 2 14 
Cubic -I +2 0 - 2 + I 10 
Quartic +1 -4 + 6 - 4 + I 70 

5 Linear -5 -3 - I + I + 3 +5 70 
Quadratic +5 -1 - 4 - 4 - I +5 84 
Cubic -5 +7 + 4 - 4 - 7 +5 180 
Quartic +1 -3 + 2 + 2 - 3 +1 28 
Quintic -I +5 -10 + 10 - 5 +1 252 

6 Linear -3 -2 - I 0 + I +2 +3 28 
Quadratic +5 0 - 3 - 4 - 3 0 +5 84 
Cubic -I +1 + I 0 - I -I 

+ I I 6 
Quartic +3 -7 + I + 6 + I -7 +3 IS4 
Quintic -I +4 - S 0 + 5 -4 +1 84 
Sextic +1 -6 +IS -20 +IS -6 +1 i 924 

EXAMPLE 12.6.1-ln the same sugar-beet experiment. the mean yield of tops (green 
matter) for 0, 4, 8,12 cwt. fertilizers were 9.86, 11.58,13.95, 14.95 cwt. per acre. The Error 
mean square was 0.909. Show that: (i) only the linear component is significant. there being 
no apparent decline in response to the higher applications. (ii) the S.s. for the linear, quad­
ratic, and cubic components sum to the 5.S. between levels. 127.14 with 3 d.f. Remember 
tbat the means are over 8 replicates. 
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EXAMPLE 12.6.2--From the results for the parabolic regression on yield of sugar, 
the estimated optimum dressing can be computed by calculus. From equation 12.6.2 the 
fitted parabola is 

l' ~ 40.08 + 1.125X - 1.775X" 

where X 2 = (X2 
- 5)/4. Thus 

y ~ 4li.OB + 1.125X - 0.444(%' - 5) 

Differentiating, we find a turning value at X = 1.125/0.888 = 1.27 on the coded scale. 
You may verify that the estimated maximum sugar yield is 43.0 cwt., for a dressing 01'8.5 cwt. 
fertilizer. 

12.7-Response cprves in two-factor experiments. Either or both 
factors may be quantitative and may call for the fitting of a regression as 
described in the previous section. As an example with one quantitative 

TABLE 12.7.1 
YIELD OF COWPEA HAY (PoUNDS Pat 1/100 MORGEN PLOT) FROM THREE VARIETIES 

Blocks 

I Varieties Spacing (In.) I 2 3 4 Sum 
I 

I 4 56 45 43 46c 1 190 
8 60 50 45 48 

I 
203 

12 66 57 50 50 223 

II 4 65 61 60 63 I 249 
8 60 58 56 60 I 234 

12 53 .53 48 55 209 
, 

1II 4 , 60 61 50 53 

I 
224 

8 , 62 68 67 60 257 
t2 73 77 77 65 , 292 

I 

Sum 555 530 496 500 I 2,081 

Spacings 

Varieties 4 8 12 

1 190 203 223 ~t6 

11 249 234 209 692 
III 224 257 292 773 

Sum 663 694 724 2,081 

Degrees of Freedom Sum of Squares Mean Square 

Blocks 3 255.64 
Varieties, V 2 J027.39 513.70'" 
Spacings, S 2 155.06 77.53· 
Interactions. VS 4 765.44 191.36·· 
Error 24 424.11 17.67 
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factor, table 12.7.1 shows the yields in a 3 x 3 factorial on hay (5), one 
factor being three widths of spacing of the rows, the other being three 
varieties. 

The original analysis of variance, a the foot of table 12.7.1, reveals 
marked VS (variety x spacing) interactions. The table of treatment com­
bination totals immediately above shows that there is an upward trend 
in yield with wider spacing for varieties I and HI but an opposite trend 
with variety II. This presumably accounts for the large VS mean square 
and warns that no useful overall statements can be made from the main 
effects. 

To examine the trends of yield Yon spacing X, the linear and quad­
ratic components are calculated for each variety, table 12.7.2. The fac­
torial effect totals for these components are computed first, then the cor­
responding sums of squares. Note the following results from table 12.7.2: 

(i) As anticipated, the linear slopes are positive for varieties I and III 
and negative for variety II. 

(ii) The linear trend for each variety is significant at the I % level, 
while no variety shows any sign of curvature, when tested against the 
Error mean square of 17.67. 

TABLE 12.7.2 
LINEAR AND QUADRATIC CoMPONENTS FOR EACH VARIETY IN COWPEA EXPERIMENT 

. 
4" 8"' 12" 

Totals for Components 
Linear -I 0 +1 
Quadratic +1 -2 +1 Linear 

Variety I 190 203 223 33 
Variety II 249 234 209 

I 
-40 

Variety III 224 257 292 68 

Sum 663 694 724 61 

Contributions to Sums of Squares 

(33)' 
Variety I: Linear, (4)(2) = 136.12·· 

II: 

III: 

Total 

( - 40)2 = 200.00 •• 
(4)(2) 

(68)2 = 578.00 •• 
(4)(2) 

(7)' 
Quadratic, (4)(6) ~ 2.04 

(- (0)' 
(4)(6) ~ 4.17 

(2), 
----~0.17 

(4){6) 

Verification: 914.12 + 6.38 = 155,06 + 765.44 (=s + SV),J= 6 

Quadratic 

7 
-10 

2 

- I 
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(iii) The sum of these six S.S. is identical with the S.S. for spacings 
and interactions combined, 920.50. 

(iv) If the upward trends for varieties I and III are compared, the 
trend for variety III will be found significantly greater. 

To summarize, the varieties have linear trends on spacing which are 
not the same. Apparently I and III have heavy vegetative growth which 
requires more than 12" spacing for maximum yield. In a further experi­
ment the spacings tested for varieties I and III should differ from those 
for II. 

EXAMPLE J2.7.1-ln the variety){ spacing experiment, verify the statement that the 
linear regression of yield on width of spacing is significantly greater for variety In than for 
variety J. 

EXAMPLE 12.7.2-If the primary interest in this experiment were in comparing the 
varieties when each has its rughest·yielding spacing. we might compare the totals 223 (I), 
249 (II), and 292 (III), Show that the optimum for III exceeds the others at the 1% level. 

U.S-Example of a response surface. We turn now to a 3 x 4 experi­
ment in which there is regression in each factor. The data are from the 
Foods and Nutrition Section of the Iowa Agricultural Experiment Sta­
tion (6). The object was to learn about losses of ascorbic acid in snap­
beans stored at 3 temperatures for 4 periods, each 2 weeks longer than the 
preceding. The beans were all harvested under uniform conditions before 
eight o'clock one morning. They were prepared and quick-frozen before 
noon of the same day. Three packages were assigned at random to each 
of the 12 treatments and all packages were stored at random positions in 
the locker, a completely randomized design. 

The sums of 3 ascorbic acid determinations are recorded in table 
12.8.1. It is clear thanhe concentration of ascorDie acid decreases with 

TABLE 12.8.! 
SUM OF THREE ASCORBIC ACID DETERMINATIONS (MG./1OO G) FOR &'CH OF 12 TREATMENTS 

IN A 3 x 4 FACTORIAL EXPERIMENT ON SNAPBEA:NS 

Temperature, F.o 

Sum 

o 
10 
20 

2 

45 
45 
34 

124 

Weeks of Storage 

4 

47 
43 
28 

118 

6 

46 
41 
21 

108 

Degrees of Freedom Sum of Squares 

Temperature, T 2 334.39 
Two-week Period, P 3 40.53 
Interaction, TP 6 34.05 
Error· 24 

L Sum 

46 184 
37 166 
16 99 

99 449 

Mean Square 

0.706 

It Error (packages of same treatment) was calculated from original data not recorded 
here. 



higher storage temperatures and, except at OQ, with storage time. It looks 
as if the rate of decrease with temperature is not linear and not the same 
for the several storage periods. These conclusions, suggested by inspec­
tion of table 12.8.1, will be tested in the following analysis: 

One can look first at either temperature or period; we chose tem­
perature. At each period the linear and quadratic temperature com­
parisons ( - I, 0, + I; + I, - 2, + I) are calculated : 

Weeks of Storage 

Linear, 1L 
Quadratic. To 

2 

-II 
-II 

4 

-19 
-11 

6 8 Total 

-25 -30 -85 
-15 -12 -49 

The downward slopes of the linear regressions get steeper with time. This 
will be examined later. At present, calculate sums of squares as follows: 

T. - (- 85)' - 301 04" 
L - (12)(2) - . 

1: = (-49)2 _ 33.35" 
a (12)(6)-

The sum is the sum of squares for T, 301.04 + 33.35 = 334.39. Sig­
nificance in each effect is tested by comparison with the Error mean square, 
0.706. Evidently the regressions are curved, the parabolic comparison 
being significant; quality decreases with accelerated rapidity as the tem­
perature increases. (Note the number of replications in each temperature 
total, 4 periods times 3 packages = 12.) 

Are the regressions the same for all periods? To answer this, calculate 
the interactions of the linear and the quadratic comparisons with period. 
The sums of squares for these interactions are: 

T. P : (_11)2 + ... + ( - 30)' _ T. = 33.46" 
L (3)(2) L 

{3df.) 

1: P : (_11)2 + ... + (-121' _ 1: = 0.59 
a (3)(6) a (3 d.f.) 

Rule 12.B.l. These calculations follow1'rQm a new rule. Ifa com­
parison L, has been computed for k different levels of a second factor, 
the Interaction S.S. of this comparison with the second factor is 

l:L,z (l:L;),. 
niL,') - kn(l:J.z) (i = 1,2, ... k) 

with (k - I) d.f. Further, the term (H,Y/kn(l:)c2) is the overall S.S. 
(1 df.) for this comparison. The sum of 1i.p and TaP is equal to the sum 
of squares for TP. The linear regressions decrease significantly with 
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period (length of storage) but the quadratic terms may be the same for all 
periods, since the mean square for TaP, 0.59/3 = 0.20, is smaller than the 
Error mean square. 

Turning to the sums for the 4 periods, calculate the 3 comparisons: 

Sum of 
Sums 124 118 108 99 Comparison Squares 

---
Linear, PL -3 -I +1 +3 

I 
-85 40.14·· 

Quadratic. p~ +1 -I -I +1 - 3 0.25 
Cubic, Pc -I +3 -3 .+1 5 0.14 

Sum = Sum of Squares for Periods 40.53 
.. - ... 

This indicates that the population regressions on period may be linear, the 
mean squares 0.25 for PQ and 0.14 for Pc being both less than 0.706, the 
Error mean square .. 

We come now to the new feature of this section, the regressions of TL 
and TQ on period. TL , the downward slope of the vitamin with tempera­
ture, has been calculated for each period; the question is, in what manner 
does TL change with peripd? 

For this question, we can work out the linear, quadratic, and cubic 
components of the regression of Tt. on period, just as was done above for 
the sums over the 4 periods. 

: 

-II -19 - 25 - 30 Comparison 
------;-----

Divisor 
Sum of 
Squares 

Linear, TLPi. 
Quadratic, TLPU 
Cubic, TLPC 

- 3 
+ 1 
- 1 

- 1 T 1 + 3· - 63 (3)(2)(20) 33.08-
- 1 - 1 + 1 I 3 (3)(2)(4) 0.38 

+ 3 - 3 +_I_~I' __ -_I __ .L~~( .. 2)_(2_0 .. ) -t-_O._O_I_ 

Sum = Sum of SQuares for 1[.P 33.47 

Rule 12.B.2. Note the rule for finding the divisors. For each in­
dividual TL (-II, -19, etc.) the divilK>r was (2)(3). We now have a com­
parison among these Te's, bringing in a further factor 20= 32 + 12 + 12 + 32 

in TLPL. Thus the S.S. 33.08 = (-63)2/120. The sum of the three regres­
sion sums of squares is 33.47, which equals TLP. From the tests of the 
linear, quadratic, and cubic components, we conclude that the linear re­
gression on temperature decreases linearly with length of storage. 

Proceeding in the same way with TQ: 

(-7)' 
TaPL = (3)(6)(20) = 0.14 

(3)2 
TaPa = (3)(6)(4) = 0.12 

P _ (11)2 = 
Ta c - (3)(6)(20) 0.34 
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TABLE 12.8.2 
ANALYSIS OF V AlliANCE OF AscoIlBIC ACID IN SNAP BEANS 

Source of Variation Degrees of Freedom Sum of Squares Mea. Square 

Temperature: (2) (3:14.39) 
T, 1 301.04·· 
TO 1 33.35·· 

Period: (3) (40.53) 
PL 1 40.14·· 
p. 1 0.2$ 
Pc 1 0.14 

Interaction: (6) (:14.05) 
TtPt I 33.08·· 
TL,PQ 1 0,31 
T"Pc 1 0.01 
TgPz. 1 0.14 
TOPQ 1 0.12 
TgPe I Q.:14 

Error 24 0.706 

The sum is ToP = 0.60. Clearly there is no change in Tg with period. The 
results are collected in table 12.8.2 

In summary, TL and TQ show that the relation of ascorbic acid to tem­
perature is parabolic, the rate of decline increasing as storage time 
lengthens (TLPL). The regression on period is linear, sloping down­
ward more rapidly as temperature increases. In fact, you will note in 
table 12.8.1 tbat at the coldest temperature, O°F, there is no decline in 
amount of ascorbic acid with additional weeks of storage. 

These results can be expressed as a mathematical relation between 
ascorbic acid Y. storage temperature T, and weeks of storage W. As we 
have seen, we require terms in TL, Ta, PL' and TLPL in order to describe 
the relation adequately. It is helpful to write down these polynomial 
coefficients for each of the 12 treatment combinations, as shown in table 
12.8.3. 

For the moment, think of the mathematical relation as having the 
form 

where f is the predicted ascorbic acid total over 3 replications, while 
Xl = TL , X, = Ta, X, = P" and X. = .TLPL . The regression coefficient 
b, = kX, Y/kX,'. The quantities l:X, Y, which were all obtained in the 
earlier analysis, are given at the foot of table 12.8.3, as well as the divisors 
l:X,'. Hence, the relation is as follows: 

?= 37.417 - 1O.625XI - 2.042X, - 1.417X, - 1.575X. (12.8.1) 

Since the values of the X, are given in table 12.8.3, the predicted 
values? are easily computed for each treatment combination. For ex· 
ample, forO°F. and 2 weeks storage. 
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y 
Temp. Weeks Totals 

0' 2 45 
4 47 
6 46 
8 46 

100 2 45 
4 43 
6 41 
8 37 

10" 2 34 
4 28 
6 21 
8 16 

l:X,Y I 449 
Divisor for b _i_ 12 

TABLE 12.8.3 
CALCULAnoN OF THE REsPONSE SU1lFACE 

TL = PL= TLPL= 
O.I(T-IO) 

T<I,= 
3TL -2 W-5 0.I(T-IO)(W-5) 

- I + I - 3 + 3 
- I + I - I + I 
- 1 + 1 + I - I 
- I + I + 3 - J 

0 - 2 - 3 0 
0 - 2 -I 0 
0 - 2 +1 0 
0 - 2 + 3 0 

+ I + 1 - 3 - 3 
+ I + I - I - I 
+ I' + I + I + I 
+1 + I + 3 + 3 

-85 -49 -85 -63 
8 24 60 40 

f 

45.53 
45.84 
46.16 
46.47 
45.75 
42.92 
40.08 
37.25 
33.73 

I 27.74 
I 21.76 

i 15.77 

i 
I 

r = 37.417 - (10.625)( -I) - 2.042( + 1) - 1.417( - 3) - (1.575)( + 3) 
= 45.53, 

as shown in the right-hand column of table 12.8.3 . 
. By decoding, we can express the prediction equation (12.8.1) in terms 

of T CF.) and W (wee!>s). You may verify that the relations between 
XI(TLl, X,(TQ), X,(PL), X.(TLPLl and T and Ware as given at the top of 
table 12.8.3. After making these substitutions and dividing by 3 so that 
the prediction refers to the ascorbic acid mean per treatment combination, 
we have _~. 

Y = 15.070 + 0.3167T - 0.02042Tz + 0.052SW - O.05250TW (12.S.2) 

Geometrically, a relation of this type is called a response surface, since we 
have now a relation in three dimensions Y, T, and W. With quantitative 
factors, the summarization of the results by a response surface has proved 
highly useful, particularly in industrial research. If the obiective of the 
research is to. maximize Y, the equation shows the combinations of levels 
of the factors that give responses close to the maximum. Further accounts 
of this technique, with experimental plans specifically constructed for 
fitting response surfaces, are given in (7) and (S). The analysis in this 
example is based on (6). 

A word of warning. In the example we fitted a mUltiple regression 
of Yon four variables Xl' X" X" X.. The methods by which the regres­
sion coefficients h, were computed apply only if the X, are mutually 
orthogonal, as was the case here. General methods are presented in 
chapter 13. 
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lZ.9-Three-factor experiments; the 23. The experimenter often re­
quires evidence about the effects of 3 or more factors in a common en­
vironment. The simplest arrangement is that of 3 factors each at 2 levels. 
the 2 x 2 x 2 or 2' experiment. The eight treatment combinations may he 
tried in any of the common experimental designs. 

The data in table 12.9.1 are extracted from an unpublished random­
ized blocks experiment (9) to learn the effect of two supplements to a com 
ration for feeding pigs. The factors were as follows: 

Lysine (L) : 0 and 0.6%. 
Soybean meal (P) : Amounts added to supply 12% and 14% protein. 
Sex (S) : Male and Female. 

TABLE 12.9.1 
A \'EJtAGE DAJL Y GArNS Of PIGs (N 2 3 FACTORIAL ARRANGEMfNT Of TREA TM£NTS. 

RANDOMIZED BLOCKS EXPERIMENT 

Ly· Pro· Replications (Blocks) Treat- Sum 
sine tein ment for 2 
% o. 

S"" I 2 3 4 5 6 7 8 Sum Sm" /0 

0 12 M 1.11 0.97 1.09 0.99 0.85 1.21 1.29 0.96 8.47 
F 1.03 0.97 0.99 0.99 0.99 1.21 1.19 1.24 8.61 17.08 

14 M 1.52 1.45 1.27 1.22 1.67 1.24 1.34 1.32 11.03 
F 1.48 1.22 1.53 1.19 1.16 1.57 1.13 1.43 10.71 21.74 

0.6 12 M 1.22 1.13 1.34 1.41 1.34 1.19 1.25 1.32 10.20 
F 0.87 1.00 1.16 1.29 1.00 1.14 1.36 1.32 9.14 19.34 

14 M 1.38 1.08 1.40 1.21 1.46 1.39 1.17 1.21 10.30 
F 1.09 1.09 1.47 1.43 1.24 1.17 1.01 1.13 9.63 19.93 

Replication Sum 9.70 8.91 10.25 9.73 9.71 10.12 9.74 9.93 i ! 78.09 
------- -

Degrees of Freedom Sum of Squares Mean Square 

Replications 7 0.1411 
Treatments 7 0.7986 0.1141·· 
Error 49 1.0994 0.0224 

With three factors there are three main effect .. L. P, and S; three t'vo­
factor interactions. SP, SL, and LP; and a three:Jactor interaction SLP. 
The comparisons representing the factorial effect totals are set out in 
table 12.9.2. The coefficients for the main effects and the two-factor inter­
actions should present no difficulty, these being tbe same as in a 22 fac­
torial. A useful rule in the 2" series is that the coefficients for any two­
factor interaction like SP are the products of the corresponding coeffi­
cients for the main effects Sand P. 

The new term is the three-factor interaction SLP. From table 12.9.2 
the SP interaction (apart from its divisor) can be estimated at the higher 
level of L as 

10.20 - 9.14 - 10,30 + 9.63 = +0.39 
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TABLE 12.9.2 
SEVEN CouPAItJSONS IN 23 FACTQIUAL ExPEaDIENT ON Ptos 

Lysine "" 0 Lysine"'" 0.6% 

P-l2% P_14% P-12% p= 14% 

M F M F M F M F Factorial 
Effect Sumo{ 

Effects 8.47 8.61 11.03 10.71 10.20 9.14 10.30 9.63 Total Squares 

Sex.S -I +1 -I +1 -I +1 -I +1 -1.91 0.0570 
Protein, P -I -I +1 +1 -I -I +1 +1 5.25 0.4307·· 
SP +1 -I -I +1 +1 -I -I +1 -0.07 0.0001 
Lysine, L -I -I -I -I +1 +1 +1 +1 0.45 0.0032 
SL +1 -I +1 -I -I +1 -I +1 -1.55 0.0375 
PL +1 +1 -I -I -I -I +1 +1 -4.07 0.2588·· 
SPL -I +1 +1 -I +1 -I -I +1 0.85 0.0113 

Total 0.7986 

An independent estimate at the lower level of L is 

8.47 - 8.61 - 11.03 + 10.71 = -0.46 

The sum of these two quantities, -0.07, is the factorial effect total for SP. 
Their difference, +0.39 - (-0.46) = +0.85, measures the effect of the 
level of L on the SP interaction. lfwe compute in the same way the effect 
of P on the SL interaction, or of S on the PL interaction, the quantity 
+0.85 is again obtained. It is called the factorial effect total for SLP. 
Such interactions are rather difficult to grasp. Fortunately, they are often 
negJigjbJe except in experiments that have large main effects. Asignificant 
three-factor interaction is a sign that the corresponding 3-way table of 
means must be examined in the interpretation of the results. 

As usual, the square of each factorial effect total is divided by,,(:E.\2). 
where" = 8 and :E.\2 ='8, the denominator being 64 in every case. As a 
check. the total of the sums of squares for the factorial effects in table 
12.9.2 must add to the Treatments sum of squares in table 12.9.1, 0.7986. 

The only significant effects are the main effect of P and the PL inter­
action. The totals for the P x L 2-way table are shown in the right hand 
column of table 12.9.1. With no added lysine, the higher level of protein 
gave a substantially greater daily gain than the lower level, but with 
added lysine. this gain was quite small. The result is not surprising, since 
soybean meal contains lysine. Lysine increased the rate of gain at the 
lower level of protein but decreased it at the higher level. 

In view of these results there is no interest in the main effects of P or of 
L. The experimenter has learned that gains can be increased either by a 
heavier addition of soybean meal or by the addition of lysine, whichever 
is more profitable: he should not add both. The absence of any interac­
tions involving 5 gives some assurance that these results bold for both 
males and females. 
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The 2' factorial experiment has proved a potent research weapon in 
many fields. For further instruction on analysis, with examples, see (7), 
(8), and (10). 

t:UO-lbree-factor experimenlll; a 2 x 3 x 4, This section illustrates 
the general method of analysis for a three-factor experiment. The data 
come from the experiment drawn on in the previous section. The factors 
were Lysine (4 levels), Methionine (3 levels), and Soybean Meal (2 levels 
of protein), as food supplements to corn in pig feeding. Only th'e males in 
two replications are used. This makes a 2 x 3 x 4 factorial arrangement 
of treatments in a randomized blocks design. Table 12.10.1 contains the 
data, with the computations for the analysis of variance given in detail. 

1. First forro the sums for each treatment and replication, and com­
pute the total S.S. and the S.S. for treatments, replications, and error (by 
subtraction). 

2. For each pair of factors, forro a two-way table of sums. From the 
Lx Mtable (table A), obtain the total S.s. (II df.) and the S.S. for Land 
M. The S.S. for the LM interactions is found by subtraction. The M x P 
table supplies the S.S. for M (already obtained), for P, and for the MP 
interactions (by subtraction). The L x P table provides the S.S. for the 
LP interactions. 

3. From the S.S. for tteatments subtract the S.S. for L, M, P, LM, 
M P, and LP to obtain that for the LM P three-factor interactions. 

The analysis of variance appears in table 12.10.2, and a further 
examination of the results in examples 12.10.1 to 12.10.3. 

EXAMPLE 12.10.1-[n table 12.10.2, for L, M. MP, and LMP the sums of squares 
are all so small that no single degree of freedom isolated from them could reach significance. 
But LM and LP deserve further study. 

In the LM summary table A. in table 12.10.1, there is some evidence of interaction 
though the overall test on 6 degrees of freedom doesn't detect it. Let Us look at the linear 
effects. Fint, calculate ML (-1,0, + 1) for each level of.1ysine: 

-0.08, -0.27, 0.57, 1.07 

Next, take the linear effect of lysine (-3, -I, + I, + 3) in these ML ; the tcsult, 4.29. Finally, 
application of Rule 12.8,2 yields the sum of squares .. ~ 

(4.29)' 
LLML ~ (4)(2)(20) ~ 0.1150, 

which is just shott of significance at the 5% level. None of the other 5 comparisons is sig­
nificant. In the larger experiment of which this is a part, t"tML was significant. What in­
terpretation do you suggest? 

EXAM PLE 12.10.2-10 the LP summary table C. the differences between 14% and J 1° <I' 

2.ll. 2.07. 0.29. 0.l6, 

sugge!;t an interaction: the beneficial effect of the higher level of protein decreases a~ more 
lysine is added. By applying the multipliers - 3, - I. + I. + 3. to the above' figures. W(" ob­
tain the LLPI. effect total = -6.55. By Rule 12.8.2. 
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TABLE 12.10.1 
THllEE·FACTOIl EXPERIMENT (2 x 3 x 4) IN R.ANooMIzm BLOCKS. AVERAGE DAILY 

GAlNS Of Pl:os FED V ARlOUS PEKCENTAO!!S OF SUPPLBMENT ARY L \'SINE, 
METHJONINE, AND PROTEIN 

I Replications (Blocks) 
Methionine. c-t-t- Protein, P I 2 

o 0 12 I. II 0.97 
14 i.S2 I.4S 

0.025 12 1.09 0.99 
14 1-27 1.22 

0.050 12 0.85 1.21 
14 ].67 ].24 

0.05 0 12 1.30 ],00 
14 US 1.53 

0.025 12 ].03 1.21 
14 ].24 1.34 

0.050 12 1.12 0.96 
14 1.76 ].27 

0.10 0 12 ].22 1.13 
14 1.38 1.08 

0.025 12 ].34 ].41 
14 1.40 1.21 

0.050 12 ].34 1.19 
14 ],46 1.39 

0.15 0 12 1.19 ].03 
14 0.80 ].29 

0.025 12 ],36 1.16 
14 ].42 1.39 

0.050 12 1.46 ].03 

i 14 I ],62 ].27 

Total 3].50 28.97 

Computations: 
]. C = (60.47)'/48 = 76.1796 
2. Total: 1.11 2 + 0.971 + ... + 1.622 + 1.271 - C = 2.0409 
3. Treatments: (2.08' + 2.97' + ... + 2.89')/2 - C = 1.2756 
4. Replications: (31.50' + 28.97')/24 - C = 0.1334 
S. Error,:;Z,Q409 - (]'2756 + 0.1334) = 0.6319 

Summary Table A 

Lysine 

Methionine 0 0.05 0,10 

0 5.05 5.38 4.81 
oms 4.57 4.82 5.36 
0.050 4.97 5.11 5.38 

Total 14.59 15.31 15.55 

0,15 

4.31 
5.33 
5,38 

15,02 

Treatment 
Total 

2.08 
2.97 
2.08 
2.49 
2.06 
2.91 

2.30 
3.08 
2.24 
2.58 
2.08 
3.03 

2.35 
2.46 
2.75 
2.61 
2.53 
2.85 

2.22 
2.09 
2.52 
2.81 
2.49 
2.89 

Total 

19.55 
I 20.08 
i 20.84 

60.41 



363 

TABLE 12.1O.I--(Continued) 

Computations (continued): 
6. Entries are sums of 2 levels of protein; 5.05 -= 2.08 + 2.97, etc. 
7. Total in..4: (5.05 1 + ... + 5.38 2)/4 - C:o 0.3496 
8. Lysine. L: (14.59' + ... + 15.02')(12 - C ~ 0.1>427 
9. Methionine. M: {I9.55' + 20.08' + 20.84')(16 - C = 0.0526 

10. LM: 0.3496 - (0.0427 + 0.0526) = 0.2543 

SUMMAAY TABLE B 

Protein I 

Methionine 12 14 Total 

0 8.95 10.60 
I 

19.55 
0.025 9.59 10.49 20.08 
0.050 9.16 11.68 20.84 

Total 27.70 32.77 60.47 

Computations (contmued): 
II. Entries are sums of 4 levels of lysine; 8.95 == 2.08 + 2.30 + 2.35 + 2.22. etc. 
12. Total in B: (8.95' + ... + 11.68')(8 - C = 0.6702 
13. Protein. P: (27.70' + 32.77')(24 - C = 0.5355 
14. MP: 0.6702 - (0.5355 + 0.0526) - 0.0821 

Summa".. Table C 

Lysine 

Protein 0 0.05 0.10 0.15 Total 

12 6.22 6.62 7.63 7.23 27.70 
14 8.37 8.69 7.92 7.79 32.77 

Total 14.59 1531 15.55 15.02 60.47 

computations (continued): 
I S. Entries are sums of 3 levels of methionine; 6.22 "'" 2.08 + 2.08 + 2.06, etc. 
16. Total in C: (6.22' + ... + 7.79')(6 - C = 0.8181 
17. LP: 0.8181 - (0.5355 + 0.0427) = 0.2399 
18. LMP: 1.2756 - (0.0427 + 0.0526 + 0.5355 + 0.2543 + 0.0821 + 0.2399) 

== 0.0685 -.... 

L P _ (6.55)' _ 
L L - (6)(2)(20) - 0.1788. 

F= 0.1788/0.0275 = 6.5(). P = 0.025. This corresponds to the highly significant effect ob­
serVed in table 12.9.2. where an interpretation was given. 

DeductingLLPL from the LPsum of squares in table 12.10.2.0.2399 - 0.1788 ::::; 0.0611. 
sbows tht neither of the other two comparisons can be significant. 

EXAMPLE 12:10.3-The investigator is often interested in estimates of differences 
rather than in tests of significance. Because of the LP interaction he might wish to estimate 
tbe: effect of protein with no lysine. Summary table C shows this mean difference: 
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TABLE 12.10.2 
ANALYSIS OF VARIANCE OF 3-FACTOR PIG EXPERIMENT. 

RANDOMIZED BLOCKS DEsiGN 

Source of Variation I Degrees of Freedom 

Replications 1 
Lysine, L(I = 4) 3 
Methionine, M(m = 3) 2 
Protein, Pip = 2) 1 
LM 6 
LP 3 
MP 2 
LMP 6 
Error (r = 2) 23 

Sum of Squares 

0.1334 
0.0427 
0.0526 
0.5355 
0.2543 
0:2399 
0.0821 
0.0685 
0.6319 

Mean Square 

0.0142 
0.0263 
0.5355·· 
0.0424 
0.0800 
0.0410 
0.0114 
0.0275 

(8.37 - 6.22)/6 = O.361b./day. (The justification for using alllevcls of methionine is that 
[here is little evidence of either main e eet or interaction with I'rotein.) The standard error 
of the mean difference is ± )( .0275)/6 = O.0961b./day, Verify that the 95% interval is 
from 0.16 to 0.561b./day. 

12.ll-Expected values of mean squares. In the analysis of variance 
of a factorial experiment. the expected values of the mean squares for 
main effects and interactions can be expressed in terms of components of 
variance that are part of the mathematical model underlying the analysis. 
These formulas have two principal uses. They show how to obtain un­
biased estimates of error for the comparisons that are of interest. In 
studies of variability they provide estimates of the contributions made by 
different sources to the variance of a measurement. 

Consider a two-factor A x iJ experiment in a completely randomized 
design, with a levels of A, b levels of B, and n replications. The observed 
value for the kth replication of the ith level of A and the jth level of B is 

(12.11.1) 

where i = I .. a, j = 1 ... b, k = I ... n. (Iftbe plan is in randomized 
blocks or a Latin square, further parameters are needed to specify block, 
row, or column effects.) 

. The parameters ~, and Pi' representing main effects, may be fixed or 
random. If either A or B is random, the corresponding 11, or Pi are as­
sumed drawn from an infinite population with mean zero, variance 11} 
or 11.'. The (~~)'i are the two-factor interaction effects. They are random 
if either A or B is random, with mean 0, variance 11 ... 2. As usual, the s'it 
have mean 0, variance (1'2. 

Before working out the expected value of the mean square for A, 
we must be clear about the meaning of main effects. The relevant and 
useful way of defining the main effeG! of A, and consequently the expected 
value of its mean square. depends on whether the other factor B is fixed or 
random. 
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To illustrate the distinction, let A represent 2 fertilizers and B 2 
fields. ExperimenlJll errors £ are assumed negligible, and results are as 
follows: 

Fertilizer ., ., Q;a; -41 

I 10 17 +7 
Field 

2 18 13 -5 

Mean 14 IS +1 

When B is fixed, our question is: What is the average difference between 
a2 and a, over these two fields? The answer is that a2 is superior by I unit 
(15 - 14). The answer is exact, since experimental errors are negligible 
in this example. But if B is random, the question becomes: What can 
be inferred about the average difference between a2 and a, over a popula­
tion of fields of which these two fields are a random sample? The differ­
ence (a2 - a,) is + 7 in field I and -5 in field 2, with mean 1 as bef,?re. 
The estimate is no longer exact, but has a standard error (with 1 df), 
which may be computed as.J {7 - (- 5)}'/4 = ±6. Note that this slJln­
dard error is derived from the AB interaction, this interaction being. in 
fact, {7 - (-5)}/2 = 6. 

To sum up, the numerical estimates of the main effects of A are the 
same whether B is fixed or random, but the population parameters being 
estimated are not the same, and hence different standard errors are re­
quired in the two cases. 

From equation 12.11.1 the sample mean for the ith level of A is 

X, .. = I' + IX, + jJ + (IXP),. + i'., .. (12.11.2) 

where jJ = (P, + '" + P.)/b, (~7i),. = {(IXP)" + ... + (IXP) .. }/b and ii, .. is 
the average ofnb independent values of e. 

When B is fixed, the true main effects 'of A are the differences of the 
quantities (IX, + (IXP),,) from level to level of A. In this case it is cus­
tomary, for simplicity of notation, to redefine the parameter 0:1 as a./ = eli 

+ (i{J),. Thus with B fixed, it follows from equation 12.11.2 that 

X, .. - X . .. = IX;' -Ii' + ii, .. - ii ... (12.11.3) 

From this relation the expected value of the mean square for A is 
easily shown to be 

E(A) = E [nbr.(X, .. - X .. . )2 ] = ",nb_:r.:.:_(1X2 ,'_-.,.."_-'),-2 + (12 
a-I a-I 

(12.11.4) 
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The quantity L(~i - ~')'/(a - I) is the quantity previously denoted 
bYK/. 

If A is random and B is fixed, repeated sampling involves drawing a 
fresh set of a levels of the factor A in each experiment, retaining the same 
set of b levels of B. In finding E(A) we average first over samples that 
happen to give the same set of levels of A, this being a common device in 
statistical theory. Formula 12.11.4 holds at this stage. When we average 
further over all sets of a levels of A that can be drawn from the population, 
KA' is an unbiased estimate of" A', the population variance of ~, Hence, 
with A random and B fixed, 

E(A) = nb"A' + ,,' 
Now consider B random and revert to equation 12.11.2. 

Xi" = f.' + ~i + Ii + (~P)i' + ii, .. (12.11.2) 

In each new sample we draw fre.h values of Pj and of (~P)i] so that P and 
("ifJ),- change from sample to sample. Since, however. the popUlation 
means of P. (~fi)i' and B, .. are all zero, the population mean of Xi" is 
f.' + 1%;. Consequently, the population variance of the main effects of A 
is defined as K A ' = L(~i -Iii) f(a - I) if A is fixed. or as the variance 
"A' of the ~'s if A is random. But since 

Xi" - X ... = ~, - ~ + (~i' - (ap) .. + iii" - t .... 

the expected value ofthe mean square of A now involves" A/ as well as ,,' 
It follows that when B is random, 

E(A) = nbKA' + n"Ai + ,,' 
E(A) = nbaA' + n"Ai + (1' 

(A fixed) 
(A random) 

The preceding res';,lts are particular cases of a more general formula. 
If the population of levels of B is finite, containing B' levels of which b 
are chosen at random for the experiment, 

, (B' - b) , , 
E(A) = nb"A + n ~ "A8 +" 

This case occurs, for instance, if a combine of H' factories or cotton 
growers carries out experiments in a random sample of b factories or 
fields. If b = B' the term in "A8' vanishes and we regard factor B as fixed. 
As B' tends to infinity, the coefficient of "A/ tends to n. factor B being 
random. If A is fixed. ,,} becomes K}. 

The AB mean square is derived from the sum of squares of the terms 
(Xij . - X", - X. j . + X .. ). From the model. this term is 

I,fi)ij - (~P)i'- (~fJ)'1 + 1,fJ). + Bij' - Bi •· - B. j . + t ... 
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Unless both A and B are fixed, the interaction term in the above is a 
random variable from sample to sample, giving 

E(AB) = no-Ai + cr2 

With both factors fixed, crAl is replaced by KAB2. Table 12.11.1 sum­
marizes this series of resu1ts. 

Mean 
Squar.es 

A 
B 
AB 

Error 

TABLE 12.1J.l 
EXPECTED VALUES OF MEAN SQUARES IN It. TWO·FACTOR EXPERIMENT 

EXPECTED VALUE = PARAMETERS EsTIMATED 

Mixed Model 
Fixed Effects Random Effects A Fixed, B Random 

(12 + nbK,/' (12 + nUdB2 + nbu/ (12 + n(JAi + nbKi 
(12 + naK/ q2 + nCfA,S2 + naui (12 + nOCfB2 

(/'2 + nI('AB2 11
2

+n(1A.
2 

(12 + naAs 
, 

q' q' q' 

Note that when B is random and the main effects of A are 0 (K/ or 
cr / ,=.0), the mean square for A is an unbiased estimate of cr2 + ncr AP 2 . 

It follows that the appropriate denominator or "error" for an F-test of 
the main effects of A is the AB Interactions mean square, as illustrated 
from our sample of two fields. When B is fixed, the appropriate de­
nominator is the Error mean square in table 12.11.1. 

General rules are available for factors A, B, C, D, ... at levels 
a, b, c, d, ... with n replications of each treatment combination. Any 
factors may be fixed or random. In presenting these rules, the symbol U 
denotes the factorial effect in whose mean square we are interested (for 
instance, the main effect of A, or the BC interaction, or the ACD iJlter­
action). 

Rule 12.1 1.1. The expected value of the mean square for U contains 
a term in (12 and a term in (1/. It also contains a variance term for any 
interaction in which (i) all the letters in Uappear, and (ii) all the other letters 
in the interaction represent random effects. "-

Rule 12. I 1.2. The coefficient of the term in cr2 is I. The coefficient 
of any other variance is n times the product of all letters a, b, c, ... that 
do not appear in the set of capital letters A, B, C, ... specifying the 
vanance. 

For example, consider the mean square for C in a three-way factorial. 
If A and B are both random, 

E(C) = (J2 + nUA.B/ + nbuAC2 + naaBe
2 + nabuc2 

If A is fixed but B is random, the terms in GA Be2 and O"AC2 drop out by 
Rule 12.11.1, and we have 

E(C) = (J' + "au.,.' + nabcrc' 
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If A and B are both fixed, the expected value is 

E(C) = a' + nab<Tc' 

For main effects and interactions in which aU factors are fixed, we have 
followed the practice of replacing a2 by K2, Most writers use the symbol 
11' in either case. Table 12.11.2 illustrates the rules for three factors. 

TABLE 12.11.2 
EXPECTED VALUES Of MEAN SoUAJWi, IN A TliItEE-WAY FACTOllIAJ. 

Exp:cted Values 
--------

Mean Squares All Effects Fixe<i A.1I Effects Random 

Error 

A 
B 
C 
AB 
AC 
BC 
ABC 

-.---f---------,----,--
qJ + nb('K,/ (12 +'11(f1l1lC 2 + nCtTA• 1 + nMAC

1 ..r ",,'':(/',/ 
cr + nO{,Kl (11 + nC1l1sc2 + ncalla' + naaBC

2 + nacul 
(72 + nab-,.:/ (12 + nO'AB/ + nbG,(/ + nOOK

l + nabu/ 
a~ + lH'I\:.4B

1
, (Jl + nO-IIse2 + ncO"A,/ 

(J2 + nbl(A./ (12 + m7l1s/ + nbit .. / 
([2 + naKac1 (12 + nO'A8(.J + nad s/ 

(/1 + m<:AJI("l ql + n(JAsc1 

(1l (11 

===---=+-=====~==================== 
Mean Squares 

Error 

A 
B 
C 
AB 
AC 
Be 
ABC 

A Fixed, Band C Random 

a 1 + nUAB/ + nCO'AB2 + nlxTAC
1 + nbCK,tl 

(12 + nQa,,/ + nacai 
ql + na(Ja/ + nahC1c1 

(/1 + M ... / + ncaA •
J 

(12 + nGABel + nbaAC:Z 

a1 + notJ,,/ 
u 2 + Ita ABC l' 

.' - --_._=-----_--------

From these formulas, unbiased estimates of all the components of 
variance Can be obtained as. linear combinations of the mean squares in 
the analysis of variance. The null hypothesis that any component is 0 
can be tested, though complications may arise. Consider the null hy­
pothesis 0'/ = O. Table 12.11.2 shows that if all effects are fixed, the 
appropriate denominator for testing the mean square for C is the ordi­
nary Error mean square orthe experiment. If A is fixed and B is random, 
the appropriate denominator is the BC mean square. 

If all effects are random, no single mean square in the analysis of 
variance is an appropriate denominator for testing t1C

2 (check with table 
12.11.2). An approximate F-test is obtained as follows (II, 12). If 
O'c' = 0, you may verify from table 12.11.2 th.at 

E(C) = E(AC) + E(BC) - E(ABC) 



369 

while if uc' is large, E(C) will exceed the right-hand side. A test criterion is 

F' = {(C) + (ABC)}/{(AC) + (BC)} 

where (C) denotes the mean square for C, and so on. The approximate 
degrees of freedom are 

{(C) + (ABC)), 
n1 = (C)' (ABC)' 

-+'-,-'-

n~ = 

Ie IABC 
{(AC) + (BC)), 
(AC)' (BC)' 
--+--

IAC IBe 

12.12-The split-plot Or nested design. It is often desirable to get pre­
cise information on one factor and on the interaction of this factor with a 
second, but to forego such precision on the second factor. For example, 
three sources of vitamin might be compared by trying them on three males 
ofthe same litter, replicating the experiment on 20 litters. This would be a 
randomized blocks design with high precision, providing 38 degrees of 
freedom for error. Superimposed on this could be some experiment with 
the litters as units. Four types of housing could be tried, one litter to each 
type, thus allowing 5 replications with 12 degrees of freedom for error. 
The main treatments (housings) would not be compared as accurately as 
the sub-treatments (sources of vitamin) for two reasons; less replication 
is provided, and litter differences are included in the error for evaluating 
the housing effects. Nevertheless, some information about housing may 
be got at little extra expense, and any interaction between housing and 
vitamin will be accurately evaluated. 

In experiments on varieties or fertilizers on small plots, cultural prac­
tices with large machines may be tried on whole groups of the smaller 
plots, each group containing all the varieties. Qrrigation is one practice 
that demands large areas per treatment.) The series of cultural practices 
i. usually replicated only a small number of times but the varieties are 
repeated on every cultural plot. Experiments of this type are called 
split-plot, the cultural main plot being split into smaller varietal sub-plots. 

This design is also COmmon in industrial research. Comparisons 
among relatively large machines, or comparisons of different conditions 
of temperature and IlUmidity under which machines work, are main plot 
treatments, while adjustments internal to the machines are sub-plot treat­
ments. Since the word plot is inappropriate in such applications, the 
designs are often called nested, in the sense of section 10.16. 

The essential feature of the split-plot experiment is that the sub-plot 
treatments are not randomized over the whole large hlock but only over 
the main plots. Randomization of the sub-treatments is newly done in 
each main plot and the main treatments are randomized in the large blocks. 
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FIG. 12. 12. I-First 2 blocks of split~plot experiment on alfalfa, illustrating random 
arrangement of main and sub-plots. 

A consequence is that the experimental error for sub-treatments is dif­
ferent (characteristically smaller) than that for main treatments. 

Figure 12.12.1 shows the field layout ofa split-plot design with three 
varieties of alfalfa, the sub"treatments being four dates of final cutting (13). 
The first two harvests were common 'to all plots, the second on July 27, 
1943. The third harvests were: A, none; D, September I ; C, September 20; 
D, O~tober 7. Yields in 1944 ore recorded in table 12.12.1. Such an ex­
periment is, of course, not evaluated by a single season's yields; statistical 
methods for perennial crops are discussed in section 12.14. 

In the analysis of variance the main plot analysis is that of random­
ized blocks with three varieties replicated in six blocks. The sub-plot 
analysis contains the sums of squares for dates of cutting, for the date x va­
riety interactions, and for the sub-plot error, found by subtraction as 
shown at the foot of table 12.12.2. 

The significant differe~es among dates of cuaing were not unex­
pected, nor were the smaller yields following D and C. The last harvest 
should be either early enough to allow renewed growth and restoration of 
the consequent depletion of root reserves, or so late that no growth and 
depletion will ensue. The surprising features of the experiment were two; 
the yield following C being greater than D, since late September is usually 
considered a poor time to cut alfalfa in Iowa; and the absence of inter­
action between date and variety-Ladak is slow to renew growth after 
cutting and might have reacted differently from the other varieties. 

In order to justify this analysis we need to study the model. In 
randomized blocks, the model for the split-plot or nested experiment is 

XiiI! = J1 + M; + Bj + Eij + Tit + (MT)iI, + ~ijk 
i = I ... m. j = 1 ... b, k = I ... t, <u = .1'(0, <1",), J'j' = . 1'(0, <1,) 

Here, M stands for main plot treatments, D for blocks, and Tfor sub-plot 
treatments. 
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TABLE 12.12.1 
YIII1..D5 OF THIlEE V AJUE11ES OF ALFALFA (TONS PElt ACllE) IN 1944 FouowlNG 

FOUll DA TI!S OF FINAL CUMlNa IN 1943 

Blocks 
Variety Date I 2 3 4 5 6 

Ladak A 2.17 1.88 1.62 2.34 1.58 1.66 
B 1.58 1.26 1.22 1.59 1.25 0.94 
C 2.29 1.60 1.67 1.91 1.39 1.12 
D 2.23 2.01 1.82 2.10 1.66 1.10 

8.27 6.75 6.33 7.94 5.88 4.82 

Cooaack A 2.33 2.01 1.70 1.78 1.42 1.35 
B 1.38 1.30 1.85 1.09 1.13 1.06 
C 1.86 1.70 1.81 1.54 1.67 0.88 
D 2.27 1.81 2.01 1.40 1.31 1.06 

7.84 6.82 7.37 5.81 5.53 4.35 

Ranger A 1.75 1.95 2.13 1.78 1.31 1.30 
B 1.52 1.47 1.80 -1.3, - -[or-- 1.31 
c 1.55 1.61 1.82 1.56 1.23 1.13 
D 1.56 1.72 1.99 1.55 1.51 1.33 

6.38 6.75 7.74 6.26 5.06 5.07 

Total 22.49 20.32 21.44 20.01 16.47 14.24 

Date of Cutting 
Variety A B C D Total 

Ladak 11.25 7.84 9.98 10.92 39.99 
Cossack 10.59 7.81 9.46 9.86 37.72 
Ranger 10.22 8.48 8.90 9.66 37.26 

Total 32.06 24.13 28.34 30.44 114.97 

Mean (tons per acre) 1.78 1.34 1.57 , 1.69 

The symbols i,j identify the main plot, while k identifies the sub-plot 
within the main plot. The two components of error, £;j and 0;) .. are needed 
to make the model realistic: the sub-plots in one main plot often yield 
consistently higher than those in another, and £;; represents this difference. 
From the model, the er:Of of the mean difference between two main 
plot treatments, say M, and M" is 

',. - '" + "'" - 0,,, 

The e's are averages over b values, the o's over bl values. Consequently, 
the variance of \he mean difference is 
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TABLE 12.12.2 
ANALYSIS Of V AltI .... :NCE OF SPLIT-PLOT ExPEIUMENT ON ALfALFA 

Source of Variation ! Degrees of Freedom 

Mainplots~ 
Sum of S~uares 

Varieties; 1 2 
Blocks 5 
Main plot error 10 

Sub-plots: 
Dates of cutting 
Date x variety 
Sub-piot error 

3 
6 

45 

I. Correction: C = (114.97)'/72 = 183.5847 

2. TOIBI: 12.17)' + ... + (1.33)' - C = 9,1218 

0.1781 
4.1499 
1.3622 

1.9625 
0.2105 
]'2586 

. (8.27)' + , . , + (5.07)' 
3. Mam plots: 4 C == 5.6902 

. . . (39.99); ;+ . :. + (3;.26)1 _ r _;;: 0 1781 
4. VanetleS, 24 - -,_ 

(22.49)' + . , . + (14,24)' C 4 I 99 
5. Blo<ks: 12 - =. 4 

6. Main plot error: 5.6902 _. (0.1781 + 4,1499) =.1.3622 

Mean Square 

0.0890 
0.8300 
0.1362 

0.6542·· 
0.0351 
0.0280 

(I I.~S)' + ... + (9.66)' 
7. Sub-classes in variety~ate table: 6 C = 2.3511 

(32,06)' + .. ' + (30.44)' 
8. Dates: IS C = 1,9625 

9. Date x variety: 2.3511 - (0.1781 + 1.9625) - 0.2105 

10. Sub-plot error: 9.1218 - (5.6902 '" 1.9625 + 0.2105) - 1.2586 

( 
1 ') 2 tI)I (11 l Z 

2 - + - = - (171 + ta .. ) 
b bt bt 

In the analysis of variance, the main plot Error mean square estimates 
(17/ + taM'). 

Consider now the difference X'i! - XIj, between two sub-plots that 
ire in th~ :ame main plot. According to the model. 

X'it - Xii' = T, - T, + (MT)" - (MT)" + J i;, - J'l' 

The error now involves only the J's. Consequently, for any comparison 
among treatments that is made entirely within main plOIS, the basic error 
variance is ",', eslimated by the sub-plot Error mean square. Such com­
parisons include (i) the main effects of sub-plot Irealmt;tlts, (ii) interac­
tions between main-plot and sub-plot treatments, and (iii) comparisons 
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between sub-plot treatments for a single main-plot treatment (e.g., be­
tween dates for Ladak). 

In some experiments it is feasible to use either the split-plot design 
or ordinary randomized blocks in which the ml treatment combinations 
are randomized within each block. On the average, the two arrangements 
have the same overall accuracy. Relative to randomized blocks, the split­
plot design gives reduced accuracy on the main-plot treatments and in­
creased accuracy on sub-plot treatments and interactions. In some in­
dustrial experiments conducted as split-plots, the investigator apparently 
did not realize the implications of the split-plot arrangement and analyzed 
the design as if it were in randomized blocks. The consequences were to 
assign too low errors to main-plot treatments and too high errors to sub­
plot treatments. 

TABLE 12.12.3 
PR.f.sENTATION OF TREATMENT MEANS (TONS PER. ACRE) AND STANDARD EIlRORS 

Variety 

Ladak 
Cossack 
Ranger 

Means 

Dille of Cutting (±.J EJb - :t 0.0683) 
ABC D 

1.875 1.307 1.664 1.820 
1.765 1.302 1.577 1.644 
1.704 1.414 1.484 1.610 

I. 781 1.341 1.575 1.691 
(l:.J E.Jmb - :t 0.0394) 

Means 

1.667 (±.jEJtb-
1.572 ± 0.0753) 
1.553 

Care is required in the use of the correct standard errors for com­
parisons among treatment means. Table 12.12.3 shows the treatment 
means and s.e.'s for the alfalfa experiment, where E. = 0.1362 and 
E, = 0.0280 denote the main- and sub-plot Error mean squares. 
The S.e. ±O.0683, which is derived from E" is the basis for computing the 
s.e. for comparisons that are part of the Variety-Date interactions and for 
comparisons among dates for a single variety or a group of the varieties. 
The s.e. ±0.0753 for varietal means is derived from E.. Some compari­
sons, for example those among varieties for Date A, require a standard 
error that involves both E. and E" as described in (8). 

Formally, the sub-plot error S.S. (45 df.) is the combined S.S. for the 
DT interactions (15 d!) and the DMT interactions (30 df). Often, it is 
more realistic to regard Blocks as a random component rather than as a 
fixed component. In this case, the error for ~ testing T is the DT mean 
square, while that for testing MTis the DMTmean square, if the two mean 
squares appear to differ. 

Experimenters sometimes split the sub-plots and even the sub-sub­
plots. The statistical methods are a natural extension of those given here. 
If T" T" T, denote the sets of treatments at three levels, the set T, are 
tested against the main-plot Error mean square, T, and the T, T, interac-



374 C,"",Ier 12: Factorial Experimellls 

lions against the sub-plot error. and T,. T,T,. T2T,. and T,T,T, against 
the sub-sub-plot error. For missing data see (8. 14). 

EXAMPLE 12.12.I-A split-split-plot experiment on com was conducted to try 3 rates 
of planting (stands) with 3 levels of fertilizer in irrigated and Don-irrigated plots (21). The 
design was randoinized blocks with 4 replications. The main plots carried the irrigation 
treatments. On each there were sub--plots with 3 stands. 10,000, 13,000, and 16,000 plants 
per acre. Finally, each su})..plot was divided into 3 parts respectively fertilized with 60,120, 
and 180 pounds of nitrogen. The yields are in bushels per acre. Calculate the analysis of 
variance. 

Blocks 

1 2 3 4 

Not Irrip"'" Stood 1 Fertilizer 1 90 83 85 86 
2 95 80 88 78 
3 107 95 88 89 

2 1 92 98 112 79 
2 89 98 104 86 
3 92 106 91 87 

3 1 81 74 82 85 
2 92 81 78 89 
3 93 74 94 83 

Irripled 1 1 80 102 60 73 
2 87 109 104 114 
3 100 105 114 114 

2 1 121 99 90 109 
2 110 94 118 131 
3 119 123 113 126 

3 1 78 136 119 116 
2 

\ 

98 133 122 136 
.... 3 122 132 136 133 

Source of Variation Degrees of Freedom Mean Square 

Main Plots: 
Blocks 3 
Irrigation, I 1 8.277.56 
Error (a) 3 470.59 

Sub-plots: 
Stand, S 2 879.18 
IS 2 1.373.51· 
Error (b) 12 232.33 

Sub-sub-plots: 
Fertilizer, F 2 988.72 
IF 2 476.72" 
SF 4 76.22 
ISF 4 58.68 
Error (c) 36 86.36 
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EXAMPLE 12.12.2~Attention is attracted to the two siRnitkant interactions,lS Ilnd 
IF. Now, 15Fis less than error. This means that the IS interaction is much the same at all 
levels of F; or, aHemalively, that the IF interaction is similar at an levels of S. Hence, each 
2-way table gives information. 

Not Irrigated 
Irrigated 

F, 

1,041 
1,183 

F, 

1,058 
1,356 

F, 

1,099 
1,437 

S, 

1,064 
1,162 

S, 

1,134 
1,353 

S, 

1,006 
1,461 

Neither fertilizer nor stand affected. yield materially on the non-irrigated plots. With 
irrigation. the effect of each was pronounced. So it is necessary to examine separattly the 
split-plot experiment on the irrigated plots. Verify the following mean squares: 

Stand: 
Linear 1 3.725" 
Deviations 1 96 
Error (a) 6 316 

Fertilizer: 
Linear 1 2.688·· 
Deviations 1 118 

SF 4 92 
Error (b) 18 137 

EXAMPLE 12.12.3-Notice that the planting and fertilizer rates were wen chosen for 
the unirrigated plots, but on the irrigated plots they were too low to allow any evaluation 
of the optima. This suggests that irrigation should not be a factor in such experiments. 
But in order to compare costs and returns over a number of years, two experiments (one with 
and one without irrigation) should be randomly interplanted to control fertility differences. 

12.13--Serles .if experimdds. A series of experiments may extend 
over several places or over several years or both. In a number of COUn· 
tries in which the supply of food is deficient, such series have been under· 
taken in recent years on fanners' fields in order to estimate the amount 
by which the production of food grains can be increased by greater use of 
fertilizers. 

Every series of experiments presents a unique .problem for the ex· 
perimenter and the statistician, both in planning and analysis. Good 
presentations of the difficulties involved are in (15, 16, 17, 18), with illus­
trations of the analysis. The methods given in this book should enable 
the reader to follow the references cit~d. Only a brief introduction to the 
analysis for experiments conducted at a number of places will be given 
here. 

We suppose that the experiments are all of the same size and structure, 
and that the places can be regarded as a random sample of the region about 
which inferences are to be made. For many reasons, a strictly random 
sample of places is difficult to achieve in practice: insofar as the sample 
is unrepresentative, inferences drawn from the analysis are vulnerable to 
bias . 

. In the simplest case, the important terms in a combined analysis of 
vanance are: 
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Treatments 
Treatments x Places 
Pooled experimental errors 

The Treatments x Places mean square is tested against the pooled error 
(average of the Error mean squares in the individual experiments). If F 
is materially greater than I, indicating that treatment effects change from 
place to place, the Treatments mean square is tested against the Treat­
ments x Places mean square, which becomes the basic error term for 
drawing conclusions about the average effects of treatments over the 
region. 

Two complications occur. The experimental error variances often 
diffp-r from place to place. This can be checked by Bartlett's test for 
homogeneity of variance. If variances are heterogeneous, the F-test of 
the Treatments x Places interactions is not strictly valid, but an adjusted 
form of the test serves as an adequate approximation (IS, 17). If com­
parisons are being made over a subset of the places, as suggested later, 
the pooled error for these places should be used instead of the overall 
pooled error. 

Secondly, the Treatments x Places interactions may not be homo­
geneous, especially in a factorial experiment. Some factors may give 
stable responses from place to place, while others are more erratic in their 
performance. If the Treatments mean square has been subdivided into 
sets of comparisons, the Interactions mean square for each set should be 
computed and tested separately. 

The preceding approach is appropriate where the objective is to 
reach a single set of conclusions that apply to the whole region. Some­
times there is reason to expect that the relative performances of the treat­
ments will vary with the soil type, with climatic conditions within the 
region, or with other characteristics of the places. The series may have 
been planned so as to examine such differences, leading perhaps to dif­
ferenl recommendations for different parts of the region. In the analysis, 
the places then subdivide into a number of sets. The Treatments x Places 
interactions are separated into 

Treatments x Sets 
Treatments x Places within sets 

If the Treatments x Sets mean square is substantially larger than Treat­
ments x Places within sets, it is usually advisable to examine the results 
separately for each set. 

The following examples illustrate the preliminary steps in the analy­
sis of one series of experiments. 

EXAMPLE 12.13.1-Tbe foUowing data illustrate a series of experiments over five 
places (21). four freated lots of 100 Mukden soybean seeds, together with one lot untreated, 
were planted in 5 randomized blocks at eacb participating station. The total numbers of 
emerging plants (from 500 seeds) arc shown for the 5 locations. Also shown art the analyses 
of variance at the several stations. 
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NUlOII!Il Of EMERGING PL.,\NTS (300 Sm!Ds) IN FIvE Ptors. CooPERATIVE SEJ5D 
'fIl£. ... lMEJrrlT litlltJ..S WITH MUKDEN SoYBEANS, 1943 

Location UD_ted A ...... SpergoD Scmcsan, If. Fermate Total 

Micbigan J6() 356 362 350 373 1.801 
Minnesota 302 354 349 332 332 1.669 
Wisconsin 408 <IIl7 391 391 409 2.()(16 

Virgioia 244 267 293 235 278 1.317 
Rhode Island 373 387 406 394 375 1.935 

-
Total 1.687 1.711 1.801 1.702 1.767 8.728 

Mean Squares From Original Analyses ofVarianct 

Location 
Sourceo! Degrees of 
Variation Freedom Michigan Minnesota Wisconsin Virginia Rhode Island 

Treatments 4 14.44 82.84· 17.44 114.26' 37.50 
Blocks 4 185.14 54.64 5.64 70.76 4.80 
Error 16 42.29 26.67 30.64 26.34 13.05 

Test the hypothesis of homogeneity of error variance. AlII. Corrected Xl _ 5.22. dj. = 4. 

EXAMPLE 12.I3.2-For the entire soybean data, awya the variance as (ollC?ws: 

Source of Variation Degrees of Freedom Sum of Squares M_nSquare 

Treatments 4 380.29 95.07 
Locations 4 11.852.61 2.963.15 
Interaction 16 685.63 42.85 
Blocks in Locations 20 1.283.92 ..... 
Experimental Error 80 2.223.68 27.80 

Blocks and Experimental Error are pooled values from the analyses of the five places. 

EXAMPLE 12.13.3-I5Olate the sum of squares for the planned comparison. Un­
treated vs. Average of the four Treatments. Ans. 111.70, F = 4.01, F.05 = 4.49. 

12.14-Experiments with perennial crops. When a perennial crop is 
investigated over a number of years, the yields from the same plot in suc­
cessive years are usually correlated. The experimental error in one season 
is not independent of that in another season. 

In comparing the overall yields of the treatments. this difficulty is 
overcome by first findingfor each plot the total yield over all years. These 
totals are analyzed by the method appropriate to the design that was used. 
This method provides.a valid error for testing the overall treatment effects. 

For illustration. the data in table 12.14.1 are taken from an experi­
ment by Haber (19) to compare the effects of various cUlting treatments on 
asparagus. Planting was in 1927 and CUlling began in 1929. One plot 
in each block was cut until June I in each year. others to June 15, July I. 
and July 15. The yields are for the four succeeding years_ 1930. 1931. 
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1932, and 1933. The yields are the weights cut to June I in every plot, 
irrespective of later cuttings in some of thern. This weight is a measure 
of vigor, and the objective is to compare the relative effectiveness of the 
different harvesting plans. 

A glance at the four-year totals (5,706; 5,166; 4,653; 3,075) leaves 
!it.tle doubt that prolonged cutting decreased the vigor. The cutting totals 
were separated into linear, quadratic, and cubic compnnents of the regres-

TABLE 12.14.1 
WEIGHT (OUNcEs) OF AsPARAGUS CUT BEFORE JUNE 1 FROM PLoTs WITH 

V AIlIOUS ClrrnNo TREATMENTS 

Cutting Ceased 
Blocks Year June I June IS July 1 July 15 Total 

1 1930 230 212 183 148 773 
1931 324 415 320 246 1,305 
1932 512 584 456 304 l,g56 
1933 399 386 255 144 1,184 

-- -- -- - --
1,465 1,597 1,214 842 5,118 

2 1930 216 190 186 126 718 
1931 317 296 295 201 1,109 
1932 448 471 387 289 1,595 
1933 361 280 187 83 911 

-- -- -- - --
1,342 1,237 1,055 699 4,333 

3 1930 219 151 177 107 654 
1931 357 278 298 192 1,125 
1932 496 399 427 271 1,593 
1933 344 254 239 90 927 

-- -- -- - --
1,416 1,082 1,141 660 4,299 

4 1930 200 150 209 168 727 
1931 362 336 328 226 1,252 
1932 540 485 462 312 1,799 

- 1933 381 279 244 168 1,072 
-- ---_ -- - --
1,483 1,250 1,243 874 4,850 

Total 5,706 5,166 4,653 3,075 18,600 

Degrees offreedom Sum of Squares Mean Square 

BJoc\:s 3 30,170 
Cuttings: (3) (241,377) 

Linear 1 220,815" 
Qua4.ratic I 16,835* 
Cubic I 3,727 

Error 9 2,429 
_. 
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sion on duration of cutting. The significant quadratic component indi­
cates that the yields falloff more and more rapidly as the severity of 
cutting increases. 

Such experiments also contain information about the constancy of 
treatment differences from year to year, as indicated by the Treatments x 
Years interactions. Often it is useful to compute on each plot the linear 
regression of yield on years, multiplying the yields in the four years by 
- 3, - I, + I, + 3 and adding. These linear regressions (with an appro­
priate divisor) measure the average rate of improvement of yield from 
year to year. An analysis of the linear regressions for the asparagus data 
appears in table 12.14.2. From the totals for each treatment it is evident 
that the improvement in yield per year is greatest for the June I cutting, 
and declines steadily with increased severity of cutting, the July 15 cutting 
showing only a modest total, 119. 

TABLE 12.14.2 
ANALYSIS OF THE LINEAIl REoJU!SSION OIl YIIILD ON YEARS 

Cutting Ceased 
Blocks June I June 15 July I July 15 Total 

I 695· 691 352 46 1,784 
2 S66 445 95 -41 1,065 
3 514 430 315 28 1,287 
4 721 536 239 86 1,582 

Total 2,496 2,102 1,001 119 5,718 

Degrees of Freedom Sum of Squares Mean Square 

Blocks 3 3,776 
Cuttings: (3) 43,633 14,544·· 

Linear I 42,354" 
Quadratic '[ 1 744 
Cubic 1 536 

Error 9 2,236 248 

• 695 - 3(399) + 512 - 324 - 3(230), from table 12.14.1. 

In the analysis of variance of these linear regression terms, the sum 
of squares between cuttings has been subdivided into its linear, quadratic, 
and cubic regression on duration. Only the linear term was strongly 
significant. Evidently, each additional two weeks of cutting produced 
about the same decrease in the annual rate of improvement of yield. 

In this analysis of variance an extra divisor 20 = 32 + 12 + 12 + 32 

was applied to each sum of squares, in order that the mean squares refer 
to a single observation. Can you explain why the Error mean square, 248, 
is so much smaller than the Error mean square for the four-year totals, 
2,429? Features of this experiment have been discussed by Snedecor 
and Haber (19, 20). 
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* CHAPTER THIRTEfN 

Multiple regressIOn 

13.I-Introduction. The regression of Yon a single independent vari­
able (chapter 6) is often inadequate. Two or more X's may be available 
to give additional information about Y by means of a multiple regression 
on the X's. Among the principal uses of multiple regression are: 

(I) Constructing an equation in the X's that gives the best prediction 
of the values of Y. 

(2) When there are many X's, finding the subset that gives the best 
linear prediction equation. In predicting future weather conditions at an 
airport, there may be as many as 50 available X-variables, which measure 
different aspects of the present weather pattern at neighboring weather 
stations. A prediction equation with 50 variables is unwieldy, and is un­
wise if many of the X-variables contribute nothing to improved accuracy, 
in the prediction. An equation hased on the best three or four variables 
might be a wise choice. 

(3) In some studies the objective is not prediction, but instead to 
discover which variables are related to Y, and, if possible, to rate the 
variables in order of their importance. . "-

Multiple regression is a complex subject. The calculations become 
lengthy when there are numerous X-variables, and it is hard to avoid mis­
takes in computation. Standard electronic computer programs, now be­
coming more readily available, are a major help. Equally important is 
an understanding of what a multiple regression equation means and what 
it does not mean. Fortunately, much can be learned about the basis of 
the computations and the pitfalls in interpretation by study of a regression 
on two X-variables, which will be considered in succeeding sections before 
proceeding to three or more X-variables. 

13.2-Two independent variables. With only one X-variable, the 
sample values of Y and X could be plotted as in figures 6.2.1 and 6.4.1, 
which show both the regression line and the distributions of the inaividual 
values of Yabout the line. But if Y depends partly on X, and partly on 
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X, for its value, solid geometry instead of plane is required, Anyobserva­
tion now involves three numbers-the values of Y, X" and X" The pair 
(XI' X,) can be represented by a point on graph paper. The values of Y 
corresponding to this point are on a vertical axis perpendicular to the 
graph paper. In the population these values of Y form a frequency dis­
tribution, so we must try to envisage a frequency distribution of Yon 
each vertical axis. Each frequency distribution has a mean-the mean 
value of Yfor specified X" X,. The surface determined by these means is 
the regression surface. In this chapter the surface is a plane, since only 
linear regressions on X, and X, are being studied. 

The popUlation regression plane is written 

YR = 11. + p,X, + p,X
" where Y. denotes the mean value of the frequency distribution of Y for 

specified X" X,. In mathematical notation, Y. = E(YIX" X,). 
What does PI measure? Suppose that the value of X, increases by 1 

unit. while the value of X, remains unchanged. Y. becomes 

YR' = 11. + p,X, + p, + p,X, = YR + p, 
Thus, PI measures the average or expected change in Y when Xl increases 
by 1 unit, X, remaining unchanged. For this reason P, is called the partial 
regreSSion coefficient of Yon X,. Some writers use a more explanatory 
symbol P"., for p" the subscript'2 being a reminder that X, also ap­
pears in the regression equation. 

For given X" X" the individual values of Yvary about the regression 
plane in a normal distribution with mean 0 and variance a2 , sometimes 
denoted by O'y.,,'. Hence. the model is 

Y = 11. + p,X, + p,X, + e, e = %(0,0') (13.2.1) 

Given a sample of n values o(,J Y, X" X,) the sample regression-the pre­
diction equation-is 

(13.2.2) 

The values of a, b,. and b, are chosen so as to minimize E(Y - fj2, the 
sum of squares of the n differences between the actual and the predicted 
Y values. With our model, theory shows that the resulting estimates a, 
b" b" and Y are unbiased and have the smallest standard errors of any 
unbiased estimates that are linear expressions in the Y's. The value of 
a is given by the equation 

(13.2.3) 

By substitution for a in (13.2.2) the fitted regression can be written 

Y = Y + b,x, + b,x" 

where x I = X, - X\, as usual. 

(13.2.4) 



383 

The b's satisfy the normal equations: 

b,"l:x,' + b,"l:x,x, = "l:x,y (13.2.5) 
b,"l:x,x, + b,"l:x/ = "l:X,y (13.2.6) 

Solution of these equations by standard algebraic methods leads (0 the 
formulas : 

and 

where 

b, = ("l:x/)("l:x,y) - ("l:X,X,)("l:X,y) 
D 

b, = CEx/)(I:x,y) - (I:X,X,)(I:X,y), 
D 

(13.2.1) 

(13.2.8) 

(13.2.9) 

The illustration (table 13.2.1) is taken from an investigation (I) of 
the source from which corn plants in various Iowa soils obtain their 
phosphorus. The concentrations of inorganic (X,) and organic (X,) 
phosphorus in the soils were determined chemically. The phosphorus 
content Y of corn grown in the soils was also measured. 

The familiar calculations under the table give the sample means and 
the sums of squares and products of deviations from the means. Substi­
tution in (13.2.7) to (13.2.9) gives 

D = (1,752.96)(3,155.78) - (1,085.61)' = 4,353,400 

h, = (3,155.78)(3,231.48) - (1,085.61)(2,216.44) 1.1898 
4,353,400 

b, = (1,752.96)(2,216.44) - (1,085.61)(3,231.48) = 0.0866 
4,353,400 , 

From (13.2.3), a is given by 

a = 81.28 - (1.7898)(11.94) - (0.0866)(42.11) = 56.26 

The multiple regression equation becomes 

Y = 56.26 + 1.7898X, + 0.OS66X, (13.2.10) 

The meaning is this: For each additional part per million of inorganic 
phosphorus in the soil at the beginlling of the growing season, the phos­
phorus in the corn increased by 1.7898 ppm, as against 0.0866 ppm for 
each additional ppm of organic phosphorus. The suggestion is that the 
inorganiC phosphorus in the soil was the chief source of plant-available 
phosphorus. This deduction needs further consideration (sections 13.3 
and 13.5). 
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TABLE 13.2.1 
INORGANIC PHOSPHORUS Xl' ORGANIC PHOSPHORUS Xl' AND EsTIMATED PLANTrAVAtLABLE 

PHOSPHORUS YIN JB IOWA SoILS AT 20" C. (PARTS PER. MrLLloN) 

Soil Sample X, X, Y l' Y-1' 

I 0.4 53 64 61.6- 2.4· 
2 0.4 23 60 59.0 1.0 
3 3.1 19 71 63.4 7.6 
4 0.6 34 61 60.3 0.7 
5 4.7 24 54 66.7 -12.7 
6 1.7 65 77 64.9 12.1 
7 9.4 44 81 76.9 4.1 
8 10.1 31 93 77.0 16.0 
9 11.6 29 93 79.6 13.4 

10 12.6 5& 51 83.& -32.8 
II 10.9 37 76 79.0 - 3.0 
12 23.1 46 % 101.6 - 5.6 
13 23.1 50 77 101.9 -24.9 
14 21.6 44 93 98.7 - 5.7 
15 23.1 56 95 102.4 - 7.4 
16 1.9 36 54 62.& - 8.8 
17 26.8 58 168 109.2 58.& 
i8 29.9 51 99 114.2 -15.2 

Sum 2i5.0 758 1,463 1,463.0 0.0 

Mean. 11.94 42.11 81.28 

I. X! z "'" 4,321.02 :EX,X, = 10,139.50 IX1Y"", 20,706.20 

c= 2,568.06 c= 9.053.89 c= 17,474.72 

I:x1
1 = 1,752.% EXjXl = 1.085.61 Ix1y,= 3,231.48 

:EX,' = 35,076.00 :EX, Y = 63.825.00 :EY' = 131,299.00 
C = 31,920.22 C = 61,608.56 C = 118,909.39 

Lxl= 3,155.78 :Ex,y '" 2,216.44 I,yl "" 12,389.61 

'to The number of significant digits retained in the preceding calculations will affect these 
columns by iO.l or iO.2. 

From the filled regression (equation 13.2.10), the predicted value f 
can be estimated for each soil sample in table 13.2.1 For example, for 
soil I, 

Y = 56.26 + 1.7898{O.4) + 0.0866(53) = 61.6 ppm 

The observed value Y = 64 ppm deviates by 64 - 61.6 = + 2.4 ppm from 
the estimated regression value. The 18 values of t are recorded in table 
13.2.1. The deviations Y - t are in the final column; they measure the 
failure of the X's to predict Y. 

The investigator now has the opportunity to examine the deviations 
from regression. In part they might be associated with other variables not 
included in the study. Or some explanation might be found for certain 
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deviations-<lspecially the larger ones. Such explanation might be a valu· 
able finding of the analysis, providing clues for further experimentation, 
or it might lead to the rejection of one or more observations and to a 
recalculation of the regression. In the present example the results for soil 
17 immediately strike the eye. This soil has much the highest value of Y, 
168. Before the regression was calculated, this value might not seem neces· 
sarily out of line (though it should be verified from the records), because 
soil 17 has the second highest value of both types of soil phosphorus, 
which could account for the high plant phosphorus. But this soil also has 
the highest deviation Y - f. = + 58.8. A test of this deviation will be 
presented in section 13.5. 

A check on the linearity of the regression is made by plotting two 
scatter diagrams. First, plot the deviations Y - f against X., then plot 
the same deviations against X,. If the regression is markedly non·linear 
in one of the %'s, a curve instead of a horizontal straight line should be 
detectable in the corresponding graph. For curved multiple regression, 
see example 15.5.1. 

13.3-The deviations mean squar~ and the F ·test. In the multiple 
regression model, tbe deviations of the Y's from the population regression 
plane have mean 0 and variance (12 An unbiased estimate of (1' is 
s' = ':!;( Y - f)'/(n - k),where n is the size of sample and kis the number 
of parameters that have been estimated in fitting the regression. In the 
example n = 18 with 3 parameters~, {iI' {i" giving n - k = 15. 

Th. deviations sum of squares I:( Y - f)' can be computed in tWJ) 
ways. If the individual deviations have been tabulated as in the last 
column of table 13.2.1, their sum of squares is run up directly, giving 
:!;(Y _ f)' = 6,414.5. 

In practice a quicker method, based on an algebraic identity, is used. 
From equation (13.2.4) we had 

f = Y + blxl + b,x, 

Since the sample means of XI and x, are both zero, the sample mean of 
the fitted values f is Y. Write p = f - 'I' and d = Y - Y, so that d 
represents the observed deviation of Y from the fitted regression at this 
point. It follows that 

y = Y - 'I' = (f - '1') + (Y - f) = P + d. (13.3.1) 

Two important results, proved later in this section, are. first, 

(13.3.2) 

This result states that the sum of squares of deviations of the Y's from their 
mean splits into two parts: (i) the sum of squares of deviations of the 
fitted values from their mean, and (ii) the sum of squares of deviations 
from the fitted values. The sum of squares :!;p' is appropriately called 
"the sum of squares due to regression." In geometrical treatments of 
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mUltiple regression, the relation (equation 13.3.2) may be shown to be 
an extension of Pythagoras' theorem to more than two dimensions. 

The second result, of more immediate interest, is: 

S.S. due to regression = :EP' = b,:Ex,y + b,:Ex,y (13.3.3) 

Hence, the sum of squares of deviations from the regression may be ob­
tained by subtracting from :Ey' the sum of products of the b's with the 
right sides of the corresponding normal equations. For the example we 
have, 

:EjI' = (1.7898)(3,231.48) + (0.0866)(2,216.44) = 5,975.6 

The value of :Ed' is then 

:Ed' = :Ey' - :EP' = 12,389.6 - 5,975.6 = 6,414.0 

Besides being quicker, this method is less subject to rounding errors than 
the direct method. Agreement of the two methods is an excellent check 
on the regression computations. 

The mean square of the deviations is 6,414.0(15 = 427.6, with 15 df 
The corresponding standard error, ./427.6 = 20.7, provides a measure 
of how closely the.regression fits the data. If the purpose is to find a more 
accurate method of predicting Y, the size of this standard error is of 
primary imparlance. For instance, if current methods of predicting some 
critical temperature can do this with a standard error of 3.2 degrees, while 
a multiple regression gives a standard error of 4.7 degrees, it is obvious 
that the regression is no improvement on the current methods, though it 
might, after further study, be useful in conjunction with the current 
methods. 

Sometimes the object of the regression analysis is to understand why 
Yvaries, where the X's measure variables that are thought to influence Y 
through some causal mechanism. For instance. r might represent the 
yields of a crop grown on the same field for a number of years under uni­
form husbandry, while the X's measure aspects of weather or insect in­
festation that influence crop yields (2). In such cases, it is useful to com­
pare the Deviations mean square, :Ed' (n - k), with the original mean 
square of Y, namely 1:y' J(n - 1). In our example the Deviations mean 
square is 427.6, while the original mean sq4are is 12.389.61/17 = 728.8. 

The ratio, 427.6(728.8 = 0.59, estimates the fraction of the variance 
of Y that is not attributable to the multiple regression, While its comple­
ment, 0.41, estimates the fraction that is "explained" by the X-variables. 
Even if the regression coefficients are clearly statistically significant. it i5 
not uncommon to find that the fraction of the variance of Yattributable 
to the regression is much less than 1/2. This indicates that most of the 
variation in Y must be due to variables not included in the regression. 

In some studies the investigator is not at all confident initially that 
any of the Ks are related to Y. In this event an F-test of the null hypothesis 
PI = p, = 0 is helpful. The test is made from the analysis of variance in 
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TABLE 13.3.1 
ANALYSIS OF V AJUANCE OF PHOSPHOJlUS DATA 

Degrees of 
Source of Variation Freedom Sum of Squares Mean Square F 

Regression 2 l:P' - 5.975.6 2.987.8 6.99" 
Deviations 15 I.d 2 = 6.414.0 427.6 

Total 17 l:y' - 12.389.6 728.8 

table 13.3.1. F is the ratio of the mean square due to regression to the 
Deviations mean square. 

The F-value, 6.99. with 2 and 15 dJ, is significant at the 1% level 
By an extension of this analysis, tests of significance of the individua 

b's can be made. We have (from table 13.2.1) 

I:x l y=3,231.48: I:x I
2=I,752.96: I:x2Y=2,216.44: Lt/=3,155.78 

If we had fitted a regression of Y on Xl alone, the regression coefficient 
would be by! = 3,231.48/1,752.96 = 1.8434. The reduction in sum of 
squares due to this regression would be (l:x IY )2/l:x " = (3,231.48)2/ 
(1,752.96) = 5,957.0, with I dJ When both Xl and X2 were included iQ 
the regression, the reduction in sum of squares was 5,975.6, with 2 dJ 
(table 13.3.1). The difference, 5,975.6 - 5,957.0 = 18.6, with I dJ, mea­
sures the additional reduction due to the inclusion of X2 , given that Xl 
is already present, or in other words the unique contribution of X2 to 
the regression. The null hypothesis P2 = 0 is tested by computing 
F = 18.6/427.6 = 0.04, with I and 15 dJ, where 427.6 is the deviations 
mean square. The test is shown in table 13.3.2. Since Fis small, die null 
hypothesis is not rejected. 

Similarly, the null hypothesis PI = 0 is tested by finding the addi­
tional reduction in sum of squares due to the inclusion of Xl in the regres-

TABLE 13.3.2 ' 
TEST OF EACH X AfTER THE EFFECT OF THE OTHER H"AS BEEN REMOVED 

Degrees. of 
Source of Variation Freedom 

Deviations 

2S 

2 
I 

2 
I 

15 

Sum of Squares 

l:P' - 5,975.6 
(I:Xty)2/Ixll "'" 5,957.0 

18.6 

l:P' - 5.975.6 
(I.XJ.')2jI:X/ = 1.556.7 

4.418.9 

6.414.0 

Mean 
Square 

18.6 

4.418.9 

427.6 

F 

0.04 
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sion after X, has already been included (table 13.3.2). In this case 
F= 10.30 is·significant at the l~~ level. 

This method of testing a partial regression coefficient may appear 
Mrange at first, but is very general. If fl. = 0 when there are k X-variables, 
this means that the true model contains only Xl ... XIt _ l' We fit a regres~ 
sion on Xl'" X ... - 1 • obtaining the reduction in sum of squares, R1 - 1 , 

Then we fit a regression on X, ... X.' obtaining the reduction R.. If 
fl, = 0, it can be proved that (R. - R,_ 1) is simply an estimate of 17'. so 
that F = (R. - R._ 1 )!s' should be about 1. If. however. fl, is not zero. 
the inclusion of X, improves the fit and (R. - R._,) tends to become 
large, so that F tends to become large. Later. we shall see that the same 
test can be made as a (-test of ble • 

Incidentally, it is worth comparing b" = 1.8434 with the value 
b, = bYl ., = 1.7898 obtained when X, is included in the regression. Two 
points are important. The value of the regression coefficient has changed. 
In multiple regression, the value of any regression coefficient depends on 
the other variables included in the regression. Statements made about 
the size of a regression coefficient are not unique, being conditional on 
these other variables. Secondly, in this case the change is small-this 
gives some assurance that this regression coefficient is stable. With Xz. 
we have. btl = 2.216.44/3.155.78 = 0.7023, much larger than b, = bYl " 

=0.0866. 
The remainder of this section is devoted to proofs of the basic results 

(13.3.2) and (13.3.3). Recall that 

P ~ l' - Y = b ,x , + b,x, : y = .v + d 
d = y - b,x , - b,x, 

Start with the normal equations: 

bILX , ' + b,l:x ,x, = LX ,y 
··.,],,1:X ,X, + b,LX,' = LX,y 

These may be rewritten in the form 

LX ,(y - b,x , - b,x,) = Lx,d = 0 (13.3.4) 

(I3.3.5) 

These results show that the deviations d have zero sample correla­
tions with any X-variable. This is not surprising. since d represents the 
part of Y that is not linearly related either to X, or to X,. 

Multiply (13.3.4) by b, and (13.3.5) by b, and add. Then 

Now 

LY' = l:(P + d)' = LY' + 2l:Pd + r.d' 
= r._y' + r.d' 

(13.3.6) 
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using (13.3.6). This proves the first result (13.3.2). To obtain the second 
result, we have 

1:.p2 = 1:.(b,x, + b2x,)2 

= b,'1:.x,' + 2b,b,1:.x,x2 + b/1:.x,' 

Reverting to the normal equations, multiply the first one by b
" 

the second 
by b, and add. This gives 

b,'1:.x,' + 2b,b,LX,X, + b/LX,' = b,1:.x,y + b,1:.x,y 

This establishes (13.3.3); the shortcut method of computing the reduction 
1:.P' in S.S. due to regression. 

EXAMPLE 13.3.1~Here is a set often triplets for easy computation. 

X, X, Y X, X, Y 

29 2 22 16 1 12 
1 4 26 26 1 13 
5 3 23 IS 4 30 

27 1 11 6 2 12 
25 3 25 10 3 26 

I Sums 160 24 200 

(i) Calculate the regression, f = D.241XI + 6.829X2 - 0.239 
(ii) Predict the value of Y for the fourth member of the sample. (Xl = 27, X2 = 1). 

Am. 13.07. 

EXAMPLE 13.3.2-10 the preceding example, compute the total S.S. of Y and the 
S.S. due to regression. Hence, find the sum of squares of deviations. Ans. 35.0. 

EXAMPLE 13.3.3-Show that after allowing for the effects of the other variable. both 
XI and X2 have a significant relation with Y. 

EXAMPLE 13.3.4-Note that when X, is fined ;done, the regressjon coefficient is 
nesallve; i.e., Y tends to decrease as Xl increases. Wben X2 is included. tbe coefficient bl be· 
comes significantly positive. From the normal equations the following relation may be 
proved: 

bY!'l = by! - bYl'lb;~-"'" 
where b2 J =- l:.x I x ~r.x 12 is the regression of Xl on Xl' If by2 · 1 is positive and bl1 is nega­
tive, as in this example, the term - hn .,b21 is positive. If this term is large enough it can 
chanlea negativeb rt into a positive by 1'2' 

13.4--Altematlve method of calculation, The inverse matrix. For 
many purposes, including the construction of confidence intervals for the 
p's and the making of comparisons among the b's, some additional quan­
tities must be computed. If it is known that these will be needed, the 
calculations given in preceding sections are usually altered slightly, as will 
be described. 

On the left side of the normal equations, the quantities 1:.x,', LX,X" 
and 1:.x,' appear. The array 
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(
l:X/ ~X1X2)' 
LX t X 2 Ex/ 

is called a matrix with 2 rows and 2 columns-tbe matrix of sums of 
squares and products. Mathematicians have defined the invt'fse of this 
matrix, this being an extension to two dimensions of the concept of the 
reciprocal of a number. The in verse is also a 2 x J matrix: 

(

' ell C 12) 
e21 ,ell 

The elements 0ij, called also the Gauss multipliers, are found by solving 
two sets of equations 

First Set Second Set 

CII I: X I
1 + c 12 I:x 1X 2 = 1 C21LX12 + C22LXtX2 = 0 

C l1 LX J X 2 + G' 12:rX/ = 0 C21l:X,X2 + cuI:x/ = I 

The left side of each set is the same as that of tbe normal equations, The 
right sides have 1 0, or 0, L respectively, The first set give C

" 

and "", 
the second set c" and e22' It is easy to sbow that c" : "", 

In the). x 2 case the solutions are: 

ell: r.x,'/D: 12 = Cli : -I:x,x,/D : e" = Lx,'/D, 

where, as before, 
D: (r.x,')(Lx,') - (Lx,x,)' 

Note that the numerator of C II is 1:..'( 2. 
2

, nol LX 12. Note also the negative 
sign in c12 . 

In the example, the matrix of sums of squares and products was 

(
1,752,96 1.085,61) 
1,085,61 3,155,78 

with D = 4,353,400, This gives 

c" = 3,155,78/4,353,400 =, 0,0007249 
c" = - I,085M/4,353,400 = -0,0002494 
e" = 1,752,96/4,353.400 = 0,()004027 

From the e's, the b's are obtained as the sums of products of the c's 
with the right sides of the normal equations, as follows: 

b) = CIIl:X,y + c1itx 2y 
= (0,0007249)(3,231,48) + (-0,0002494)(2,216,44) = L7897 (13,4, I) 

bz = '1ILX1Y + CU I. X 2Y 
= (_ 0,0002494)(3,231.48) + (0,0004027)(2,216,44) = 0,0866 (13,42) 

The main reason for finding the c's is that they provide the variances 
and the covariance of the b's, The formulas are: 
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where a 2 is the variance of the residuals of Y from the regression plane. 
To summarize. if the c's are wanted. they are computed first from the 

normal equations; then the b's are computed from the c's as above. The 
deviations sum of squares and the analysis of variance follow as in sec­
tion 13.3. Some uses of the c's are presented in the next section. 

EXAMPLE 1~.4.1 To prov!! the rdations hI = c1lI.X1Y + (12Ix2Y ; b2 = ('HI:xty 
+ cnL'2Y' use these relations (0 substitute for hI and hl in terms of the c's in the left side 
of the first normal equation. Then show. by the first equation satisfied by the c's in each set. 
that this left side equals LX lY' Similarly, you can show that the left side of the second 
normal equation equals l:x 2y. This proves that the h's computed as above are solutions of 
the normal equations. 

EXAMPLE 13.4.2 -Show (I) that hi and f?i have zero correlation only if';z lX2 == 0: 
(ii) thaI. in this event. the regression coefficient of Yon XI is the same whether X2 is included 
In the regression or no(. This IS the condition that holds for the main effects of each factor 
in a factorial experiment. 

13.5-Standard errors of estimates in muhiplt regression. 1 n section 
13.3 we found that the deviations mean square S' was 427.6 with 15 df. 
giving.f = 20.7. The standard errors of 6, and 6, are therefore 

s" = SJeIl = 20.7~OOO7249 = (20.7)(0.0269) = 0557 113.5.1) 

.Ib, = SJell = 20.7.jO.0004027 = (20.7)(0.0201) = 0.416 (13.5.2) 

It can be proved that the quantity (b, - P,)/s" is distributed as {with 
('1 - k) or 15 df The null hypothesis p, = 0 can be tested as usual: 

I, = b,/s" = 1.7898/0.557 = 3.21·· 
I, = b,/s" = 0.0866;0.416 = 0.21 

These I-tests are identical to the F-tests of the same hypotheses made in 
table 13.3.2. Note that (3.21)2 = 10.30 and (0.21)' = 0.04. Ihese being 
the two values of F found in table 13.3.2. 

Evidently in Ihe populalion of soils that were sampled the fraction 
of inorganic phosphorus is the better"predictor of the plant-available 
phosphorus. The experiment indicates "that soil organic phosphorus per 
se is not available to plants. Presumably. the organic phosphorus is of 
appreciable availability to plants only upon mil1eraJjzation~ and in the 
experiments the rate of mineralization at 20"e. was too low to be of mea­
surable importance." 

Confidence limits for any Pi are found as usual. For fJ" 95% limits are 

h, ± to.O,Sb, = 1.790 ± (2.131)(0.557) = 0.60 and 2.98 

Sometimes. comparisons among the hi are of interest. The standard 
error of any comparison "kL;h; is 

,J (2. ti 'C'i-i -+-=C2 'i.=t""'i t'-j-C,-'.,J (! .>.5.31 

For example. the slandard error of (b, - b,l is 



2c,,) = (20.7).JO.0007249 + 0.0004027 - 2( -0.00(2494) 
= (20. 7).Jl(j:ooJ. 6264j = 0.835 

When the regression is constructed for purposes of prediction, we 
wish to know how accurately f predicts the population mean of Y for 
specified values of X, and X,. Call tbis mean ". For instance, we might 
predict the average weight of II-year-old boys of specified height" X, and 
chest girth X,. The formula for the estimated standard error of f = {J is 

" = ,.J(I/n + c"x, + c"x7 + 2c 12x,x,) (13.5.4) 

Example: For the value of Yat the point X, = 4.7, X, = 24 (soil sample 
5 in table 13.2.1): x, = 4.7 - 11.9 = - 7.2, x, = 24 - 42.1 = - IS.I;.o 
the standard error of the estimate r is 

(20.7)"/(1/18 + (0.0007249)( _7.2)' + (0.0004027)( -18.1)' 
+ 2( -0.0002494)( -7.2)( -18.1)J = ±S.25 ppm 

Alternatively, f may be used to predict the value of Y for an indi­
vidual new member Y' of the population (that is, one not included in the 
regression calculations.) In this case, 

1 , " J, = s I + - + c"x, + C"X, + 2CllX , X, (13.5.5) 
n 

This result is subject to the assumption that the new member comes 
from the same population as the original data. Unless the predictions 
satisfy this condition, the standard error should be regarded as tentative. 
It will be too low if the passage of time or changes in the environment 
have changed the values of the Ws. If numerous predictions are being 
made, a direct check on their accuracy should be made whe!lever possible. 

Finally, the standard error of (Yj - f), where Yj is one of the ob­
servations from which the regression was computed, is (l.,/g, where 

(13.5.6) 

However, if the deviation (Yo - f) has aroused attention because it 
looks suspiciously large, we cannot apply a t-test of the form 
1= (Y, - Y)/s.,/g, for two reasons. The quantities (Y, - ?) and s are not 
independent, since (Y, - f)' is a part of the deviations S.S. Secondly, we 
must allow for the fact that (Y, - Y) was picked out because it looks large. 

A test can be made as follows. The quantity 

.,' = [I:(Y - ?)' - (Y, - p)'/g]/(n - k - I) 

can be shown to be the mean square of the deviations obtained if the 
suspect ~ is omi.tted when fitting the regression. If ~ were a randomly 
ch~sen observation. the quantity r' = (Y, - f)/s'.Jg would follow the 
,-dlstnbutlon WIth (n - k - I) dj: To make approximate allowance for 
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the fact that we selected the largest absolute deviation, we regard the 
deviation as significant at the 5% level if t' is significant at the level 0.05/11. 
(This may require reference to detailed tables (3) of I.) 

To illustrate, it was noted (section 13.2) that the deviation + SH.8 
for soil 17 is outstanding. The value of g i; found to be 0.SOO47, while 
I;(Y- 1')' is 6,414 (section 13.3) with IS df. Hence, 

s" = -L[6414 - (58~8l'] = (6,414 - 4,319)/14 = 150 
14' 0.80047 

t' = (58.8)/J(lSO)(O.80047) = 5,36 (14 df.) 

Since 0.05/18 = 0.0028, the question is whether a value of5.36 exceeds 
the 0.0028 level of I with 14 dI Appendix table A 4 shows that the 0.001 
level of I is 4.140. The deviation is clearly significant after allowance for 
the fact that it is the largest. If the regression is recomputed with soil 17 
excluded, the main conclusion is not altered. The value of h, drops to 
1.290 but remains significant, while b, becomes -0.111 (non-significant). 

EXAMPLE 13.5.1-ln the phosphorus data. set 95% confidence limits for /11 , Ans. 
-0.79 to 0.97 ppm. 

EXAMPLE \3.S.2-For a new soil having Xl = \4.6, X2 = 5\, predict the value of Y' 
and give the standard error of your prediction. Ans. f = 61.86. s.e. = ± ~ 1.5 ppm. usmg 
formula 13.5.5. 

EXAMPLE 13.5.3- If Y, is one of the obse{v~tions from which the regression was com­
puted. the variance of Y; ~ f is (formula 13,5.6), 

If this expression is added over all the n sample values, we get 

From the equations for the c's, show that the above equals al(n - 3). This is one way of 
seeing that 1:( Y - f)l has (n - 3) df. 

EXAMPLE 13.5.4-With soil 17 omitted. ~e have 

1:X1 = 188.2 

1:.\"",1 = 1,519.30; 

:Ex,y = 1,867.39; 

:EX1 = 700 

"I:X1x2 = 835.69; 

LX2Y = 757.47; 

l:Y~I,295 

:Ex/ = 2.888.47: 

l:y' ~ 4,426.48 

Solve the normal equations and verify that b l = 1.290. b2 = -0.111. deviations S.S. 
~ 2.101. 

13,6-The interpretation of regression coefticients, In the many areas 
of research in which controlled experiments are not practicable. multiple 
regression analyses are extensively used in attempts to disentangle and 
measure the effects of different X-variables on some response Y. There 
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are, however, important limitations on what can be learned from this 
technique in observational studies. While the discussion will be given 
for a regression on two X-variables. the conclusions apply also when there 
are more than two. The multiple linear regression model on which the 
analysis is based is 

Y=a+PIXI +p,X,+. (13.6.1) 

where the residuals. are assumed to be distributed. independently of the 
X's, with zero mean and variance u'. (The assumption of normality of 
the .'s is required for tests of significance, but not for the other standard 
properties of regression estimates.) We assume that the X's remain fixed 
in repeated sampling. 

In an observational study the investigator looks for some suitable 
source in which he can measure or record a sample of the triplets 
(XI' X" Y). He may try to select the pairs (XI' X,) according to some 
pian. for instance so as to ensure that both X's vary over a substantial 
range and that their correlation is not too high. though he is limited in this 
respect by what the available source can provide. 

Difficulty arises because he can never be sure that there are not other 
X-variables related to Y in the population sampled. These may be vari­
ables that he thmks are ummportant. variables that are not feasible to 
measure or record. or variables unknown to him. Consequently. instead 
of (13.6.1) the correct regression model is likely to be of the form 

Y = a + PIXI + p,X, + p,X, + ... + p,X, + • 
where X, ... X, represent these additional variables. and k may be fairly 
large. To keep the algebra simple we replace the additional terms in the 
model. p,X, + ... + P,X,. by a single term p,X" which stands for the 
joint effect of all the terms omitted from the two-variable model. Thus 
the correct model is 

Y = a + PIXI + p,X, + p,x, + .. (13.6.2) 
~ 

where. represents that part of Y that is distributed independently of 
XI' X" and X,. 

The investigator computes the sample regression of Yon X I and X 2 

as in preceding sections. obtaining the regression coefficients hi and b2 -

Under the correct model (13.6.2). it will be proved later that b l is an un­
biased estimate. not of P I, but of 

PI + p,b'I" (13.6.3) 

where b. i ., is the sample regression coefficient of X, on XI' after allowmg 
for the effects of X,. Clearly, b l may be either an overestimate or an 
underestimate of PI' Since the bias in b l depends on variables that have 
not been measured, it is hard to form a judgment about the amount of bias. 

For example. an investigator might try to estimate the effects of 
nitrogen and phosphorus fertilizers on the yield of a common farm 



395 

crop by taking a sample of farms. On each field he records the crop 
yield Yat the most recent harvest and the amounts XI' X, of Nand Pper 
acre applied in that field. If, however, substantial amounts of fertilizer 
are used mainly by the more competent farmers, the fields on which XI 
and X, have high values will, in general, have better soil, more potash 
fertilizer, superior drainage and tillage, more protection against insect 
and crop damage, and so on. If P.X. denotes the combined effect ofthese 
variables on yield, X. will be positively correlated with XI and X" so that 
b. I ., will be positive. Further, P. will be positive if these practices in­
crease yields. Thus the regression coefficients bl and b, will overestimate 
the increase in. yield caused by additional amounts of Nand P. This type 
of overestimation is likely to occur whenever the beneficial effects of an 
innovation in some process are being estimated by regression analysis, if 
the more capable operators are the ones who try out the innovation. 

When the purpose is to find a regression formula that predicts,Y 
accurately rather than to interpret individual regression coefficients, the 
bias in b I may actually be advantageous. Insofar as the unknown vari­
ables in X, are good predictors of Yand are stably related to XI' the regres­
sion value of b I is in effect trying to improve the prediction by capitalizing 
on these relationships. This can be seen from an artificial example (in 
which X, is omitted for simplicity). Suppose that the correct model is 
Y = I + 3X.. This implies that in the correct model (i) XI is useless as a 
predictor, since PI = 0, (ii) if X, could be measured, it would give perfect 
predictions, since the model has no residual term e. In the data (table 
13.6.1), we have constructed an XI that is highly correlated with X,. 
You may check that the prediction equation based on the regression of 
Yon Xl' 

f. = 2.5 + 3.5XI 

gives good, although not perfect, predictions. Since P. = 3, b.1 = 7/6, 
hI = 7/2, the relation bl = p,b'l is also verified. 

TABLE 13.6.1 
ARTIFIC'lAL EXAMPLE TO ILLUSTRATE PREDICTION FROM AN INCOMPLETE REGRESSION MODEL 

Observation X, y= I + 3Xo X, ' 1', y - 1', 

I I 4 0 2.5 +1.5 
2 2 7 2 9.5 -2.5 
3 4 13 3 13.0 0.0 
4 6 19 5 20.0 -1.0 
5 7 22 5 20.0 +2.0 

Sum 20 65 15 65.0 0.0 
Mean 4 13 3 13.0 0.0 

63 21 1 
1::<12 = 18. L,"(l.\' = 63, 1:XO.\"1 = 21. hi = 18 = 3.5, but = 18 = 6 
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To return to studies in which the sizes of the regression coefficients 
are of primary interest, a useful precaution is to include in the regression 
any X-variable that seems likely to have a material effect on Y, even 
though this variable is not of direct interest. Note from formula 13.6.3 
that no contribution to the bias in b, comes from fl,. since X, was in­
cluded in the regression. Another strategy is to find, if possible, a source 
population in which X-variables not of direct interest have only narrow 
ranges of variation. The effect is to decrease h"., (see example 13.6.1) 
and hence lessen the bias in b,. It also helps if the study is repeated in 
diverse populations that are subject to different X. variables. The finding 
of stable values for b, and b, gives reassurance that the biases are not 
major. 

In many problems the variables X, and X, are thought to have causal 
effects on Y. We would like to learn by how much Y will be increased 
(if beneficial) or decreased (if harmful) by a given change AX, in X,. 
The estimate of this amount suggested by thc multiple regression equation 
is b,AX,. As we have seen, this quantity is actually an estimate of 
(P, + P.b.,. ,)AX!" Further, while we may be able to impose a change of 
amount AX, in Xl we may be unable to control other consequences of 
this change. These consequences may include changes AX, in X, and 
AX. in X •. Thus the real effect ofa change AX, may be, from model 13.6.2, 

p,AX, + p,AX, + fl.AX.. (13.6.4) 

whereas our estimate of this amount, which assumes that AXI" can be 
changed without producing a change in X, and ignores the unknown vari­
ables, approximates (P, + P.b".,)AX,. If enough is known about the 
situation, a more realistic mathematical model can be constructed, per­
haps involving a system of equations or path analysis (26, 27). [n this 
way a better estimate of 13.6.4 might be made, but estimates of this type 
are always subject (0 hazard. As Box (4) has remarked, in an excellent 
discussion of this problem in industrial work, "To find out what happens 
to a system when you interfere with it you have to interfere with it (not 
just passively observe it)." 

To sum up, when it is important to find some way of increasing or de­
creasing Y, multiple regression analyses provide indications as to which 
X-variables might be changed to accomplish this end. Our advance esti­
mates of the effects of such changes on Y, however, may be wrong by 
substantial amounts. [f these changes are to be imposed, we should plan, 
whenever feasible, a direct study of the effects of the changes on Y so 
that false starts can be corrected quickly. 

In controlled experiments these difficulties can be largely overcome. 
The investigator is able to impose the changes (treatments) whose effects 
he wishes to measure and to obtain direct measurements of their effects. 
The extraneous and unknown variables represented by Xv are present just 
as in observational studies. But the device of randomization (5, 6) makes 
X, in effect independent of X, and X, in the probability sense. Thus X. 
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acts like the residual term t in the standard regression model and the 
assumptions of this model are more nearly satisfied. If the effects of X, 
are large. the Deviations mean square, which is used as the estimate of 
error, will be large, and the experiment may be too imprecise to be useful. 
A large error variance should lead the investigator to study the uncon­
trolled sources of variation in order to find a way of doing more accurate 
,experimentation. 

We conclUde this section with a proof of the result (equation 13.6.3); 
namely, that if a regression of Yon X, and X2 is computed under the model 

E(t') = 0, 

then 

(13.6.:1) 

The result is important in showing that a regression coefficient is free from 
any bias due Co ocher X's like X 2 chac are included in Che fitted regression. 
but is subject to bias from X's that were omitted. Since it is convenient 
to work with deviations from the sample means. note that from the model. 
we have 

Now, 

h, = c"I:x,y + CUI:X2}' 

Substitute for y from 13.6.5. 

b, .= cllI:x,(P,x, + P2X2 + P,x, + t' - n 
+ c12 I:x,(P,x, + P2X2 + p,x, + t' - n 

( 13.6.5) 

When we average over repeated samples. all terms in e'. like ell I:. x I': . 
vanish because t' has mean zero independently of XI. X2' and X,. Collect 
terms in PI' P2. and p,. 

E(bd = P,(cllI:x/ + C12 I:X IX2) + P2(ClltXIX2 + c12Lx,') 
+ {3o(cIlI:.X t Xo + C I2 I:. X 2 X o) 

From the first set of equations satisfied by Cj, and C12 (section 1:1.4), the 
coefficient of p, is 1 and that of P 2 is O. 

What about the coefficient of P,o Notice that it resembles 

C11LXtY + c t2 I:x 1y = hi' 

except that XI) has replaced y. Hence, the coefficient of flo is the regression 
coefficient b"'2 of X, on XI that would be obtained by computing the 
sample regression of X, on XI and X,. This completes the proof. 

EXAMPLE l.l.6.1 This iIIwilrate, the result that when there are omitted variables 
denoted by X". th\! bias that they create In bl dqx:nds both lm the ~ile It" of their cfred on 
r and on the extern to which Xg varies. Let Y = Xl + X ... so that jJ 1 = {1" = I. In sample I, 
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XI and X" have the same distribution. Verify that h, = 2. In sample 2, XI and X", still have 
a perfect correlation but the variance of Xo is greatly reduced. Verify that b l is now 1.33. 
giving a much smaller bias. Of course, steps that reduce the correlation between XI and Xo 
are also helpful. 

Sample 1 Sample 2 

x, x. y x, X. Y 
----~-.--

Sum 

-6 
-3 

a 
o 
9 

o 

-6 
-3 

o 
o 
9 

o 

-12 
- 6 

a 
o 

18 

o 

-6 -2 -8 
-3 -I -4 

0 0 0 
0 0 0 
9 3 12 

Sum 0 0 0 

I:x,2= 126. l:.t'I)' = 168 

t3.7-Relati>e importance of different X-variables, In a multiple­
regression analysis the question may be asked: Which X variables are 
most important in determining Y? Usually. no unique or fully satisfac­
tory answer can be given. but several approaches have been tried. Con­
sider first the situation in which the objective is to predict Y or to "explain" 
the variation in Y. The problem would be fairly straightforward if the 
X-variables were independent. From the model 

Y = ~ + PIXI + fJ2X, + ... + fJ,X, + t 
we have, in the population, 

a/ = iJl2a/ + /322(122 + ... + p}26/' + (12 

where a/ denotes the variance of Xj' The quantity /~j2(J//U/ measures 
the fraction of the variance of Y attributable to its linear regression on Xi. 
This fraction can be reasonably regarded as a measure of the relative 
importance of Xi. With a random sample from this population. the 
quantities hi'S.x,' ('i.y2 are sample estimates of these fractions. (In small 
samples a correction for bias might be advisable since bi''i.x//'i.)'' is not 
an unbiased estimate of /3/(1/ la.,2.) 

The square roots of these quantities. bi.J('i.x,' !'i..?), called the stan­
dard partial regression coejJicients, have sometimes been used as measures 
of relative importance. the X's being ranked in order of the sizes of these 
coefficients (ignoring sign). The quantity .J(Lx,'i'i.y') is regarded as a 
correction for scale. The coefficient estimates Pi(};/fJy. the change in Y, 
as a fraction of "r, produced by une S.D. change in Xi. 

In practice. correlation~ between the X's make the answer morc 
difficult. In many applications, Xl and Xz are positively correlated with 
each other and with Y. For instancl:, X, and X2 may be examination 
scores that predict a student's ahihty to do wen in a CO\,1r~e, and Y his final 
score in that course. To illustrate this case~ tah!e 13. 7~ I shows the normal 
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equations, the b's and the analysis of variance. As the example is con­
structed, Xl is a slightly better predictor than X 2, the two together ac­
countmg for about 70/~ of the variation in Y (reduction due to regression 
26.53 out of a iotal 5.5. of 38.00). 

As is typical in such applications, each variable's contribution to 
~y2 is much greater when the variable is used alone than when it follows 
the other variable. For Xl the two sums of squares are 22.50 and 9.63, 
respectively, while for X 2 they are 16.90 and 4.03. If the sums of squares 
when Xl and X2 appear alone are taken to measure the contributions of 
Xl and X, to the variation in Y, the two contributions add to 39.40, 
which is more than ~y2 (38.00). On the other hand the sums of squares 
9.63 and 4.03 greatly. underestimate the joint contribution of Xl and X2. 
Neither method of measuring the relative contribution is satisfactory. 

TABLE 13.7.1 
A COMMON SITUATION IN TWO-VARIABLE REGRESSION. ARTIFICIAL DATA 

Normal equations: 

IOh l + 5h z = 15 
5h z + 10hz = 13 

t'I]=C22 =2/15 c 12 =-li15 b1 =17/1S h2 =11/15 
-- ~.==~-~=_~=~~-===== 

Source of Variation Degrees. of Freedom Sum of Squares 
_ .. _-----+------

Total 52 38.00 

Regression on XI alone {II (I:xIy)1/I:X12 = 15 2/10 = 22.50 
Regression on X2 after Xl b/jC2l = 112/_30-.=; 4.0) 

Regression on X 2 alone f.11 (IxV')~/I:X21 = 132/10 = 16.90 
Regression on X) afterX2 1 bl

2/ell = 172/30= 9.63 

l?:_vi_"'_io_" ______ . ____ 5 . ..:0 _____________ 11,47 

Sometimes the investigator's question is: Is Xl when used alone a 
better predictor of Y than X2 when used alone? In this case, comparison 
of the numbers 22.50 and 16.90 is appropriate. An answer to the question 
has been given by Hotelling (7) for two X-variables and extended by Wil­
liams (8) to more than two. 

In other applications there may be a rational way of deciding the 
order in which the X's should be brought into the regression, so that their 
contributions to L 1'2 add up to the correct combined contribution. 
In his studies of the 'variation in the yields of wheat grown continuously 
on the same plots for many years at Rothamsted, Fisher (2) postulated 
the sources of variation in the following order: (I) A steady increase or 
decrease in level of yie_ld, measured by a linear regression on time: (2) 
other slow changes in yields through time, represented by a polynomial in 
time with terms in T2, T', T4 , T': (3) the effect of total annual rainfall on 
the deviations of yields from the temporal trend: (4) the effect of the dis-
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tribution of rainfall throughout the growing season on the deviations 
from the preceding regression. 

Finally, if the purpose is to learn how to change Yin some population 
by changing some X-variable, the investigator might estimate the sizes 
h%l' AX2 , etc., of the changes that he can impose on Xl and X2 in this 
population by a given expenditure of resources. He might then rate the 
variables in the order of the sizes of b,ilXi' in absolute terms, these being 
the estima.ted amounts of change that will be produced in Y. As we have 
seen in the preceding section, this approach has numerous pitfalls. 

13.1I-Partial and multiple correlation. In a sample of 18-year-old 
college freshmen, the variables measured might be height, weight. blood 
pressure, basal metabolism, economic status, aptitude, etc. One purpose 
might be to examine whether aptitude (y) was linearly related to the 
physiological measurements. If so, the regression methods of the preced­
ing sections would apply. But the objective might be to study the correla­
tions among such variables as height, weight, blood pressure, hasal 
metabolism, etc., among which no variables can be specified as inde­
pendent or dependent. In that case, partial correlation methods are ap­
propriate. 

You may recall that the ordinary correlation coefficient was closely 
related to the bivariate normal distribution. With more than two vari­
ables, an extension of this distribution called the multivariate normal 
distribution (9) farms the basic model in correlation studies. A property 
of the multivariate normal model is that any variable has a linear regres­
sion on the other variables (or on any subset of the other variables), with 
deviations that are normally distributed. Thus, the assumptions made 
in multivariate regression studies hold for a multivariate normal popula­
tion. 

If there are three variables, there are three simple correlations among 
them, Pl2, Pl3' P23' The partial correiation coefficient, Pll-3, is the cor­
relation between variables I and 2 in a cross section of individuals all 
having the same value of variable 3; the third variable is held constant so 
that only I and 2 are involved in the correlation. In the multivariate 
normal model, P12'3 is the same for every value of variable 3. 

A sample estimate r12 '3 of Pl2" can be obtained by calculating the 
deviations d13 of variable I from its sample regression on variable 3. 
Similarly, findd23 • Then r 12" is the simple correlation coefficient between 
d13 and d'3' The idea is to measure that part of the correlation between 
variables 1 and 2 that is not simply a reflection of their relations with 
variable 3. It may be shown that r 12 ' 3 satisfies the following formula: 

'12 - 'I3rn 
'12"3 = I 2. 2 ,,(1 - r13 )(1 - r" ) 

Table A II is used to test the significance of r 12 .,. Enter it with (n - 3) 
degrees of freedom, instead of (n - 2) as for a simple correlation co­
efficient. 
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In Iowa and Nebraska, a random sample of 142 older women was 
drawn for a study of nutritional status (12). Three of the variables were 
Age, Blood pressure, and the Cholesterol concentration in the blood. The 
three simple correlations were 

r AB = 0.3332, rAc = 0.5029, r BC = 0.2495 

Since high blood pressure might be associated with above-average 
amounts of cholesterol in the walls of blood vessels, it is interesting to 
examine 'Be' But it is evident that both Band C increase with age. Are 
they correlated merely because of their common association with age or 
is there a real relation at every age? The effect of age is eliminated by 
calculating 

_ 0.2495 - (0.3332)(0.5029) = 0 1233 
r

BC
' A - J(I _ 0.33322)(1 _ 0.50292) . 

With f = 142 - 3 = 139, this correlation is not significant. It may be that 
within the several age groups blood pressure and blood cholesterol are 
uncorrelated. At least, the sample is not large enough to detect the cor­
relation if it is present. 

As another illustration, consider the consumption of protein and fat 
among the 54 older women who came from Iowa. The simple correlations 
were 

rAP = - 0.4865, r AF = - 0.5296, r PF = 0.5784 

The third correlation shows that protein and fat occue together in all diets 
while the first two correlations indicate the decreasing quantities of both 
as age advances; both P and F depend on A. How closely do they depend 
on each other at anyone age? -

r - 0.5784 - (-0.4865)(-0.5296) _ 0 2 
PF-A - J(l _ 0.48652)(1 _ 0.52962) - .43 8 

.... 
Part of the relationship depends on age but part of it is inherent in the 
ordinary composition of foods eaten. 

To get a clearer notion of the way in which rpF'A is independent of 
age. consider the six women near 70 years of age. Their protein and fat 
intakes were 

P: 56, 
F: 56. 

47, 
83, 

33, 
49, 

39 
52, 

42, 
65, 

38 
52 '" = 0.4194 

The correlation is close to the average. 'PF" = 0.4328. Similar correla­
tions would be found at other ages. 

With four variables the partial correlation coefficient between vari­
ables I and 2 can be computed after eliminating the effects of the other 
variables. 3 and 4. The formula is 
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r12 '34 = .j , , 
,(1 - r13'4 )(1 - r23" ) 

or, alternatively, 

r12'34 = .j , 2 ' 
(1 - r'4'3 )(1 - r'4'3 ) 

the two formulas being identical. 
To test this quantity in table A 11, use (n - 4) degrees of freedom. 
As we have stated, partial correlation does not involve the notion of 

independent and dependent variables: it is a measure of interdependence. 
On the other hand, the multiple correlation coefficient applies to the situa­
tion in "hich one variable, say Y. has been singled out to examine its joint 
relation with the other variables. In'the population, the multiple correla­
tion coefficient between Y and XI' X" ... , X, is defined as the simple 
correlation coefficient between Yand its linear regression, PIX} + ... 
+ /i,X" on XI ... X,. Since it is hard to attach a useful meaning to the 
sign of this correlation, most applications deal with its square. The sample 
estimate R of a multiple correlation coefficient is, as would be expected, 
the simple correlation between y and y = b,x, + ... + b,x.. This gives 

R' = (Lyy)'j(Lyl)(Lyl) 

In formula 13.3.6 (p. 388) it was shown that Ldji = 0, where d = y - .1'. 
It follows that Lyjl = Ly2 Hence, 

R' = LP'(Ly2 I - R' = Ld2jLy2 

Thus, in the analysis of variance of a mUltiple regression, R' is the frac­
tion of the sum of squares of deviations of Y from its mean that is at­
tributable to the regression, while (I - R2) is the fraction not associated 
with the regression. This result is a natural extension of the correspond­
ing result (section 7.3) for a simple correlation coefficient. The test of the 
null hypothesis that the multiple correlation.in the population is zero is 
identical to the F-teot of the null hypothesis that PI = /i, = ... = p, = O. 
The relation is • 

F= (n - k - I)R'/k(I - R2), with k and (n - k - I) df 
EXAMPLE 13.S.I-Brunson and Wilber (13) examined the correlations among ear 

ci~umference E, cob circumference C. and number of rows of kernels K calculated from 
measurements of 900 ears of corn: 

rEC = 0.799, rEX. = 0.570, . rCK == 0.501 

Among the ears having the same kernel number, what is the correlation between E and C? 
Ans .. rEc'K = 0.720. 

EXAMPLE )3.8.2 -Among ears of corn having the same circumference. is there any 
correlation between C and K? Ans. r("l(.F. = 0.105. 

EXAMPLE 13.8.3-ln a random sample of 54 Iowa women t \ 2). the intake of two 
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nutrients was detennined together with age and the concentration of cholesterol in the blood. 
If P symbolizes protein, F fat. A age. and C cholesterol, the correlations are as follows: 

P 
F 
C 

A 

-0.4865 
-0.52% 

0.4737 

p 

0.5784 
-0.4249 

F 

-0.3135 

What is the correlation between age and cholesterol independent of the intake of protein 
and fat? Ans. 

0.3820 - (-0.2604K -0.3145) _ 0.3274 

J(I - 0.2604'XI - 0.3145') 

EXAMPLE I3.S.4-Show that the sample estimate of tbe fraction of the variance of Y 
that is attributable to its linear regression on Xl ... X. is 

(I - R')(n - I) 
1- . 

(n - k - I) 

13.9-Three or more independent variables. Computatioas. The 
formulas already described for two X-variables extend naturally to three 
or more X-variables. The computations inevitably become lengthier: 
they are ideally suited to an electronic computer. We shall describe one of 
the standard methods for a desk calculating machine-the Abbreviated 
Doolittle method (lO)-except that for clarity more steps are given than 
an experienced operator needs. For more extensive discussion of Com­
puting methods. see (11). 

With three independent variables. the normal equations are: 

b,};x/ + b,};x,x, + b,};x,x, = };x,y 
b,};x,x, + b,};x/ + b,};x,x, = };x,y 
h.,};x,x, + b,};x,x, + b,};x/ = };x,y 

If the c's are needed, as in most applications, the right sides become 
1,0,0 for Cll • e 12 • e 13; 0, 1,0 for C21' e22 • e23; and 0, 0,1 for ell> C32. C33: 

Since the same calculating routine can be.used for b's and c's, only 
the right sides being different, we denote the unknowns by z,' z" z" and 
let slj = };x,Xj' The equations to be solved are: 

(1) 

(2) 
(3) 

5UZl + ,S12Z2 + 513%3 :::: 

512 Z 1 + 522ZJ + S2JZ3 == 
SUZI + 523%2 + 53JZ) = 

The right side is not specified, since it depends on whether the b's or c's are 
being computed 

The Doolittle method eliminates z,' then z, and z" solving for z,. 
Intermediate steps provide convenient equations for finding Z2 from f3' 

and finally z, from Z, and %,. The computing routine can be carried out 
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without any thought as to why it works. The explanation is given in this 
section. 

The first step, line (4), is to recopy line (I). 

(4) 

Now divide through by,,,. It is quicker to find the reciprocal, 1/5", and 
multiply through by l/s". This gives 

(5) 

The coefficients of", and z, have been bracketed, since they playa key 
role. MUltiply (4) by '12/'''' obtaining 

(6) 
SI/ 5 12S 13 

SI2':1' + _- =2 + .~~ ZJ = 
S)1 Sli 

In steps ($) and (6) and in all subsequent steps, the right side of the 
equation i, always multiplied by the same factor as the left side. Now sub­
trad (6) from (2) t<>gel rid of z ,. 

(7) 

The next operations resemble those in.lines (4) to (6). Find the reciprocal 
of(522 - S12' !s,,) and multiply (7) by this reciprocal. 

(8) _ -l-{~L- SI2'~LJ/Sll)t = 
-, . . 'I' ~, '~2:! - ,"1 12 5'1 I 

The coefficient of z, in (8) receives a -curly bracket. like that of z, in (5). 
Reverting to (4) and (5), mUltiply (4) by the bracketed s"!s,, in (5). 

(9) 

Similarly, multiply (7) by ihe bracketed coefficient of z, in (8) 

(10) 

Now iake (3) - (9) - (10). Note that the coetnelents of z, and z, both 
disappear, leaving an equation (II) with only z, on the left. Solve this for 
z,. (If there are four X-variables. continue through another cycle of these 
operations, ending with an equation in which Z4 alone appears.) 

Having z" find z, from (8), and finally z I from (5). With familiarity, 
the operator will find that.lines (6). (9), and (10) need not be written 
down when he is 'using a modern desk machine. 
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The next two sections give numerical examples of the calculation of 
the b's and c's. The numbering or the lines and all computing instruct.ions 
in these examples are exactly as in this section. 

13.10-Numerical example. Computing the b's. In table 13.10.1 an 
additional independent variable X, is taken from the original data in the 
plant-available phosphorus investigation. Like X2 , the variable X, mea­
sures organic phosphorus, but of a different type. As before, Y is the 
estimated plant-available phosphorus in corn grown at Soil Temperature 
20'C. The data for Soil Temperature 35°C. are considered later. 

TABLE 13.10.1 
PHOSPHORUS FRACTIONS IN VARIOUS CALCAREOUS Son.s. AND EsTIMATED PLANT-AVAILABLE 

PHOSPHORUS AT Two SolI .. TEMPERATURES 

Soil Sample 
No. 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
18 

I 

I 

X, 

0.4 
0.4 
3.r 
0.6 
4.7 
1.7 
'.4 

10.1 
11.6 
12.6 
10.9 
23.1 
23.1 
21.6 
23.1 

1.9 
26.8 
29.9 

Phosphorus Fractions 
in Soil, ppm-

X, 

53 
23 
19 
34 
24 
65 
44 
31 
29 
58 
37 
46 
50 
44 
56 
36 
58 
51 

X, 

158 
163 
37 

157 
59 

123 
46 

117 
173 
112 
III 
114 
134 
73 

168 
143 
202 
124 

I , Estimated Plant-available 
Phosphorous in Soil, ppm 

Soil Temp. 
20° C. 

Y 

64 
60 
71 
61 
54 
77 
81 
93 
93 
51 
76 
96 
77 
93 
<is 
54 • 

168 
99 

Soil Temp. 
35' C. 

Y' 

93 
73 
38 

109 
54 

107 
99 
94 
66 

126 
75 

lOS 
90 
72 
90 
82 

128 
120 

.,x. = inorganic phosphorus by Bray and Kurtz method 
Xl = organic phosphorus soluble in K1CO J and hydrolyzed by hypobromite 
X) = organic phosphorus soluble in K2CO,.and not hydrolyzed by hypobromite 

In general, regression problems in which the b's but not the c's are 
wanted are encountered only when the investigator is certain that an the 
X's must be present in the regression equation and does not want to test 
individual hi or compute confidence limits for any Pi' The present exam­
ple is a borderline case. A primary objective was to determine whether 
there exists an independent effect of soil organic phosphorus on the 
phosphorus nutrition of plants. 'That is. the investigators wished to 
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know if X, and X, are related to Yafter allowing for the relation between 
Yand XI (soil inorganic phosphorus). As a first step, we can work out the 
regression of Yon all three variables, obtaining the reduction in sum of 
squares of Y. The reduction due to a regression on XI alone is (l:xly)'j 
l:x l '- By subtraction, the additional reduction due to a regression on 
X, and X, is obtained. It can be tested against the Deviations mean square 
by an F-test. If F is near 1, this probably settles the issue and the c's are 
not needed. But if Fis close to its significance level, we will wont to.exam­
ine b, and b, individually, since one type of inorganic phosphorus might 
show an independent relation with Y but not the other. 

TABLE 13.10.2 
SoLUTION Of THREE NORMAL EQUATIONS. ABBREVIATED DooLITTLE METHOD 

-
Line 1 Reciprocal I Instructions X, X, X, Y 

- - -----+------
(I) 

.. --~ 
1.752.96 1.085.61 1,200.00 3,231.48 

(2) 1.085.61 3.155.78 3,364.00 2,216.44 
(3) 1,200.00 3,364.00 35,572.00 7.593.00 

---_ .. --r-------~ 
(4) 1.752.96 1.085.61 1.200.00 3.231.48 
(5) .03570464 I (4) x .03570464 I (.619301 {.68456} 1.84344 
-- ----

(6) (4) x (.61930) 672.32 743.16 2.001.26 
--+------

(7) (2)-(6) 2,483.46 2.620.84 ! 215.18 
(8) .OJ4{)2664 (7) x .0'402664 I 11.05532) : 08665 

- -
(9) (oU x {.68456) 821.47 2,212.14 

(10) (7) ~ (1.05532) 2.765.82 227.08 
(II) (3)-(9)-(10) 31.984.71 5,153.78 

-;- by 31~84.71 bJ = 0.16113 
Line (8) b, ~ .08665 -- (1.05532)b, ' -0.08339 
Line (5) b, ~ 1.84344 - (.61930)b, - (.68456)b, 

hi"" 1.78478 

ReductIon m 5.S. = IMIxiY) = (J.78478)(.I,.:'Jl.48) + . _ . + (0.161 13)(7,593.00) 
~ 6.&06. 

The normal equations and computation of the b's are in table 13.10.2. 
Before starting, consider whether some coding of the normal equations is 
advisable. If the sizes of the l:x/ differ greatly. it is more difficult to 
keep track of the decimal places. Division or multiplication of some X's 
by a power of 10 will help. If Xi isdivided by lOP, LX,' is divided by 102

• 

and lXix} or :tx,y by lOP. Note that b, is multiplied by I()P and therefore 
must'be divided by lOP in a final decoding. For practice, see example 
13.10.6. In this example no coding seems necessary. 

It is hoped that the calculations can be easily followed frol11 the 
column of Instructions. In the equations like (5) in which the coefficient 
of the leading b, is 1, we carried five decimal places, usually enough with 
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three or four X-variables. Don't forget that the b's are found in reverse 
order: b3 • then b2 • then hi' Since mistakes in calculation are hard to 
avoid, always substitute the b's in the original equations as a check, apart 
from rounding errors. At the end, the reduction in sum of squares of Y 
is computed. 

Table 13.10.3 gives the analysis of variance and the combined test of 
X, and X,. Since F = 1.06, it seems clear that neither form of inorganic 
phosphorus is related to Y in these data. 

TABLE 13:)0.3 
ANALYSIS OF VARIANCE AND TfST OF Xl. X3 

Source of Variation 

Total 
Regression on XI' Xl. XI 
Regression on XI 

Regression on X2 • Xj after XI 

Deviations 

Degrees of 
Freedom 

17 
3 
I 

2 

14 

Sum of 
Squan:~ 

12,390 
6,806 
5,957· 

849 

5,584 

Mean 
Square 

424 

399 

F 

1.06 

Some general features of mUltiple regression may now be observed: 
I. As noted before, the regression coefficients change with each new 

grouping of the X. With X, alone, byz = 2,216.44/3,155.78 = 0.7023. 
Adding X" byz., = 0.0866. With three of the X, byz.13 = -0.0834. In 
anyone multiple regression, the coefficients are intercorrelated; either 
increasing or decreasing the number of X's changes all the b's. 

2. The value of ~y' never decreases with the addition of new X; 
ordinarily it increases. Take X, alone; ~y/ = (3,23].48)'/1,752.96 
= 5,957. X, and X, make ~h/ = 5,976. For all three, ~Y'23' = 6.806. 
The increase may be small and nonsignificant, but it estimates the con­
tribution of the added X. 

3. For checking calculations it is worth noting that ~y' cannot be 
greater than Ly'; nearly always it is less. Only if the X predict Yperfectly 
can LP' = Ly'. In that limiting case. Ld' = O. 

4. High correlation between two of the X can upset calculations. 
If rij is above 0.95, even 6 or 8 significant digits may not be sufficient to 
control rounding errors. Consider eliminating one of the two X's. 

5. If Lji' is only a small fraction of Ly', that is, if R' is small. 
remember that most of the variation in Y is unexplained. It may be 
random variation or it may be due to other independent variables not 
considered in the regression. If these other variables were found and 
brought in, the relations among the X's already included might change 
completely. 
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EXAMPLE 13.1O.1-Compute the regression of plant-available phosphorus on the 
3 fractions. ADs. f = 1.1848X1 - 0.0834X1 + 0.1611X l + 43.67. 

EXAMPLE 13.to.2-Estimate the plant-available phosphorus in soil sample 17 and 
compare it with the observed value. ADs. 119 ppm .• Y - f = 49 ppm. 

EXAMPLE 13.10.3-The experimenter might have information which would lead him 
to retain X) along with Xl in his predicting equation, dropping X 2 • Calculate the new regres­
sion. ADS.? = 1.737X1 + O.155XJ + 41.5. 

EXAMPLE 13.IO.4..----Calculate the sum of squares due to Xl after Xl and X3 • ADs. 16. 

EXAMPLE 13.IO.5---Calculate R2 = I:pl/I:yl with XI alone, with Xl and X2• and with 
XI> Xl, XJ' ADS. Rr.,l = 0.4808. R r.11

2 = 0.4823, R r . I23
2 = 0.5493. Notice that Rl never 

decreases with the addition of a new X; ordinarily it increases. Associate this with the cor~ 
responding theorem about 1:y2. 

EXAMPLE 13.10.6-ln a multiple regression the original nonnal equations were as 
fOllows: 

x, X, X, Y 

1.28 17.20 85.20 2.84 
17.20 2,430.00 7,1.60.00 183.00 
85.20 7,160.00 67,200.00 8,800.00 

--------- -->-~--

It was decided to divide X2 by 10 and X3 by 100 before starting the solution. What happens to 
LX )xJ • 1:'x2y; LX2X3, LX/, LX/, LX3}'?- Ans. They become 0.852. 18.30. 7.16.6.72.24.30, 
88.00. 

EXAMPLE 13.10. 7~In studies of the fertilization of red clover by honey bees (28), it 
was desired to learn the effects of various lengths of the insects' probosces. The measure­
ment is difficult, so a pilot experiment was performed to determine a more convenient one 
that might be highly ~orrelated with proboscis length. Three measurements were tried on 
44 bees with the results indicated: 

Length of 
Dry Weight, Length of Wing. Width of Wing, Proboscis, 

n= 44 X, (mg.) X 2 (mm.) X.l(mm.) Y(mm.) 
.~-.-

Mean 13.10 . .... 9.61 3.28 6.59 

Sum of Squares and Products 

X, X, X, Y 

X, 16.6840 1.9279 0.8240 1.5057 
X, 0.9924 0.3351 0.5989 
X, 0.2248 0.1848 
Y 0.6831 

Coding is scarcely necessary. Carrying 5 decimal places. calculate the regression coefficients. 
Ans. 0.0292, 0.6151, -0.2022. 

EXAMPLE 13.10.8-Test the significance or the overall regression and compute the 
value of R2. Am. F = 16.2,f = 3 and 40. P very sma". R2 = Q.5S. a disappointing value 
when the objective is high accuracy in predicting Y. 
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EXAMPLE 13.10.9-Test the significance of the joint effect of Xl and X} after fitting 
X2 - Ans. F == 0.87. Can you conclude anything about the relative usefulnes'i of the three 
predictors? 

B.ll-Numerical example. Computing the inverse matrix. Table 
13.11.1 gives the worksheet in which the c's are computed. The comput­
ing Instructions (column 2) are the same as in sections 13.9 and 13.10. 
The following points are worth noting: 

1. In many problems the c's are small numbers with numerous zeros 
after the decimal place. For those who have difficulty in keeping track 
of the zeros the following pre-coding is recommended. Code each Xi' if 
necessary, so that every :!:Xi2 lies between 0.1 and 10. This can always 
be done by dividing X, by a power of 10. If X, is divided by lOP and X 2 
by 10', then :!:x,' is divided by IO'P; :!:x,' by 10"; and :!:x,x, by lOP+' 
In this example we had initially (table 13.10.2), :!:x.' = 1,752.96, :!:x,' 
= 3,155.78, :!:X,2 = 35,572.00. Division of every Xi by 102 make the 
first two sums of squares lie between 0.1 and 1, while :!:x/ lies between I 
and 10 as shown in table 13.11.1. Every :!:XiXj is also divided by 104

. 

The advantage is that the coded c's are usually not far from l. Five 
decimal places will be carried throughout the calculations. . 

2. The three sets of c's are found simultaneously. The computa,ions 
in column 6 give C 11 • ell. Cu. those in column 7 give e 12• Cu. CB , and those 
in column 8 give e 13, e23 , e33' Because of the symmetry, quantities like 
"12 are found only once. 

3: Column 9, the sum of columns 3 to 8, is a check sum. Since mis­
takes creep in, check in each line indicated by a .j that column 9 is the 
sum of columns 3 to 8. In some lines, e.g. (6), this check does not apply 
because of abbreviations in the method. 

4. The first three numbers found in line (12) are cu, "13' c" in coded 
form. Then we return to line (8). With column 7 as the right side, line 
(8) reads . 

C22 + 1.05533c23 = 4.02658 

With column 6 as the right side, line (8) reads 

c 12 + 1.05533c 13 = - 2)19358 

These give C22 and e12' Finally, ell comes from line (5). 
5. To decode, cij is divided by the same factor by which ~XiXj 

was divided in coding. 
6. By copying tile :!:x;.Y next to the Cij' the hi are easily computed. 

Then the reduction in S.S. due to regression and the Deviations mean 
square are obtained. These enable the standard error of each hi to be 
placed nex.t to hi' As anticlJYdted, nelther bl nor bJ approaches the signifi· 
cance level. 

Occasionally there are several Y-variables whose sample regressions 
on the same set of X-variables are to be worked out. 111 the phosphorus 
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experiment, corn was grown in every soil sample at 35°C. as well as at 
20cC. The amounts of phosphorus in the plants, Y', are shown in the last 
column of table 13.10.1. Since the inverse matrix is the same for Y' as 
for Y, it is necessary to calculate only the new sums of products, 

l:x,y' = 1,720.42, l:x,y' = 4,337.56, l:x,y' = 8,324.00 

Combining these with the c's already calculated, the regression coefficients 
for Y' are 

b, ' = 0.1619. b2 ' = 1.1957, b,' = 0.1155 

In the new data, l:9'2 = 6,426, l:d2 = 12,390 - 6,426 = 5,964, S'2 

= 426.0. The siandard errors of the three regression coefficients are 0.556, 
0.431, and 0.115. These lead to the three values of t: 0.29, 2.77, and 1.00. 
At 35°C., b2 is the only significant regression coefficient. The interpreta­
tion made was that at 35°C. there was some mineralization of the organic 
phosphorus which would make it available to the plants. 

The formulas for the standard errors of the estimates in multiple 
regression studies are illustrated in examples 13.11.1 to 13.11.3. 

EXAMPLE 13.11.1-For soil sample 11, the predicted f was 119 ppm. and the Xl 

were: Xl = 14'~'Xl = IS.9,x3 = 79. Find9S%limitsforthepopulationmeanl'ofY. Ans. 
The variance of 'P as an estimate of}l is 

The expression in the ("s is conveniently computed as rollows: 

.0007249 
- .0002483 
- .0000010 

14.9 

- .0002483 
.0004375 

- .0000330 
15.9 

- .0000010 
- .0000330 

.0000313 
79.0 

x, 

14.9 .006774 
15.9 .000650 
79.0 .001933 

l;I:clrlxj"'" 0.2640 

Border the e'j matrix with a row and a column of the x·s. Multiply each row of the elj in 
turn by the Xj. giving tbe sums of products 0.006774, etc. Then multiply this column by the 
X" giving the sum of products 0.2640. Since n = 18 and S1 = 399, this gives 

Sf' ~ (399)(0.055Q + 0.2640) - 127.5 ; Sf ~ 11.3 

With to.os = 2.145, the limits are 119 ± (2.145)(11.3); 95 to 143 ppm. 

EXAMPLE 13.11.2.->-lf we are estimating Y for an. individual new observation, the 
standard error of the estimate f is 

Verify that for a soil with the X -values of soil_17, the S.f. would be ± 22.9 ppm. 
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EXAMPLE J3.11.3-The following data, kinqly provided by Dr. Gene M. Smith. 
come from a class of66 students of nursing. Y repreSents the students' score in an examina­
tion on theory, Xl the rank in high school (a high value being good), X2 the score on a verba! 
aptitude test, and X3 a measure of strength of character. The sums of squares and products 
(65 df.) are as follows: 

l:x;Xj L\,y I:y' 

24,633 2,212 5,865 925,3 6703 
7,760 2,695 745,9 

28,432 1,537,8 

(i) Show that the regression coefficients and their standard errors are as follows: 

b, ~ 0,0206 ± 0,0192; b, ~ 0,0752 ± 0,0340; b, ~ 0,0427 ± Om80 

Which X variables are related to performa~ce in theory? 
(ii) Show that the F value for the three-variable regression is F = 5.50. What is the P 

value'! 
(ii) Verify that R2 = 0.210. 

B.ll-Deletion of an independent variable. After a regression is 
computed, the utility of a variable may be questioned and its omission 
proposed. Instead of carrying out the calculations anew, the regression 
coefficients and the inverse matrix in the reduced regression can be 
obtained moce quickly by the following formulas (14), We suppose 
that XI<' is the variable to be omitted from a regression containing 
Xl ... Xk • Before omission, the Deviations mean square ..,2 has 
(n - k - I) df-

When X" is omitted, the sum of squares of deviations from the fitted 
regression, :Ed', is increased by b.' Ie .. , The mean square of the deviations 
then becomes 

s" = (:Ed' + b.'lc .. )/(n - k) 

Further, the regression coefficients and the inv~rse multipliers become 

b/ = hi - cj..bJc .... 

13,I3-Selection of ,'ariates for prediction, A related but more diffi­
cult problem ari~e~ when a regression is.bemg constructed for purposes of 
prediction and it is thought that several of the X~variable~. perhaps most 
of them, may contrihute little or nothing to the accuracy of the prediction. 
For instance. we may start with 11 X-variables, but a suitable choice of 
three of them might give tho best predictions, The problem is to decide 
how many \ afiahle.;; to retain. and which ones. 

The "most thorough approach is to work out the regression of Y 
on every subset of Ihe k X·variables, that is, on each variable singly, on 
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every pair of variables, on every triplet, and so on. The subset that gives 
the smallest Deviations mean square s' could be chosen, though if this 
subset involved 9 variables and anotber subset with 3 variables looked 
almost as good. the latter might be preferred for simplicity. ·The draw­
back of this method is the amount of computation. The number of regres­
sions to be computed is 2' - I, or 2,047 for II X-variables. Even with an 
electronic computer, this approach is scarcely feasible if k is large. 

Two alternative approaches are the step up method and the step down 
method. In the step down method, the regression of Yon all k X-variables 
is calculated. The contribution of X, to the reduction in sum of squares of 
Y, after fitting the other variables, is b,' Ie". The variable X" for which this 
quantity is smallest is selected, and some rule is followed in deciding 
whether to omit XI.!" One such rule is to omit Xu if b//s2cuw < I: others 
omit X" if b" is not significant at some chosen level. If X" is omitted, the 
regression of Y on th~ remaining (k - 1) variables is computed, and the 
same rule is applied. The process continues until no variable qualities 
for omission. , 

In the step up method we start with the regressions of Yon X I, .. "X, 
taken singly. The variable giving the greatest reduction in sum of ~quares 
of Y is selected. Call this Xl' Then the bivariate regressions in which XI 
appears are worked out. The variate which gives the greatest additional 
reduction in sum of squares after fitting XI is selected. Call this X,. All 
trivariate regressions that include both XI and X, are computed, and the 
variate that makes the greatest additional contribution to them is selected. 
and so on until this additional contribution b//c" is too small to satisfy 
some rule for inclusion. 

It is known that the step up and the step down methods will not neces­
sarily select the same X-variables, and that neither method guarantees to 
find the same variables as the exhaustive method of investigating every 
subset. Striking differences appear mainly when the X-variables are highly 
correlated. The differences are not necessarily alarming, because when 
intercorrelations are. high, different subsets can give almost equally good 
predictions. Fuller accounts of these methods, with illustrations, appear 
in (15, 16). ' 

Two aspects of this problem require further research. For a given 
approach, e.g., the step down meth6d, the best rule to use in deciding 
whether to omit an X-variate is not clear. Naturally, all simple rules 
reject Xi if at some stage b//c" is small enough. Suppose that fl, = + 1. 
Then X, may be rejected because this sample gave an unusually low esti­
mate of b" say OJ. Nevertheless, with p, = + I a prediction formula that 
includes a term 0.3X, may give better predictions in the population than 
one which has no term in Xi' For this reason sOme writers recommend 
retaining the term in X, if the investigatoris contident from his knowledge 
of the mechanism involved that fl, must be positive and if bi is also posi­
tive. 

Secondly. these methods tend to select variables that happen to do 
unusually well in the sample. When applied to new matenal, a prediction 
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formula selected in this way will not predict as accurately as the value of 
.. ' suggests, especially if the sample is small and many X's have been 
rejected. More information is needed on the extent of this loss of ac­
curacy, 

13.14-The discriminant function. This is a multivariate technique 
for studying the extent to which different populations overlap one another 
or diverge from one another. It has three principal types of use. 

I.' Classification and diagnosis. The doctor's records of a person's 
symptoms and of his physical and laboratory measurements are taken 
to guide the doctor as to the, particular disease from which the person is 
suffering. With two diseases that are often confused, it is helpful to learn 
what measurements are most effective in distinguishing between the 
conditions, how best to combine the measurements, and how successfully 
the distinction can be made. 

2. In the study of the relations betll'een populations. For example. 
to what extent do the aptitudes and attitudes of a competent architect 
differ from those of a competent engineer or a competent banker'? Do 
non-smokers, cigarette smokers, pipe smokers. and cigar smokers dift~r 
markedly or only negligibly in their psychological traits" 

3. As a multivariate generali=ation a/the (-test. G"iven a number of 
related measurements made on each of two groups, the investigator may 
want a single test of the null hypothesis that the two populations have the 
same means with respect to all the measurements. 

Historically, it is interesting that the discriminant function was de­
veloped independently by Fisher (17). whose primary interest was in 
classification. by Mahalanobis (18), in connection with a large study of 
the relations between Indian castes and tribes. and by HotelIing (19), 
who produced the multivariate Hest. 

This introduction is confined to the case of two populations. Con­
sider first a single variate X, normally distributed, with known means 1'1. 
1', in the two popul,ations and known standard deviation (1, assumed 
the same in both populations. The value of X is measured for a new speci­
men that belongs to one of the two populations. Our task is to classify 
the specimen into the correct popUlation. If 1'1 < 1'" a natural classifica­
tion rule is to assign the specimen to population 1 if X < (1'1 + 1',)/2 
and to popuhtion II if X > (1'1 + 1,,)/2. The mean of the two popula­
tions serves as the boundary point. 

How often will we make a mistake') If the specjmen actually comes 
from population I. our verdict is wrong whenever X > \1'1 + 1',)/2; that 
is, whenever 

X-I'I 
-~~> 

11 

where b = (I', - 1'1) is the distance between the two means. 
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Since (X - /11)/a follows the standard normal distribution, the prob­
ability of misclassification is the area of the normal tail from 0/2<1 to 00, 

It is easily seen that the same probability of misclassification holds for a 
specimen from population ll, Some value. of this probability for given 
0/<1 are as follows: 

Sfu 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Probability (%) 40.1 30.8 22.7 15.9 10.6 6.7 4.0 2.3 

For a high degree of accuracy in classification, 0/<1 must exceed 3. The 
same quantity 0/<1 can be used as an index of the degree of overlap be­
tween the two populations: it is sometimes called the distance between 
the populations. 

In some classification problems it is known from experience that 
specimens come more frequently from one population than from the 
other. Further, misclassifying a specimen that actually comes from popu-
1ation J may have more serious consequences than misclassifying a speci­
men from population II. If these relative frequencies and relative costs 
of mistakes are known, the boundary point is shifted to a value at which 
the average cost of mistakes is minimized (20). 

We come now to the multivariate case. The variates XI ... X, are 
assumed to follow a multivariate normal distribution. The variance 
O'jjof X j and the covariance O'jj of Xi and Xj are assumed to be the same in 
both populations. Of course, a" is not assumed to be the same from one 
variate to another, nor a ij from one pair of variates to another. The 
symbol 0, = /1" - /1" denotes the difference between the means of the 
two populations for X,. 

The linear discriminant junction :EL,X, may be defined as the linear 
function of the X, that gives the smallest probability of misclassification. 
The L, are coefficients that will be determined to order to satisfy this re­
quirement. Since the X, follow a multivariate normal, it is known from 
theory that :EL,X, is normally distributed. The difference between its 
means in the two populations is 5 = :ELioi and its variance is 
cr 2 = I:.I.LjLpij· . -... 

From the earlier discussion for a single variate, it is clear that we 
must maximize the absolute value of 0/<1 in order to minimize the probabil­
ity of misclassification. To avoid the question of signs, the L, are chosen 
so as to maximize ~2/a2; that is, 

(13.14.1) 

The quantity t,2 is called the generalized squared distance. By calculus 
Ihe L, are found to be the solutions of the set of k equations 

"11L I + 1112L2 + '" + GuLA; = 61 

(13.14.2) 
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An interesting consequence of the solution is that ;:,.' = 'f.L;b; when the 
optimum L; from (13.14.2) are inserted. 

The estimation of the linear discriminant function from sample data is 
illustrated in section 13.15 below. 

13.1S-N urnerical example of the discriminant function. This exam· 
pIe, due to Cox and Martin (22). uses data from a study of the distribution 
of Azotobacter in Iowa soils. The question is: how well can the presence 
or absence of Azotobacter be predicted from three chemical measurements 
on the soil? The measurements are: 

X. = soil pH 
X, = amount of readily available phosphate 
X, = total nitrogen content 

The data consist of 100 soils containing no Azotobacter and 186 soils 
containing Azotobacter. For ease in calculation, the data were coded by 
dividing X., X,. X, by 10, 1,000. and 100. respectively. The original data 
will not be given here. 

It is always advisable to look first at the discriminating powers of 
the individual variates. The Within Sample mean squares s;' (284 df) 
and the d; (differences between the sample means) were computed for 
each variate. The ratios dis were 2.37 for X., 1.36 for X,. and 0.81 for 
X,. Evidently X. is the best single variate, giving a probability of mis­
classification of 11.8%, while X, is poor by itself. A result worth noting is 
that if the variates were independent. th"Yall1,,-~f d/s given by. the dis­
crimiQant function would be simply J{'f.(d;/s;f). or in this example 
J8.12 = 2.85, with an error rate of about 7.7%. In practical applications, 
correlations between the X's usually have the effect of making the dis­
criminant function less accurate (21). IL}l!uompl!1~ discritl!inant 
appears to give 1I <!!S_Ill~ch gte.ater than the, value obtained by assuming 
inaependence. the cO!ll'putations should be checked .. 
--ro compute the discrimina~nT,lind the pooled Within Sample sums of 
squares S;; and sums of products SY_' If the sample sizes are n., n" the 
degrees of freedom are (n. + n, - L). In line witil equations (13.14.2) 
the normal equations to be solved are as follows: 

(13.15.1) 
SklL, + SilL, + ... + S .. L. = d. 

(If we were to copy [13.14.2J as closely as possible, the mean squares and 
products S;j :would be used in [13.15.1 J inste~d of the S;;, but the S;) 
give the same results in the end and are easier to use.) 

Equations (13.15.1) obviously resemble the normal equations for the 
regression coefficients in multiple regression. The L; take the place of the 
h ;, and the d; of the 'f.xcv. The resemblance can be increased by con­
structing a dummy variable Y, which has the value + l/n2 for every mem­
ber of sample 2 and - I/n. for every mel)1ber of sample I. It follows that 
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EX, Y = EXJ' = d,. Thus, formally, the discriminant function can be 
regarded as the multiple regression of this dummy Y on X, ... X,. If 
we knew Y for any specimen we would know the population to which the 
specimen belongs. Consequently, it is reasonable that the discriminant 
function should try to predict Y as accurately as possible. 

For the two sets of soils the normal equations are: 

l.lIILI + 0.229L2 + 0.198L, = 0.1408 

0.229L, + 1.043L2 + 0.051L, = 0.0821 

0.198L, + 0.051L2 + 2.942L, = 0.0826 

The L .. computed by tbe method of section 13.10, are: 

L, = 0.11229, L2 = 0.05310, L, = 0.01960 

The value of dis for the discriminant is given by the formula: 

../("1 + "2 - 2)"f.L,d, - ";(284)(0.02179) = ,/6.188 = 2.49 

This gives an estimated probability of misclassification of 10.6%. In 
these data the combined discriminant is not much better than pH alone. 

TABLE 13.15.1 
ANALYSIS OF VARlANC£ OF THE DlSCRlMlNAN"I FUNCT10N. HOTaLING'S T2-TFST 

Source of Variation 

Between soils 
Within solis 

Degrees of 
Freedom 

3 
2&2 

Sum of Squares 

n1n2(l:Ld)2/(n l + n2) = 0.03088 
, l:[..d _ 0.02179 

Mean 
Square 

0.01029 
0.0000773 

-------'----------------------:;~.~. 

F - 0.01029/0.0000773 ~ 133.1. 

The multivariate Hest, Hotelling's T2 test, is made in table 13.15.1 
from an analysis of variance of the variate "f.L,X, into "Between Samples" 
and "Within Samples." On multiplying equations (13.15.1) by L" 
L 2 , ••. L. and adding, we have the result: ' 

Within Samples sum of squares = "f."f.L,LJS'i = "f.L,J, 

The "Between Samples" sum of squares = n'"2("f.L,d,)'/(n 1 + "2) 

Note the df.: k for Between Samples and (n, + n, - k - I) for Within 
Samples. The allocation of k df. to Between Samples allows for the fact 
that the L's were chosen to maximize the ratio of the Between Samples 
S.S. to the Within Samples S.S. The value of F, 133.1. with 3 and 282 
df. is very large, as it must be if the discriminant is to be effective in classifi­
cation. 

The assumption that the covariance matrix is the same in both popu­
lations is rather sweeping. If there appear to be moderate differences 
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between tpe matrices in the two populations and if n 1 and n2 are unequal, 
it is better when computing the coefficients L, to replace the sums of 
squares and products S'i by the unweighted averages s'i of the variances 
or covariances in the two samples. If this is done, note that the value of 
dis for the discriminant becomes J!:.(Ld), while In table 13.15.1, 'I:.(Lti} 
becomes the Within Samples mean square. The expression for the Be­
tween Samples sum of squares remains as in table 1315.1. When the 
covariance matrices differ substantially, the best discriminant is a quad­
ratic expression in the X's. Smith (23) presents an example of this case. 

For classification studies involving more than two populations, see 
Rao (20). Examples are given in (24,25) for qualitative data, in which the 
assumption of a multivariate normal population does not apply. 
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* CHAPTER FOURTEEN 

Analysis of covariance 

14.1-lntroductioo. The analysis of covariance is a technique that 
combines the featu{es of analysis of variance and regression. In a one­
way classification, the typical analysis of variance model for the value 
YIJ of the jth observation in the ith class is 

y,} = J'i + efj 

where the p, represent the population means of the classes and the e'j are 
the residuals. But suppose that on each unit we have a:lso measured 
another variable XCi that is linearly related to Y,j. It is natural to set up the 
model, . 

Yij = p, + (J(X.I - X .. ) + tip 

where {J is the regression coefficient of Y on X. This is a typical model" 
for the analysis of covariance. If X and Yare closely related, we may 
expect this model to fit the Y,. values better than the original analysis of 
variance model. That is, the'residuals tij should be in general smaller 
than the e IJ' 

The model extends easily to more complex situations. With a two­
way classification, as in a randomized blocks experiment, the model is 

Y'I = P + ~i + Pj + (J(Xij - X .. ) + e,j 

With a one-way classification and two auxiliary variables Xlij and Xlij' 
both linearly related to Y'j' we have 

Y,j = p, + (J,(XIi! - X, .. ) + (J'(X,,! - X, .. ) + t'l 

The analysis of covariance has numerous uses. 

J. ,To increase precision in randomized experiments. In such applica­
tions the covariate X is a measurement, taken on each experimental unit 
before the treatments are applied, that predicts to some degree the final 
response Yon the unit. In the earliest application suggested by Fisher 
(I), the Yij were the yields of tea buslies in an experiment. An important 

419 
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source of error is that by the luck of the draw, some treatments will have 
been allotted to a more productive set of bushes than others. The Xi} 
were the previous yields of the bushes in a period before treatments were 
applied. Since the relative yields of tea bushes show a good deal of sta­
bility from year to year, the Xii serve as predictors of the inherent yielding 
abilities of the bushes. By adjusting the treatment mean yields so as to 
remove these differences in yielding ability, we obtain a lower experi­
mental error and more precise comparisons among the treatments. This 
is probably the commonest use of covariance. 

2. To adjust for sources of bias in observational studies. An investi· 
gator is studying the relation between obesity in workers and the physical 
activity requir~d in their occupations. He has measures of obesity Yij in 
samples of worllers from each of a number of occupations. He has also 
recorded the age X,i of each worker, and notices that there are differences 
between the mean ages of the workers in different occupations. If obesity 
is linearly related to age, differences found in obesity among different 
occupations may be due in part to these age differences. Consequently he 
introduces the term P(Xij - X .. ) into his model in order to adjust for a 
possible source of bias in his comparison among occupations. 

3. To throw light on the nature of treatment effects in randomized 
experimems. In an experiment on the effects of soil fumigants on nema­
todes, which attack some farm crops, significant differences between 
fumigants were found both in the numbers of nematode cysts Xii and in 
the yields Yij of the crop. This raises the question: Can the differences in 
yields be ascribed to the differences in numbers of nematodes? One way 
of examining this question is to see whether treatment differences in yields 
remain, or whether they shrink to insignificance, after adjusting for the 
regression of yiel4s on nematode numbers. 

4. To study regressions in multiple classifications. For example, an 
investigator is studying the relation between expenditure per student in 
schools (Y) and per capita income (X) in large cities. If he has data for 
a large number of cities for each of four years, he may want to examine 
whether the relation is the same in different sections of the country, or 
whether it remains the same from year to year. Sometimes the question 
is whether the relation is straight or curved. 

14.2-Covariance in a completely randomized experiment. We begin 
with a simple example of the use of covariance in increasing precision in 
randomized experiments. With a completely randomized design, the 
data form a one-way classification, the treatments being the classes. In 
the model 

Y,i = I'i + P(X,j - X .. ) + Bij, 

the I'i represent the effects of the treatments. The observed mean for the 
ith treatment is 



F,. = 1', + P(X,. - X .. ) + e,. 
Thus Y;. is an unbiased estimate of 

1', + P(X,. - X .. ) 
It follows that as an estimate of 1', we use 

fl, = Y,. - P(X,. - X .. ), 
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the second term on the right being the adjustment introduced by the co­
variance analysis. The adjustment accords with common sense. For 
instance, supPoie we were told that in the previous year the tea bushes 
receiving Treatment I yielded 20 pounds more than the average over the 
experiment. If the regression coefficient of Y on X was 0.4, meaning 
that each pound of increase in X corresponds to 0.4 pound of increase in 
Y, we would decrease the observed Y mean by (OA)(20) = 8 pounds in 
order to make Treatment I more comparable to the other treatments. In 
this illustration the figure 0.4 is fl and the figure 20 is (X,. - X .. ). 

There remains the problem of estimating P from the results of the 
experiment. In a single sample you may recall that the regression coeffi­
cient is estimated by b = Exy/Ex'. and that the reduction in sum of 
squares of Y due to {he regression is (Exy)'/Ex'. These results continue, 
to hold in multiple classifications (completely randomized, randomized 
blocks and Latin square designs) except that P ;s estimated/rom the Error 
line in the analysis of l'ari{1nce, We may write b·= Exy!Ex;x. The Error 
sum of squares of X in the analysis of variance. E:u;, is familiar. but the 
quantity Exy is new. It is the Error sum of products of X and Y. A 
numerical example will clarify it. 

The data in table 14.2.1 were selected from a larger experiment.GIT" 
the use of drugS in the treatment of leprosy at the Eversley Childs'Sani­
tarium in the Philippines. On each patient six sites on the body at which 
leprosy bacilli tend to congregate were selected. The variate X, based on 
laboratory tests. is a score representing the abundance of leprosy bacilli 
at these sites before the experiment began. 'The variate Y is asimilar score 
after several months of treatment. Drugs A ilhd D are antibiotics while 
drug F is an inert drug included as a control. Ten patients were selected 
for each treatment for this example. 

The first step is to compute the analysis of sums of squares and 
products, shown under the table. In the columns headed LX' and Ey', we 
analyze X and Y in the usual way into "Between drugs" and "Within 
drugs." For the' Exy column, make the corresponding a)'alysis of the 
products of X and Y, as follows: 

Total: (11)(6) + (8)(0) +.,. + (12)(20) - (322)(237)/30 = 731.2 

Between drugs: (93)(53) +(I_!J_~)j(~I~+_.(129~23) _ (322~~237) 145.8 
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TABLE 14.2.1 
ScORES FOR I,EPROSY BACILLI BEFOkE (X) AND AFTER (y) TREATMENT 

Drugs 
, 

-I -------,--, ---_ 
A D F I 

- ----~--------

I 
X Y X Y X y 
II 6 6 0 16 13 
8 0 6 2 13 10 

I 
5 2 7 3 II 18 

14 8 8 I 9 5 
19 II 18 18 21 23 I 6 4 8 4 16 12 
10 !3 19 14 12 5 I 
6 I 8 9 12 16 j II 8 5 I 7 I Overall 
3 0 15 9 12 20 

X Y 
Totals 93 53 100 61 129 123 322 237 
Means 9.3 5.3 10.0 6.1 12.9 12.3 10.73 7.90 

Analysis of Sums of Squares and Products 
._._---_. 

Source dj l:x' l:xy l:y' 
-------~--. 

Total 29 665.9 731.2 1.288.7 
Between drugs 2 73.0 145.8 293.6 
Within drug~ (Error) 27 592.9 585.4 995.1 
Reduction due to regression I (585.4)'/592.9 - 578.0 
Deviations from, regression 26 417.1 

--------------- - --
Deviations mean square = 417.1/26 = 16.04 

The Within drugs sum of. products. 585.4. is found by subtraction. Note 
that any of these sums of products may be either positive or negative. 
The Within drug~ (Error) sum o(products 585.4 is the quantity we call 
E." while the Error sum of squares of X, 592.9, is En. 

The reduction in the Error sum of squares Y due to the regression is 
E.,' / En with I df. The Deviations mean square, 16.04 with 26 df., 
provides the estimate of error. The original Error mean square of Y is 
995.1/27 = 36.86. The regression has produced a substantial reduction 
in the Error mean square. 

The next step is to compute h and the adjusted means. We have 
h = E.,/E .. = 585.4/592.9 = 0.988. The adjusted means are as follows: 

A: f,,-h(X,.-X .. )= 5.3-(0.988)( 9.3-10.73)= 6.71 
D: f 2• _. b(X2 • _ X .. ) = 6.1 - (0.988)(10.0 _ 10.73) = 6.82 
F: 1,. _ b(X,. _ X .. ) = 12.3 - (0.988)(12.9 - 10.73) = 10.16 

bave imprOVed the status of F, which happened to receive initially a set 
of patients with somewhat high scores. 
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For tests of significance or confidence limits relating to the adjusted 
means, the error variance is derived from the mean square SY'x 2 = 16.04. 
with 26 df. Algebraically, the difference between the adjusted means of 
the ith and the jth treatments is 

D = v,. - 1';. - b(X,. - Xj .) 

The formula for the estimated variance of D is 

,_ . 2 {2 (X,. - )(j')'} 
S D - Sit' l: - + '--'-::,-'-'--

n Exx 
(14.2.1) 

where n is I~" sample size per treatment. The second term on the right is 
an allowance for the sampling error of b. 

This formula has Ihe disadvantage that SD is different for every pair 
of treatments that are being compared. In practice, these differences are 
small if(i) there are alleast 20 df in Ihe Error line of the analysis ofvari­
ance, and (ii) Ihe Treatments mean square for X is non-significant. as it 
should be since the X's were measured bef!>re treatments were assigned. 
In such caSes an average value of SD

2 may be used. By an algebraic identity 
(2) the average valUe of SD

2
, taken over every pair of treatments, is 

S2'=~s 2~I+t .. ] (1422, D n ,'x E .. 
xx 

where exx is the Treatments mean square for X. More generally. we may 
regard 

.2 2 [I exx ] s = Sy.,r + .E
xx 

(14.2.3) 

as the effective Error mean square per observation when computing the 
error variance for any comparison among the treatment means. 

In this experiment Ixx = 73.0/2 = 36.5 (from table 14.2.1). E .. = 592.9. 
giving I .. /E .. = 0.0616. Hence. 

S·2 = (16.04)(1.0616) = 17.03 :' s· = 4.127 

With 10 replicates this gives SD = 4.127,,/(0.2) = 1.846. The ad­
justed means for A and D. 6.71 and 6.82, show no sign of a real difference. 
The largest contrast. F - A. is 3.45. giving a t-value of 3.45/1.846 = 1.87. 
with 26 df. which is not significant at the 5~~ level. 

After completing a covariance analysis, the experimenter is sure to 
ask: Is it worthwhile? The efficiency of the adjusted means relative to the 
unadjusted means is estimated by the ratio of the corresponding effective 
Error mean squares: 

s,' = S,2 36.86 216 
S'2 2 e exx ] = 17.03 = . 

SJ'"X + E 
xx 
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Covariance with 10 replicates per treatment gives nearly as precise 
estimates as the unadjusted means with 21 replicates. 

In experiments like this, in which X measures the same quantity as 
Y(score for leprosy bacilli), an alternative to covariance is to use (Y - X), 
the change in the score, as the measure of treatment effect. The Error 
mean square for (Y - X) is obtained from table 14.2.1 as 

Eyy - 2Ex, + Ex> = [995.1 - 2(585.4) + 592.9] = 15.45 
27 27 

This compares with 17 .03 for covariance. In this experiment, use of 
( y - X) is slightly more efficient than covariance as well as quicker com­
putationally. This was the recommended variable for analysis in the 
larger experiment from which these data were selected. In many experi­
ments, (Y - X) is inferior to covariance, and may also be inferior to Y 
if the correlation between X and Y is low. 

14.3-1110 F-test of tho adjusted means. Section 14.2 has shown how 
to make comparisons among the adjusted means. It is also possible to 
perform an F-test of the null hypothesis that all the 1'; are equal-that 
there are no differences among the adjusted means. Since the way in which 
this test is computed often looks mystifying, we first explain its rationale. 

First we indicate why b is always estimated from the Error line of the 
analysis of variance. Suppose that the value of b has not yet been chosen. 
As we have seen. the analysis of covariance is essentially an analysis of 
variance of the quantity (Y - bX). The Error sum of squares of this 
quantity may be written 

Ey, - 2bExy + b2 En 

Completing the square on b, the Error S.S. is 

( Ex,)' Ex..' 
Exx b - E + E" - E 

xx xx 

(14.3.1) 

By the method of least squares, the value of h is selected so as to minimize 
the Error 5.S. From (14.3.1), it is obvious that this happens when 
b = Ex)Ex~' the minimum Error S.S. being E~,_" - Ex//E~x' 

Now to the F-test. If the null hypothesis is true~ a covariance model 
in which 1'; = I' should fit the data as well as the original covariance model. 
Consequently, we fit this Ho model to find how large an Error S.S. it 
gives. In the analysis of sums of squares and products for the Ho model, 
the "Error" line is the sum orthe Error and Treatments line in the original 
model. because the Ho model contain~o treatment effects. Hence, the 
Deviations S.S. from the Ho model is"''',,:~ 

(E.n + Tx~f 
E.r_.' + 1'.1',1' - E';_.-r. 

xx + xx 

(14.3.2) 
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If Ho bolds, the difference between the Deviations S.S. for the Ho 
model and the original model, when divided by the difference in degrees 
offreedom, may be shown to be an estimate of <1, .. / in the original model. 
If Ho is false. this mean square difference becomes large because the Ho 
model fits poorly. This mean square difference forms the numerator 
of the F-test. The denominator is the Deviations mean square from the 
original model. 

In table 14.3.1 the test is made for the leprosy example. The first 
step is to form a Treatments + Error line. (In a completely randomized 
design this line is, of course, the same as the Total line, but this is not so 
in randomized blocks or a Latin square.) Following formula (14.3.2) we 
subtract (731.2)2/665.9 = 802.9 from 1288.7 to give the deviations S.S., 
485.8, for the Ho model. From this we subtract 417.1, the deviations 
S.S. for the original model, and diVide by the difference in dI, 2. The 
F-ratio, 34.35/16.04 = 2.14, with 2 and 26 dI, lies between the 25% and 
the 10% levels. 

TABLE 14.3.1 
THE COVARIANCE F-TEST IN A ONE-WAY CLASSIFICATION. LEPROSY DATA 

I'De~ations Fr::' -~~grcssio~-, 
Degrees of 
Freedom I:x1 I:.\}' 

Treatments 2 73.0 145.8 
Error 27 591.9 585.4 26 417.1 16.04 
------
T+E 29 665.9 731.2 28 485.8 

:2 68.7 .14 . .15 

""_"-Covariance in a t ........... y classification. The computation. in­
volve nothing new. The regression coefficient is estimated from the Error 
(Treatments x Blocks) line in the analysis of sums of squares and prod­
ucts, and the F-test of the adjusted treatment mean:; is made by recomput­
ing the regression from tbe Treatments plus Error'lines. following the 
procedure in section 14.3. To put it more generally for applications in 
wbich the words "Treatments" and "Blocks" are inappropnate. the 
regression. coefficient is estimated from the Rows x Columns line, and 
eitber the adjusted row means or the adjusted column means may be 
tested. Two examples from experiments will be presented to illustrate 
points that arise in applications. 

The data in table 14.4.1 are from an experIment on the effects of 
two drugs on mental activity (13). The mental activity score was the sum 
of the scores on seven items in a questionnaire given to each of24 volunrc!er 
subjects. The treatments were morphine, heroin. and placebo tan Inert 
substance), given in subcutaneous injections. On different oCL'Ll.<>ions. each 
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TABLE 14.4.1 
MENTAL AcnVITY Srous BEFOIlE (X) AND Two HOUlU AFTER (y) A DIlUG 

Morphine Heroin Placebo Total 
Subject X Y X Y X Y X Y 

I 7 4 0 2 0 7 7 13 
2 2 2 4 0 2 I 8 3 
3 14 14 14 13 14 10 42 37 
4 14 0 10 0 5 10 29 10 
5 I 2 4 0 5 6 10 8 
6 2 0 5 0 4 2 11 2 
7 5 6 6 I 8 7 19 14 
8 6 0 6 2 6 5 18 7 
9 5 I 4 0 6 6 IS 7 

10 6 6 10 0 8 6 24 12 
II 7 5 7 2 6 3 20 10 
12 I 1 4 I 3 8 8 12 
13 0 0 I 0 I 0 2 0 
14 8 10 9 I 10 II 27 22 
IS 8 0 4 13 10 10 22 23 
16 0 0 0 0 0 0 0 0 
17 II I II 0 IO 8 32 9 
18 6 2 Ii 4 6 6 18 12 
19 7 9 0 0 8 7 IS 16 
20 S 0 6 I S I 16 2 
21 4 2 II 5 10 8 25 IS 
22 7 7 7 7 6 S 20 19 
23 0 2 0 0 0 I 0 3 
24 12 12 12 0 II 5 35 17 

Total 138 88 141 52 144 133 I 423 273 

Degrees of 
Freedom :Ex' :EX}' :Ey' 

Between subjects 23 910 519 558 
Between drugs 2 I 5 137 
Error .46 199 -16 422 

Total 71 1,110 508 1,117 

subject received each drug in turn. The mental activity was measured 
before taking the drug (X) and at 1/2, 2, 3, and 4 hours after. The re­
sponse data (Y) in table 14.4.1 are those at two hours after. As a com­
mon precaution in these experiments, eight subjects took morphine first, 
eight took heroIn first, and eight took the placebo first, and similarly on 
the second and third occasions. In these data tbere was no apparent 
effect of the order in which drugs were given, and the order is ignored in 
the analysis of variance presented here. 

In planning this experiment two sources of variation were reeog. 
nized. First, . there are consistent differences in level of mental activity 
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between subjects. This source was removed from the experimental error 
by the device of having each subject test all three drugs, so that com­
parisons between drugs are made within subjects. Secondly. a subject's 
level changes from time to time-he feels sluggish on some occasions 
and unusually alert on others. Insofar as these differences are measured 
by the pretest mental activity score on each occasion, the covariance 
analysis should remove this source of error. 

As it turned out, the covariance was ineffective in this experiment. 
The error regression coefficient is actually slightly negative, b = - 16/199, 
and showed no sign of statistical significance. Consequently, comparison 
of the drugs is best made from the 2-hour readings alone in this case. 
Incidentally, covariance would have been quite effective in removing 
differences in mental activity between subjects, since the Between sub­
jects h, 519/910, is positive and strongly significant. 

Unlike the previous leprosy example, the use of the change in score, 
2 hours - pretest, would have been unwise as a measure of the effects of 
the drugs. From table 14.4.1 the Error sum of squares for (Y - X) is 

422+ 199-2(-16)=653 

This is substantially larger than the sum of squares, 422, for Yalone. 
The second example, table 14.4.2, illustrates another issue (3). The 

experiment compared the yields Y of six varieties of corn. There was some 
variation from plot to plot in number of plants (stand). If this variation 
is caused by differerices in fertility in different plots and if higher plant 
numbers result in higher yields per plot, increased precision will be ob­
tained by adjusting for the covariance of yield on plant number. The plant 
numbers in this event serve as an index of the fertility levels of the plots. 
But if some varieties characteristically have higher plant numbers than 
others through a greater ability to germinate or to survive when the plants 
are young, the adjustment for stand distorts the yields because it is trying 
to compare the varieties at some average plant number level that the 
varieties do not attain in practice. 

With this in mind, look first at the F-rlrtio for Varieties in X (stand). 
From table 14.4.2 the mean squares are: Varieties 9.17, Error 7.59, giving 
F = 1.21. The low value of F gives assurance that the variations in stand 
are mostly random and that adjustment for stand will not introduce bias. 

In the analysis, note the use of the Variety plus Error line in comput­
ing the F-test of the adjusted means. The value of Fis 645.38/97.22 = 6.64, 
highly significant with 5 and 14 df The adjustment produced a striking 
decrease in the Error mean square, from 583.5 to 97.2, and an increase in 
F from 3.25 to 6.64. 

The adjusted means will be found to be: 

A, 191.8; 8, 191.0; C. 193.1; D,219.3; E, 189.6; F.213.6 

The standard error oflhe difference between two adjusted means is 7.25, 
with 14 df By either the LSD method or the sequential Newman-Keuls 
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TABLE 14.4.2 
STAND (X) AND YIELD (Y) (PoUNDS FIELD WEIGHT OF EAR CORN) OF SIX VARlETlES Of 

CORN.' COV",RIANCE IN RANDOMIZED BLOCKS 

I 
Blocks 

I 2 3 4 Tolal 

Varieties X Y X Y X Y X y X Y 

A 28 202 22 165 27 191 19 134 96 692 
B 23 145 26 201 28 203 24 180 101 729 
C 27 188 24 185 27 185 28 220 106 778 
D 24 201 28 231 30 238 30 261 112 931 
E 30 202 26 178 26 198 29 226 III 804 
F 30 228 25 221 27 207 24 204 106 860 

Tolal 162 1,166 151 1,181 165 1,222 154 1,225 632 4,794 

I Deviations From Regression 

Source of Sum or Mean 
Variation df. :Ex' Ixy I1" df. Squares Square 

Total 23 181.33 1,485.00 18,678.50 
Blocks 3 21.67 8.50 436.17 
Varieties 5 45.83 559.25 9,490.00 
Error 15 113.83 917.25 8,752.33 I 14 1,361.07 97.22 

Variety plus error 20 159.66 1,476.50 18,242.33 19 4,587.99 

For testing adjusted means, 5 3,226.92 645.38·· 

method, the two highest yielding varieties, D and F, are not significantly 
different, but they are significantly superior to all the others, which do not 
differ significantly among themselves. 

In some cases, plant numbers might be influenced partly by fertility 
variations and partly by basic differences between varieties. The possi­
bility of a partial adjustment has been considered by H. F. Smith (4). 

EXAMPLE 14.4.1-Verify the adjusted means in the corn experiment and carry 
through the tests of all the differenCes. 

EXAMPLE 14.4.2-Estimate the efficiency of the covariance adjustments Ans.5.55. 

EXAMPLE 14.4.3-As an alternative to covariance. could we analyze the yield per 
plant. Y,.' X. as a means of removing differences in plant numbers? Ans. This is satisfactory 
if the relation between Yand X is a straight line going through the origin. But b is often sub­
stantially less than the mean yield per plant. because when plant numbers are high. competi­
tion between plants reduces the yield per plant. If this happens. the use of Y/X overcorrects 
for stand. In the corn example b = 8.1 and the overall yield per plant is 4,794/632 = 7.6. 
in good agreement: Yield per plant would give results similar to covariance. Of course, 
YIeld per plant should tJe analyzed if there is direct interest in this quantity. 
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EXAMPLE 14.4.4-The foUowing data are the yie1ds (Y) jn bushels per acre and the 
per cents of stem canker infection (X) in a randomized blocks experiment comparing four 
hnes of soybeans (5). 

Lines 

A B C D Totals 
Blocks X Y X Y X Y X y X y 

I 19.3 21.3 10.1 28.3 4.3 26.7 14.0 25.1 47.7 101.4 
2 29.2 19.7 34.7 20.7 48.1 14.7 30.2 20.1 142.3 75.2 
3 1.0 28.7 14.0 26.0 6.3 29.0 7.2 24.9 28.5 108.6 
4 6.4 27.3 5.6 34.1 6.7 29.0 8.9 29.8 27.6 120.2 

Totals 55.9 97.0 64.4 109.1 65.5 99.4 60.3 99.9 246.1 405.4 

By looking at some plots with unusually high and unusually low X. note that there seems a 
definite negative relation between Yand X Before removing this source of error by co­
variance, check that the lines do not differ in the amounts ')f infection. The analysis of 
sums of squares and proou.;;ts is as follows: 

df. I:x' I:xy I:y' 

Blocks 3 2.239.3 -748.0 272.9 
Treatments 3 t4.l 10.2 21.2 
Error 9 427.0 -145.7 66.0 

T+E 12 44!.l -135.5 87.2 

(i) Perform the F-test of the adjusted means. 
(ii) Find the adjusted means and test the differences among them. 
(iii) Estimate the efficiem.:y of the adjostments. Ans. (i) F= 4.79·: df_"= 3, S:1,tI)' 

A, 23.77; B, 27.52; C, 25.19; D, 24,87. By the LSD test, B significantly exceed-sA and D. 
(iii) 3.56. Strictly, a slight correction to this figure should be made for the reduction in d.f. 
from 9 to 8. 

14.S-Interprefation of adjusted means in covariance. The most 
straightforward use of covariance has been"illllstrated by the preceding 
examples. In these, the covariate X is a measure of the responsiveness of 
the experimental unit, either directly (as with the leprosy bacilli) or in­
directly (as with number of plants). The adjusted means are regarded as 
better estimates of the treatment effects than the unadjusted means be­
cause one of the sources of experimental error has been removed by the 
adjuslments. 

Interpretation of adjusted means is usually more difficult when both 
Yand X show differences between treatments, or between groups in an 
observational study. As mentioned in section 14.1. adjusted means are 

. sometimes calculated in this situation either in order to throw light on the 
way in which the treatments produce their effects or to remove a source of 
bias in the comparison of Y between groups. The computations remain 
unchanged, except that the use of the effective Error mean square 
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is not recommended for finding an approximation to the variance of the 
difference between two adjusted means. Instead, use the correct formula: 

, ,{2 (Xi' - Xi')'} 
S D =!- S,. x - + -'-'--::----'--'-

n Eu 

The reason is that when the X's differ from treatment to treatment, the 
term (Xi' - Xi')' can be large and can vary materially from one pair of 
means to another, so that SD' is no longer approximately constant. 

As regards interpretation, the following points should be kept in 
mind. If the X's vary widely between treatments or groups, the adjust­
ment involves an element of extrapolation. To cite an extreme instance, 
suppose that one group of men have ages (X) in the forties, with mean 
about 45, while a second group are in their fifties with mean about 55. 
In the adjusted means, the two groups are being compared at mean age 
SO, although neither group may I)ave any men at this specific age. In using 
the adjustment, we are assuming that the linear relation between Yand X 
holds somewhat beyond the limits of each sample. In this situation the 
value of SD' becomes large, because the term (Xi' - X}.)' is large. The 
formula is warning us that the adjustments have a high element of uncer­
tainty. It follows that the comparison of adjusted means has low pre­
cision. Finding that F- or I-tests of the adjusted means show no signifi­
cance: we may reach the conclusion that 'The differences in Y can be 
explained as a consequence of the differences in X," when a sounder 
interpretation is that the adjusted differences are so imprecise that only 
very large effects could have been defected. A safeguard is to compute 
confidence limits for some of the adjusted differences: if the F-test alone 
is made, this point can easily be overlooked. 

Secondly, if X is subject to substantial errors of measurement, the 
adjustment removes only part of any difference between the Y means that 
is due to differences in the X means. Under the simplest mathematical 
model, the fraction removed may be shown to be ux'/(ux' + "i), where 
"/ is the variance of the errors of measurement of X. This point could 
arise in an example mentioned in section 14.1. in which covariance was 
suggested for examining whether differences produced by soil fumigants 
on spring oats (Y) could be explained as a reflection of the effects of these 
treatments on the numbers of nematode cysts (X). The nematode cysts 
are counted by taking a number of small soil samples from each plot and 
sifting each sample carefully by some process. The estimate of X on each 
plot is therefore subject to a sampling error and perhaps also to an error 
caused by failure to detect some of the cysts. Because of these errors,some 
differences might remain among the adjusted Y means, leading to an 
erroneOllS inference that the differences in yield could 1101 be fully ex· 



431 

plained by the effects of the treatments on the nematodes. Simi­
larly, in observational studies the adjustment removes only a fraction 
a/I(ax' + a/) of a bias due to a linear relation between Yand X. In­
cidentally, the errors of measurement d do not vitiate the use of covariance 
in increasing the precision of the Y comparisons in randomized experi­
ments, provided that Y has a linear regression on the measurement 
X' = X + d. However, as might be expected, they make the adjustments 
less effective, bOfOause the correlation p' between Y and X' = X + d is less 
than the correlation p between Y and X, so that the residual error variance 
a/(1 - p'2) is larger. 

Finally, the meaning of the adjusted values is often hard to grasp, 
especially if the reasons for the relation between Y and X are not well 
known. As an illustration, table 14.5.1 shows the average 1964 expendi­
tures Y per attending pupil for schools in the states in each of five regions 
of the U.S. (6). These are simple averages of the values for the individual 
states in the region. Also shown are corresponding averages of 1963 per 
capita incomes X in each region. In an analysis of variance into Between 
Regions and Between States Within Regions, the differences between 
regions are significant both for the expenditure figures and the per capita 
incomes. Further, the regions faU in the same order for expenditures as 
for incomes. 

TABLE 14.1.1 
1964 SCHOOL EXPENDITURES PER. ATTENDING PuPIL (y) AND 1963 PER CAPITA 

JNCOMES (X) IN FIVE REoJONS OF THE U.S. 

Mountain North South South 
East and Pacific Central Atlantic Central 

Number of states 8 II 12 9 8 

(dollars) 

Expenditures 542 SOO 479 3.99 111 
Per capita incomes I 2,600 2,410 2,170 2,110 1,780 

" 
It seems natural to ask: Would the differences in expenditures dis­

appear after allowing for the relation between expenditure and income? 
The within-region regression appears to be linear, and the values of b do 
not differ significantly from region to region. The average b is 0,140 
($14 in expenditure for each additional $100 of income), The adjusted 
means for expenditure, adjusted to the overall average income of $2,306, 
are as follows: 

~~~F=====~=============~ 

E. M.P. N.C. s .... S.c. 

(Dollars) 501 485 470 398 _____ ~L__ _ ______________ ___ 
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The differences between regions have now shrunk considerably, al­
though still significant, and the regions remain in the same order except 
that the South Central region is no longer lowest On reflection, however, 
these adjusted figures seem hypothetical rather than concrete. The figure 
of $409 for the South Cenlral region cannot be considered an estimate of 
the amount that this region would spend per pupil if its per capita income 
were to increase rapidly. perhaps through greater industrialization. from 
$1,780 to $2.306. In fact. if we were Irying 10 estimale Ihis amount, a 
study of the Between Years regression of expenditure on income for in~ 
dividual slates would be more relevant. Similarly, a conclusion that "the 
differences in expenditures cannot be ascribed to differences in per capita 
income" is likely to be misunderstood by a non-technical reader. For a 
good discussion of other complications in interpretation, see (4). 

14.6-Comparisoll of regression lines. Frequently, the relation be­
tween Yand X is studied in samples obtained hy different investigators, 
or in different environments, or at different times. In summarizing these 
results, the question naturally arises: can the regression lines be regarded 
as the same? If not, in what respects do they differ? A numerical 
example provides an introduction to the handling of these questions. The 
example has only two samples, but the techniques extend naturally to 
more than two samples. 

In a survey to examine relationships between the nutrition and the 
health of women in the Middle West (7), the concentration of cholesterol 
in the blood serum was determined on 56 randomly selected subjects in 
Iowa'and 130 in Nebraska. In table 14.6.1 are subsamples from the sur­
vey data. Figure 14.6.1 shows graphs of the data from each state. The 
figure gives an impression of linearity of the regression of cholesterol 
concentration on age, which will be assumed in this· discussion. 

The purpose is to examine whether the linear regressions of choles­
terol on age are the same in Iowa and Nebraska. They may differ in 
slope, in elevation, or in the residual variances Gy .;/. The most con­
venient approach is to compare the residual variances first, then the slopes, 
and lastly the elevations. In terms of the model, we have 

Y'j = ~, + P'x;; + 'Ii; 
where i = I, 2 denotes the two states. We first compare the residual 
variances ",2 and (J,', next p, and P2' and finally the elevations of the 
lines, ct 1 and Ctz' 

The computations begin by recording separately the Within sum of 
squares and products for each state, as shown in table 14.6.2 on lines 1 and 
2. The next step is to find the residual S.S. from regression for each state, 
as on the right in lines I and 2. The Residual mean squares, 2,392 and 
1,581, are compared by the two-tailed F-test (section 2.9) or, with more 
than two samples, by Bartlett's test (section 10.21). If heterogeneous 
variances were evident, this might be pertinent information in itself. In 
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T A.BLE 14.6.1 
Am: AND CONCENTRATION Of CHOLESTEROL (MG.lIOO ML.) IN THE BLOOD SER.UM O}' 

IOWA AND NEBRASKA WOMEN 

~~~~~=-r-====~~~===== 

Iowa. n = 11 I Nebrask.a." = 19 
-.----------r--:---====-- .----------

Age Cholesterol I' Age Cholesterol A.ge Cholesterol 
X y X Y X 

46 
52 
39 
65 
54 
33 
49 
76 
71 
41 
58 

Sum 584 

181 
228 
182 
249 
259 
201 
121 
339 
224 
112 
189 

2,285 

x, = 53.1 Y, = 207.7 

:EX' = 32,834 
C: 31,005 

~Xl = 1,829 

:EX' = 45,677 
C: 40,112 

l:.x2 = 5,565 

:EX = 1.457,XT = 48.6 
:E Y = 6,410, YT = 213.7 

18 
44 
33 
78 
51 
43 
44 
58 
63 
19 
42 

137 
173 
177 
241 
225 
223 
190 
257 
337 
189 
214 

Iowa 

:EXY = 127,235 
121,313 

:Exy = 5,922 

Nebraska 

:EXY = 203,559 
189,533 

:Exy = 14,026 

Total .. n = 30 

30 
47 
58 
70 
67 
31 
21 
56 

873 

:EX' = 78,511 
C.: 70,762 

l;XY = 330,794 
-._ 311,312 

tx2 = 7,749 .Exy - 19,482 

Y 

140 
196 
262 
261 
356 
159 
191 
197 

4,125 

f._217.1 

:E y' = 515,355 
474,657 

:EY'.= 40,698 

:E Y' = 957,785 
895,559 

:Ey' = 6~,226 

l;Y' - 1,473,140 
1,369,603 

l;y' = 103,537 

this example, F = 1.51, with 9 and 17 df,givinga Pvalue greater than 0.40 
in a two-tailed test. The mean squares show no sign of a real differ.ence. 

Assuming homogeneity of residual variances, we now compare the 
two slopes or regression coefficients, 3.24 for Iowa and 2.52 for Nebraska. 
A look at the scalters of the points about the individual regression lines 
in figure 14.6.1 suggests that the differences in slope may be attributable 
to sampling variation. To make the test (table 14.6.2), add the df and 
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Flo. 14.6.I-Graph of 11 pairs of Iowa data and 19 pairs from Nebraska. Age is X 
and concentration of cholesterol. Y 

S.S. for the deviations from the individual regr~ssion. recording these sums 
in line 3. The mean square. 1.862. is the residual mean square obtained 
when separate regression lines are fitted in each state. Secondly, in line 
4 we add the sums of squares and products. obtaining the pooled slope, 
2.70, and the S.S., 49,107, representing deviations from a model in which 
a single pooled slope is fitted. The difference. 49, I 07 - 48,399 ~ 708 
(line 5), with 1 dj:, measures the contribution of the difference between 
the two regression coefficients to the sum of squares of deviations. If 
there were k coefficients, this difference would have (k - 1) dj: The cor­
responding mean square is compared with the Within States mean square 
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TABLE 14.6.2 
CoMPARISON OF RBoRESSION UN£§. CHOLfSTEROL DATA 

Reg. Deviations From Regression 
df. :tx' :txy :ty' Coef. df. 5.S. 

L Within 
I Iowa 10 1,829 5,922 40,698 3.24 9 21,524 
2 Nebraska 18 5,565 14,026 62,226 2.52 17 26,875 

3 26 48,399 

4' Pooled, W 28 7,394 19,948 102,924 2.70 27 49,107 

5 Difference between slopes I 708 

6 Between, 8 I 355 -466 613 

7 W+B 29 7,149 19,482 103,531 28 54,557 

i I. Between adjusted means I 5,450 
-~ 

Comparison or.lopes: F= 108/1,862 = 0.38 (df. = 1,26) N.S. 
ComparisOn of elevations: F - S,45()/J.819 = 3.00(dj. = 1,27) N.S. 

M.S. 

2,392 
1,581 

1,862 

1.819 

708 

5,450 

1,862, by theeF-test. In these data, F = 708/1,862 = 0,38, df = I, 26, 
supporting the assumption that the slopes do not differ. 

Algebraically, the difference 708 in the sum of squares may be shown 
to be L,L,(b, - b,)'/(L, + L,), where L" L, are the values of LX' for 
the two states. With more than two states, the difference is Lw,(b, - 0)' 
where w, = IlL, and 5 is the pooled slope, 1: w,b,/1:w,. The sum of 
squares of deviations of the b's is a weighted sum, because the variances of 
the b" namely (1,./11:" depend on the values of LX'. 

Ifthe sample regressions were found to differ significanily, this might 
end the investigation. Interpretation would involve the question: Why? 
The final question about the elevations of the population regression lines 
usually has little meaning unless the lines are parallel. 

Assuming parallel lines and homogeneous variance, we write the 
model as 

Y;j = IX, + PXij + Btj' 

where; = I, 2, denotes the state. It remains to test the null hypothesis 
IX, = IX,. Thel~stsquaresestimatesofIX, andIX,are~, = Y,-bX, and 
~, = Y, - bX,. Hence, the test of this Ho is identical to the test of the 
H 0 that the adjusted means of the Y's are the same in the two states. 
This is, of course, the F-test of the difference between adjusted means 
that was made in section 14.3. It is made in the usual way in line 4 to 8 
in table 14.6.2. Line 4 gives the Pooled Within States sums of squares and 
products, while line 6 shows tbe Between States sums of squares and 
products. In line 7 these are combined, just as we combined Error and 
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Treatments in section 14.3. A Deviations S.S., 54,557, is obtained from 
line 7 and the Deviations S.S. in line 4 is subtracted to give 5,450, the S.S. 
Between adjusted means. We find F = 3.00, df. 1,27, P about 0.10. In 
the original survey the difference was smaller than in these subsamples. 
The investigators felt justified in combining the two states for further 
examination of the relation between age and cholesterol. 

14,7-Comparisoo of the "Between aasses" and the "Within Classes" 
regressions. Continuing the theme of section 14.6, we sometimes need 
to compare the Between Classes regression and the Within Classes regres­
sion in the same study. In physiology or biochemistry, for instance, Y 
and X are measurements made on patients or laboratory animals. Often, 
the number of subject,s is limited, but several measurements of Yand X 
have been made on each subject. The Between Subjects regression may 
be the one of primary interest. The objective of the comparison is 
to see whether the Within and Between regressions appear to estimate 
the same quantities. If so, they can be combined to give a better estimate 
of the Between Subjects relationship. 

The simplest model that might apply is as follows: 

(14.7.1) 

where i denotes the class (subject). In this model the same regression 
line hold.s throughout the data. The best combined estimates of a and fJ 
are obtained by treating the data as a single sample, estimating a. and fJ 
from the Total line in the analysis of variance. 

Two consequences of this model are important: (I) The Between 
and Within lines furnish independent estimates of fJ: call these hi and h, 
respectively. (2) The residual mean squares Sl2 and S2 from the regres­
sions in the Between and Within lines are both unbiased estimates of ,,2, 
the variance of the "'I' 

To test whether the same re~ression holds throughout, we therefore 
compare hi and hand SI

2 and s. Sometimes, b l and h agree well, but 
3. 2 is found to be much larger than S2. One explanation is that all the 
'YjJ for a subject are affected by an additional component of variation 
d~ independent of the eil. This model is written 

(14.7.2) 

If the subjects are a random sample from .some population of subjects, 
the d, are usually regarded as a random variable from subject to subject 
with population mean zero and variance a.'. Under this model, b. and 
b are still unbiased estimates of fJ, but with m pairs of observations per 
subject, s.! is an unbiased estimate of at' = (a2 + ma.'), while 3

2 con­
tinues to estimate ,,2. Since the method of comparing h and b. and- the 
best way !:If combining them depend on whether the component d, is 
~ we,suggest that S2 and s.' be compared first by an F-test. 



437 

The calculations are illustrated by records from ten female leprosy 
patients. The data are scores representing the abundance ofleprosy bacilli 
at four sites on the body. the Xij being initial scores and the Y,j scores after 
48 weeks of a standard treatment. Thus m = 4, n = 10. (This example 
Is purely for illustration. This regression would probably not be of interest 
ir itself; further, records from many additionai patients were available so 
that a Between Patients regression could be satisfactorily estimated di­
rectly.) Table 14.7.1 shows the initial computations. 

TABLE 14.7.1 
ScORES FOR LEPROSY BACILLI AT FOUR SITES ON T.l:N PATIENts 

df. 1:x' I:x)' 1:)'2 Reg. Coer. 

Between patients 9 28.00 26.00 38.23 b, = 0.939 
Within patients JO 26.00 13.00 38.75 b = 0.500 

Tot:.! 39 54.00 39.00 76.98 

Reduction Deviations From Regression 
(1:xy)' /1:x' df. 5.5. M.S. 

Between patients 24.14 8 14.09 <j = 1.761 
Within patients 6.50 29 32.25 s=1.I12 

After performing the usual analysis of sums of squares and products, 
the reduction in sum of squares due to regression is computed separately 
for the Between and Within lines (lower half of table 14.7.1). From these, 
the Deviations SS. and M.S. are ohtained. The F ratio is S,2/S2 

= 1.761/1.112 = 1.58 with 8 and 29 df, corresponding to a P leyel of 
about 0.20. 

Although F falls short of significance, the investigator may decide to 
assume that <1,2 is greater than <12, and thus to retain the model (14.7.2), 
particularly since the Between Patients mean square is significant for both 
Y and X individually. To compare b, and b under this model, note that 
the estimated variances of b, and bare s,';l:, and s2;l:, where l:, and l: are 
the values of l:x2 for Between Patients and Within Patients, respectivaly. 
From table 14.7.1 the ratio of (b, - b) to its standard error is therefore 

, b, - b 
r =fFf= 

-
l: 

= 1.35 

0.939 - 0.500 

1.761 l.l12 
--+--
28.00 26.00 

0.439 
,/0.0629 + 0.0428 

0.439 
0.325 

which is clearly non-significant. The quantity t is not distributed as t. 
but its significance level, if needed, is found by the approximate method 
jn section 4.14. Since 5.' has 8 df and 52 has 29 d,f, find the 5~~ sig-
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nificanee levels of I for 8 df. and 29 df., namely 2.306 and 2.045. Form a 
weighted mean of these two values, with weights S,2~, = 0.0629 and 
S2 ~ = 0.0428. This mean is 2.20, the required 5% significance level of t'. 

It remains to find a combined estimate of P from b, and b. In coI!I­
bining two independent estimates tbat are of unequal precision, a general 
rule is to weight each estimate inversely as its variance. In this example, 
as is usually the case in practice, we have only estimates s ,2/'f., = 0.0629 
and S2~ = 0.0428 of the variances of b, and b. If s/ and S2 both have 
at least 8 df., weight b, and b inversely as tbeir estimated variance (8). 
The weights are w, = 1/0.0629 = 15.9, W = 1/0.0428 = 23.4, giving 

p = (15.9)(0.939~;3(23.4)(0.5OO) = 0.678 

If W = w, + w = 39.3, the standard error of P may be taken as (8) 

1 1 + 4w,w (I, + J) = 0.171 
JW W 2 fJ ' 

where f" fare the df. in s,', S2. The second term above is an allowance 
due to Meier (9) for sampling errors in the weights. 

We now show how to complete the analysis if a/ = (12. Form a 
pooled estimate of (7' from s,' and s'. This is .12 = 46.34/37 = 1.252 with 
37 df. The estimated variance of (b, - b) is 

fl2 + a' = a' (L, + 'f.) = (1.252)(54.00) = 0.0929 
L, L 'f., 'f. (28.00)(26.00) 

Hence, (h, - b) is tested by the ordinary t-test, 

0.4386 0.4386 
t= = ~~ = 1.44 

. JO.0929. 0.305 
(37 af.) 

The pooled estimate of P is simply the estimate Lxyl'f.x' from the Total 
line iIi the analysis of variance. This is 39.00/54.00 = 0.722, with standard 
error JW/('f., + 'f.)} = J(1.252/54.00) = 0.152. 

Methods for extending this analysis to mUltiple regression are pre­
sented in (10). 

14.8-Multiple co.arlance. With two or more independent variables 
there is no change in the theory beyond the addition of extra terms in X. 
The method is illustrated for a one-way classification by the average daily 
gains of pigs in table 14.8.1. Presumably these are predicted at least 
partly by the ages and weights at which the pigs were started in the experi­
ment, which compared four feeds. 

This experiment is an example of a technique in experimental design 
known as balancing. The assignment of pigs to the four treatments was 
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not made by strict randomization. Instead, pigs were allotted so that 
the means of the four lots agreed closely in both X, and X,. An indication 
of the extent of the balancing can be seen by calculating the F-ratios for 
Treatments/Error from the analyses of variance of X, and X" given 
under table 14.8.1. These F's are 0.50 for X, and 0.47 for X" both well 
below I. 

The idea is that if X, and X, are linearly related to Y, this balancing 
produces a more accurate comparison among the Y means. One com­
plication is that since the variance within treatments is greater than that 
between treatments for X, and X" the same happens to some extent for 
Y. Consequently, in the analysis of variance of Y the Error mean square 
is an overestimate and the F-test of Y gives too few significant results. 
However. if the covariance model holds, the analysis of covariance will 
give an unbiased estimate of error and a correct F-test for the adjusted 
means of Y. The situation is interesting· in that, with balancing, the reaSon 
for using covariance is to obtain a proper estimate of error rather than to 
adjust the Y means. If perfect balancing were achieved. the adjusted Y 
means would be the same as the unadjusted means. 

The first step is to calculate the six sums of squares and products. 
shown under table 14.8.1. Next, b, and b, are estimated from the Error 
lines, the normal equations being 

4,548.20b, + 2,877.4Ob, = 5.6230 
2,877.40b, + 4.876.90b, = 26.2190 

The elj inverse multipliers are 

Cll = 0.0003508. ('" = -0.0002070. c" = 0.0003272 

These give 

b, = -0.0034542 b, = 0.0074142 

Reduction in S.S. = (-0.0034542)(5.6230) + (0.0074142)(26.2190) 
= 0.1750 "-

Deviations S.S. = 0.8452 - 0.1750 = 0.6702' (34df): s' = 0.0197 

The standard errors of b, and b, are 

Sb, = ,,/(s'(',,) = 0.00263 : So, = ,,/(s'c,,) = 0.00254 

It follows that b, is definitely significant but b, is not. In practice. we 
might drop X, (age) at this stage and continue the analysis using the regres­
sion of Y on X, alone. But for illustration we shall adjust for both 
variables. 

If an F-test of the adjusted means is wanted. make a new calculation 
of b, and b, from the Treatments plus Error lines. in this case the Total 
line. The results are b, = -0.0032903. b, = 0.0074093. Deviations 
S.S. = 0.8415 (37 dfl. The F-test is made in table 14.8.2. 

The adjusted Y means are computed as follows. In our notation. 
r;.X 1i• 
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TABLE 14.8.1 
INITIAL AGE (Xj).INITIAL WEIGHT (X t ) • ... NO RATE OF GAIN (Y) Of 40 PIOS 

(Four treatments tn lots of equal size) 

Treatment I Treatment 2 

Initial Weight. Initial Weight. 
Age. XI X, Gain. Y Agc. XI X, Gain. Y 

(do,s) Jpowrd.s) (pounds (do,s) (POunds) (pounds 
P<' doy) P<' doy) 

78 61 1.40 78 74 1.61 
90 59 1.79 99 75 1.31 
94 76 1.72 80 64 1.12 
71 SO 1.47 75 41 1.35 
99 61 1.26 94 62 1.29 
80 54 1.28 9J 42 1.24 
83 57 1.34 75 52 1.29 
75 45 U5 63 43 1.43 
62 41 1.57 62 SO 1.29 

I 67 40 1.26 61 40 1.26 

Sums 799 S44 14.64 784 5SO 13.19 
Means 19.9 54.4 1.46 18.4 55.0 1.32 

Treatment J Treatment 4 

78 80 1.67 77 62 1.40 
83 61 1.41 71 55 1.47 
79 62 1.73 78 62 1.37 
70 47 1.23 70 43 1.15 
85 59 1.49 95 57 1.22 
83 42 1.22 96 51 1.41 
71 41 1.39 71 41 1.31 
66 42 1.39 63 40 1.27 
67 40 1.56 62 45 1.22 
61 40 1.36 67 39 1.36 

Sums 149 520 14.45 7SO 495 13.25 
Means 74.9 52.0 1.44 75.0 49.5 1.32 

Sums of Squares and Products 

df. txf IXlx] :txi 
Treatments 3 181.70 160:15 189.08 
Error 36 4.548.20 2.877.40 4.816.90 

- --- --- ---
Total 39 4.735.90 3.037.SS 5.065.98 

df. :t.T,y .I.Tz)' 1:y' 

Treatments J 1.lOOS 1.3218 0.1776 
Error 16 S.623O 26.2190 0.8452 

- -- -- --
Total 39 6.9235 27.5408 1.0228 



441 

TABLE 14.8.2 
ANALYSIS OF COVARIANCE OF PIG GAINS. DEVIATIONS FROM ~EGRESSION 

Source of Variation Decrees of Freedom Sum of Squares Mean Square 

Total 37 0.8415 
Error 34 0.6702 0.0197 
For testing adjusted 

Treatment means 3 0.1713 0.0571' 

F _ 0.0571/0.0197 ~ 2.90'. dJ. - 3.34 

X 2' denote the means of 1', Xt , and X2 for the ith treatment while Xl and 
X 2 denote the overall means of X, and X2 • 

Treatment 2 3 4 Multiplier 

Y; 1.46 1.32 1.<14 1.32 1 
(XII-Xd +2.9 + 1.4 -2.t -2.0 0.00345 = -b 1 
(X" - X,) + 1.7 +2.3 -0.7 -3.2 -0.00741 - -b, 

'f .. i , L46 1.31 1.44 1.34 

Thus, for treatment 4, 

Y ... j • = Y. - bt(X .. - XI) - b2(X2• - X2) 
= 1.32 + 0.OO345( -2.0) - 0.OO741( -3.2) = 1.34 

There is little change from unadjusted to adjusted means because of 
the balancing. 

The estimated variance of the difference between the adjusted m_ 
of the ith and jlh treatments is 

s2[21n + c,,(Xt; _XI})2 + 2c12(X" - Xjj)(Xu - X2) + C2'(X" - X 2iJ 
As with covariance on a single X-variable (section 14.2), an average 

error variance can be used for comparisons among the adjusted means if 
there are at least 20 d.f for Error. The effective Error mean square per 
observation is 

S,2 = s2[1 + CUtl1 1- 2C12t12 + cutu] 

where I II, '22 and '12 are the Treatmellts mean squares and mean product 
This equation is the extension of(l4.2.3) to two X-variables. In these data 

5'2 = 0.0197[1 + ((0.3508)(62.6) - 2(0.2070)(53.4) + (0.3272)(63.0)}iIOJl 
= (0.0197)(1.020) = 0.0201. 

For instance, to find 95% confidence limits for the difference between the 
adjusted means of treatments 1 and 2, we have 
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D = 1.46 - 1.31 = 0.15 pounds per day 

so'" -/(2s"(IO) =-/0.00402 = 0.0634 

The difference 0.15 pounds between Treatments I and 2 is the greatest 
of the six differences between pairs of treatments. It is the only difference 
that is significant by the LSD test. By the Newman-Keuls test, none of the 
differences is significant, the required difference for 5% significance be­
tween the highest and the loweSt means being 0.17 pounds. This is one of 
those occasional examples in which although F is significant (just on the 
5% level), none of the individual differences between pairs is clearly 
significant. 

These data also illustrate the point that the regression of Y on X, 
alone may be quite different from the same regression, Y on X,. when 
another X variable is included in the model-even the signs may be 
opposite. Consider the regression of Yon X, (age) in the pig data. Using 
Totals, the regression coefficient is 

bYl = 6.9235/4,735.90 = 0.00146 Ib./day/day of age 

Compare this with bYl ., = -0.00329 calculated on p. 439, also for Total. 
Why should average daily gain increase with age in the first case and 
decrease with age in the second? 

TABLE 14.8.3 
DATA ON 40 PIGS CLASSIFIED 'Y INmAL WEIGHT 

Initial Number 
Weight of Piss Initial Age and Average Daily Gain Mean 

---

39-44 IJ 
62 63(2)' 66 67(5) 70 71 &3 91 69.5 

1.57 1.35 1.39 1.36 1.15 1.31 1.22 1.24 1.34 

45-49 5 62 70 71 75(2) 70.6 
1.22 1.23 1.39 1.45 1.35 

SO-S4 5 62 71 75 &0 96 76.& 
1.29 1.47 1.29 1.2& 1.48 1.36 

55-59 5 71 ~3 85 90 95 84.8 
1.47 1.34 1.49 1.79 1.22 1.46 

6O-M 8 
77 78(2) 79 &0 83 94 99 83.5 

1.40 1.38 1.73 1.12 1.41 1.29 1.26 1.27 

74-80 4 78(2) 94 99 87.2 
1.64 1.72 1.31 1.58 

Total 40 17.05 
1.388 

• Number of pigs of this age. 



The first regression is an overall effect, ignoring initial weight. In 
this sample there was a slight tendency for the initially older pigs to gain 
faster. But among pigs of the same initial weight (initial weight held 
constant) the older pigs tended to gain more slowly. 

These facts may be observed in table 14.8.3. The right-hand column 
shows that both initial age and rate of gain increase with initial weight; 
they are positively associated because of their common association with 
initial weight. But within the rows of the table, where initial weight 
doesn't change much, there is the opposite tendency. The older pigs tend 
to gain more slowly. Table 14.8.4 gives the within-weight regressions. 
In the last line is the Pooled regression, - 0.00335. This average differs 
only slightly from the average. bYl ., = - 0.00329. estimating the same 
effect, the regression of average daily gain on initial age in a population of 
pigs all having the same initial weight. 

TABLE 14.M 
ANALYSIS Of COVARIANCE 11"/ WEIGHT CLASSES Of PIGS 

Sums of Squares and Products 
Weight , Degrees of 

\ 
Regression of 

Class i Freedom 1:.t 1 2 l:xly l:y' YonXl 

39-44 12 
i 

831.2308 -6.1885 0.1917 , -0.007445 
45-49 4 113.2000 2.0860 0.0729 ! 0.018428 
50-54 4 

\ 
634.8000 2.5720 0.0427 0.004052 

55-59 4 324.8000 -0.6480 0.1819 , -0.001995 
60-64 7 486.0000 -3.6700 0.2140 -0.007551 
7~0 3 I 354.7500 -3.3375 0.1015 -0.009408 

I 
Pooled 34 2.744.7808 -9.1860 0.8047 -0.003347 

_--
~ 

14.9-Multiple co,anaace in a 2-way table. As illustration we 
select data from an experiment (II, 12) carried out in Britain from 1932 
to 1937. The objecrive was to learn how well the wheat crop could be 
forecast from measurements on a sample of growing plants. During the 
growing season a uniform series of measurements were taken at a number 
of places throughout the country. The data 'ih table 14.9.1 are for three 
seasons at each of six places and are the means of two standard varieties. 
In the early stages of the experiment it appeared that most of the available 
information was contained in two variables, shoot height at the time when 
ears emerge. Xl. and plant numbers at tillering, X,. 

For an initial examination of relationships, the data on Y, X" and 
X, should be free of the place and season effects. Consequently, the re­
gression is calculated from the Error or Places x Seasons Interactions line. 
If. however, the regression is to be successful for routine use in predicting 
yields. it should also predict the differences in yield between seasons. It 
might even predict the differences in yield between places, though this is 
too much to expect unless the X-variables can somehow express the 
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effects of differences in soil types and soil fertilities between stations. 
Consequently, in data of this type, there is interest in comparing the 
Between Seasons and Between Places regressions with the Error regres­
sion, though we shall not pursue this aspect of the analysis. 

TABLE 14.9.1 
HEIGHTS OF SHOOTS AT EAIl EMERGENCE (Xl)' NUMBEIl OF PLANTS AT TILLElUNQ (Xl)' 

AND YIELD (y) OF W~T IN GREAT BRlTAlN 

(XI' inches,; Xl' number per foot; Y, cwt. per acre) 

Place 

Seale Rotham- New· Bog- Sprows- Plump- Year 
Year Variate Hayne sted port hall ton ton Sums 

1933 X, 25.6 25.4 30.8 33.0 28.5 28.0 171.3 
X, 14.9 13.3 4.6 14.7 12.8 7.5 67.8 
Y 19.0 22.2 35.3 32.8 25.3 35.8 170.4 

1934 X, 25.4 28.3 35.3 32.4 25.9 24.2 171.5 
X, 7.2 9.5 6.8 9.7 9.2 7.5 49.9 
Y 32.4 32.2 43.7 35.7 28.3 35.2 207.5 

1935 X, 27.9 34.4 32.5 27.5 23.7 32.9 178.9 
X, 18.6 22.2 10.0 17.6 14.4 7.9 90.7 
y 26.2 34.7 40.0 29.6 20.6 47.2 198.3 

Place X, 78.9 88.1 98.6 92.9 78.1 85.1 I 521.7 
Sums X, 40.7 45.0 21.4 42.0 36.4 22.9 _I 208.4 

Y 77.6 89.1 119.0 98.1 74.2 118.2 576.2 

df. I:x\ 1 Ix tx1 :EX).l 

Places 5 106.34 - 47.06 171.46 
Seasons 2 , 6.26 26.24 139.41 
Error 10 117.93 20.17 74.20 

Total 17 230.53 - 0.65 385.07 

df IX1Y Ex,"" ty' 

Places 5 190.83 -257.03 629.22 
Seasons 2 8.41 - 22.26 124.42 
Error 10 142.01 - 21.46 228.66 

Total 17 341.25 -300.75 982.30 

The results obtained from the Error line are: h, = 1.3148, 
b, = -0.6466, l:P' = 200.59, l:d' = 28.07 (8 df). These statistics, with 
some from the table, lead to the follOwing information: 

I. Freed from season and place effects, height of shoots and number 
of plants together account for 
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of the Error sum of squares for yield. 
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2. The predictive values of the two independent variables are indi­
cated by the following analysis of :Ey': 

Source 

Regression On X. and X2 

1
RcgreSSion on XI alone 
Xz after Xl 
Regression on Xl alone 
Xl after X2 

Deviations 

Degrees of Freedom Sum of Squares 

2 200.59 
171.01 
29.58 
6.21 

194.38 
8 28.07 

Mean Square 

29,58* 

194.38·· 
3.51 

While each X accounts for a significant reduction in 1:y', shoot 
height is the more effective. 

3. The Error regression equation is 

f = 1.393 + 1.3148 XI - 0.6466 X2 

Substituting each pair of X, the values of f and Y - f are calculated for 
each place in each season and entered in table 14.9.2. 

TAPLE 14.9.2 
ACTUAL AND EsnNA TED YIELDS OF WHEAT 

h 1933 1934 1935 

Place f Y-f r f Y- f Y f Y-f Sum 

Seale Hayne 19.0 25.4 -6.4 32.4 3O.l 2.3 26.2 26.0 0.2 -3.9 
Rothamsted 22.2 26.2 -4.0 32.2 32.5 -0.3 34.7 32.3 2.4 -1.9 
Newport 35.3 38.9 -3.6 43.7 43.4 0.3 4O-:tI 37.7 2.3 -1.0 
Boghall 32.8 35.3 -2.5 35.7 37.7 -2.0 29.6 26.2 3.4 -1.1 
Sprowston 25.3 30.6 -5.3 28.3 29.5 -1.2 20.§ 23.2 -2.6 -9.1 
Plumpton 35.8 33.4 2.4 35.2 28.4 6.8 47.2 39.5 7.7 16.9 

Sums -19.4 5.9 13.4 -0.1 

It seems clear from table 14.9.2 that the regression has not been suc­
cessful in predicting the differences between seasons. There is a consistent 
underestimation in 1933, which averaged 19.4/6 = 3.2 cwt./acre, and an 
overestimation in 1935. If a test of significance of the difference between 
the adjusted seasonal yields is needed, the procedure is the same as for the 
F test of adjusted means in section 14.8. Add the sums of squares and 
products for Seasons and Error in table 14.9. I. Recalculate the regression 
from these figures, finding the deviations S.S .. 120.01 with 10 df. The 
ditterence, 120m - 28.07 has 2 df., giving a mean square 45.97 for the 
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differences between adjusted seasonal yields. The value of Fis 45.97/3.51 
= 13.1" with 2 and 8 df 

REFERENCES 

t. R. A.. FISHER. Sln/istical Methods for Research Workers. §49.1. Oliver and Boyd, 
Edmburgh (1941). 

2. 0.1. FINNEY. Biometrics Bul .. 2: 53 (1946). 
3. G. F. 5PRAGUF.. Iowa Agric. Ex.p. 5ta. data (1952), 
4. H. f. SMITH. Biometrics, 13:282 (1957). 
5. J. M. CRALl. Iowa Agric. Ex.p. Sta. data (1949). 
6. U.S. Bureau of the Census, Statistical Abstract of the U.S., 86th ed. U.S. GPO, 

Washington, D.C. (1965). . 
7. P. P. SWANSON et 01. J. Geron/oloy.,!, 10:41 (1955). 
8. w. G. COCHRAS. Biomf'lrics. 10:116 (1954). 
9. P. MEIER. Biometrics. 9:59 (1953). 

10. D. B. DUNCAN and M. WALSER. Biometrics, 22:26 (1966). 
11. M.M.BARNARD. J.Agric.Sci .. 26:456(1936). 
f2. F. YATES. J. MinisfryoIAgric.4.1:!56(f936). 
13. O. M. SMITH and H. T. BEF.CUER, J. Pharm. and Exper. Therap., 136:47 (1962). 



* CHAPTER FIFTEEN 

Curvilinear regression 

":IS.I-Introduction. Although linear regression is adequate for many 
needs, some variables are not connected by so simple a relation. The dis· 
covery of a precise description of the relation between two or more quan· 
tities is one of the problems of curvefitting, known as curvilinear regression. 
From this general view the fitting of the straight line is a special case, the 
simplest and indeed the most useful. 

The motives for fitting curves to non-linear data are various. Some­
times a good estimate of the dependent variable is wanted for any par­
ticular value of the independent. Thi. may involve the smoothing of 
irregular data and the interpolation of estimated Y's for values of X not 
contained in the observed series. Sometimes the objective is to test a law 
relating the variables, such as a growth curve that has been proposed from 
previous research or from mathematical analysis of the mechanism by 
which the variables are connected. At other times the form of the rela­
tionship is of little interest; the end in view is merely the elimination of 
inaccuracies which non-linearity of regression may introduce into a cor­
relation coefficient or an experimental error. 

Figure 15.1.1 shows four common non-linear relations. Part (a) is 
the compound intetest law or exponential groH'th.curve W = A(BX

), where 
we have written W in place of our usual Y. If B = 1 + i, where i is the 
annual rate of interest, W gives the amount to which a sum of money A 
will rise if left at compound interest for X years. As we shall see, this 
curve also represents the way in which some organisms grow at certain 
stages. The curve shown in Part (a) has A = 1. 

If B is less than I, this curve assumes the form shown in (b). It is 
often called an expon~ntial decay curve, the value of W declining to zero 
from its initial value A as X increases. The decay of emissions from a 
radioactive element follows this curve. 

The curve in (c) is W = A - Bpx, with 0 < p <!. This curve rises 
from the value (A - B) when X = 0, and steadily approaches a maximum 
value A, called the asymptote, as X becomes large. The curve goes by 
various names. In agriculture it has been known as Mitscherlich's law, 
from a German chemist (11) who used it to represent the relation between 
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FIG.1-S.1.1-Four common Don-linear curves. 

the yield W of a cr.op (grown in pots) and the amount of fertilizer X added 
to the soil in the pots. In chemistry it is sometimes called tbefirst-order 
reaction curve. The name asymptotic regression is also used. 

Curve (d), the logistic growth law, bas played a prominent part in the 
study of human populations. This curve gives a remarkably good fit to 
the growth of the U.S. popUlation, as measured in the decennial censuses, 
from 1790 to 1940. . 

In this chapter we shall illustrate the titting of three types of curve: 
(1) certain non-linear curves, like those in (a) and (b), figure 15.1.1, which 
can be reduced to straight lines by a transformation of the Wor the X 
scale ; (2) tbe polynomial in X, which often serves as a good approxima­
tion; (3) non-linear curves, like (c) and (d), figure 15.1.1, requiring more 
complex methods of fitting. 

EXAMPLE 15.1.1 - The fit of the logi~tic curve of the U.S. Census populations (tx­
cluding Hawaii and Alaso) for tbe 150-yC8r period from 1790 to 1940 is an inteRStit1& 
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example. both of the striking accuracy of the fit, and of its equally striking failure when 
extrapolated to give population forecasts for 1950 and 1960. The-curve, fitted by Pearl and 
Reed (1), is . 

IS4.00 
w- .. ~~~~~~""" - 1'+ (66.69)(10 o.",ox) 

where X = 1 in 1790, and one unit in X represents 10 yurs, so that X = 16 in 1940. The 
table below shows the actual census population. the estimated population from the logistic. 
and the error of estimation. 

Population Population 
Year Actual Estimated A-E Year Actual Estimated A-E 

1790 3.9 3.7 +0.2 IS80 50.2 50.2 0.0 
1800 5.3 5.1 +0.2 1890 62.9 62.8 +0.1 
ISIO 7.2 7.0 +0.2 1900 76.0 76.7 -0.7 
IS20 9.6 9.5 +0.1 1910 92.0 91.4 +0.6 
IS30 12.9 12.S +0.1 1920 105.7 106.1 -0.4 
IS40 17.1 17.3 -0.2 1930 122.S 120.1 +2.1 
IS50 23.2 23.0 +0.2 1940 131.4 132.S 1.4 
1860 31.4 30.3 + 1.1 19SO ISO.7 143.8 +6.9 
IS70 3S.6 39.3 -0.7 1960 17S.5 153.0 +25.5 

Note how poor the 1950 and 1960 forecasts art. The forecast from the curve is that the 
U.S. population will never e)(ceed 184 million; the actual 1966 population is already well 
over 190 million. The postwar baby boom and improved health services are two of the 
responsible factors. 

15.2-The eXJMlnential growth curve. A characteristic of some of the 
simpler growth phenomena is that the increase at any moment is propor­
tional to the size already attained. During one phase in the growth of a 
culture of bacteria, the numbers of organisms follow such a law. The 
relation is nicely illustrated by the dry weights of chick embryos at ages 
6 to 16 days (2) recorded in table 15.2.1. The graph of the weights in 
figure 15.2.1 ascends with greater rapidity as age increases, the regression 
equation being of the form 

W = (A)(B'), 

where A and B are constants to be estimated. Applying logarithms to the 
equation, 

log W = log A + (log B)X 
or Y = IX + {lX, 

where Y = log W. IX = log A, and {f = log B. This means that if log W 
instead of W is plotted against X. the graph will be linear. By the device 
of using the logarithm instead of the quantity itself. the data are said to 
be rectified. 

The values of Y = log Ware set out in the last column of the table 
and are plotted opposite X in 1he figure. The regression equation. com-
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TABLE 15.2.1 
DRY WEIGHTS OF CHICK EMBRYOS FROM AGES 6 TO 16 DAYS. 

Ages in Days 
K 

6 
7 
8 
9 

10 
II 
12 
13 
1. 
15 
16 

TOGETHER WITH COM~ON LoGAIUTHMS 

Dry Weight. W 
(grams) 

0.029 
0.052 
0.079 
0.125 
0.181 
0.261 
0.425 
0.738 
1.130 
L882 
2.812 

Common Logarithm. 
of Weight 

y 

-1.538· 
-1.284 
- 1.102 
-0.903 
-0.742 
-0,583 
-0.372 
-0,132 

0,053 
0,275 
0.449 

• From the table of logarithms. one reads log 0.029 = log 2.9 - log 100 = 0.462 
- 2 ~ -1.538, 

puted in the familiar manner from the columns X and Y in the table, is 

y ~ 0.1959X - 2.689 

The regression line fits the data points with unusual fidelity, the correla­
tion between Y and X being 0.9992. The conclUSIOn is that the chick 
embryos, as measured by dry weight, arc growing in accord with the 
exponential law, the logarithm of the dry weight increasing at the esti­
mated uniform rate of 0.1959 per day. 

Often, the objective is to learn whether the data follow the exponential 
law. The graph of log Wagainst X helps in making an initial judgment on 
this question, and may be sufficient to settle the point. If so, the use of 
semi-logarithmic graph paper avoids the necessity for looking up the 
logarithms of W. The horizontal rulings on this graph paper are drawn 
to such a scale that the plotting of the original data results in a straight 
line if the data follow the exponential growth law .. Semi-log paper can 
be purchased at most stationery shops. If you require a more thorough 
method of testing whether the relation between log Wand X is linear, see 
the end of section 15.3. 

For those who know some calculus, the law that the rate of increase 
at any stage is proportional io the size already attained is described mathe­
matically by the equation 

dW 
dX ~ cW, 

where c is thecanstant relative rate of increase. This equation leads to the 



1.0 

.. 0 o ., 
~ 
r t-O•s 
III 
'( 
CI 
9-1.0 

~ 
lE-I.S 

8 
-t.O 

o 
, , . , 

V 
/ 

/ I 
J 

,I' J 

/' I . l 

/ 
1.1" I 

/ 
/ 

/ 
,;' 

, .... -r. ~ 
I I I I I I I 

10 15 
AGE: IN DAV~ 

451 

3.0 

... S 

</l 

't..o ~ 
Q! 
I:J 

I." ~ 
l­
I: 
'2 

1.0 W 

0.5 

o 
't.O 

~ 
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relation 

log. W = log, A + eX, 

or, (15,2, I) 

W= ArK" 

where e ~ 2.718 is the base o(the natural system o(logarithms, Relation 
15.2.1 is exactly the same as our previous relation 

log,o W = a + fJX 

except that it is expressed in logs to base e instead of to base 10, 
Since log. W = (log,o W)(log, 10) = 2.3026 log,o W, it follows that 

e = 2.3026/l. For the chick embryos, the relative rate of growth is 
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(2.3026)(0.1959) = 0.451 gm. per day per gm. It is clear that the relative 
rate of growth can be computed frpm either common or natural logs. 

To convert the equation log W = 0.1959X - 2.689 into the original 
form, we have 

w ~ (0.00205)( 1.57)X 

where 0.00205 = antilog( -2.689) = antilog(0.311 - 3) = 2.05/1.000 
= 0.00205. Similarly, 1.57 = antilog (0.1959). In the exponential form. 

W = (0.00205)eo.451X 

the exponent 0.451 being the relative rate. 
Other relations that may b~ fitted by a simple transformation of the 

W or the X variable are W = I/X, W = a + {J log X, and log W = a 
+ {J log X The applicability of the proposed law shocld first be examined 
graphically. Should the data appear to lie on a straight line in the relevant 
transformed sca~e, proceed with th~ regression" computation. For the 
last of the above relations, logarithmic paper is available, both vertical 
and horizontal rulings being in the logarithmic scale. 

The transformation of (i non-linear relation so that it becomes a 
straight line .is a simple method of fitting, but it involves some assump­
tions that should be noted. For the exponential growth curve, we are 
assuming that the population relation is of the form 

Y = log W = a + {JX + e, (15.2.2) 

where the residuals e. are independent. and have zero means and constant 
variance. Further, if we apply the usual tests of significance to a and {J, 
this involves the assumption that the e's are normally distributed. Some­
times it seems more realistic, from our knowledge of the nature of the 
process or of the measurements, to assume that residuals are normal and 
have constant variance in the original W scale. This means t1;1at we 
postulate a population relation 

" W = (A)(BX) + d (15.2.3) 

where A, B n'ow sland for population parameters, and the residuals d 
are %(0, ,,2). 

If equation 15.2.3 holds. it may be shown that in equation 15.2.2 the 
e's will not be normal, and their variances will change as X changes. 
Given model 15.2.3, the efficient method of fitting is to estimate A and B 
by minimizing 

I:( W - ABX)' 

taken over the sample values. This produces non-linear equations in A 
and B that mu~t be solved by successive approximations. A general 
method of fitting such equations is given in section 15.7. 
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EXAMPLE lS.2.1-J. W. Gowen and W. C. Price counted the number of lesions of 
Aucuba mosaic virus developing after exposure to X-rays for various times (data made 
available through courtesy of the investigators). 

Minutes exposure 0 3 7.5 15 30 45 60 
--~-------------------------

Count in hundreds 271 226 209 108 59 29 12 

Plot the count as ordinate, then plot its logarithm. Derive the regression, Y = 2.432 
- 0.02227 X, where Y is the logarithm of the count and X is minutes exposure. 

EXAMPLE 15.2.2-Repeat the fitting of the last example using natural logarithms. 
Verify the tact that the rate of deCrease of hundreds of lesions per minute per hundred is 
(2.3026)(0.02227) ~ 0.05128. 

EXAMPLE 15.2.3--Ifthe meaning of relative Tate isn't quite dear. try this approximate 
method of computing it. The increase in weight of the chick embryo during the thirteenth· 
day is 1.130 - 0,738 = 0.392 gram: that is, the average rate during this period is 0.392 gm. 
per day. But the average weight during the same period is (1.130 + 0.738);'2 = 0.934 gm 
The relative rate, 0f rate of increase of each gram, is therefore 0.392/0.934 = 0.42 gm. per 
day per gm. This differs from the average obtained in the whole period from 6 to 16 days, 
0.451. partly .because the average weight as well as the increase in weight in the thirteenth 
day suffered some :;ampling variation. and partly because the correct relative rate is based 
on weight and increase in weight at any instant of time, not on day averages. 

\5.3-The second degree polynomial. Faced by non-linear regression, 
one often has no knowledge of a theoretical equation to use. In many 
instances the second degree polynomial, 

f ~ a ~ bX + eX', 

will be found to fit the data satisfactorily. The graph is a parabola whose 
axis is vertical, but usually only small segments of such a parabola appear 
in the process of fitting. Instead of rectifying the data a third variate is 
added, the square of X. This introduces the methods of multiple resres­
sion. The calculations proceed exactly as in chapter 13, X and X' being 
the two independent variates. It need only be remarked that .J X, log X, 
or I/Xmight have been added instead of X' if the data had required it. 

To illustrate the method and some of its applications, we present the 
data on wheat yield and protein content (3) in'lable 15.3.1 and figure 
15.3.1. The investigator wished to estimate the protein content for various 
yields. We shall also test the significance of the departure from linearity. 

The second column of the table contains the squares of the yields in 
column 1. The squares are treated m all respects like" third variable in 
multiple regression. The regression equation, calculared as usual. 

f ~ 17.703 - O.3415X 4- O.004075X', 

is plotted in the figure. At small values of yield the second degree term 
with its small coefficient is scarcely noticeable, the graph falling away 
almost Ilke a straight line. Toward the right. however. the term in X' has 
hent the curve to practically a horizontal direction. 



TABLE 15.1.1 
PERCENTAGE PRomN CONTENT (y) AND YIELD (Xl Of WHEAT 

FROM 91 PLoTS-

Yield, Yield, 
Bushel Percentage Bushel Per~ntage 

Per Acre Square Protein Per Acre Square Protein 
K K' Y K K' Y 

43 1,849 10.1 19 361 13.9 
42 1,764 10.8 19 361 11.2 
39 1,521 10.8 19 361 13.8 
39 11521 10.2 18 324 10.6 
38 1,444 10.3 18 324 13.0 
38- 1,444 9.8 18 324 13.4 
31 1,369 10.1 18 324 13.1 
37 1.369 10.4 18 324 13.0 
l6 1,296 10.3 11 289 13.4 
36 1.296 11.0 17 289 13.5 
36 1,296· 12.2 11 289 10.8 
35 1,225 10.9 17 289 12,5 
35 1,225 12.1 11 289 12.1 
14 1,156 10.4 17 289 13.0 
14 1,156 10.8 11 289 n.8 
14 1,156 10.9 16 256 14.3 
14 1,156 12.6 !6 256 !3.6 
33 1,089 10.2 16 .- 256 12.3 
32 1,024 11.8 !6// 256 13.0 
32 1,024 10.3 16 256 13.7 
32 1,024 10.4 !5 225 13.3 
31 961 12.3 15 225 12.9 
31 961 9.6 14 196 14.2 
31 961 11.9 14 196 13.2 
31 961 11.4 12 144 15.5 
30 900 9.8 12 144 13.1 
~O 900 10.7 12 144 16.3 
29 841 10.3 II 121 13.7 
28 184 9.8 II 121 18.3 
27 129 13.1 II 121 14.1 
26 616 11.0 II Ul 13.8 
26 676 11.0 II 121 14.8 
25 625 12.8 10 100 15.6 
25 625 II.K 10 100 14.6 
24 516 9.9 9 81 14.0 
24. 516 11.6 9 81 16.2 
24 576 11.8 9 81 15$ 
24 576 12.3 8 64 15.5 
22 484 11.3 8 64 14.2 
22 484 10.4 8 64 13.5 
22 484 12.6 1 49 1).8 
21 441 13.0 7 49 14.2 
21 441 14.7 6 36 1f>.2 
21 441 11.5 5 2S Ib,2 
21 441 11.0 
20 400 12.8 
20 400 13.0 

• Read from published graph. This accounts for the slight discrepancy between the 
correlation we got and thai reported by the author. 
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FrG. 15.3.I-Regression of protein content on yield in wheat, 91 plots. 
Y _ 17,703 - 0,)415X + 0,004{)75X' 

The analysis of variance and test of significance are shown in table 
15.3,2. The fitted regression on both X and X' gives a sum of squares of 
deviations, 97.53, with 88 df. The sum of squares of deviations from a 
linear regression, LY' - (:Exy)'/:Ex', is 110.48, with 89 df. The reduc­
tion in sum of squares, tested against the mean square remaining after 
curvilinear regression, proves to be significant. The hypothesis of linear 
regression is abandoned; there is a significant curvilinearity in the regres­
SlOD. 

In table 15A.I, many of the values of X (e.g., X = 39) have two or 
more values of Y. With such data, the sum of squares of deviations from 
the curved regression (88 df.)can be divided into two parts so as to provide 
a more critical test ofth. fit of the quadratic, The technique is described 
in the following section. In the present example this technique supports 
the quadratic fit. 

TABLE 15.3.2 
TEST OF SIGNIHCANCE OF 'DEPARTURE FROM LINEAR. REGRESSION 

I
i Degrees o~ Sum of Mean 

Source Ofvari~~~"__ ___ TI' FreedOm~._S~ ___ ~u~~re 
Deviations from linear regress.ion 89 t 10.48 
Deviations from curved regress.ion 88 97.53 1.11 
~-----------_------ ~- .. ----------------------.. 

Reduction in sum of squares I 12.95 l2.95·· 
-----_. -_.--_._-_------------

F-12.95/1,11 -11.7 
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The regression equation is useful also for estimating and interpo­
lating. Confidence statements and tests of hypotheses are made as in 
chapter 13. 

As always in regression, either linear or curved, one should be wary of 
extrapolation. The data may be incompetent to furnish evidence of trend 
beyond their own range. Looking at figure 15.2.1, one might be tempted 
by the excellent fit to assume the same growth rate before the sixth day 
and after the sixteenth. The fact is. however, that there were rather sharp 
breaks in the rate of growth at both these days. To be useful. extrapola­
tion requires extensive knowledge and keen thinking. 

EXAMPLE IS.3.l-The test of significance of departure from linear regression in 
table 15.3.2 may also be_ used to examine whether a rectifying transformation. of the type 
illustrated in section 15.2, has produced a straight line relationship. Apply this test [0 the 
chick embryo data in table 15.2.1 by fitting a parabola in Xto log wei~hts Y. Verify that 
the parabola is 

y ~ -2.783162 + 0.214503X - O.000846X'. 

and that the test works. out as follows: 

Deviations from linear regression 
Deviations from quadratic regression 
Curvilinearity of regression 

Degrees of 
Freedom 

9 
8 
1 

Sum of 
Squares 

0.007094 
0.006480 
0.000614 

Mean 
Square 

0.000810 
0.000614 

F = 0.76, with) and 8 d.f. When the X's are equally spaced, as in this example, a quicker 
way of computing the test is given in section 15.6. 

IS.4-Data having several Y'. at eaeh X value. If several values of Y 
have been measured at each value X, the adequacy of a fitted polynomial 
can be tested more thoroughly. Suppose that for each X. a group of n 
values of Yare available. To illustrate for a linear model, if Y,} denotes 
the jth member of the ith group, the linear model is 

Yjj = ~ + {JX, + e'l' (15.4.1) 

where the e'l follow %(0, ,,2). It fOllows that the group means. V,. are re­
lated to the X, by the linear relation 

y,. = ~ + (JX, + ii,. 
(1) By fitting a quadratic regression of the r,. on X" the test for 

curvature in- table 15.3.2 can be applied as before. Since it is important 
in what follows. note that the residuals e,. have variance ,,'In, since each 
iii' is the mean of n independent residuals from relation 15.4.1. 

(2) The new feature is that the deviations of the Y" from their group 
means Y,. supply an independent estimate of ,,'. The pooled estimate is 

k " 

s' = I I (Y,) - f,.)'/k(n - 1) 
i; I j= I 
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with kin - 1) dJ If we multiply the mean squares in analysis (1) by n. 
in order to make parts (I) and (2) comparable. we have the analysis of 
variance in table 15.4. L 

TABLE 15.4.1 
ANALYSTS Of VARIANCE FOR TESTS OF LINEAR REGRESSION 

Source of Variation 

Linear regression of Y,. on Xi 
Quadratic regression of Y, on X, ' 
Deviations of Y, from quadratic 
Pooled within groups, 

Total 

Degrees of Freedom 

1 
1 

k-3 
kin - 1) 

kn - I 

Mean Square 

The following results are basic to the interpretation of this table. 
If the population regression is linear, the mean square s/ is an unbiased 
estimate of ([2; if the population regression is curved, .\'22 tends to become 
large. If the population regression is either linear or quadratic. s/ is an 
unbiased estimate of (J2. When will Sa 

2 tend to become much larger than 
(12? Either if the population regression is non-linear but is not adequatcl~ 
represented by a quadratic; for installce. it might be a third degree curve. 
or one with a periodic feature: or if there are sources of variation That 
are constant within any group but vary from group to group. This could 
happen if the measurements in different groups were taken at different 
times or from different hospitals or bushes. The pooled within·group 
variance S2 is an unbiased estimate of (J2 no matter what the shape of the: 
relation between Y;. and Xi' /---------

Consequently. first compute the F-ratio. s//s'. with (k - 3) and 
ken - I) df. If this is significant. look at the plot of Y against X to see 
whether a higher degree polynomial or a different type of mathematical 
relationship is indicated. Examination of the deviations of the Y;. from 
the fitted quadratic for signs of a systematic trend is also helpfuL If no 
systematic trend is found. the most likely explanation is that some extra 
between-group source of variation has entered the data. 

If s/ l,2 is clearly non-significant. form the pooled mean square of 
S,' and Sl' Call this s/' with (kn - 3)dj. Then test F = s,'/s.', with I 
and (kn - 3) dJ. as a test of curvature of the relation. 

The procedure is illustrated by the data in table 15.4.2, made avail­
able through the courtesy of B. J. Yos and W. T. Dawson. The point at 
issue is whether there is a linear relation between the. lethal dose of 
ouabain. injected into cats. and the rate of injection. Four rates were 
used. each double the preceding. 

First. the total sum of squares of the lethal doses 21. 744 is analyzed 
into "between rates." 16.093. and "within rate groups." 5.651. Note 
that the number of cats "i differed slightly from group to group. 
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TABLE 15.4.2 
LETHAL DosE (MINUS SO UNITS) OF U $. STA..NDARD OuABAIN, BY Sww 

INTRAVENOUS INJECTION IN CAT UNTIl. THE HEART STOPS 

Xi = Rate of Injection in (mg./kg.jmin.)/J,045.7S Total 

2 4 8 

5 3 34 51 
9 6 34 56 

11 22 3l! 62 
13 27 40 63 
14 27 46 70 
16 28 58 73 
17 28 60 76 
20 37 60 89 
22 40 65 92 
28 42 
31 SO 
31 

:I.Yij= Yj • 217 310 435 632 1,594 

r,. 12 II 9 9 41 
18.1 28.2 48.3 70.2 

:EY i/ 4,727 10,788 22,261 45,940 83,716 

The inequality in the n, must be taken into account in setting up the 
equations for the regression of Y,. on X, and X/. Compute: 

!:n,X, = 12(1) + 1I{2) + 9(4) + 9(8) = 142 
!:n,X,' = 12(1) + 1l(4) + 9(16) + 9(64) = 776 
!:n,X.'= 12(1) + 11(8) + 9(64) + 9(512) = 5,284 

and similarly !:n,X: = 39,356. We need also 

!:n,X, Y,. = !:X, y,. = t(217) + 2(310) +. 4{435) + 8(632) = 7,633 

and !:X?Y,. = 48,865. 
Each quantity is then corrected for the mean in the usual way. For 

example, 

!:n,(X? - .Xl)' = !:n,X,4 - (!:n,X,')'/!:n, = 39,356 - (776)'/41 
= 24,668.8 

!:n,(X, - X)(Y,. - Y .. ) = !:X,1'; - (!:n,X,)(1: Y,.)/!:n, 
= 7,633 - (142)(1,594)/41 = 2,112.3 

To complete the quantities needed for the normal equations, you may 
verify that 

!:n,(X, - J()' = 284.2, !:n,(X, - X)(X,' - X') = 2,596.4, 

!:n;(X,' - X')(¥, - ¥ ) = 18.695.6 



The normal equations for b, and b, are: 

284.2b, + 2,596.4b, = 2,112.3 
2,596.4b, + 24,668.8b, = 18,695.6 

.. 59 

In the usual way, the reduction in sum of squares of Y due to the regression 
onb, andb, is found to be 16,082, while for the linear regression, the reduc­
tion is 15,700. The final analysis of variance appears in table 15.4.3. 

TABLE 15.4.3 
TESTS OF DEvIATIONS FROM LINEAR. A1'ffi QuADJlATJC' REGRESS10N 

OegS'ttsof 
Source of Variation Fre~dom 

Linear regression on X I 
Quadratic regression on X I 
Deviations from quadratic I 
Pooled within groups 37 

Total 40 

Summ 
Squares 

15.700 
382 
II 

5.651 

21.744 

M"t'!n 
Square 

15.700 
382 

11 
1S3 

The mean square II for the deviations from the quadratic is much 
lower than the Within-groups mean square, though not unusually so for 
only I df The pooled average of these two mean squares is 149. with 3t 
d.f For the test of curvature. F = 382/149 = 2.56. with I and 38 d.[, 
lying between the 25% and the 10% level. We conclude that the results"j',,( 
consistent with a linear relation in the popUlation. 

EXAMPLE 15.4.I~--Ttle following data. selected from Swanson and Smith (4) to pro~ 
vide an example with equal II, show the 10lal nitrogen content Y (grams per 100 cc. of 
plasma) of rat blood plasrnll at nine ages X (days). , 

Age of 
Ra' 25 37 50 60 80 100 130 180 360 

---- --~~ 

0~83 0.98 1.07 1.09 0.97 1.14 1.22 1.20 1.16 
0.77 0.84 1.01 1.03 1.08 1.04 1.07 1.19 1.29 
0.88 0.99 1.06 1.06 1.16 1.00 1.09 1.33 1.25 
0.94 0.87 0.96 1.08 1.11 1.08 1.15 1.21 1.43 
0.89 0.90 0.88 0.94 1.03 0.89 1.14 1.20 1.20 
0.83 0.82 1.01 1.01 1.17 1.03 1.19 1.07 1.06 

Total 5.14 5.40 5.99 6.21 6.52 6.18 6~86 7.20 7.39 

A plot of the Y totals against X shows tha.t (i) the Y values for X = 100 are abnormally 
low and require special investigation, (il) the relation is clearly curved. Omit the dat<l for 
X:: 100 and test the deviations from a parabolic regression against the Within-groups 
mean square. ADS. F = 1.4. 
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15.5-Test of departure from linear regression in covariance analysis. 
As in any other correlation and regression work, it is necessary in co­
variance to be assured that the regression is linear. It will be recalled that 
in the standard types of layout. one-way classifications, two-way classifi­
cations (randomized blocks) and Latin squares, the regression of Yon X 
is computed from the Residual or Error line in the analysis of variance. A 
graphical method of checking on linearity, which is often sufficient, is to 
plot the residuals of Y from the analysis of variance model against the cor­
responding residuals of X, looking for signs of curvature. 

The numerical method of checking is to add a term in X' to the 
model. Writing Xl = X, Xl = X2. work out the residual or error sums 
of squares of Y. X" and X" and the error sums of products of X,X,. YX,. 
and YX2 , as was illustrated in section 14.8 for a one-way classification. 
From these data, compute the test of significance of departure from linear 
regression as in table 15.3.2. 

If the regression is found to be curved, the treatment means are 
adjusted for the parabolic regression. The calculations follow the method 
given in section 14.8. 

15.6-0rlhogonal polynomials. If the values of X are equally spaced. 
the fitting of the polynomial 

Y = bo + h,X + h,X' + b,X' + '" 
is speeded up by the use of tables of orthogonal polynomials. The es­
sential step is to replace X'(i = 1, 2, 3 ... ) by a polynomial of degree 
i in X, which we will call X,. The coefficients in these polynomials are 
chosen so that 

:!:X, = 0 : :!:X,Xj = 0 

where the sums are over the n values of X in the sample. The different 
polynomials are ortflOgona( to one another. Explicit formulas (or tllese 
polynomials are given later in this section. 

Instead of ca],;:ulating the polynomial regression of Yon X in the 
form above, we calculate it in the form: 

Y= Bo + B,X, + B,X, + B,X, + ... 
which may be shown to give the same fitted polynomial. On account of 
the orthogonality of the X,, we have the results: 

(i = 1, 2. 3 ... ) 

The values of the X, and of :!:X,' are provided in the tables. making the 
computation of Bi simple. Further. the reductions in :!:l Y - Y)' due 
to the successive terms in the polynomial are given by: 

~l:X, Y)'jl:!:X.'); (:!:X,y)'j(l:X,'): (:!:X, n'/o;x,'I: and soon. 

Thus it is easy to check whether the addition or a higher rower ,n X to the 



461 

polynomial produces a marked reduction in the residual sum of squares. 
As a time-saver, the orthogonal polynomials are most effective when the 
calculations are done on a desk calculator. With an electronic computer, 
the routine programs for fitting a multiple regression can he used to fit 
the equation in its original form. Most programs also provide the reduc­
tions in sum of squares due to each successive power. 

Tahles of the first five polynomials are given in (5) up to n = 75, and 
of the first six in (6) up to n = 52. Tahle A 17 (p. 572) shows these poly­
nomials up to n = 12. For illustration, a polynomial will he fitted to the 
chick embryo data, though, as we saw in section 15.2, these data are more 
aptly fitted as an exponential growth curve. 

Table 15.6.1 shows the weights (Y) and the values of X" X" X" X" 
X, for n = 11, read from table A 17. To save space, most tables give the 
X, values only for the upper half of the values of X. In our sample these 
are the values from X = II to X = 16. The method of writing down the X, 
for the lower half of the sample is seen in table 15.6.1. For the terms of odd 
degree, X" X" and X" the signs are changed in the lower half; for terms 
of even degree, X, and X 4, the signs remain the same. 

TABLE 15.6.1 
FiniNG A FOURTH DEGREE Pol.YNOMIAL TO CHICK EMBRYO WEIGHTS 

Age 
X 

DryWt. 
y XI X2 

------t-------t------.+--
(days) (grams) 

6 00'9 5 15 
i 

.. -
7 I 0.052 ! - 4 6 
8 0.079 -3 -I 
9 I 0.125 -2 -6 

10 I 0.181 -I I -9 
II I 

0.261 0 -10 
12 0.425 '1 -9 
13 0.738 2 -6 
14 I 1.l30 3 I -I 
15 1.882 

I 
4 I 6 

16 I 2.812 5 15 

:EX;l 

I 
110 858 

;.; I I I 

I:XjY 7.714 25.858 39.768 

B, 0.701273 0,235073 0.046349 

- 30 6 - 3 

i 
6 -6 6 I 

I 22 -6 I I 

23 -I -4 
14 4 -4 i 

i 0 6 0 I 
-14 4 4 
-23 -I 4 
-22 -6 -I 
-6 -6 -6 

I 30 I' 6 3 

4,290 286 I 156 I 
I -

5/6 1/12 1/40 

31.873 1.315 -0.254 

0.007430 0.004598 , 

0026 
0.056 
0.086 
0.119 
0.171 
0.265 
0.434 
0.718 
1.169 
1.847 
2.822 

I 

We shall suppose that the objective is to find the polynomial of lowest 
degree that Seems an adequate fit. Consequently. the reduction in sum 
of squares will he tested as each successive term is added. At each stage, 
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calculate 

LX,Y, B, = LX, Y/tX/ 

(shown \IIlder table 15.6.1), and the reduction in sum. of squares, 
(LX, Y)' /LX/, entered in table 15.6.2. For the linear term, the F-value is 
(6.078511)/(0.232177) = 26.2. The succeeding Fvalues for the quadratic 
and cubic terms are even larger, 59.9 and 173.4. For the X. (quartic) 
term, F is 10.3, significant at the 5% but not at the 1% level. The 5th 
degree term, however, has an F less than I. As a precautionary move, 
we should check the 6th degree term also, but for this illustration we will 
stop and conclude that a 4th degree polynomial is a satisfactory fit. 

TABLE 15.6.2 
REDUCTIONS IN SUM OF SQUARES DUE TO SUCCESSIVE TERMS 

Source Freedom Squares Square F ~
Degrees of Sum of Mean 

----~ -.-.-.--~-----.-~--.. - .. 
JO 8.168108 

I 6.078511 
Total, :1:( Y - f)' 
Reduction to linear 
Deviations from linear 9 2.089597 0.ll2177 26.2 

Reduction to quadratic 
Deviations from quadratic 

I 
8 

I 

~-~~-~-

1.843233 
0.246364 0.030796 59.9 

0.236803 Reduction to cubic 
Deviations from cubic 7 0.009561 0.001366 173.4 
---~----+----
Reduction to quartic 
Deviations from quartic 

Reduction to Quintic 
Deviations from quintic 

I 
6 

I 
5 

0.006046 
O.OO~~15 0.000586 10.3 

0'()OO414 
0.003101 0.000620 0.7 

For graphing the polynomial, the estimated values Y for each value 
of X are easily computed from table 15.6.1 : 

Y = Bo + B,X, + B,X, + B,X, + B.X. 

Note that Bo = Y = 0.701273. At X '" 6, 

Y = 0.701273 - 5(0.235073) + 15(0.046349) - 30(0.007430) 

-+ 6(0.004598) = 0.026, 

and so on. Figure 15.6.1 shows the fit by a straight line. obviously poor. 
the 2nd degree polynomial, considerably better. and the 4th degree poly­
nomial. 

To express the polynomial as an equation in the original X variables 



'Z.P 
il 

~ t.!> 

" :; 
I- 1.0 
:x: 
$! 
bJ 
3= 

0 

-0.5 
C ~ 4 eo \0 I"Z. 14 

AGE IN DAY~ 
ItO 

FIG. IS.6,I-Graphs of polynomials of first. ~nd, afld fourth degree fitted 10 
chick embryo data of table 15.6.1. 

463 

is more tedious. For this, we need formulas giving X, in terms of X 
and its powers. In the standard method, developed hy Fisher, hy which 
the polynomial tables were computed, he started with a slightly different 
set of polynomials e" which satisfy the recurrence relations 

~o = 1 : ,,= X - X 

These polynomials are orthogonal, but when their values are tabulated 
lor each member of the sample, these values are not always whole num­
bers. Consequently, Fisher found by inspection the nlultiplier A, which 
would make X, = A,e, the smallest set of integers. This !Oakes calculations 
easier for the user. Tlte values of che ~,are shown under table 15.6.1, 
and under each polynomial in table A 17 and in references (5) and (6). 

Now to the calculations in our example. The llrst step is to multiply 
each B, by the corresponding ).,. 'fhis gives 

B,' = 0.235073; B,' = 0.046349; 8,' = 0.006192; B. = 0.0003832 

The,e are the coefficients for the regression of Yon the ~f' so that 

y ~ Y + B,'e, + B/e, + B,'e, + B.,. (15.6.1) 
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The general equations connecting the ~,with X are as follows: 

~l = X - X = x 
n' - I 

~,= x' --_ 
12 

~ 3 3"2 - 7 
,,=x- 20 x 

, 4 (3n' - 13) 1 3(n' - I)(n' - 9) 
,. = x - 14 x + 560 

~, = x' _ 5(n' - 7) x' + (15"4 - _230"' + 407] x 
18 1,008 

By substitution into formula (15.6.1), r is expressed as a polynomial in 
x = X-x. If it is satisfactory to stop at this stage. there are two ad­
vantages. Further calculation is avoided, and there is less loss of decimal 
accuracy. However, to complete the example, we note that n = II and 
X = 11. Hence, in terms of X, 

~1f'X-1I 

~, = (X - II)' - 10 = X' - 22X + 111 
~, = (X - II)' - 17.8(X - II) = X' - 33X' + 345.2X - 1,135.2 
e. = (X - Ill' - 25(X - 11)' + 72 

= X, - 44X' + 70lX' - 4,774X + 11,688 

Hence, finally, using formula (15.6.1), 

r = 0.701273 + 0.23507Z~I· + 0.046349~, + 0.006192e, + O.OOO3832~. 
= 0.70i.73 + 0.235073(X - 11) + 0.046349(X' - 22X + 111) 
+ 0.006192(X' - 33X' + 345.2X - 1,135.2) 
+ O.0003832(X' - 44X' + 701X' - 4,774X + 11,688) 
= 0.7099 - 0.47652X + 0.110636X' - 0.OI0669X' + 0.0003832X' 

In table 15.6.1 tbere is a further shortcut which we did not use. In 
computing :EXI Y, the y'g at the two ends of the sample. say Y, and Y l , 

are multiplied by 5 and - 5. Y,_ I and Y, are multiplied by 4 and -4. 
If we form the differences, Y, - YI , Y, _ I - Y" and so on, only the set of 
multipliers 5, 4, 3, 2. 1, need be used. This device works for any :EX, Y in 
which i is odd. With i even, we form the sums Y, + YI' }~-l + Y" and 
so on. The method is worked out for these data in example 15.6.1. 

EXAMPLE lS.6.1-ln table 15.6.1, form the sums and differences of pairs of values of 
Y, working in from the outside. Verify that these give the results "hown below. and that 
the :EX; Y values are in agreement \\'ith those given 10 table 15.6.1 
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Sums x, X. Diffs. x, x, 
0.261 -10 6 0.261 0 

I 
0 

0.606 - 9 4 0.244 • 1 -14 
0.863 - 6 -1 0.613 I 2 -23 
1.209 - 1 -6 

II 
1.051 I 3 

, 

-22 j 
1.934 6 -6 1.830 4 

I 
- 6 

2.841 15 6 2.783 5 30 

EXAMPLE 15.6.2~-Here are six points on the cubic, Y = 9X - 6X2 + X 3
, (0.0). 

(l, 4), (2, 2), (3, 0), (4, 4), (5. 20). Carry through the computations for fitting a linear, 
quadratic, and cubic regression. Verify that there is no residual sum of squares after fitting 
the cubic, and that the polynomial values at that stage are exactly the Y's. 

EXAMPLE 15.6.3-The method of constructing orthogonal polynomials can be illus­
trated by finding Xl and Xl when n = 6. 

(I) 
(2) ~+~_o (5) 

___ 0. 

X ';1=X-X . X,=2e t ! '2 X, - !~, 

1 -5/2 -5 10/3 5 
2 -3/2 -3 -2/3 -1 
3 -1/2 -1 -8/3 -4 
4 1/2 1 -8/3 -4 
5 3/2 3 -2/3 -1 
6 5/2 5 10/3 5 

Start with X = 1. 2, 3, 4. 5, 6, with X = 7/2. Verify that the values. of ~l = x = X - X are 
as shown in column (2). Since the';, are nor whole numbers, wetake..l. t = 2, giving XI = 2{1' 
column (3). To find ';2. write 

'Z={12_b{I-C 

This is a quadratic in X. We want I:~2 = O. This gives 

I:~12 - b1:'1 - I1C = 0 

Further. we want 1:"<2 = 0, giving 

1:~13'_ bt~12 - cl:~\ = 0 

i.e .• ¥ - 6c - () c = H 

Hence, ~2 "'" '1 2 - H· Verify the {2 values in column (4). To convert these to integers, 
multiply by ;.2 = j. 

lS.7-A general' method of fitting non-linear regressions. Suppose 
that the population relation between Yand X is ofth. form 

Y, = f(~. fl. y, X;) + B, (i = I, 2 .... n) 

where/is a regression function containing Xi and the parameters r:r., p, t'. 
(There may be more than one X-variable.) If the residuals B, have zero 
means and constant variance. the least squares method of fitting the regres· 
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sion i~ to l:stimate the values of the~. fl.)' by mininuzmg 
, 
L [>; - f(lX, p, ;', Xi)]' 
;:1 

This section presents a general method of carrying out the calculations. 
The delails re~uire a knowledge of parlial differentiation, but the ap­
proach is a simple one. 

The ditlicully arises nol because of non-linearity in Xi but because of 
non-linearity in one or more of the parameters Cl, P. i1• The parabola 
(a + /iX + i'X') is fitted by the ordinary methods of multiple linear re­
gression. because it is linear in ex, /1. and y. Consider the asymptotic regres­
sion.:t: -/j('-/(). If the value of)' were known in advance. we CQulq. write 
X, = J". The least s~uares estimales of a and /i would then be given b) 
fitting an ordinary linear regression of Yon X I' When:' must be estimated 
from the data. however. the methods of linear regression cannot be ap­
plied. 

The first step in the general method is to obtain good initial estimates 
a J • hI' c.' of the final least-square estimates &. fl. y. For the common 
types Qf non-linear functions. various techniques for doing this have been 
developed. sometimes graphical, sometimes by special studies of this prob­
lem. Next. we use Taylor's theorem. This states that if 1\1X, p, y, Xl 
is continuous in IX, p. and )', and if (a - a,). (P - btl. and (y - (',) are 
small. 

/(IX. p, y, Xi) =/(a" hI' c,' Xi) + (IX - alf~ + (fJ - b,)/; + (y - e,)/; 

The symbol = means "is approximately equal to." The symbolsf.J.,/; 
denote the partial derivatives off with respect to IX. p. and )', respectively, 
evaluated at the point a" hI' Ct. For example. in the asymptotic regres­
sion. 

we have 

Since a" hI' and ", are known. the values of I.f.'/ •. and" can be 
calculated for each member of the sample, where we have written ffor 
/(0" b" C,' Xi)' From Taylor's theorem, the original regression relation 

Y, = f(a, p, y,X,),+., 

may therefore be written, approximately, 

Y, =f+ (a - utl/~ + (fJ - h,)!. + (y - cdJ; +.; (15.7.1) 

Now write 

Y ... =Y-f; X,=f.; X,=j;,; XJ=J; 



From equation 15.7.1, 

Y,,, '" (IX - o,)X, + ({J - h,)X, + {y - c.)X, + e, (15.7.2) 

The variate Y", is the residual of Y from the first approximation. The 
relation (15.7.2) represents an ordinary linear regression of Y", on the 
variates X" X" X" Ihe regression coefficients being (a - a,), (ft - hI) 
and (y - <,). If the relation (15.7.2) held exactly instead of approximately, 
tbe computation of the sample regression of Y, .. on' X,. X" X, would 
give the regression coefficients (& - a,). (fl- b,). and (9 - e,). from 
which the correct least squares estimates <2. fl. and 9 would be obtained 
at once. 

Since relation (15.7.2) is approximate, the fitting of this regression 
yields second approximations 0" b" and c, to <2, p, 9. respectively. We 
then recalculate f, /., f. and}; at the point 0,. h" 0,. finding a new Y, .. 
and new variates X,. X,. and X3 • The sample regression of this Y, .. on 
Xl. X" and X3 gives the regression coefficients (03 - a,). (b3 - b,) and 
(C3 - <,) from which third approximations 03, b3• C3 to~, p, ? are found. 
and so on. 

If the process is effective, the sum of squares of the residuals. 1: Y •2
• 

should decrease steadily at each stage. the decreases becoming small 
as the least-squares solution is approached. In practice. the calculations 
are stopped when the decrease in 1: Y, .. 2 and the changes in a. h. and care 
considered small enough to be negligible. The mean square residual is 

5' = 1: Y,a '/(n - k). _---' -
wbere k is tbe number of parameters that have been estimated (ii(our 
example, k = 3). Witb non-linear regression. 52 is not an unbiased esti­
mate of ,,2. though it tends to become unbiased as n becomes large. 

Approximate standard errors of the estimates <2. fl. 9 are obtained in 
the usual way from the Gauss multipliers in Ihe tinal multiple regression 
that was computed. Tbus, 

s.e. (<2) '" s.jc ll ; s.e. <p) '" s.je,,; S.e. (9) '" • .je" 

Approximate confidence limits for" are given by (Ii ± (s.jc ll ) where ( 
has(n - 3)df 

If several stages in the approximation are required. the calculations 
become tedious on a desk machine. since a mUltiple regression must be 
worked out at each stage. With the commonest non-linear relations. 
however. the computations lend themsdves readily to programming on an 
electronic computer. Investigators with access to a computing center 
are advised to find out whether a program is available or can be con­
,tructed. If the work must be done on a desk machine, the importance of 
a good first approximation is obvious. 

lS.8-Fitting aD asymptotic regression. The population regression 
function will be written (using the symbol p in plaoe of y) 

30 
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j(~, p, p, X) = ~ + P(px) (15.8.1) 

If 0 < fl < I and (J is negative, this curve has the form shown m figure 
15.I.I(e), p. 448, rising from the value (~ + (J) at X = 0 to the asymptote 
~ as X becomes large. If 0 < p < I and P is positive, the curve declines 
from the value (<I + /J) at X = 0 to an asymptote <I when X is large. 

Since the function is non·linear only as regards the parameter p, the 
method of successive approximation described in Ihe preceding section 
simplifies a little. Let', be a first approximation to p. By Taylor's 
theorem, 

'" + jJlpx) ,; '" + jJ(r,') + jJlp - ")(X,,x- ') 

Write Xo = I, X, = ,,-t, X, = X'I X
-

1
• Ifwe fit the sample regression 

f = aX. + bX, + eX, (15.8.2) 

it follows that a, b are second approximations to the least·squares esti· 
mates~, p, of", and pin (15.8.1), while 

e = b(" - ")' 

so that 

" = " + c/b (15.8.3) 

is the second approximation to p. 
The commonest case is that in which the values of X change by unity 

(e.g., X '= 0, 1,2 ... or X = 5,6,7 ... ) or can be coded to do so. Denote 
the corresponding Y values by Y •• Y" Y, • ...• Y. _ ,. Note that the value 
of X corresponding to Y. need not be O. For" = 4, 5, 6, and 7. good first 
approximations to P. due to Patterson (7), are as follows: 

"=4. ,,=(4Y3 + Y,-5Y,)/(4Y, + Y,-5Y.) 

n = 5. " = (4Y. + 3Y3 - Y, - 6 Y,)/(4Y3 + 3Y, - Y, - 6 Yo) 

"=6. ,,=(4Y,+4Y.+2Y3 -3I',-7Y,)/(4Y,+4Y,+2Y,-3Y, 

:.. 7Yo) 

"=7. ,,=(Y.+ 1',+ Y.- Y,-2Y,)/(Y, + Y.+ 1'3- Y,-2Yo) 

In a later paper (8). Patterson gives improved first approximations for 
sample sizes from" = 4 to n = 12. The value of '" obtained by solving 
a quadratic equation. is remarkably good in our experience. 

In an illustration given by Stevens (9). table 15.8.1 shows six consecu· 
tive readings of a thermometer at half-minute intervals after lowering it 
into a refrigerated ho!d . 

. From Patterson's formula (above) for n = 6, we find " = \0.42/ 
- 18.86 = 0.552. Takingr l = O.55,~omputethesamplevaluesof X, and 
X, and insert them in table 15.8.1. The matrix of sums of squares and 
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TABLE 15.8.1 
OAT A FOR. FlmNO AN AsYMPTOTIC REGRESSION 

X Y 
Time Temp. X,~ X,~ f, Y re.:=' 

(1/2.runs.) 'F. (0.55') X(0.55"') y- P, 

0 57.5 1.00000 0 57.544 -0.044 
I 45.7 0.55000 1.00000 45.525 +0.175 
2 38.7 0.30250 1.10000 38.892 -0.193 
3 35.3 0.16638 0.90750 35.231 +0.069 
4 33.1 0.09151 0.66550 33.211 -0.111 
5 32.2 0.05033 0.45753 32.096 +0.104 

Total 242.5 2.16072 4.13053 +0.001 

products of the three X, variates is as follows: 

l:Xo' = 6 l:XoX, = 2.16072 l:XoX, = 4.13053 
l:XoX, = 2.16072 l:X/ = 1.43260 I:X,X, = 1.11767 
l:XoX, = 4.13053 l:X,X, = 1.11767 I:X,' = 3.68578 

(Alternatively, we could use the method of sections 13.2-13.4 (p. 381), 
obtaining a 2 x 2 matrix of the :Ex,x), but in the end litlle time is saved 
by tbis.) 

The inverse matrix of Gauss multipliers is computed. Each row of 
tbis matrix is mUltiplied in turn by the values of :EX, Y (placed in the right­
band column). 

ell"'" 1.62101 
Cet"'" - L34608 
ttl "" - 1.40843 

Inverse matrix 

('12 = -1.34608 
Cll = 2.032l2 
('ll = 0.89229 

These multiplications give 

ell == -1.40843 
C13 = 0.89229 
(.'3) = 1.57912 

I.X,Y 

242.5 
104.86457 
157.06527 

a = 30.723; b = 26.821; c = b(" -,tl = 0.05024 (15.8.4) 

Hence, 

" = " + c/b = 0.55 + 0.05024/26.821 = 0.55187 

The second approximation to the curve is 

f, = 30.723 + 26.821(0.55187)X (15.8.5) 

In order to judge whether the second approximation is near enough 
to the least-squares solution, we find 1: Yr ... / for the first two approxima­
tions. The first approximation is 

f', = ", + 6,(0.55 X
) = 0, + b,X, (15.8.6) 
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where ai' hI are given oy the linear regn::~sion of Yon Xl' In tht pre­
ceding calculations. u. and hi were not computed. since they urc not 
needed in finding the second approximation. Howcv~r. by th~ usual 
rules for linear regression. 1: r ... , ~ (rom the first approximatIon is given by 

115.R.7) 

where, as usual. Xl = XI - X I' When the curve fits closely. as in this 
example, ample decimals must be carried in this calculation, as Stevens 
(9) has warned. Alternatively. we can compute ", and h, in (15.8.6) and 
hence Y - Y,. obtaining the residual sum of s4uarc, dlfectly. With the 
number ofd<.."Cimuls that we carrie..'tl. we obtained O.09XX by fo,.mula 15.R.7 
and 1).0990 by thedirecl melhod.lhe former figure being Ihe more"ccurale. 

For Ihe second approximation. compute the powers of ''; = 0.55187. 
and hence find Y, by (IS.X.5). The values of Y, and of Y - Y, arc shown 
in table 15.8.1. The sum of squares of residuals is 0.0973. The decrease 
from Ihe first approximation (IU)988 to O.Il973) is so small thaI we may 
safely stop with the st!l.:ond approximation. Further approximations 
lead to a mi01111u111 of 0.0972. 

The Re..~idua.J mean square for the second approximation is 
,'=,0'097313 = 0.0324. with n - J = 3 d.J: Approximale slandard 
et~ots for the estimated parameters afe (using the inverse matrix): 

.I.e.lu,) ~ '''';''" = ±0.23; s .•. lb,' = S.,./C22~= ±0.26; 

.1.".(1',1 ~ s.if;,/h, = 0.226/26.82 = ±O.OOR4 

Strictly speaking. the values of the Cii should be calculated for r = 0.55187 
instead of r = 0.55. but Ihe above results are close enough. Further. since 
'2 - '1 = c/b. a better approximation to the standard error of '2 is given 
by the formula for Ihe standard error of a ratio. 

tn nearly all cases, the term clJ/c2 in the square root dominates. reducing 
the result to s .. ./~/h. 

When X has the values O. 1.2 ..... (n - I). desk machine calculation 
of Ihe second pproximalion is much shorlened by auxiliary tables. 
The (j; and ci.j in the 3 x 3 inverse matrix that we must compute at each 
stage depend only on nand r. Sleven, (9) tabulaled Ihese values for 
n = 5. 6, 7. With Ihese tables. the user finds the first approximation f,. 
and computes the sample values of X, and X, and the quantities I: Y. 
:LX, Y. I:X, Y. The values of the ('ij corresponding to /', are Ihen read 
from Stevens' tables. and the second approximations are obtained rapidly 
as in (15.8.4) above. Hiorns (10) has tabulated the inverse matrix for f 

going byO.OI from 0.1 to 0.9 and for sample sizes from 5 to 50. 



EXAMPLE 15.8.1-ln an experiment on wheat in Australia. fertilizers were applied at 
a series of levels with these resu1ting yields. 

Level x o 10 20 30 40 

Yield y 26.2 30.4 36.3 37.8 38.6 

Fit a Mitscherlich equation. Ans. Patterson's formula gives '1 = 0.40. The second 
approximation is r2 = 0.40026. but the residual sum of squares is practically the same as for 
the first approximation, which is r = 38.679 - 12.425(0.4)x. 

EXAMPLE 15.8.2-in a chemical reaction. the amount of nitrogen pentoxide decom­
posed at various times after the start of the reaction was as follows (12" 

Time <n I~ - 3 ~ __ ~5 ____ 6 ___ 7_ 

Amount Decomposed (~~ __2_2~ __ ~ __ 2_7._2 ___ 2_9_.1 ___ 30_.1 

Fit an asymptotic regression. We obtained f= 33.S02 --26.69S(0.7S3)T, with residual 
S.S. ~ 0.105. 

EXAMPLE 15.S.3-Stevens (9) has remarked that when p is between 0.7 and t. the 
asymptotic regression curve is closeJy approximated by a second degree polynomial. The 
asymptotic equation Y = I - O.9(O.S)' takes the following values: 

x o 
y 0.)00 0.280 

2 

0.424 

3 4 5 

0.53· 0.631 0.705 0.764 

Fit a parabola by orthogonal polynomials and observe how well the values of Yagree. 
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* CHAPTER SIXTEEN 

Two-way classifications with 
unequal numbers and 

proportlOns 

16;1-lntroductiOll. for one reason or another the numbers of 
obsorvations in the individual cells (suh-dasses) of a multiple classitica- . 
lion may be unequal. This is the situation in many non-expcrimcntal 
~tudies. in which the investigator classities his sample according to the 
factors or variables of interest. exercising no control over the way in which 
the-numbers fall. With a one_way classification. the handling of the "un· 
equal.numbers" case was di.scussed in section IO.l:!. In this chapter we 
present methods for analyzing. a two-way classification. The related 
problem of analyzing a proportion in a two-way tahle will be taken up 
also. 

The complications introduced by unequal suh-clas. number> can be 
illustrated by a simple example. Two diets were compared on samples of 
10 rats. As it happened. 8 of the 10 rats on Diet I were females. while only 
2 of the 10 rats on Diet 2 were females. Table 16.1.1 shows the sub-class 
totals for gains in weight and the silh-class numbers. The 8 females on 
Diet I gained a total of 160 units, and SO on. 

TABLE 16.1.1 
TotAL GAINS IN WEIGHT ANO Sl!A-('lASS Nl}_\f8FJt~ (ARTifiCIAL DArA) 

Female~ M<tle:. Sums Means 

Diet I 
\ Tota.h 1100 M 220 ~2 

'l Number; 8 I 10 

Diet 2 
I Totals 30 ~O() 230 23 
1 Numbers 2 ~ 10 

Sums {TotalS 190 260 4~O 

Numbers 10 10 20 

Means 19 26 22.S 

From these data we obtain the row totals and means. and likewise the 
column totals and means. From the row means. it looks as if Diet 2 had 

412 
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a slight advantage over Diet I, 23 against 22. In the column means, males 
show greater gains tban females, 26 against.19. 

The sub-class means per rat tell a different story. 

Female 
---~-.---
Diet I 
Diet 2 

20 
IS 

Male 

30 
2S 

Diet 1 is superior by 5 units in both Females and Males. Funher, 
Males gain 10 units more than Females under botb diets, as against the 
estimate of 7 units obtained from the overall means. 

Why do tbe row and column means give distoned results? Clearly, 
because of the inequality in the sub-ciass numbers. The poorer feed, 
Diet 2, had an excess of the faster-growing males. Similarly, the compari­
son of Male and Female means is biased because most of the males were 
on the inferior diet. 

lfwe attempt to compute the analysis of variance by elementary meth­
ods, this also runs into difficulty. From table 16.1.1 the sum of squares 
between sub-classes is correctly computed as 

(160)2 + (60)2 + (30)2 + (200)2 _ (450)2 = 325 (3 df) 
8 2 2 8 20 

The sum of squares for Diets, (230 - 220)'/20, is 5. and that for Sex 
(260 - 190)2/20, is 245,Ieaving an Interaction sum of squares of 75. But 
from the cell means there is obviously no interaction; the difference be­
tween the Diet means is the same for Males as for Females. In a corree! 
analysis, the Interaction sum of squares should be zero. 

For a correct analysis of a two-way table the following approacb 
is suggested : 

I. First test for interactions: methods of doing this will be described 
presently. 

2a. If interactions appear negligible, this mean> that an additive 
model 

is a satisfactory fit, where X;j. is the mean of tbe n;; observations in the 
Ith row and jth column. Proceed to find the best unbiased estimates of 
the <x, and Pj' 

2b. If interactions are substanllal, examine the row effects separately 
in each column, and vice versa, witb a view to understanding the nature of 
the interactions and writing a summary of the results. The overall row 
and column effects become of less interest. since the effect of each factor 
depends on the leyel of the other factor. 

Unfortunately, with unequal cell numbers the exact test of the null 
hypothesis that interactions are absent requires the solution of a set of 
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linear ~4uations like those in a multiple regression. Consequently. before 
presenting the exact test (section 16,7) we first describe some quicker meth­
ods that are often adequate, When interactions are large, this fact may 
be obvious by inspection. or 'Can sometimes be verified by one or two 
I-test,. as illustrated in section 16.2, Also. the exact test can be made by 
simple method. if the cell numbers n" are (i) equal. (ii) equal within any 
row or within any column. or (iii) proportional that is. in the same pro­
portion within any row, If the actual cell numbers can be approximated 
reasonably well by one of these cases. an approximate analysis is obtained 
by using the actual cell means, but replacing the cell numbers n" by the 
approximations, The three cases will be illustrated in turn in sections 
16,1. 16,3. and 16,4, 

The fact that elementary methods of analysis still apply when the 
the cell numbers are proportional is illustrated in table 16,1.1, In this. 
thecell means are exactly the same as in table 16, I, I. but males and females 
are now in the ratio I: 3 in each diet. there being 4 males and 12 females 
on Diet 1 and 1 male and 3 females on Diet 2, Note that the overall row 
means show a superiority of 5 units for Diet 1, just as the cell means do. 

Diet I 
Means 

Diet 1 
Me;.tns 

Sums 
Means 

TABLE 16.1.2 
Elc.A!04PlE OF PROt*OR110NAI. SUB-CU.SS NUMBfRS 

Females Male!!. 
Totals 

20W 

45 

285 

Rows 

Columns 

lnteractions 

20 

15-

19,0 

Numbers Total!! Number" 

12 110 4 
30 

3 15 1 
25 

IS 145 5 
29,0 

Analysis of Variance 
Correction term C = (430)2/20 = 9,245 

T OIal!. 

J6() 

70 

430 

Dqrees of Freedom Sum of Squares 

(36())' (70)' 
--+---c 

t6 4 

(145)' + (285)' _ C 

5 15 

By subtraction 

Sums 

22.5 

17,5 

21.5 

o 

Between sub-classes 3 
(1201' (45)' 
-- + ... + -.-~ - C = 4SS 

4 3 

Numbers 

16 

4 

20 
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Similarly, the overall column means show that the males gained 10 units 
more per animal than females. In the analysis of variance, the Interac­
tions sum of squares is now identically zero. 

16.2-Unweighted analysis of cell means. Let X;}. denote the kth 
observation in the cell that is in the ith row andjth column, while X;j. is 
the cell mean, based on nu observations. In this method the Xu' are 
treated as if they were all based on the same number of observations when 
computing the analysis of variance. The only neW fea!_ure is how to in­
clude the Within-cells mean square s' = LLL(X,j' - Xu' )')LL(nu - 1) 
in the analysis of variance. 

With fixed effects, the general model for a two-way classification may 
be written 

(16.2.1) 

where IX, and Pj are the additive row and column effects, respectively. 
The Ii} are population parameters representing the. interactions. The I,j 
sum to zero over any row and over any column, smce they measure the 
extent to which the additive row and column effects fail to fit the data in 
the body of the two-way table. The £'1' are independent random residuals 
or deviations, usually assumed to be normally distributed with zero 
means and variance ,,'. It follows from 16.2.1 thai for a cell mean, 

Xu' = jj + Ct, + Pj + 1,1 + "11"' 

where i'l' is the mean of n;j deviations. 
The variance of Xii' is ,,')nu' Consequently, if there are a rows ano:l' 

b columns, the average variance of a cell mean is . 

,,' (_!__ + _1_ + +..!..) ~ ,,, , 
ab nil n12 . . . n." "II 

where n, is known in mathematics as the harmoTiic. mean of the nu. A 
table of reciprocals helps in its calculation. The Within-cell mean square 
is entered in the analysi~ of variance as S2/n". 

Our example (table 16.2.1) comes from an experiment (I) in which 
3 strains of mice were inoculated with 3 isolations (i.e., different types) of 
the mouse typhoid organism. The nu and the Xu' (mean days-to-death) 
are shown for each cell. The unweighted analysis of variance is given 
under the table. From the original data, not shown here, s' is 5.015 with 
774 df Since I In, was found to be 0.01678, the Within-cells mean square 
is entered as (0.01678)(5,015) = 0.0841 in the analysis of variance table. 

The unweighted analysis may be used either-as the definitive analysis, 
or merely as a quick initial test for interactions. As a fimil analysis the 
unweighted method is adequate only if the disparity in the n;j is small­
say within a 2 to 1 ratio with most cells agreeing more closely. Table 16.2.1 
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TABLE 16.2.1 
CELL NL-M8ERS AND MFAN DAYS-To-Dt-_ATH I~ THREE STRAINS Of MICE INOCULATED 

WnH THR£.E {so\"Al\ONSOl-lH£ TYPHOID BACH.I.US 

Isolatic-n 

9D 11" 

X". 
IIC 

DSC 1 

Sums 

Isolations 
Strains 
Interactions 
Wilhin c;elJs 

---r 
I 
I 

--~---::-:----"--=-~-='_"'_-=---= 

Strain of Mice 

RI Z B. Sums 

'. )1 33 
4.0000 4.0323 .1.7516 11.1899 

no " III 
6.4545 0.7821 4.3097 17.5403 

107 1:\3 188 
6.626': 7.8045 4.1277 18.5584 

11.0807 18.6189 12.1950 47.8940 

Anai),si!> of Variance of Unweignted Means 

Degrees of Freedom Sum of Squ<ttes Mean Square 
___ ---------------------------------

2 
2 
4 

774 

8.8859 
7.5003 
3.2014 

~ = ~ (_!_ + ...... + -'-.) = 0.01678. n~ = 59.61 
fl. 9 34 188 

0.8004·· 
00841 

does not come near to meeting this restriction: the n 'j range from 31 to 188. 
However. this experiment is one in which the presence of interactions 
would be suspected from a preliminary glance at the data. It looks as if 
strain Ba was about equally susceptible to all three isolations. while 
strains RI and Z were mOre resistant to isolations lIe and DSCI than to 
9D. In this example the unweighted analysis would probably be used 
only to check this initial impression that an additive model does not apply. 
The F-ratio for Illleractions 15 0.8004/0.0841 = 9.51 with 4 and 774 df.. 
significant at the I·"·~ level. Since the additive model is rejected. no com­
parisons among row and column means seem appropriate. 

For subsequent Hests that are made to aid the interpretation of the 
results. the method of unweighted means. if applied strictly. regards every 
cell mean as having an error variance 0.0841. This amounts to assuming 
that every cell has a sample size n. = 59.61. Howe\'er. comparisons 
among cell means can be made without assuming the numbers to be equal. 
For instance, in examining whether strain Z is more _resistant to DSCI 
than to IIC. the difference in mean days-to-death is 7.8045 - 6.7821 
= 1.0224. with standard error 

Jr~~;~~~-:1~3) = ];0.119 
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so that the difference is clearly significant by a I-test. Similarly. in testing 
whether Sa shows any differences from strain to strain in m~an days to 
death, we have a one-way classification with unequal numher~ per class 
(see example 16.2.1). 

If interactions had been negligible. main effeCls would be estimated 
approximately from the row and column means of the sub-class means. 
These means can also be assigned correct standard errors. For inst~ncc. 
for 90 the mean. 11.7899/3 ~ 3.9300. has a standard error 

/(5.015)('--'-- _1 __ I)' 
" 9 34 + 31 + 33 

In some applications it is suspected that the Within-sub-class vari· 
ance is nol constant from onc sub-cJa5~ to another. Two changes in the­
approximate method are suggested. In the analysis of variance. compute 
the Within-classes mean square as the average of the quantities .'ii/nij. 
where .'\1/ is the mean square within the i. j sub-class. In a comparison 
I.L;/<jj. among. the sub-class means. compute the standard error as 

J"L' " "" ;} So ;n;j 

using only the sub-cla5se:-. {holl enter into the comparison. 

EXAMPLE 16.2.I-fc\1 whether Ba shows any differences from strain to strain in 
mean days·to·death. Ans. The Ba totals are 124.487. 776. for sample sizes 33. 113: f88. 
The weighted slim of squares I!. I(151)5. with 1. d.(. The mean square. 4.021( as compared with 
the Within-class me<l.n ~quare .. 'i ,() I 5. shows no indic<l.tion of an) difference 

16.3-Equal numllers within rows. In the mice example (table 16.2.1). 
an analysis that assumes equal sub-class numbers within each row approxi­
mates the actual numbers much more cfosely than the assumption that 
all numbers are equal. Since the row total numbers are 98. ~57. and 428. 
we assign sample sizes 33. 86. and 143 to the sub-classes in the respective 
rows. 

In the analysis (table 16.3.1). each sub-class mean is multiplied by the 
assigned sub-class number to form a corresporiliil)g sub-class total. Thus. 
for Z with 90, 133·1 = (33)(4.03~3). The analysis of variance. given 
under table 16.3.1. is computed by elementary methods. Each total. 
when squared, is divided by the assigned sample size. 

The F-ratio for Interactions is 8.70. again rejecting the hypothesis of 
additivity of Isolation and Strain effects. In this example. the assigned 
numbers agree nearly enough with the actual numbers so that further 1-

tests may be based on the assigned numbers. If the interactions had been 
unimportant in this example, the main effects of Isolations and Strains 
would be satisfactorily estimated from the oyerall means 3.930. 5.849. 
and so on. shown in table 16.3.1. (These means were not used in the pres­
ont calculations.) 
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TABLE 16.3.1 
ANALYSIS Of" MI('E DATA BY EQUAL NUMBERS WITHIN Rows 

(Assigned numbers iii sub-class means XII' and corresponding totals, niX,j') 

Means 

3.930 

5.849 

6.186 

Correcti.on: C = (4.5SL9}2(786 = 26.361.060 

(132.0)' (590.3)' 
Between Sub·classes: ~33 +.. + _- - C = I 730.22 

143 ' 

1 I
· (389.1)' (1,509.0)' (2,653.8)' 

so allons: --_ + --- + - C,. 410.56 
99 258 429 

S
trains; 0.634.61' + (1.832.4)' + 0.084.9)' _ C _ 1 145.10 

262 . 

AR(liysis of Variance 

Degr«s of Freedom Sum of Squar~ Mean Square F 

Isolations 
Strains 
lnteractions 

Between sub-classes 
Within sub-classes 

2 
2 
4 

8 
774 

410.56 
1.145.10 

174.56 

1,730.2~ 

205.28 
572.55 
43.64 

5.015 

8.70 

Although this method requires slighlly more calculation than the 
assumption of equal numbers. it is worth considering if it produces 
IWmbers near to the actual numbers. 

16.4-Proportional sub-class numbers. As mentioned in section 16.1, 
the least squares analysis can be carried out by simple methods if the sub· 
class numbers are in the same proportions within each row. Points to 
note are: 

(i) The overall row meanS, found by adding all the observations in a 
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I'm", and dividing by the sum of thl! sub-class numbers In the row. are the 
kast sljuares estimates of the row main effects, and similarly for columns. 

(ii) In computing the analysis of variance. the squared total for any 
SUb-class. row. or column is divided by the corresponding numhCL The 
Total sum of squares betwecn sub-classes and the sums or ~4uarcs for 
rows and columns are calculated directly. the Interaction sum of squares 
hcing found by subtraction. 

(iii) The F-ratio of the Interactions mean square to the Withlll sub­
classes mean square gives the exact least squares test orthe null h~"pothesis 
that there are no interactions. 

Tv. 0 exampks will be presented. In table 10.4.1 theclassl,.."\ an.' HreedS 
of Swine and Sex of Swine. The sub-class numbers. represent appro."\i 
mately the proportion ... in which the breeds and sexes were brought in for 
slaughter tit thl..' ('ol1ege Mcab Lahoratory (~). For each breed. males and 
females arc in the proportions 2: I. and for each sex, the breeds are in the 
proportions 6: 15; 2; J: 5. The data are the percentages of dressed weigh! 
to total weight (less 701> II)' The calculations are given in full under the 
table. Since the sample represents only a sma If fraction of the original 
data, conclusions are tentative. There were differences among brecd~ but 
no indication of a sex difference nor of sex-breed interactions. In mi.iking 
comparison.;;, .Ullong the breed me<:lns, aCcount should o( course be taken 
orthe differences in the sample sizes. 

in the hreed means. the sexes arc weighted in the ratio of2 males to i 
female. The reader may ask : h this the weighting that we ought to have'} 
The answer depends on the statuS nf the interactions. If interactions are 
negligible. <lily weighting. provided that it is the same for every breed. 
furnishes unbiased estimates of the population differences between breed 
means. The 2: I weighting gives the most precise estimates from the avail~ 
able data. If interactions are present. breed differences are not the same 
for males as for females. so that different weightings produce real differ­
ences in results. Usually. as emphasized on several occasions. we do not 

wish to examine main effects when interactions are present. If we do. a 
2: I weighting is appropriate. when interactions are present. only if it 
represents the proportions in which ~ales and females appear in the 
target population of the study. as happens in this example. Equal 
weighting or some other proportion would be preferred if it were more 
typical of the popUlation about which the investigator wishes to draw 
conclusions. 

\\lith unequal sub-clas~ numbers. the expressions for the expected 
values of the mean squares in lcrl1l~ of components of variance are com­
plicated. Wilk and Kempthorne (31 have developed formulas for 2- and 
3-fai.:tor arra ngcmcnts: the sub-class number::. may be equal or proportion­
aL With.2 facrors, let the proponions in factor A be U t :U2 :· :Ull 

and those in B. 1"\ :"2: ... :1"". The number of observations in the (i,j) 
sub-class will then be some multiple OfUi")' say nujcj. Note the value of 
n. The mathematical model is as given to 16.2.1. where the 'i. f3 j and 



TABLE 16.4.1 
DREssJNG PERcENTAGES (LIIss 70%) OF 93 SWINE CLA.'mFIED BY hEED AND SEx. 

LIVE WEIGHTS 200-219 PouNDs 

2 3 4 5 I ~-----r------4-------~-----r-----­
Number ! Male Female Male Female' Male Female Male Female i Male Female 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
IS 
16 
11 
18 
19 
20 
21 
22 
23 
24 
25 
26 
21 
28 
29 
30 

13.3 18.2 I 10.9 
12.6 11.3 i 3.3 
11.5 14.2' 10.5 
15.4 15.9 I 11.6 
12.1 12.9 15.4 
15.7 15.1 14.4 
13.2 11.6 
15.0 14.4 
14.3 7.5 
16.5 10.8 
15.0 10.5 
13.7 14.5 

10.9 
13.0 
15.9 
12.8 
14.0 
11.1 
12.1 
14.7 
12.1 
13.1 
10.4 
11.9 
10.1 
14.4 
11.3 
13.0 
12.7 
11.6 

14.3 13.6 
15.3 13.1 
11.8 4.1 
11.0 10.8 
10.9 
10.5 
12.9 
12.5 
13.0 
7.6 

12.9 
12.4 
12.8 
10.9 
13.9 

I 

12.9 11.6 
14.4 13.2 

; 12.6 
15.2 
14.1 
12.4 

i 

13.8 10.3 
14.4 10.3 
4.9 10.1 

6.9 
13.2 
11.0 
12.2 
13.3 
12.9 
9.9 

12.8 
8.4 

10.6 
13.9 
10.0 

tx 168.9 87.6 1362.7 182.7 t 41.6 27.3 79.7 33.1 110.1 55.7 

Total: N - 93, I:X _ 1,149.4, I:X' - 14,785.62 
Bre<d Sums: 1: 256.5, 2: 545.4, 3: 68.9, 4: 112.8, 5: 165.8 
Sex Sums: Male. 763.0; Female, 386.4 

1. Correction: C = (I;X).tIN = (1,149.4)1/93 = 14.205.60 

2. Total: tx' - c - 14,785.62 - 14,205.60 - 580.02 

(168.9)' (87.6)' (55.7)' 
3. Sllb--classes: ----- + --- + ... + --5- - C '>:: 122.83 

12 6 

4. Within suh-c1asses' 580.02 - 122.83 ::: 457.19 

(7630)' (386.4)' 
5. Sex - 62 + ---3'- - (' = 0.52 

(256.S)' (165.8)' 
6. Breeds: -- -+ ... -+- --'-~ - C = 97.38 

18 IS 

7. Interaction: 122.83 - (97.38 + 0.52) = 24.93 
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Degrees of Freedom Sum of Squares Mean Square 

Sex 
Breeds 
Breed-Sex Interactions 
Within sub-classes 

I 
4 
4 

83 

0.52 
97.38 
24.93 

457.19 

n,. 
84.2 
18 

Breed Mean Percentages 

2 

82.1 
4S 

3 

81.5 
6 

4 

82.5 
9 

f;j may be either fixed or random. Also let: 

U = 1:u, V = 1:v, U. = 1:u' , 
(1:U)2 

1:,.2 
V·_-­- (1:(,)2 

The expected values of the mean squares are: 

E(A) - (J + - - - (J B + 0',.. _ 2 nUV(l - U·) {(V. I) 2 2} 
a-I b • 

E(B) _ 2 nUV(1 - V·) {(U. 1) 2 2} 
- U + --b---l-- - a (1 AS + (J B 

E(AB _ u2 ~UV(1 :::_Y*)(I - V·) 2 
) - + (a - I)(h _ I) U AS 

0.S2 
24.34·· 

6.23 
5.51 

5 
81.1 
15 

These results hold when both factors are fixed. If A is random, delete the 
term in LOa (inside the curly bracket) in E(B). If B is random, delete the 
term in lib in E(A). With fixed factors, the variance components are 
defined as follows: 

u/ = 1:~.'j(a - I) : uo' = 1:fJ/!(b - I) : uAo' = 1:f;/i(a - I)(b - I) 

For the example, if A denotes sex and B denotes breed: 

a= 2. b= 5;"1 =2, U2 = I; t\ =6, "2 = IS, '" =2, 1'4=3, V, = 5; n= 1 

2' + I' 6' + ... + 52 
U=3: V=31; U*=--~~·-=0556· V· - =0311 3' ., - 31' . 

Regarding sex and breed as fixed parameters, we find 

E(A) = u' + 4.S8u A.' + 41.3u A' 
E(B) = u' + O.90u As' + 16.0u/ 

E\ARI = a' + 7.\\a A.' 
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Note that E(A) and E(R) contain terms in the interaction variance, even 
though all effects are fixed. This happens because when the numbers are 
proportional, the main effects are weighted means. Although the I,j sum 
to zero over any row or column, their weighted means are not zero. As 
a further illustration, you may verify that if A were random in these data, 
we would have: 

E(R) ~ ,,2 + 890u .. i + 16.OuB ' 

Our second example (table 16.4.2) illustrates the use of analysis by 
proportional numbers as an appro xi mat jon to the least squares analysis. 
In a sample survey of farm tenancy in an Iowa county (4). it was found that 
farmers had about the same proportions of Owned, Rented, and Mixed 

TABLE 16.4.2 
FARM ACItFS IN CORN CLASSIFIED BY TENURE AND SoiL PRODUCTIVITY 

AVDUBON COUNTY, IOWA 

III 
n 
X 

l:X 

58 54.40 
30.1 

1.637 

125 
4,058 

Renter 

Ob- Propor­
serv~ tlonal 

67 62.92 
55.2 

3.473 

60 57.95 
53.4 

3.095 

87 93.13 
46.8 

4,358 

214 
10,926 

Mixed 
-----~-

[ Ob- Proper­
s.erved tlonal 

49 
50.6 

52.33 

2.648 

49 48.20 
47.1 

2.270 

1~2 . 

140 

80 77.47 225 
40.1 

3.107 

178 517 
8.025 

l:X 

7,323 

6,584 

9,102 

23,009 

Analysis of Variance USlDg Proportional Numbers 

Source of Variation Degrees of Freedom Sum of Squares Mean Square 
------------~---------- --------__ 
Soils 
Tenures 
Interactions 
Error (from original data) 

Owner 
32.5 

I 
48.2 

2 
2 
4 

508 

Means 

Renter 
51.1 

II 
47.0 

6,635 
27.367 

883 

Mixed 
45,1 

III 
40.5 

3.318" 
J3,684'" 

221 
830 
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farms in 3 soil fertility classes (section 9.13). Replacement of the actual 
sub-class numbers by numbers that are proportional should therefore 
give a good approximation to the least squares analysis. The proporl1onal 
numbers are calculated from the row and column totals of the actual num­
bers. Thus, for Renters in Soil Class III, 93.13 = (225)(214)/517. The 
sub-class means are multiplied by these fictitious numbers to produce the 
sub-class totals :EXin table 16.4.2. 

The variable being analyzed is the number of acres of corn per farm. 
There are large differences between tenure means, renters and mixed 
owner-renter farmers having more corn than owners. The amount of 
corn is also reduced on Soil Class [II. There is no evidence of interactions. 
Since the proportional numbers agree so well with the actual numbers, 
an exact least squares analysis in these data is unnecessary. In general, 
analysis by proportional numbers should be an adequate approximation 
to the least squares analysis if the ratios of the proportional to the actual 
cell numbers all lie between 0.75 and 1.3, although this question has not 
been thoroughly studied. 

16.5-Disproportionate numbers. The 2 x 2 table. In section 16.7 
the analysis of the R x C table when sub-class numbers are neither equal 
nor proportional will be presented. The 2 x 2 and the R x 2 table, which 
are simpler to handle and occur frequently, are discussed in this and the 
next section. Table 16.5.1 gives an example (5). The data relate to the 
effects of two hormones on the comb weights of chicks. 

TABLE 16.5.1 
CoMB WEIGHTS (wo.) Of Lars OF CHICKS INJECTED WITH Two SEx HORMONES 

Untrea .... 
HormoneB 

Untreated 
Number :EX 

3 
12 

240 
1,200 

x 
80 

100 

HonnoneA 
Number :EX 

12 
6 

1,440 
672 

x 
120 
112 

The Within-classes mean square, computed from the mdividual 
observations, was S2 = SII. with 29 df. To test the interaction, compute 
it from the sUb-class means in the usual way for a 2 x 2 factorial: 

SO + 112 - 100 - 120 = -2S 

Taking account of the sub-class numbers, the standard error of this esti­
mate is 

JS2(~ + ~ +..!.. + ..!..) = iSII) ~ = ±23.25 
3 6 12 12 3 

The value of tis -2S/23.25 = -\.20, with 29 df" P about 0.25. We shall 
aSSllme interaction unimportant and proceed to compute the main effects 
(table 16.5.2). 

81 
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Untreated 
HonnoneB 

Main effect of A: 

Main effect' of B: 

TABLE 16.5.2 
CALClJLATION Of MAIN E.PFEcrs OF HOJtMONB A AND B 

Untreated Hormone ... D.- W,,= 

n. K, ft, K. .1'04 - X. 111"2 _ 

III + 112 

3 80 12 12(J 40 2.4 
12 100 6 112 12 4.0 

w. D. W. D. 6.4 
2.4 20 4.0 -8 

l:_W"D .. /l: W" = 144/6.4 = 22.5 

S.E. - ,;?lEW. ~ )811/6.4 _ ± 11.26 (29 d,{.) 

1: W.D./E W. ~ 16/6.4 ~ 2.5 

S.E. - J,'/l:W. = J811/6.4 = ± 11.26 (29 df.) 

915 
48 

144 

Consider Hormone A. The di~ences D A between tbe means witb 
and without A are recorded separately for the two levels of B. These are 
the figures 40 and 12. Since interaction is assumed absent, each figure 
is an estimate of the main effect of A. But the estimates differ in precision 
because of the unequal sub-class numbers. For an estimate derived from 
two sub-classes with numbers n1 and n2 the variance is 

2(11) 2(n,-#n2) a -+- =11 
"1"2 "t n2 

Consequently, the estimate receives a relative w.eight W = n,n2/(n, + "2)' 
These weights are COffiIluted and recorded. The main effect of A is the 
weighted mean of the two estimates, LWD/LW, with s.e. ± ,jS'/LW. 
The main effect of B is cq_mputed similarly. Tbe increase in comb weigbts 
due to Hormone A is 22.5 mg. ± 11.26 mg., almost significant at tbe 5% 
level, but Hormone B appears to have little effect. 

Note: in this example the two values of W, 2.4 and 4.0, happen to be 
the same for A and B. This arises because two sub-classes are of size 
12 and is not generally true. We have not described the analysis of vari­
ance because it is not needed. 

16.6-Disproportionate numbers. The R x 2 table. The data in table 
16.6.1 illustrate some of the peculiarities of disproportionate sub-class 
numbers (6). In a preliminary analysis of variance, sbown under the 
table, the Total sum of squares between sub-class means and the sums of 
squares for Sexes and Generations were computed by the usual elementary 
methods (taking account of the differences in sub-class numbers). The 
Interactions sum of squares was then found to be 

119,141 - 114,287 - 5,756 = -902 
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The Sexes and Generations S.S. add to more than the total S.S. between 
,un-classes. This is because differences between the Generation means 
are inflated by the inequality in the Sex means, and vice versa. 

TABLE 16.6.1 
NUMBER, TOTAL GAIN, AND MEAN GAIN IN WEIGHT OF WISTAR RATS (OMS. MINUS 1(0) 

IN FOUR SUCCESSIVE GENERATIONS. GAINS DURING SIX WEEKS F.Jt.OM 28 DAYS OF AGE 

, 

Jt.j= D,-
Genera· Male Female nlJn1,j 

lion -,) Xl). XIj. n" Xlj' XZi' "lj + "2j Xu· - X2}, Wp, 

I 21 1,616 76.95 27 257 9.52 1l.81 67.43 796.35 
2 15 922 61.47 25 352 14.08 9.38 47.39 444.52 
3 12 668 55.67 23 196 8.52 7.89 47.15 372.01 
4 7 497 71.00 19 129 6.79 5.12 64.21 3206 

-

34.20 1.941.64 

Preliminary Analysis of Variance 

Source of Variation j Degrees of Freedom Sum of Squares Mean Square 

Sexes I I 114,287 
Generations 

, 
3 5,756 

Interactions 

I 

3 -902(!) 

Between sub-classes 7 119,141 
Within sub-classes 141 409 

Calculation of Adjusted Generation ~eans 

Generation n., X. j • X· i · Estimate of i Adjusted Mean 

\ 48 1,873 39.02 J.C. +"1 - tSjl6 42.57 
2 40 1,274 3US p. + Ct l - bjg 38.9, 
3 35 864 24.69 Il + 113 - 116/70 33.61 
4 26 626 24.08 Kf (.(4 - 36/13 37.18 

In any R x 2 table the correct Interactions S.S. is easily computed 
directly. Calculate the observed sex difference D and its weight W 
separately for each generation (table 16.6.1). The Interactiom S.S. 
(3 df.) is given by 

I:WD' - (I: WD)'/I:W = (67.43)(796.35) + ... + (64.21)(328.76) 

- (1,941.64)2/(34.20) = 3,181 

The F-test of Interactions is F = 1,060/409 = 2.59, close to the 5% 
level. It looks as if the sex difference was greater in generations 1 and 4 
than in generations 2 and 3. There is, however, no a priori reason to antici­
pate that the sex difference would change from generation to generation. 
Perhaps the cell means were affected by some extraneous sourca or varia-
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tion that did not contribute to the variation within cells. For illustration, 
we proceed to estimate main effects on the assumption that interactions 
are negligible. 

The estimate of the sex difference in mean gain is 

D = I:W;D;lI:»j = 1,941.64/34.20 = 56.77 gms. 

Its S.E. is JS'7I;-w = J 409/34.2 = 3.46 gms. 

To estimate the Generationeffects, note that under the additive model 
the population means for males and females in Generationjmay be written 
as follows. 

Males: /l+aj+!b; Females: /l + aj - !b 

where <> represents the sex difference, Males minus Females. We start 
willi the unadjusted mean for each generation and adjust it so as to re­
mOVe the sex effect. Since generation I has 21 males and 27 females out 
of48. its unadjusted mean is an unbiased estimate of 

21(b) 27 ( b) b 
/l + a, + 48 2 + 48 - 2 = p + a, - 16 

Our estimate of b is 56.77 and the unadjusted mean for generation I is 
39.02. To remove the sex effect, we add 56.77/16 = 3.55, giving 42.57. 
These adjustments. are made at the foot of table 16.6.1. 

For comparisons among these adjusted generation means, standard 
errors may be needed. The difference between the adjusted means of the 
jlh and kth generation is of the form 

X. j . - X .•. + gD, 

where 9 is the numerical multip\i!'f 01 D, lhe variance 01 this difference is 

S2(.!... +.!... + L \ 
n. j no" I:W) 

With generations I and 2, n., = 48, n., = 40, while 9 = (-1/16) - (-1(8) 
= 1/16, and 1: W = 34.2. The term in 9 in the variance turns out to be 
negligible. The variance of the difference is therefore 

(409)Us + ~) = 18.73 

The adjusted difference is 3.62 ± 4.33. 
If F-tests of the main effects of Sexes and Generations are wanted, 

start with the preliminary S.S. for each factor in table 16.6.1. Subtract 
from it the difference: 

Correct Interaction S,S. minus Preliminary Interaction S.S, 

= 3,181 - (-902) = 4,083 
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The resulting adjusted S.S. ar~ shown In table 16.6.2. 

TABLE 16.6.2 
ADJUSTED SUMS OF SQUARes OF MAIN EFFECTS 

Source of Variation 
I I Degrees of Freedom Sums of Squares Mean Square 

Sexes (adjusted) i 
Generations (adjusted) II 

Interactions 
Within sub<lasses 

1 
3 
3 

141 

----_._---
114.287 - 4.083 ~ 110.204 
5,756-4,083~ 1,673 

3,181 

110.204·· 
558 

1,060 
409 

The sex difference is large. bUI Ihe generation differences fall short of 
the 5% level. 

If interactions can be neglected. this analysis is applicable to tables 
in which data are missing entirely from a sub-class. Zeros are entered 
for the missing nij and Xij.• From the df for Interactions deduct I for 
each missing cell. 

EXAMPLE 16.6.1- ·(i) Verify from table 16.6.2 that the adjusted .5.5. for Sexes. Gen­
erations; and Interactions do not add up to the Total 5.S, between sub-classes. (ii) Verify 
that the adjusted s.s. for Sexes. 110,204, can be computed directly (apart from rounding 
errors), as (tWD)l,rr.W. This formula hold~ in all R)( 2 tables. 

An additive analysis of variance can be obLained from the Preliminary 5,5, for Genera­
tions and the adjusted 5.S. for Sexes, as follows: 

Generations (ignoring Sexes) 
Sexes (adjusted for Generations) 
Interactions 

Degrees of Freedom 

3 
I 
) 

-----------+---_. 
Total between sub-classes 7 

Sum of Squares 

5,756 
110,204 

. .f 3,181 

119.141 
._------------------

This breakdown is satisfactory when we art interested only in testing Sexes. Alternatively. 
we can get an additive breakdown from Sexes (ignoring Generations) and Generations 
(adjusted). 

EXA MPLE ! 6.6.2 ·-·Becker and Hall (IO} determined t~ number of oocysts produced 
by rat" of five strains during' immunization with Eimeria miyairii. The unit of measurement 
is lOb n{)cy<;b 

Strain 

Sex Lambert lo Hi W.E.L. Wistar{AI 

Male n 8 14 20 8 9 
X 36.1 94,9 194.4 64.1 175.7 

Fe.ma\("" n J 14 21 III 8 
X 319 68.6 \87.3 89.:': 148.4 
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Verify the completed anaJysis of variance quoted from the original article: 

Sex (adjusted) 
Strains (adjusted) 
Interaction 
Within sub-classes* 

1 
4 
4 

109 

• You cannot, of course, verify this line. 

2,594.6 
417,565.6 

8,805.3 
332,962.9 

2,594.6 
104,391.4 

2,201.3 
3,054.7 

You will not be abfe to duplicate these numbers exactly because the means are reported to 
only 3 significant digits. Your results should approximate the first 3 figures in the mean 
squares, enough for testing. 

16, 7 -The R x C table. Least squares analysis. This is a general 
method for analyzing 2-way classifications (7). It fits an additive model 
(i.e., one assuming no interactions) to the ,ub-class means: 

Xlj' ;: JJ + at + Pj + Ejj., i = 1, ... r,j = 1, ... c, 

where tbe ei)' are assumed normally distributed with means zero and vari­
ances (12/nji , where n ij is the sub-class number. This amounts to assuming 
that the variance within each subcla$s is (J2, since Bjj. is the mean of nij 

such residuals. 
As an intermediate step in the calculations, the method provides the 

most powerful test of the null hypothesis that interactions are zero. If 
this hypothesis is contradicted by the data, the calculations are usually 
stopped and the investigator proceeds to examine the two-way table in 
detail. Iftbe assumption of negligible interactions is tenable, the remain­
der of the calculations give unbiased estimates of the row and column 
main effects a i and jJj that have the smallest variances. Since data of this 
type are common and are tedious to handle on a desk machine, most com­
putingcenters are likely to have a standard program for the analysis. 

The basic data used are the nu and the row (Xi") and column (X. j .) 

totals of the observations. Table 16.7.1 shows the algebraic notation and 
the mouse typhoid data of tirhl.e 16.2.1 used as illustration. (The Po 
are explained later.) Following Yates (7), we denote the row and column 
totals of the no by N,. and N. j' 

The least squares method chooses estimates m, ai. hj of 1', ai• jJj that 
minimize 

L L nij (Xij' - m - Q i - by 
, J 

The resulting normal equation for Q, is 
Nj,(m + ail + nnbl + nj2b2 + '" + niche = Xj •• 

Thus, for Organism 9D, we have 
98(m + a,) + 34b, + 31h, + 33b, = 385 

(16.7.1) 

Note that the least squares method estimates ai • the effect of the ith row, 
by making the observed total for the ith row equal the value which the 
model says it ought to have. Similarly, for the jth column, 

(16.7.2) 
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TABLE 16.7.1 
ALGEBRAIC NOTATION AND {lATA f'OIt FITTING THBADDITlvE MODEL 

COIUJJlDS Data 
I 2 C Totals Totals 

n" n" ." n" N,. Xl" 
PI} "'" nIl/Nt. p" p" p" I 
n" n" n" ft" N,. Xl' 
Pl}" nliNl' p" p" p" I .. , n" n" n" N, . x. .. 
P., = n"IN,. p" p" p" I 

N., N., N., N .. 
Data totals X· t • X· 2 • X.~. X .. 

Strain of Mice r 

Orprusm RI Z Ba I N;. X; .. Xi" , 
9D titj 34 31 33 I 98 385 3.929 

p" 0.34694 0.31633 0.33673 I I 
lie n" 66 78 113 I 257 1.442 5.611 

p" 0.25681 0.30350 0.43969 I 1 
DSCI "Jj 107 133 188 428 2,523 5.895 

P" 0.25000 0.31075 0.43925 1 
-

N., 207 242 334 783 
X.

j
_ 1,271 1,692 1,387 4,350 5.556 

hj 2.125l 2.8986 0 

From (16.7.1) we see that if we know the b's, we can find (m +'a,), while 
if we know the a's, (16.7.2) gives (m + b j ). The next step is to eliminate 
either the a's or the b's. Time is usually saved by eliminating the more 
numerous ~et of constants, though an investigator interested only in the 
rows mayprefeT toeliminate thecolumns . . III this example, withr = c = 3, 
it makes no difference. We shall eliminate the a's (rows). 

When the a's are eliminated, m also disappears. In tinding the equa­
tions for the b's, it helps to divide each no; by its row total tv ,. forming the 
PIj. The equations for the b's are derived by a rule that is easily remem­
bered. The tirst equation is 

(N'l - "II'PI1 - .. - f1,tP,t)bl, - (n 11 P12 + .. + l1,IPrl)n Z - ... 

- (n11Pl.I: + ., + "rlPu)b.c = X, l , - P11Xt ·· - " - PtlXr" 

For the mice, the tirst equation is 

[207 - (34)(0.34694) - .' - (107)(O.25OOO)Jb, 

- [(34)(0.31633) + .. + (I07)(0.31075)Jb, 

- [(34)(0.33673) + .. + (107)(0.43925)Jh, 

=,1,271 - (0.34694)(385) - .. - (0.25000)(2,523) 

In the jth equation the term in .bj is N. j minus the sum of products of tbe 
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n's and p's in that column. The term in b. is minus the sum of products 
of the nfj and the p". The three equations are: 

151.505b, - 64.036b, - 87.468b, = 136.35 

-64.036b, -t 167.191b2 - 103.155b, = 348.54 (16.7.2a) 

-87.468b, - 103.155b, + 190.624b, = -484.92 

The sum of the numbers in each of the four columns above adds to zero, 
apart from rounding errors. This is a useful check. 

In previous analyses of 2-way tables in this book, we have usually 
assumed Lb, = O. In solving these equations it is easier to assume b, = O. 
(This gives exactly the same results for any comparison among the b's.) 
Drop b, from the first two equations and drop the third equation, solving 
the equations 

151.505b, - 64.036b, = 136.35 

-64.036b, + 167.191b, = 348.54 

The inverse of the 2 x 2 matrix (section 13.4) is 

(
0.0078753 0.0030163) 
0.0030163 0.0071365 

giving 

b, = 2.1251 : b, = 2.8986 : b, = 0 

(16.7.3) 

(16.7.4) 

The sum of squares for columns, adjusted for rows, is given by the sum 
of products of the b's with the right sides of equations (16.7.2a). 

Column S.S.(adjusted) = (2.1251)(136.35) + (2.8986)(348.54) = 1,300 

The analysis of variance can now be completed and the Interactions 
S.S. tested. Compute the S.S. Between sub-classes and the unadjusted 
S.S. for Rows and Columns, these being, respectively, 

LLXu.'/n,! - C; LX, .. 2/N,. - C; LX/IN.! - C; 

where C: X .. .' IN... The results are shown in tbe top half of table 
16.7.2. 

In the completed analysis of variance, the S.S. Between sub-classes, 
1,786, can be partitioned either into 

Rows S.S. (unadjusted) + Columns S.S. (adjusted) + Interactions S.S. 

or into 

Rows S.S. (adjusted) + .Columns S.S. (unadjusted) + Interactions S.S. 

Since we now know that Rows S.S. (unadjusted) = 309 and Columns S.S. 
(adjusted) = 1,300, the first of these relations gives the Interactions S.S. as 
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1.786 - 309 - 1,300 = 177 

The df. are (r - 1)( C - I) = 4 in this example. The second relation pro­
vides the Rows S.S. (adjusted). The completed analysis of variance ap­
pears in the lower half of table 16.7.2. 

TABLE 16.7.2 
ANALYSIS Of V.'\,RJ,o\NCf OF THE MJCE DATA 

Source of Variation 

Preliminary (Unadjusted) 

Degrees of 
Freedom 

Completed 

Sum of Squares 

1,786 
309 

1,227 

Mean Square 

_._---,-------_._-----
Rows (Organisms), unadjusted 2 
Columns (Strains), adjusted 2 

Rows (Organisms), adjusted 
Columns (Strains), unadjusted 

Interactions 
Within sub-classes 

, 

2 
2 

j 77: 
----- '--

309) 1,300 1,609 

J82} 
1,227 1,609 

177 

650.0 

191.0 

44.2 
5.015 

As in the approximate analyses, interactions are shown to be present 
so that ordinarily the analysis would not be carried further; the data 
would be interpreted as in section 16.2. But to illustrate the computations 
we proceed as though there were no interaction. The mean squares for 
F-tests of the main effects of rows and columns are the adiusted mean 
squares in table 16.7.2. 

The standard error of any comparison 'i.Libj among the column 
main effects is 

~:------­

s.j('i.Lj (j) + 2'i.L jL,Cj,) 

where s = .j5.015 = 2.24 and the ej , are the inverse multipliers in (16.7.3). 
Since D, was arbitrarily made 0, all cj ' are O. As examples, 

S.£.(b, - b2 ) = 2.24.j[.00788 + .00714 - 2(.00302)J = ±O.212 

S.E.(b, - b,) = 2.24.j.00788 = ±O.l99 

The row main effects can be obtained from (16.7.1), rewritten as 

m + a, = X, .. - p"h, - ... - p"b, (16.7.5) 

In table 16.7.1, the X,. are in the right-hand column and the.bj are at the 
foot of each column. Relation (16.7.5) gives 

In + a, = 3.929 - (0.34694)(2.1251) - (0.31633)(2.8986) = 1275 
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Similarly, we find 

m + a, = 4.186 : rrr + a, = 4 . .0163 

From (16.7.5) any comparison l:Li(m + ail among the row means is 
of the form 

:EL,x, .. - l:uJbj 

To find the variance of this comparison, multiply 52 by 

"L/ ", " t... - + ~ uj ejJ + 2~ WJUIi;CJA; N i , 

For example, the difference a, - a, = 1.911, is 

X,,, - X", + O.09Olb , + 0.0l28b, 

The mUltiplier of 5' is, therefore, 

I I 
98 + 257 

+ (0.0901)'(0.00788) + (0.0128)'(0.00714) 

+ 2(0.0901)(0.0128)(0.00302) = 0.01417 

The s.'. is ± .J(5,QI 5)(0.01 417) = ±0.266. 
In the original data the overall mean is X ... = 4350/783 = 5.556 

(table 16.7.1). Our three estimated row means are all less than 5.556. 
This is a consequence of the choice of b, = 0 to simplify the arithmetic. 
Although this choice has no effect on any comparison among the row 
means m + a i or the column means m + b i' it is sometimes desirable to 
adjust the m + a, and the m + hj so that m becomes X.... To do this, 
calculate the weighted mean of them + a, with weights N i .; that is, 

[(98)(2.275) + (257)(4.186) + (428)(4.463)]/783 = 4.098 

Since X ... = 5.556, we'add + 1.458 to each m + ai' giving 3.733, 5.644, 
and 5.921 for the row means. To make the column means average in 
the same way to the general mean, compute these means as X". + b j 
- 1,458, giving the values 6.223, 6.997, 4.098. 

In a 3-way classification the exact methods naturally become more 
complicated. There are now three two-factor interactions and I three­
factor interaction. An example worked in detail is given by Stevens (8). 

The exact analysis of variance can still be computed by elementary 
methods if the sub-class numbers are proportional, that is, if 

nij, = (Ni .. )(Nj.)(N .. ,)/N .. ! 
Federer and Zelen (9) present exact methods for computing the sum 

of squares due- to any main effect or interaction, assuming all other effects 
present. They also describe simpler methods that provide close upper 



Proportion. 493 

bounds to these sums of squares. Their methods are valid for any number 
of classes. 

EXAMPLE 16.7.1-10 the farm tenancy example in section 16.4 there was no evidence 
of interaction. The following are the least squares estimates of the main effect means for 
tenure and soihi. 

Owner: 32.507 Renter: 51.072 Mixed; 45.031 

48.157 II 46.999 III 40.480 

Your results may differ a little, depending on the number of decimals carried. The results 
above were adjusted so that I:Nj.a j = "£N. jh j = O. Note the excellent agreement given by the 
means shown under table 16.4.2 for the method of proportional numbers. 

EXAMPLE 16.7.2-10 the mice data verify the following estimates and standard 
errors as given by the use of equal weights within rows (section 16.3) and the least squares 
analysis (section 16.7). 

lie - 90 
Z-RI 

Equal Within Rows 

1.919 ± 0.265 
0.755 ± 0.196 

Least Squares 

1.911 ± 0.266 
0.774 ± 0.212 

16.8-The analysis of proportions in 2-way tables. In chapter 9 we 
discussed methods of analysis for a binomial proportion. Sections 9.8-
9.11 dealt with a set of C proportions arranged in a one·way classification. 
Two·way tables in which the entry in every cell is a sample proportion 
are also common. ~xamples are sample survey results giving the per~ 
centage of voters who stated their intention to vote Democratic, classified 
by the age and income level of the voter, or a study of the proportion of 
patients with blood group 0 in a large hospital, classified by sex and type 
of illness. 

The data consist of rc independent values of a binomial proportion 
Pij = gij/nji' arranged in r rows and ccolumns. The data resemplethose 
in the preceding section, but instead of having a sample of continuous 
measurements Xjjk (k = l. 2, ... nij) in the i, j cell, we have a binomial 
proportion Pi)- The questions of interest are usually the same in the bi­
nomial and the continuous cases. We want to examine whether row and 
column effects are additive, and if so, to eslimate them and make com­
parisons among rows and among columns. If interactions are present, 
the nature of the interactions is studied, 

From the viewpoint of theory, the analysis of proportions presents 
more difficulties than that of normally distributed continuous variables. 
Few exact results are available. The approximate methods used in prac· 
tice mostly depend on one of the following approaches. 

I. Regard Pu as a normally distributed variable with variance 
PijQi)l1ij' using .the weighted methods of analysis in preceding sections, 
with weights H'ij = l1 i/PIjQjj and Pij replacing X ij .• 
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2. Transform thepijto equivalent angles Yij (section 11.16), and treat 
the} i; as normally dlstnbuted. SlOce the vanance of y for any p .. is 
approximately 821/nij, this method has the advantage th~1 if the ft· '~re 
constant, the analysis of variance of the Y'; is unweighted. As we 'have 
seen, thIs transformatIon IS frequently used in randomized blocks experi­
ments In which the measurement is a proportion. 

3. Transform Pijto its logit 1';; = log. (P;;!qi;)' The estimated vari­
ance of 1';j IS approxImately I/(ni;p,jqij), so that in a logit aAalysis, 1';) 
IS given a weIght nijPijqij' 

The assumptions involved in these approaches probably introduce 
little error in the conclusions if the observed numbers of successes and 
failures, nijPij and nijqij' exceed 20 in every cell. Various smaJJ-sampJe 
adjustments have been prepared to extend the validity of the methods. 

When all Pi; lie between 25~·~ and 75~~, the results given by the three 
approaches seldom differ materially. If, however, the Pij cover a wide 
range from close to zero up to 50% or beyond, there arc reasons for ex­
pecting that row and column effects are more likely to be additive on 8 

logit scale than on the originalp scale. To repeat an example cited In sec­
tion 9.14, suppose that the data are the proportions of cases in which the 
driver of the car suffered injury in automobile accidents classified by 
severity of impact (rows) and by whether the driver wore a seat belt or not 
(COlumns). Under very mild impacts P is likely to be close to zero for both 
wearers and non-wearers, with little if any difference between tho two 
columns. At the other end, under extreme impacts, P will be near 100% 
whether a seat belt was worn or not, witl) again a small column effect. 
The beneficial effect of the belts, if any, will be revealed by the accidents 
that show intermediate proportions of injuries. The situation is familiar 
in biological assay in which the toxic or protective effects of dlfTere(lt agents 
are being compared. It is well known that two agents cannot be etlec­
tively compared at concentrations for which p is close to zero or 100',%',; 
instead, the investigator aims at concentrations yielding p around 50%. 

Thus, in the scale of p, row and column effects cannot be strictly addi­
tive over the whole range. The logit transformation pulls out the scale 
near 0 and IOO/~, so that the scale extends from - '>C to + 00. In the 
logit analysis row and column effects may be additive. whereas in the p 
scale for the same data we might have Interactions that are entirely a coo­
sequem;e of the scale. The angular transformation occupies an inter­
mediate position. As with logits, the scale is stretched at the ends, hut the 
total range remains finite, from 0° to 90']. 

To ~mmmarize, with an analysis in the original scale it is easier to 
think about the meaning and practical importance of effects in this scale. 
The advantage of angles is the simplicity of the computations if the "ij are 
equal or nearly so. Logits may permit an additive model to be used in 
tables showing large effects. In succeeding sections some examples will 
be given to illustrate the computations l'or analyse~ in the original and the 
logit scales. 
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The preceding analyses utilize observed weights, the weight W = n/pq 
attached to the proportion p in a cell being computed from the observed 
value of p. Instead, when fitting the additive model we could use expected 
weigh" a' = n/pq, where j) is the estimate given by the additive model. 
This approach involves a process of successive approx.imations. We guess 
first approximations to the weights and fit the model, obtaining second 
approximations to the p. From these, the weights are recomputed and the 
model fitted again, giving third approximations to the p and the IV, and 
so on until no appreciable change occurs in the results. 

This series of calculations may be shown to give successive approxi­
mations to maximum likelihood estimates of the [> (11). When np and 
nq are large in the cells, analyses by observed and expected weights agree 
closely. In small samples it is not yet clear that either method has a con­
sistent advantage. Observed weights require less computation. 

A word of caution: we are assuming that in any cell there is a single 
binomial proportion. Sometimes the data in a cell come from several 
binomials with different p's. In a study of absenteeism among clerical 
workers, classified by age and sex, the basic measurement might be the 
proportion of working days in a year on which the employee was absent. 
But the data in a cell, e.g., men aged 20--25, might come from 18 different 
men who fall into this cell. In this event the basic yariable is Pi;" the pro­
portion of days absent for the kth man in the i, j cell. Usually it is ade­
quate to regard PiJ' as a continuous variate, performing the analysis 
by the methods in preceding sections. 

16.9-Analysis in the p scale: a 2 x 2 table. In this and the next 
section, two examples are given to illustrate situations in which direct 
analysis of the proportions is satisfactory. Table 16.9.1 shows data cited 
by Bartlett (12) from an experiment in which root cuttings of plum trees 
were planted as a means of propagation. The factors are length of cutting 
(rows) and whether planting was done at on"e or in spring (columns). 

TABLE 16.9.1 
PEIlCENT AGfS Of SU1\ V!VING PLUM ROOT ·stocKS FROM 240 Cunn"llGs 

Lengtb of 
Cutting 

Long 

Short 

Time of Planting 
At Once 

P" ~ 156/240 ~ 65.0"/, 
V,' ~ 165.0)(35.0)/240 = 9.48 
PZI = 107/240 ::::0 44.6% 
'" = (44.6){55.4)/24O '" 10.30 

Spong 

P" = 84/240 ~ 35.0"/, 
v" = (35.0)(65.0)/240 ~ 9.48 
PH := 31/240 ",. 12.9% 
vn = (12.9)(87.1)/240 = 4.68 

In the (1, 1) cell, 156 plants survived out of 240, giving p" = 65.0%. 
The estimated variances v for each p are also shown. 

The analysis resembles that of section \6.5, the Plj replacing the XI)' • 

To test for interaction we compute 
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Pll + PH - P12 - P21 = 65.0 + 12.9 - 35.0 - 44.6 = -1.7% 

Its standard error is 

,j(v11 + v" + V12 + V,,) = ,.133.94 = ±5.83 

Since there is no indication of interaction, the calculation of row and col­
umn effects proceeds as in table 16.9.2. For the column difference in row 
I, the variance is (VII + V12) = 18.96. The overall column difference is a 
weighted mean of the differences in the two rows, weighted inversely as 
the estimated variances. Both main effects are large relative to their stan­
dard errors. Clearly, long cuttings planted at once have the best survival 
rate. 

TABLE 16.9.2 
CALCULAnON OF Row AND COLUMN EFFECTS 

I At Once 

Long I p" ~ 65.0 
Short \ P21 = 44.6 

I D~20.4 

i 

VII = 9.48 
Vl 1 = JO.3O 

V~19.78 
W~ 0.0506 

Main Effects: 

Spring D 

Pil = 35.0 
Pu = 12.9 

D~22.1 

V12 = 9.48 30.0 
'7U= 4.68 31.7 

V= 14.16 ! 
W~ 0.0106 I 

v W 

18.96 0.0527 
14.98 0.0668 

At Once - Spring: 
Long - Short 

I:WD/l:W ~ 31.0'10 
I:WD/I: W - 21.4% 

S.E.= IIJ(I:W) = ±2.89 
S.E. = IIJ(I:W) = ±2:87 

In Bartlett's original paper (12), these data were u",d to demon­
strate how to test for interaction in the logit scale. (He regarded the 
data as a 2 x 2 x 2 contingency table and was testing the three-factor 
interaction among the factors. alive-dead, long-short, at once-spring.) 
However, the data show no sign of interaction either in the P or the logil 
scale. 

16.10-AnaJysis in the p seale: a 3 x 2 table_ In the second example, 
. inspection of .the individual proportions indicates interactions that are 
due to the nature of the factors and would not be removed by a logit 
transformation The data are the proportions of children with emotional 
problems in a study offamily medical care (13). classified by the number Of 
children in the family and by Whether both, one. or no parents were re­
corded as having emotional problems, as shown in table 16.10.1. 

In families having one or no parents with emotional problems the 
four values of P are close to 0.3. any differences being easily accountable 
by sampling errors. Thus there is no sign of an effect of number of children 
or of the parents' status when neither or only one parent has emotional 
problems. When both parents have problems there is a marked increase 
in p in the smaller families to 0.579 and a modest increase in the larger 



Parents With 
Problems 

Both 
One 
None 

TABLE 16.10.1 
hOPDRTION OF CHILDltEN WITH EMOTIONAL PkOSLEMS 

Number of Children in Family 

1-2 

p - 33/57 ~ 0.579 
p - 18/54 _ 0.333 
p - I 0/37 ~ 0.270 

p ~ 15/38 ~ 0.395 
p - 17/55 - 0.309 
p - 9/32 - 0.281 
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familes to 0.395. Thus, inspection suggests that the proportion of chil­
dren with emotional problems is increased when both parents have prob­
lems, and that this increase is reduced in the larger families. 

Consequently, the statistical analysis would probably involve little 
more than tests of the differences (0.579 - 0.333), (0.395 - 0.309), and 
(0.579 - 0.395), which require no new methods. The first difference is 
significant at the 5% level but the other two are not, so that any conclusions 
must be tentative. In data of this type nothing seems to be gained by 
transformation to logits. Reference (13) presents additional data bearing 
on the scientific issue. 

16.1l-Analysis of Iogits in an R x C table. When the fitting of an 
additive model in the logit scale is appropriate, the following procedure 
should be an adequate approximation: 

I. If p is a binomial proportion obtained from g successes out of n 
trials in a typical ccli of the 2-way table. calculate the logit as 

Y = In(g + 1/2)/(n - g + 1/2)} 

10 each cell, where In denotes the log to baso e. 
2. Assign to the logit a weight W = (g + 1/2)(n - g + 1/2)/(n + I). 

In large samples, with all values of g and (n - g) exceeding 30, Y will be 
essentially In (P/q) and the weight npq, which may be used if preferred. The 
values suggested here for Yand Win small samples are based on research 
by Gart and Zweifel (14). See example 16.12.3. 

3. Then follow the method of fitting described for continuous data 
ir_> section 16.7, with Y'j in place of Xjj' and with W,j in place of njj as 
weights. Section 16.7 should be studied carefully. 

4. The analysis of variance of Yis like table 16.7.2, but has no "With­
in sub-classes" line. If the additive model fits, the Imeractions sum of 
squares is distributed approximately as X' with (r - l)(c - I) df A 
significant value of X' is a sign that the model does not fit. This test should 
be supplemented by inspection of the deviations Y'j - til to note any syste­
matic pattern that suggests that the model distorts the data. 

5. If the model fits and the inverse multipliers eij have been computed 
for the columns, the s.e. of any linear function of the column main effects is 

,JC'£.L/CH + 2I.Lj L,cJI<I 
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In the numerical example which follows, the proportions p are all 
small, the largest being 0.056. In this event, the logit of p is practically 
the same as In (P). In effect, we are fitting an additive model to the loga­
rithms ofthep's, i.e., a multiplicative model to thep's themselves. Further, 
with large samples the observed weight W = npq becomes W = np = g 
when p is small, each logit being weighted by the numerator of p. 

16.11-Numerical example. The data come from a large study of the 
relationship between smoking and death rates (15). Ahout 248,000 male 
policyholders of U.S. Government Life Insurance answered questions 
by mail about their smoking habits. The data examined here are for men 
who reported themselves as non-smokers and for men who reported that 
they smoked cigarettes only. The cigarette smokers are classified by num­
ber smoked per day, 1-9, 10--20,21-39, and over 39. For each smoking 
class. the person-years of exposure were accumulated by JO-year age 
classes, using actual ages. That is, a man aged 52 on entry into the study 
would contribute 3 years in the 45-54 age class and additional years in 
the 55-64 age class. Most men were in the study for 8j- years. 

In table 16.12.1, part (A) shows for each cell the number of deaths. 
Part (B) gives the annual probability of death (x 103 ) within each cell, 
calculated from the number of deaths and the number of person-years of 
exposure. Since the age distributions of different smoking cla .. es were 
not identical within a la-year age class, the probabilities were computed, 
by standard actuarial methods, so as to remove any effect of these dif­
ferences in age-distributions. 

Age 
(Yea ... ) 

35-44 
4S.~54 

5S-64 
65-74 

35-44 
45-54 
5S-64 
65-74 

TABLE 16.12.1 
NUMBEllS 0fI D!Ants AND ANNUAL PROBAIIiLITIES OF DEATH (x 101) 

Reported Num'ocr of Cigarettes Smok.ed. Per Day 
None 1-9 10-20 21-39 Over 39 

(A)_.ldeallu 
41 1 90 83 10 
38 11 61 80 14 

2,611 389 2,111 1,656 406 
3,728 586 2,458 1,416 258 

(8) antaMJl probabilities of death (')( 10l) 
1.21 1.63 1.99 Z.66 3.26 
2.64 6.23 6.64 S~91 11.60 

10.56 14.35 IS.50 20.S7 27.40 
24.11 35.76 42.26 49.40 55.91 

In every age group Ihe probability of death rises sharply wilh each 
additional amount smoked. As expected, the probability also increases 
consistently with age within every smoking class. II is of interesl to exam­
ine whether the rate of increase in probability of death for each additional 
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amount smoked is constant at the different ages or changes from age to age. 
If the rate of increase is constant, this implies a simple multiplicative model 
for row and column effects: apart from sampling errors, the probability 
pijfor men in the ith age class andjth smoking class is of the form 

Pij = a.dJj 

In natural logs this gives the additive model 

In (Pil) = In ~; + In PI 
Before attempting to fit this model it may be well to compute for 

each age group the ratio of the smoker to the non-smoker probabilities of 
death (table 16.12.2) to see if the data seem to follow the model. 

TABLE 16.12.2 
RATIOS OF SMOKER TO NON-SMOKER PROBABILITIES Of DEATH 

Reported Number Smoked Per Day 

Ago 1-9 10-20 21-39 Over 39 

35-44 1.28 1.57 2.09 2.57 
45-54 2.36 2.51 3.37 4.39 
55-64 1.36 1.75 1.98 2.59 
65-74 1.48 1.75 2.05 2.32 

The 11ltios agree fairly well for age groups 35-44, 55-64, and 65- 74, 
but rUn substantially higher in age group 45-54. This comparison is an 
imprecise one, however, since the probabilities that provide the denomi­
nators for the ages 35-44 and 45-54 are based on only 47 and 38 deaths. 
respectively. A stabler comparison is given by finding in each row'the 
simple average of the five probabilities and using this as denominator for 
the row. This comparison (example 16.12.1) indicates that the non­
smoker probability of death may have been un~ually low in the age 
group 45-54. 

Omitting the multiplier 103 , the P values in table 16.12.1 range from 
0.00127 to 0.05591. The assumption that these p's are binomial is not 
strictly correct. Within an individual cell the probability of dying presum­
ably varies somewhat from man to man. This variation makes the vari­
ance of P for the cell less than the binomial va.riance (see example 16.12.2). 
but with small p's the difference is likely to be negligible. Further, as 
already mentioned, the p's were adjusted in order to remove any differ­
ence in age distribution within a IO-year class. Assuming the p 's binomial. 
each In p is weighted by the observed number of deaths in the cell, as 
pointed out at the end of the preceding seclion. 

The model is 
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where the oij are independent with means zero and variances I/W,j' The 
fitted model is 

1'1} = m + a i + hj, 

the parameters being chosen so as to minimize 1: W( Y - 1')'. 

TABLE 16.12.3 
ARRANGEMENT OF DATA FOR. FITTING AN ADDITIVE MODEL 

Reported Number of Cigarettes Per Day 
Age None 1-9 1()"20 21-39 Over 39 
--r-
35-44 WIj" 47 7 90 83 10 237 = WI' 

Yl)t 0.239 0.489 0.688 0.978 1.182 169.570 ~ YI . 

45-54 W1j 38 II 67 80 14 210 
Ylj 0.971 1.829 1.893 2.187 2.451 393.122 

55--64 W" 2.617 389 2.117 1.656 406 7.185 

Y" 2.357 2.664 2.918 3.038 3.310 19.756.759 
65-74 W"'j 3,728 586 2.458 1.416 258 8.446 

y ... .i 3.183 3.577 3.744 3.900 4.024 29.725.690 

W.] 6,430 993 4,732 3,235 688 16,078 ~ w.. 
Yj 2.812 3.178 3.290 3.341 3.529 5O,045.141~ Y. 

3.1126 ~ Y . 

• Wlj = cell weig'" "'" number or deaths. 
t Y1j = In(Plj)' 

Table 16.12.3 shows the weights Wi} = number of deaths and the 
YIj = In (Pij)' The first step is to find the row and column totals of the 
weights, and the weighted row and column tOlals of the Yij , namely 

w.. = L w.J: w.j = L w.J: Y,. = L w.jY,j: Y. j = L w.JY,j: 
. j i i 

W .. = LW.. : Y.. = L Y,. 
i " I 

If we make the usual restrictions, 

L K-;·Qi = L W.Jbj = 0, 
J 

then m is the overall mean Y . .jW. = Y. = 3.1126. Analogous to (16.7.1) 
and (16.7.2), the normal equations for Qi and bj are 

Wi·(m + ail + W"b l + W"b, + ... Wkb, = 1';. (16.12.1) 

W.J(m + bl ) + W,jO, + W'ja, + ... + W,jb, = Y' j (16.12.2) 

Since we are not interested in attaching standard errors to the a, or 
hj, these equations will be solved directly by successive approximations. 
As first approximations to the quantities(m + bi! we use the observed 



501 

column means Y. j = Y. )/W. j. shown in table 16.12.3. Rewriting equation 
(16.12.1) in the form 

W;.(m + a,) = Y;. + W;. Y .. - W;l(m + bl ) - ... - w,,(m + b,) 

we obtain second approximations to the (m + a,). For row 1, 

237(m + al ) = 169.570 + (237)(3.1126) - (47)(2.S12) - ... - (10)(3.529) 

(m + a l ) = 144.153/237 = 0.6OS 

These are then inserted in (16.12.2) in the form 

W.j(m + hj ) = Y' j + w.j Y .. - Wlim + a l ) - ... - W.tm + a.) 

and so on. The estimates settle down quickly. After three rounds the 
following estimates were obtained: 

Ages 

No. per Day 
m + hj 

35-44 

0.5748 

None 
2.7433 

4S-S4 

1.7130 

1-9 
3.1053 

2.7193 

10-20 
3.3052 

21-39 
3.4492 

6S-74 

3.5538 

Over 39 
3.6612 

---------------------------
As a check, at each stage the quanlllles 1:W,.(m + a,) and 

1:w.;(m + bj ) should agree with the grand total Y .. to within rounding 
errors. 

The expected value in each cell is conveniently computed as 

f,) = (m + a;) + (m + b) - Y.. ,~ 
Table 16.1'2.4 shows the observed and expected values and the devia­

tions. The value of X' = 1: WIj( Y'J - f,;)' is 13.2 witb 12 df, giving no 
indication of a lack of fit. The largest deviation is the deficit -0.373 for 
non-smokers aged 45-54: this deviation also makes the largest contribu­
tion to X'. The pattern of + and - signs inlhe deviations bas no striking 
features. 

By finding the antilogs of the quantities (bj - bl ). the ratios of the 
smoker to the non-smoker annual probabilities of death as given by this 
model are obtained. These ratios were 1.44, 1.75, 2.03, and 2.50, respec­
tively, for smokers of 1-9, 10-20,21-39, and over 39 _cigarettes per day. 

An example of the analysis of a proportion in a 2' factorial classifica­
tion with only main effects important is given by Yates (16) using the logit 
scale and observed weights. Dyke and Patterson (17) give the maximum 
likelihood analysis of the same data. These authors define the logit as 
tln(p/q). 

Data containing a proportion in an R x C table may be regarded as 
an R x ex 2 contingency table, or as a particular case of an R l( exT 
contingency table. The definition and testing of three-factor interactions 
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TABLE 16.12.4 
O&sEkvED AND EXPECTED NUMBERS OF In p. 

Reported Number of Cigarettes Per Day 

Age None 1-9 1()-20 21-39 Over 39 

35-44 Yjj 0.239 0.489 0.688 0.918 1.182 
fij 0.2Q6 0.568 0.161 0.911 1.123 
Dij +0.033 -0.019 -0.019 +0.061 +0.059 

45-54 0.971 1.829 1.893 2.181 2.451 
1.344 1.106 1.906 2.050 2.262 

-0.373 +0.123 -0.013 +0.131 +0.189 

55-64 2.351 2.664 ·2.918 3.038 3.310 
2.350 2.112 2.912 3.056 3.268 

+0.001 -0.048 +0.006 -0.018 +0.042 

65-14 3.183 3.511 3.144 3.900 4.024 
3.184 3.546 3.146 3.890 4.102 

-0.001 +0.031 -0.002 +0.010 -0.018 

in such tabl~ has attracted much attention in recent years: Goodman 
(18) gives a review and some simple computing methods. 

EXAMPLE 16.12.1-In each row of table 16.12.1 find the unweighted average of the 
prgbabilities and divide the individual probabilities by this number. Show that the results 
are as follows: 

Age None 1-9 1()-20 21-39 Over 39 

35-44 .59 .15 .92 1.23 l.51 
45-54 .31 .86 .92 1.24 1.61 
55-64 .58 .78 1.01 1.14 1.49 
65-14 .58 , .86 1.02 1.19 1.35 

The two numbers that seem most out of line are the low value 0.37 for (None. 45-54) 
and the low value 1.3'5 for (over 39, 65-74). 

EXAMPLE 16. 1 2.2-Supposc: that there are threegToups of II men, with probabilities 
of dying 0.01. 0.02. and 0.03. The variance of the total number who die is 

"(.01)(.99) + (.02)(.98) + (.03)(.91)] ~ 0.0586n 

Hence, the v~riance of the proportion of those dying out of 3n is .0586n/9ffl = 0.006511/". 
For the combmed sample. the probability of dying is 0.02. If we wrongly regard the com­
bined sample as a s.ingie binomial of size 3n with p = 0.02. we would compute the variance 
of the proportion dying as (0.02)(O.98)!3n = O.0065B ... n. The actual variance is just a trifte 
smaller than the binomial variance. 

If there are k groups of men with probabilities PI' Pl' ... Pk' show that the relation be­
tween tbe actual and the binomial variance of the overall proportion dyiog is 

V.n = V.i. - I:(pj - p)1(nk2 

EXAMPLE 16.12.3-10 a sample of size II with population probability p the true logit 
is -'11/). The value. Y =z In{(g + })((n - g + i)} is a relatively unbiased estimate of 



In(p/q) for expectations np and nq as low as 3. The \Veight W., (g + iKn - g + i)/(n + I) 
corresponds to a vanance 

I I I 
V = IV = g-+-t +. CC -gc-+-:-rt 

The quantity V is an almost unbiased estimate of the population variance 0( Y in small 
Si!mples. As an illustration the values of the binomial probability P. and of Yand V arc 
shown below for each value of gwhen n = lO.p = 0.3. 

g p y V Y' 

0 .0212 -3.046 2.095 9.278 
I .1211 -1.846 0.772 3.408 
2 .2335 -1.224 0.518 1.498 
3 .2668 -0.762 00419 0.581 
4 .2001 -0.367 0.376 0.135 
5 .1029 0.000 0.364 0.000 
6 .0368 0.:;\67 0.376 0.135 
7 .0090 0.762 0.419 0.581 
8 .0014 1.224 0.518 1A98 
9 .0001 1.846 0.772 3.408 

10 .0000 3.046 2.095 9.278 

The true logit is In(0.3)0.7) = -0.8473. Verify that (j) the mean value of Y is -0.8497. 
Iii) the variance of Y is 0.4968. (iii) the mean value of Vis 0.5164. about 4~;) too large. 
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* CHAPTER SEVENTEI!N 

Design and analysis 
of sampling 

17.1-Popubttioas. In the 1908 paper in which he discovered the 
Hest, "Student" opened with the following words: "Any experiment may 
be regarded as forming an individual of a population of experiments which 
might be performed under the same conditions. A series of experiments 
is a sample drawn from this population. 

"Now any series of experiments is only of value in so far as it enables 
us to form a judgment as to the statistical constants of the population to 
which the experiments belong." 

From the previous chapters in this book, this way of looking at data 
should now be familiar. The data obtained in an experiment are subject 
to variation, so that an estimate made from the data is also subject to varia­
tion and is, hence, to some degree uncertain. You can visualize, howevef l 

that if you could repeat the experiment many times, putting all the results 
together, the estimate would ultimately settle down to some unchanging 
value which may be cailed the true or definitive result of the experiment. 
The purpose of the siatisi.kai anaiysis of an experiment is to reveal what 
the data can tell about this true result. The tests of significance and 
confidence limits which have 'appeared throughout this book are tools for 
making statements about the population of experiments of which your 
data are a sample. 

In such problems the sample is concrete, but the population may 
appear somewhat hypothetical. It is the population of experiments that 
might be performed, under the same conditions, if you possessed the 
necessary resources, time, and interest. 

In this chapter we turn to situations in which the population is con­
crete and definite, and the problem is to obtain some desired information 
about it. Examples are as follows: 

Population 
Ears of corn in a field 
Seeds in a large batch 
Water in a,reservoir 
Third-grade children in a school 
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Information Wanted 
Average moisture content 
Percentage germination 
Concentration of certain bacteria 
Average weight 
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If the population is small, it is sometimes convenient to obtain the 
information by collecting the data for the whole of the population. More 
frequently, time and money can be saved by measuring oRly a sample 
drawn from the population. When the measurement is destructive, sam­
pling is of course unavoidable. 

This chapter presents some methods for selecting a sample and for 
estimating population characteristics from the data obtained in the 
sample. During the past thirty years, sampling has come [0 be relied upon 
by a great variety of agencies, including government bureaus, market 
research organizations, and public opinion poils. Concurrently, much has 
been learned both about the theory and practice of sampling, and a num­
ber of books devoted to sample survey methods have appeared (2, 3, 4, 5, 
13). In this chapter we explain the general principles of sampling and 
show how to handle some of the simpler problems that are common in 
biological work. For more complex problems, references will be given. 

17.2-A simple example. In the early chapters of this book, you drew 
samples so as to examine the amount of variation in results from one 
sample to another and to verify some important results in statistical 
theory. The same method will illustrate modern ideas about the selection 
of samples from given popUlations. 

Suppose the population consists of N = 6 members, denoted by the 
I~tters a to f. The six values of the quantity that is being measured are as 
follows; a I; b 2; c 4; d 6; e 7; f 16. The total for this population is 36. 
A sample of three members is to be drawn in order to estimate this total. 

One procedure already familiar to you is to write the letters a to f on 
beans or slips of paper, mix them in some container, and draw out three 
letters. In sample survey work, this method of drawing is called simple 
random sampling, or sometimes random sampling without replacement (be­
cause we do not put a leller back in the receptacle after it has been drawn). 
Obviously, simple random sampling gives every member an equal chance 
of being in the sample. It may be shown that till! method also gives every 
combination of three different letters (e.g., aef Or ede) an equal chance of 
constituting the sample. 

How good an estimate of the popUlation total do we obtain by simple 
random sampling" We are not quite ready to answer this question. Al­
though we know how the sample is to be drawn, we have not yet discussed 
how the population total is to be estimated from the results of the sample. 
Since the sample contains three members and the population contains six 
members, the simplest procedure is to multiply the sample total by 2, and 
this is the procedure that will be adopted. You should note that any sam­
pling plan contains two parts--a rule for drawing the sample and a rule for 
making the estimates from the Tesulls of the sample. 

We can now write down all possible samples of size 3, make the esti· 
mate from each sample, and see how close these estimates lie to the true 
value of 36. There are 20 different samples. Their results appear in tahle 
17.2.1. where the successi\'e columns show the composition of the sample, 
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the sample total, the estimated population total, and the error of estimate 
(estimate minus true value). 

Some samples, e.g., obi and cde, do very well, while others like abc 
give poor estimates. Since we do not know in any individual instance 
whether we will be lucky or unlucky in the choice of a sample, we appraise 
any sampling plan by looking at its average performance. 

TABLE 17.2.1 
REsULTS FOR ALL POSSIBLE SIMPLE RANDOM SAMPLES OF SIZE THllEE 

Estimate of Estimate of 
Sample Population Error of Sample Population Erroraf 

Sample Total Total Estimate Sample Total Total Estimate 

abc 7 14 -22 bed 12 24 -12 
abd 9 18 -18 bee 13 26 -10 
abe 10 20 -16 bel 22 44 + 8 
abl 19 38 + 2 bde 15 30 - 6 
aed II 22 -14 bq[ 24 48 +12 
ace 12 24 -12 bel 25 50 +14 
ael 21 42 + 6 ede 17 34 - 2 
ode 14 28 - 8 edl 26 52 +16 
adl 23 46 +10 eel 27 54 +18 
ael 24 48 +12 del 29 58 +22 

.-
,I Average 18 36 0 

The average of the errors of estimate, taking account of their signs, is 
called the bias of the estimate (or, more generally, of the sampling plan). A 
positive bias implies that the sampling plan gives estimates that are on the 
whole too high; a negative bias, too low. From table 17.2.1 it is evident 
that this plan gives unbiased estimates, since the average ofthe 20 estimates 
is exactly 36 and consequently the errors of estimate add to zero. With 
simple random sampling this result holds for any population and any 
size of sample. Estimates that are unbiased are a desirable feature of a 
sampling plan. On the other hand. a plan that gives a small bias is not 
ruled out of consideration if it has other attractive features. 

As a measure of the accuracy of the sampling plan we use the mean 
square error of the estimates taken about the true population value. 
This is 

l:(Error of estimate)2 3,504 
M.S.E. = 20 = 20 = 175.2 

The divisor 20 is used instead of the divisor 19. because the errors are mea­
sured from the true population value. To sum up. this plan gives an esti­
mate of the population tOlal that is unbiased and has a standard error 
-./ 175.2 = 13.2. This standard error amounts to 37~'; of the true. popula­
tion total; evidently the plan IS not very accurate for thIS population. 
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In simple random sampling the selection of the sample is left to the 
luck of the draw. No use is made of any knowledge that we possess about 
the members of the population. Given such knowledge. we should be 
able to improve upon simple random sampling by using the knowledge to 
guide us in the selection ofthc sample. Much of the research on sample 
survey methods has been dir~'led towards taking advantage of available 
information about the population to be sampled. 

By way of illustration suppose that before planning the sample we 
expect thatfwill give a much higher value than any other member in the 
population. How can we use this information'.' It is clear that the esti­
mate from the sample will depend to a considerable extent on whether f 
falls in the sample or not. This statement can be verified from table 
17.2.1 : every sample containingf gives an overestimate and every sample 
without f gives an underestimate. 

The best plan is to make sllre that I appears in every sample. We 
can do this by dividIng the population into two parts or "Irala. Stratum I, 
which consists oflalone. is completely measured. In stratum II. contain­
ing a, h, c, d. and e, we take a simple random sample of size 2 in order to 
keep the total sample size equal to 3. 

Some forethought is needed in deciding how to estimate the popula­
tion total. To use twice the sample total. as was done previously. gives 
too much weight to f and, as already pointed out. will always produce an 
overestimate of the true total. We can handle this problem by treating 
the two strata separately. For stratum 1 we know the total (16) correctly, 
since we alwa)s measure f. For stratum II. where ~ members are mea~ 
sured out of 5, the natural procedure is to mUltiply the sample total in that 
stratum hy 5 2, or 2.S.· Hence the appropriate estimate of the population 
total is 

16 + 2~.5 (Sample total 10 stratum 11) 

These estimates are shown for the III possible samples in table 17 .2.2. 
Again we note that the estimate is unbias~d. Its mean square error is 

'-

~ (Error of estimate)' 487.50 
10 =-1-0-= 48.75 

The standard error is 7.0 or 19"" of the true total. This is a marked im­
provement over the standard error of 13.2 that was obtained with simple 
random sampling. 

This sampling plan goes by the name of .. rrutified random .<amp/ing 
with unequol .'iamplin~frt1('1if)n.'i. The last part of the title denotes the fact 
that stratum 1 is completely sampled. whereas stratum II is sampled at a 
rate of 2 units out of 5, or 40%. Stratification allows us to divide the 
population into sub-populations or strata that are less \·ariable than the 
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TABLE 17.2.2 
REsULTS FOR ALL POssiBLE STRATIfiED RANOOM SAMPLES WITH THE UNEQUAL 

SAMPLING FRACTIONS DESCRIBED IN TEXT 

Sample Total in Estimate Error of 
Sample Stratum II (Tz) 16+2.5T, Estimate 

obj 3 23.5 -12.5 
oej 5 28.5 - 7.5 
ad! 7 33.5 - 2.5 
aej 8 36.0 0.0 
bel 6 31.0 - 5.0 
bdl 8 36.0 0.0 
bel 9 38.5 + 2.5 
edl 10 41.0 + 5.0 
eel II 43.5 + 7.5 
del 13 485 + 12.,5 

Average 36.0 0.0 

original population, and to sample different parts of the population at dif­
ferent rates when this seems advisable. It is discussed more fully in sec­
tions 17.8 and 17.9. 

EXAMPLE 17.2.1-10 the preceding example, Suppose you expect that both e and f 
will give high values, You decide that the sample shall consist of e,f, and one meJl1ber drawn 
at random from a, h, c, d. Show how to obtain an unbiased estimate offhe po pula lion tora! 
and show that the standard error of this estimate is 7.7. (This sampling ptan i!; not as. ac­
curate as the plan in Which/alone was placed in a separate stratum. because the actual valul;! 
for f' is not very high.) 

EXAMPLE 17.2.2-If previous information suggests that f will be high. d and (! 

moderate, and a, b, and c small, we might try stratified sampling with three strata. The 
sample consists off, either d or e, and one chosen from a, b. and c. Work out the unbiased 
estimate of the population total for each of the sill: possible samples and show that its Stan· 
dard error is 3.9. , 

17.3-Probability sampling. The preceding examples were intended 
to introduce you to probability sampling. This is a general name given 
to sampling plans in whiCh 

(i) every member of the population has a known probability of being 
included in the sample, 

(ii) the sample is drawn by some method of random selection con­
sistent with these probabilities, 

(iii) We take account of these probabilities of selection in making the 
estimates from the sample. 

Note that the probability of selection need not be equal for all mem­
bers orthe population: it is sufficient that these probabilities be known. In 
the first example in the previous section, each member of the popUlation 
had an equal chance of being in the sample, and each member of the sample 
received an equal weight in estimating the population total. But in the 
second example, member f was given a probability I of appearing in the 
sample, as against 2/5 for the rest of the popUlation. This inequality in 
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the probabilities of selection was compensated for by assigning a weight 
5/2 to these other members when making the estimate. The use of un­
equal probabilities produces a substantial gain in precision for some types 
of populations (see section 17.9). 

Probability sampling has several advantages. By probability theory 
it is possible to study the biases and the standard errors of the estimates 
from different sampling plans. In this way much has been learned about 
the scope, advantages, and limitations of each plan. This information 
helps greatly in selecting a suitable plan for a particular sampling job. As 
will be seen later, most probability sampling plans also enable the stan­
dard error of the estimate, and confidence limits for the true population 
value, to be computed from the results of the sample. Thus, when a 
probability sample has been taken, we have some idea as to how accurate 
the estimates are. 

Probability sampling is by no means the only way of selecting a sam­
ple. An alternative method is to ask someone who has studied the popu­
lation to point out "average" or "typical" members, and then confine the 
sample to these members. When the population is highly variable and 
the sample is small, this method often gives more accurate estimates than 
probability sampling. Another method is to restrict the sampling to those 
members that are conveniently accessible. If bales of goods are stacked 
tightly in a warehouse, it is difficult to get at the inside bales of the pile 
and one is tempted to confine attention to the outside bales. In many 
biological problems it is hard to see how a workable probability sample 
can be devised, as in estimating, for instance, the number of house flies 
in a town, or of field mice in a wood, or of plankton in the ocean. 

One drawback of these alternative methods is that when the sample 
has been obtained, there is no way of knowing hqw accurate the estimate is. 
Members of the population picked out as typical by an expert may'be 
more or less atypical. Outside bales mayor may not be similar to interior 
bales. Probability sampling formulas for the standard error of the esti­
mate or for confidence limits do not apply to these methods. Conse­
quently, it is wise to use probability sampling ullIe:;s there is a clear case 
that this ;s not feasible or is prohibitively expensive.' 

17,4-Listing the population, In order to apply probability sampling, 
we must have some way of subdividing the population into units, called 
sampling unils, which form the basis for the selection of the sample. The 
sampling units must be distinct and non-overlapping, and they must to­
gether constitute the whole of the popUlation. Further, in order to make 
some kind of random selectIOn of sampling units, we must be able to 
number or lisr all the units. As will be seen, we need not always write 
down the complete list but we must be in a position to construct it. Lis.ting 
is easily accomplished when the popUlation consists of 5/>00 cards nt-at!y 
arranged in a fiie. or 300 ears of corn lying on a bench, or the trees in a 
small orchard. But the subdivision of a popUlation IOto sampling units 
that can be listed sometimes presents a difficult practical problem. 
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Although we have spoken of the populatIon as being concrete and 
definite, there may be some vagueness about the population which does 
not become apparent until a sampling is being planned. Before we can 
come to grips with a population of farms or of 'nursing homes, we must 
define a farm or a nursing home. The definition may require much study 
and the final decision may have to be partly arbitrary. Two principles to 
keep in mind are that the definition should be appropriate to the purpose 
of the sampling and that it should be usable in the field (i.e., the person 
collecting the information should be able to tell what is in and what is out 
of the population as defined). 

Sometimes the available listings of farms, creameries. or nursing 
homes are deficient. The list may be out of date, having some members 
that no longer belong to our population and omitting some that do belong. 
The list may be based on a definition different from that which we wish to 
use for our population. These points should be carefully checked before' 
using any list. It often pays to spend considerable effort in revising a list to 
make it complete and satisfactory, since this may be more economical than 
constructing a new list. Where a list covers only part of the population, 
one procedure is to sample this part by means of the list, and to construct 
a separate method of sampling for the unlisted part of the population. 
Stratified sampling is useful in this situation: all listed members are as­
signed to one stratum and unlisted members to another. 

Preparing a list where none is available may require ingenuity and 
hard work. To cite an easy example, suppose that we wish to take a num­
ber of crop samples, each 2 ft. x 2 ft., from a plot 200 ft. x 100ft. Divide 
the length of the plot into 100 sections, each 2 ft .. and the breadth into 
50 sections, each 2 ft. We thus set up a coordinate system that divides 
the whole plot into 100 x 50 or 5,000 quadrats. each 2 ft. x 2 ft. To select 
a quadrat by simp1e random sampling, we draw a random number be­
tween I and J 00 and another random number between I and 50. These 
coordinates locate the corner of the quadrat that is farthest from the origin 
of our system. However, the problem becomes harder if the plot measures 
163 ft. x 100 ft., and much harder if we have an irregularly shaped field. 
Further, if we have to select a number of areas each 6 in. x 6 in. from a 
large field, giving every area an equal chance of selection. the time spent 
\l\ se\ec\\l\g and \oca\\n~ \b~ sam\)\e aTea~ become:5. ~u\Y.;\antia\. 'Part\~ tOT 

thi' reason. methods of ;ystematic sampling (section 17.7) have come to 
be favored in routine soil sampling (8). 

Another illustration is a method for sampling (for botanical or chemi­
cal analysis) the produce of a small plot that IS already cut and bulked. 
The bulk is separated into two parts and a coin is tossed (or a random 
number drawn) to decide which part shall contain the sample. ThIS part 
is then separated into two_ and the process continues until a sample of 
about the desired size is obtained. At any stage it is good practice to make 
the two parts as alike as possible, provided this is done before the coin is 
tossed. A quicker method. of course, is to grab a handful of about the 
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desired size; this is sometimes satisfactory but sometimes proves to be 
biased. 

In urban sampling in the United States, the city block is often used as 
a sampling unit, a listing of the blocks being made from a map of the town. 
For extensive rural sampling, county maps have been divided into areas 
with boundaries that can be identified in the field and certain of these 
areas are selected to constitute the sample. The name area sampling has 
come to be associated with these and other methods in which the sampling 
unit is an area of land. Frequently the principal advantage of area sam­
pling, although not the only one, is that it solves the problem of providing 
a listing of the population by sampling units. 

In many sampling problems there is more than one type or size of 
sampling unit into which the population can be divided. For instance, in 
soil sampling in which borings are taken, the size and shape of the borer 
can be chosen by the sampler. The same is true of the frame used to mark 
out the area of land that is cut in crop sampling. In a dental survey of the 
fifth-grade school children in a city, we might regard the child as the 
sampling unit and select a sample of children from the combined school 
regis~ers for the city, It would be administratively simpler, however, to 
take the school as the sampling unit, drawing a sample of schools and 
examining every fifth-grade child in the selected schools, This approach, 
in which the sampling unit consists of some natural group (the school) 
formed from the smaller units in which we are interested (the children). 
goes by the name of cluster sampling, 

If you are faced with a choice between different sampling units, the 
guiding rule is to try to select the one that returns the greatest precision 
for the available resources. For a fixed size of sample (e.g" 5% of the 
population), a large sampling unit usually gives less accurate results than 
a small unit, although there are exceptions. To counterbalance this, it is 
generally cheaper and easier to take a 5% sample with a large sampling 
unit than with a small one, A thoroush comparison between two units is 
likely to r"ctuire a ~pecial investigation, in which both ~ampli'ng ",ron. and 
costs (or times required) are computed for each unit. 

17,S-Simple random sampling, In this and later sections, some of 
the best-known methods for selecting a pr"Obability sample will be pre­
sented. The goal is to use a sampling plan that gives the highest precision 
for the resources to be expended, or, equivalently, that attains a desired 
degree of precision with the minimum expenditure of resources, [t is 
worthwhile to become familiar with the principal plans, since they are 
designed to take advantage of any information that you.have about the 
structure of the population and about the costs of taking the sample. 

In section 17.2 you have already been introduced to simple random 
sampling, This is a method in which the members of the sample are drawn 
independently with equal probabilities, [n order to illustrate the use of a 
table of random numbers for drawing a random sample, suppose that the 
population contains N = 372 members and tbat a sample of size n = to 
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is wanted. Select a three-digit starting number from table A I, say the 
number is 539 in row II of columns 8()"'82. Read down the column and 
pickout the first ten three-digit numbers that do not exceed 372. These are 
334,365,222,345.245,272,075,038,127, and 112. The sample consists of 
the sampling units that carry these numbers in your listing of the popula­
tion. If any number appears more than once, ignore it on subsequent 
appearances and proceed until ten different numbers have been found. 

If the first digit in N is 1,2, or 3, this method requires you to skip many 
numbers in the table because they are too large. (In the above example 
we had to cover 27 numbers in order to find ten for the sample,) This does 
not matter if there are plenty of random numbers. An alternative is to use 
all three-digit numbers up to 2 x 372 = 744. Starting at the same place, 
the first ten numbers that do not exceed 744 are 539, 334,615,736,365, 
222,345,660,431, and 427, Now subtract 372 from all numbers larger 
than 372. This gives, for the sample, 167, 334, 243, 364, 365, 222, 345, 
288,59, and 55. With N = 189, for instance, we can use all numbers up to 
5 x 189 = 945 by this device, subtracting 189 or 378 or 567 or 756 as the 
case may be. 

As mentioned previously, simple random sampling leaves the selee­
lion of the sample entirely to chance. It is often a satisfactory method 
when the population is not highly variable and, in particular, when esti­
mating proportions that are likely to lie between 20% and 80%. On the 
other hand, if you have any knowledge of the variability-in the population, 
such as that certain segments of it are likely to give higher responses than 
others, one of the methods to be described later may be more precise. 

If: Y; (i = I, 2, ... N) denotes the variable that is being studied, the 
standard deviation, (1, of the population is defined as 

. (J=J~(Y;-Y)", 
" N - I 

where Y is the popUlation mean of the Y, and the sum :l: is taken over all 
sampling units in the popUlation. 

Since Y denotes the population mean, we shall use y to denote the 
sample mean. In a simple random sample of size n, the standard error 
of y is: 

where ¢ = nl N is the sampling fraction, i.e., the fraction of the population 
that is included in the sample. The sampling fraction is commonly de­
noted by the symbol f, but ¢ is used here to avoid confusion with our pre­
vious use of ffor degrees of freedom,) 

The term (l/.Jn is already familiar to you: this is the usual formula for 
the standard error of a sample mean. The second factor, ../(1 - ¢), is 
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known as the finite population correction. It enters because we are sam­
pling from a population of finite size, N, instead offrom an infinite popula­
tion as is assumed in the usual theory. Note that this term makes the stan­
dard error zero when n = N, as it should do, since we have then measured 
every unit in the population. In practical applications the finite popula­
tion correction is close to I and can be omitted when n/ N is less than 10%, 
i.e., when the sample includes less than 10% of the population. 

This result is remarkable. In a large papulation with a fixed amount 
of variability (a given value of a), the standard error of the mean depends 
mainly on the size of sample and only to a minor extent on the fraction of 
the population that is sampled. For given a, the mean of a sample of 100 is 
almost as precise when the population size is 200,000 as when the popula­
tion size is 20,000 or 2,000. Intuitively, some people feel that one cannot 
possibly get accurate results from a sample of 100 out of a population of 
200,000, because only a tiny fraction of the population has been measured. 
Actually, whether the sampling plan is accurate or not depends primarily 
on the size of a/Jn. This shows why sampling can bring about a great 
reduction in the amount of measurement needed. 

For the estimated standard error of the sample mean we have 
S I 

S, = -J- y(l - 4», . n 

where s is the standard deviation of the sample, calculated in the usual way. 
If the sample is used to estimate the population total of the variable 

under study, the estimate is Ny and its estimated standard error is . 

Ns I 

ss, = In y(1 - 4» 

In simple random sampling for attributes, where every member of the 
sample is classified into one of two classes, we take 

ri<i 
sp =..J n-J(I - 4» 

where p is the proportion of the sample that lies in one of the classes. Sup­
pose that 50 families are picked at random from a list of 432 families who 
possess telephones and that 10 of the families report that they are listening 
to a certain radio program. Then p = 0.2, q = 0.8 and 

s = p 
(0.2)(0.8) 1(1 _ ~) = 0.053 

50" 432 

If we ignore the finite population correction. we find sp = 0.057, 
The formula for sp holds only if each sampling unit is classified as a 

whole into one of the 1.'0 classes. If you are using cluster sampling and are 
classifying individual elements within each cluster, a different formula for 
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s, must be used. For instance, in estimating the percentage of diseased 
plants in a field from a sample of 360 plants, the formula above holds if 
the plants were selected independently and at random. To save time in 
the field, however, we might have chosen 40 areas, each consisting of 3 
plants in each of 3 neighboring rowS. With this method the area (a clus­
ter of 9 plants) is the sampling unit. If the distribution of disease in the 
field were extremely patchy, it might happen that every area had either 
all 9 plants diseased or no plants diseased. In this event the sample of 40 
areas would be no more precise than a sample of 40 independently chosen 
plants, and we would be deceiving ourselves badly if we thought that we 
had a binomial sample of 360 plants. 

The correct procedure for computing s, is simple. Calculate p sepa­
rately for each area (or sampling unit) and apply to these p'. the previous 
formula for continuous variates. That is, if Pi is the percentage diseased 
in the ith area, the sample standard deviation IS 

s= 
(Pi - p)' 

(n - 1) , 

where n is now the number of areas (cluster units). Then 

s 
sp = "In ,,1(1 - t/J) 

F or instance, suppose that the numbers of diseased plants in the 40 areas 
were as given in table 17.5.1. 

TABLE 17.5.1 
NUMBERS OF DISEASED PLANTS (OUT OF 9) IN EACH OF 40 AREAS 

25111700323000 7 '04126 
o 'b .I 4 5 0 1 4 2 6 0 2 4 1 7 3 S 0 3 6 

Grand total = 99 

The standard deviation of the numbers of diseased plants in this sample is 
2.331. Since the proportions of diseased plants in the 40 areas are found by 
dividing the numbers in table 17.5.1 by 9, the standard devlauon of the 
proportions is 

s = 2.~31 = 0.259 

Hence (assuming N large). 

s 0.259 
s = ~ = -- = 0.041 

P .J1l ,,140 
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For comparison, the result given by the binomial formula will be 
worked out. From the total in table 17.5.1, p = 99/360 = 0.275. The 
binomial formula is 

= (Pq = )(0.275)(0.725) = 0024 
sp -v 36i.i 360 ., 

giving an overly optimistic notion of the precision of p. 
Frequently, the clusters are not all of the same size. This happens 

when the sampling units are areas of land that contain different numbers 
of the plants that are being classified. Let mi be the number of elements 
that are classified in the ith unit, and ai the number that fall into a speci­
fied class, so that Pi = admi. Then P, the overall proportion in the sam­
ple is (l:ai)/(l:mi)' where each sum is taken over the n cluster ·units. 

The formula for s, the standard deviation of the individual propor­
tions Pi uses a weighted mean square of the deviations (Pi - p), as follows: 

where m = l:mdn is the average size of cluster in the sample. This formula 
is an approximation. no correct expression for s being known in usable 
form. As before. we have 

s 
s = - 1(1 - <1» 

P ,jn Y 

For computing purposes, s is better expressed as 

I 
S = m (n _ I) {1:a/ - 2pI.a irni + p2 I:m/} 

The sums of squares l:ai 2, l:mi 2 and the sum of products l:aimi are cal­
culated without the usual corrections for the mean. The same value of s 
is obtained whether the corrections for the mean are applied or not, but 
it saves time not to apply them. 

EXAMPLE 17.5.1--.Jf a samph: of 4 from the 16 townships of a county has a standard 
deviation 45. show that the standard error of the mean is /9.5. 

EXAMPLE 17.5.2 --In the example presented in section 17.2 we had N = 6, II == \ 
and the values for the 6 members of the population were I. 2, 4. 6. 7. and 16. The fonnula 
for the true standard error of the estimated. population total is 

Verify that this formula asrees with the result, 13.2. which we found by writin, down aU 
possible samples. 
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EXAMPLE 17.5.3-A simple random sample of size 100 is taken-in order to estimate 
some proportion (e.g .. the proportion of males) whose value in the population is close to 1/2. 
Work out the standard error of the sample proportion p when the size of the population is 
(i) 200. (ii) 500. (Iii) 1.000. (iv) 10,000. (v) 100.000. Note how little the standard efror changes 
for N greater lhan 1.000. 

EXAMPLE 17.S.4---Show that the coefficient of variation of the sample mean is the 
same as tha! of the estimated population total. 

EXAMPLE 17.5.5~ln simple random sampling'for attributes, show that the standard 
error of p. for given Nand fI, is greatest when p is 50~'~, but that the coefficient of variation of 
P IS largest when p is very small. 

17.6-Size of sample. At an early stage in the design of a sample. the 
question "How large a sample do I need?" must be considered. Although 
a precise answer may not be easy to find, for reasons that will appear, 
there is a rational method of attack on the problem. 

Clearly. we want to avoid making the sample so small that the esti­
mate is too inaccurate to be useful. Equally, we want to avoid taking a 
sample th.at is too large, in that the estimate is more accurate than we re­
quire. Consequently, the first step is to decide how large an error we 
can tolerate in the estimate. This demands careful thinking about the 
use to be made of the estimate and about the consequences of a sizeable 
error. The figure finally reached may be to some extent arbitrary, yet 
after some thought samplers often lind themselves less hesitant about 
naming a figure than they expected to be. 

The next step is to express the allowable error in terms of confidence 
limits. Suppose that L is the allowable error in the sample mean. and 
that we are willing to take a 5% chance that the error will exceed L. In 
other words, we want to be reasonably certain that the error will not ex­
ceed L. Remembering that the 95% confidence limits computed from a 
sample mean, assumed approximately normally distributed, are 

" 20' y+-, - ,In 

where we have ignored the finite population correction, we put 

L -~ - ,In 
This gives, for the required sample size, 

40'2 

n=U 

In order to use this relation, we must have an estimate of the popula­
tion standard deviation, 0'. Often a good guess can be made from the 
results of previous samplings of this population or of other similar popula­
tions. For example, an experimental sample was taken in 1938 to estimate 
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'he yield per acre of wheat in certain districts of North Dakota (7), For a 
sample of 222 fields, the variance of the yield per acre from field to field 
was s' = 90.3 (in bushels'). How many fields are indicated if we wish to 
estimate the true mean yield within ± 1 bushel, with a 5% risk that the 
crear will exceed I bushel? Then 

40" '4(90.3) 
n = - = -_ = 361 fields 

L' (1)2 

If this estimate were being used to plan a sample in .ome later year, it 
would be regarded as tentative. since the variance between fields might 
change from year to year. 

In default of previous estimates, Deming (3) has pointed out that 0' 

can be estimated from a knowledge of the highest and lowest values in the 
population and a rough idea of the shape of the distribution. Ifh = (high­
est - lowest); then (J = 0.29h for a uniform (rectangular) distribution, 
0' = 0.2411 for a symmetrical distribution shaped like an isosceles triangle, 
and (J = 0.2 [ft for a skew distrib\ltion shaped like a right triangle. 

If the quantity to be estimated is a binomial proportion, the allowable 
error. L. for 95% confidence probability is 

L= 2J~q 

The sample size required to attain a given limit of error. L. is therefore 

4pq " = -, (17.6.1) 
L .~ 

In this formula. p, q, and L may be expressed either as propotU;;;;s or as 
percentages, provided they are all expressed in the same units. The 
result necessitates an ad,'ance estimate of p. If P is likely to lie between 
35% and 65°/~, the advance estimate can be quite rough, since the product 
pq varies little for p lying between these llmits. If. however, p is near zero 
or 100°0' accurate determination of n requires a close guess about the 
value of p, 

We have ignored the finite population correction in the formulas pre­
sented in this section. This is satisfactory for the majority of applications. 
If the computed value ofn is found to be more than 10% orthe population 
size, N, a revised value 11' which takes proper account of the correction 
is ohtained from the relation 

, n 
n :=--

1+4> 

For example. casual inspection of a batch of 480 seedlings indicales Ihal 
about 15'%" arc diseased. Suppose we wish to know the size of sample 
needed to determine p, the per cent diseased. to within ± 5%, apart from 
a l-in-20 chance. Formula 17.6.1 gives 
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4(15)(85) . 
n = ._- = 204 seedlings 

(25) 

At this point we might decide that it would be as quick to classify every 
seedling as to plan a sample that is a substantial part of the whole batch. 
If we decide on sampling, we make a revised estimate, n', as 

n 204 
n' = -- = ------ = 143 

1 + cI> 204 
1+-

480 

The formulas presented in this section are appropriate for simple ran­
dom sampling, If some other sampling method is to be used, the general 
principles for the determination of n remain the same, but the formula for 
the confidence limits, and hence the formula connecting L with n, will 
change, Fonnulas applicable to more complex methods of sampling can 
be obtained in books devoted to the subject, e,g" (2, 4), In practice, the 
formulas' in this section are frequently used to provide a preliminary 
notion of the value of n, even if simple random sampling is not intended 
to be used, The values of n are revised later if the proposed method of 
sampling is markedly different in precision from simple random sampling, 

When more than one variable is to be studied, the value of n is first 
estimated separately for each of the most important variables, If these 
values do not differ by much, it may be feasible to use the largest of the 
n's. If the n'. differ greatly, one method is to use the largest n, but to 
measure certain items on only a sub-sample of the original sample, e.g., on 
200 sampling units out of (,000. In other situations, great disparity in 
the n's is an indication that the investigation must be split into two or morc 
separatesurveys, ' 

EXAMPLE li.6.1-·A simple random sample of houses is to be taken to estimate the 
percentage of houses that are unoccupied. The estimate is desired to be correct to within 
± 10

0 , with 95,% confidence. One advance estimate is that the percentage of unoccupied 
houses will be about 6%, another is that it will be about 4° o' What sizes of sample are re­
quired on these two forecasts':' What size would you recommend'.) 

EXAMPLE 17.6.2 - The total number of rats in the residential part of a large city is to 
be e~timated with an error of not more than 100 

n. apart from a 1-in-20 chance. In a previous 
survey, the mean number of rats per city block was nine and the sample standard deviation 
was 19 (the distribution is extremely skew). Show that a simple random sample of around 
450 blocks should suffice. 

EXAMPLE 17.6.3--West (1) quotes the following data for 556 full-time farms in 
Seneca ('oumy. New York 

Aeres in corn 
~res in "'mall grain~ 
Acres 10 hay 

Mean 

8,8 
41.0 
27.9 

Standard De,,'iatlon Per Farm 

9,0 
39.5 
16.9 
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If a coefficient of vanatlon of up to 5'1" can be tolerated. show tha.t a random sample 
of about 240 farms is. required to estimate the total acreage of each crop in the 556 rarms with 
thi!lo degree of precision. (Note that the finite population correction must be used.) This 
example illustrates a result that has b«n reached by several different investigator,,; with small 
(arm populations such as counties. a substantial part or the whole population must be 
5.ampJeJ In order 10 obt.ain accurale estimates. 

17.7-Systematic sampling. In order to draw a IO:%', sample from a 
list of 730 cards. we might select a random number between I and 10. say 
3. and pick every 10th card thereafter; i.e., the cards numhered 3. 13.23. 
and so on. ending with the card numbered 723. A sample of this kind 
is known as a systematic sample. since the choice or its first member, 3, 
determines the whole sample. 

Systematic sampling has two advantages over simple random sam­
pling. It is casier to draw. since only one random number is required. and 
it distnbutes the sample more evenly over the listed population. For this 
reason systematic sampling often gives more accurate results than simple 
random sampling. Sometimes the increase in accuracy is large. In 
routine sampling. systematic selection has become a popular technIque. 

There are two potential disadvantages. If the population contains 
a periodic type of variation, and if the interval between successive units 
in the systematic sample happens to coincide with the wave length (or 
a·multiple of it) we may obtain a sample that is badly biased. To cite 
extreme instances, a systematic sample of the house.s in a city might con­
tain far too many, or too few. corner houses; a systematic sample from a 
book of names might contain too many, or too few. names listed first on a 
page. who might be predominantly males, or heads of households. or 
persons of importance. A systematic sample of the plants in a field might 
have the selected plants at the same positiobs, along every row. These 
situations can be aVOided by being on the lookout for them and either 
using some other method of sampling or selecting a new random number 
frequently. In field sampling. we could select a new random number in 
each row. Consequently\ it is well to know something about the nature 
of the vanability in the population before decidlDg to use ,ystematic 
sampling. 

The second disadvantage is that from the results of a systematic sam­
ple there is no reliable method of estimating the standard error of the sam­
ple mean. Textbooks on sampling give various formulas for Sy that may be 
tried: each formula IS valid for a certain type of population. but a lormula 
can be used With confidence only if we have evidence that the population 
is of the type to which the formula applies. However, systematic sampling 
often is a part of a more complex sampling plan in which it is possible to 
obtain unbiased estimates of the sampling errors. 

eXAMPLE /7.7.1 -- The rtlrfl~1S(' (If this e~ample IS (0 compare simpk r.wdom ~a:fn· 
piing and S~II.'ll)allC' !\amplmg nf a limal! popUlation. The following data an: thi' weightS of 
maize (in 10-g01. unitsl for 40 sw:o.:l.',sive hills lymg in a s.ingle row: 104.38.105.86.63.31. 
47. O. RO. 42.37.48. R5. 66.110. O. 73. (l~. 101. 47. 0.36.16. B, 22, 32. 31 O. ~5. 82. 31. 45. lO. 
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76,45,70,70.63,83, j4. To save you time, the population standard deviation is given as 30.1. 
Compute the standard deviation of the mean of a simple random sample of 4 hills. A sys­
tematic sample of 4 hills cttn be taken by choosing a random number between 1 and 10 and 
taking every 10th ruU thereafter. Find the mean Y., for each of the 10 possible systematic 
samples and compute the standard deviation of these means about the true mean Y of the 
population. Note that the formula for the standard deviation is 

(-)- Y.,- , J
:!:(-=--y;> 

(J Y •• - 10 

Verify that the standard deviation of the estimate is about S~~ lower with systematic sam­
pling. To wha~ do you think this difference is due? 

17.8-Stratified sampling. There are three steps in stratified sam-
pling: 

(I) The population is divided into a number of parts, called strata. 
(2) A sample is drawn independently in each part. 
(3) As an estimate of the population mean, we use 

_ r.N .. Y. 
Ys,=~, 

where Nh is the total number of sampling units in the hth stratum, Y. is 
the sample mean in the hth stratum and N = r.N, is the size of the popu­
lation. Note that we must know the values of the Nh (i.e .. the sizes of the 
strata) in order to compute this estimate. 

Stratification is commonly employed in sampling plans fof several 
reasons. It can be shown that differences between the strata means in 
the population do not contribute to the sampling error of the estimate 
PH" In other words, the sampling error of Yst arises solely from variations 
among sampling units that are in the same stratum. Ifwe can form strata 
so that a heterogeneous population is divided into parts each of which is 
fairly homogeneous. we may ""pect a gain in precision over simple random 
sampling. In taking 24 sailor crop samples from a rectangular field, we 
might divide the field into 12 compact plots. and draw 2 samples at random 
from each plot. Since a small piece of land is usually more homogeneous 
than a large piece. this stratification will probably bring about an incre'ase 
in precision, although experience indicates that in this application the 
increase will be modest rather than spectacular. To estimate total wheat 
acreage from a sample of farms. we might stratify by size of farm. using 
any information available for this purpose. In this type of application the 
gain in precision is frequently large. 

In-stratified sampling. we can choose the size of sample that is to be 
taken from any stratum. This freedo n of choice gives us scope to do an 
efficient job of allocating resources to the sampling within strata. In some 
applications, this is the principal reason for the gain in precision from 
stratification. Further, ·when different parts of the population present 
different problems of listing and sampling, stratification enables these 



521 

problems to be handled separately. For this reason, hotels and large. 
apartment houses are frequently placed in a separate stratum in a sample 
of the inhabitants ofa city. 

We now consider the estimate from stratified sampling and its stan­
dard error. For the population mean, the estimate given previously may 
be written 

I 
y" = N '5:.N.y. = '5:. W.Y., 

where W. = N.IN is the relative weight attached to the stratum. Note 
that the sample means, h, in the respective strata are weighted by the 
sizes, Nh , of the strata. The arithmetic mean of the sample observations 
is no longer the estimate except in one important special case. This occurs 
with proportional a/location, when we sample the same fraction from every 
stratum. With proportional allocation, 

It follows that 

Hence, 

w. _ N. _ ". 
h- -N II 

II 

N 

'5:.11 Y 
YSI = L~v,.y,_ = ~ = y, 

since '5:.lIhYh is the total of all observations in the sample .. .with propor­
tional allocation, we are saved the trouble of computing a weighted mean: 
the sample is self-weighting. 

In order to avoid two levels of subscripts. we use the symbol sCv,,) to 
denote the estimated standard efTor of .i"'SI' Its value is 

where s/ is the sample variance in the hth stratum, i.e .. 

S ' . , '5:.( Y" _ Y.)' 
II, - I 

where Y", is the ith member of·the sample from the hth stratum. This 
formula for the standard error of y" assumes that simple random sampling 
is used within each stratum and does not include the finite population 
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correction. If the sampling fractions 4>. exceed \ 0"1. in some of the strata, 
we use the more general formula . 

(17.8.1) 

With proportional allocation the sampling fractions 4>. are all equal and 
the general formula simplifies to 

!r.W.s.' ../ 
s(y.,) = -..j-n-· (I - 4» 

If, further, the population variances are the same in all strata (a reason­
able assumption in some applications), we obtain an additional simplifica­
tion to 

S(Y,,) = In ../(1 - 4» 

This result is the same as that for the standard error of the mean with 
simple ran<lom sampling, except that sw, the pooled standard deviation 
within strata, appears in place of the sample standard deviation, s. In 
practice, Sw is computed from an analysis of variance of the data. 

As an example of proportional allocation, the data in table 17.8.1 
come from an early investigation by Clapham (I) of the feasibility of 
sampling for estimating the yields of small cereal plots. A rectangular plot 
of wheat was divided transversely into three equal strata. Ten samples, 
each a meter length of a single row, were chosen by simple random sam­
pling from each stratum. The problem is to compute the standard error 
of the estimated mean yield per meter of row. 

TABLE 17.8.1 
ANALYSIS Of VARIA-NeE OF ASTRA TlFlED RANDOM SAMPLE 

(Wheat grain yields - gm. per meter) 

Source of Variation Degrees of Freedom Sum of Squares Mean Square 

Total 29 
Between strata 2 
Within strata 21 

8.564 
2.073 
6,491 

295.3 
1,036.5 

240.4 

In this example, Sw = ../240.4 = 15.5, and n = 30. Since the sample 
is only a negligible part of the whole plot, nlNis negligible and 

( - s. 15.5 2 83 
s y,,) = ,./n = j30 =. gm. 
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How effective was the stratification ') From the analysis of variance 
it is seen that the mean square between strata is over four times as large 
as that within strata. This is an indication of real differences in level of 
yield from stratum to stratum. It is possible to go further. and estimate 
what the standard error of the mean would have been if simple random 
sampling had been used without any stratification. With simple random 
sampling. the corresponding formula for the standard error of the mean is 

s 
sf = -,-' 

.,;n 

where s is the ordinary sample standard deviation. In the sample under 
discussion. s is~' 295.3 (from the lOla/ mean square in table 17.8.1). Hence. 
as an estimate of the standard error of the mean under simple random 
sampling. we might take 

,j295.3 
sf = -J30 = 3.14 gm .. 

as compared with 2.83 gm. for stratified random sampling. Stratification 
has reduced the standard error by about lO~o' 

This comparison is not quite correct. for the rather subtle reason that 
the value ofs was calculated from the results of a stratified sample and not. 
as it should have been. from the results ofa simple random sample. Valid 
methods of making the comparison are described for all types of stratified 
sampling in (2). The approximate method which we used is close enough 
when the stratification is proporti'onal and at least len sampling units are 
drawn from every stratum. ._ 

EXAMPLE \7.8.1 In the example of stratified sampling given in sectlon-~ 
that the estimate which we u\cd for the population total was 1 ... 'T..... From formula 17,8.\ for 
the standard error of _\'_._ "'elif), that the \a,riance orthe estimated popUlation total i~ 4~_75. a~ 
found directly in section 17.2. (Note that stratum I makes no contribution to thl~ variance 
because '1~ = N~ in that stratum., 

"-
17.9-Choice of sample sizes in the ilKU.idual strata. It is some-

times thought that in stratified sampling we should sample the same frac­
tion from every stratum; i.e .. we should make nil /"0/" the same in all strata. 
using proportional allocation. A more thorough analysis of the problem 
shows. however. that the optimum allocation is to take "II proportional to 
N,,(1,,/ .,./ c~ .. where (111 is the standard deviation of the sampling units in the 
hth stratum. and '" is the cost of sampling per unit in the IlIh stratum. This 
method of allocation gives the smallest standard error of the estimated 
mean .f'Sf for a given total cost of taking the sample. The rule tdl') us 10 

take a larger sample, as compared with proportional allocaTion. in a 
stratum thal is unusua!!y variable (a" large), and a smaller samrle in a 
stratum where sampling is unusually expensive (e" large). Looked at in 



524 Chapter 17: Design and AnalYsis of Sampling 

this way. the rule is consistent with common sense, as statistical rules 
always are if we think about them carefully. The rule reduces to pro­
portional allocation when the standard deviation and the cost per unit 
are the same in all strata. 

In order to apply the rule. advance estimates are needed both of the 
relative standard deviations and of the relative costs in different strata. 
These estin1atcs need not be highly accurate: rough estimates often give 
results sati~factorily ncar to the optimlllll alloca:ion. When a population 
is sampled repeatedly, the estimate5 can be obtained from the results of 
previous samplings. Even when a population is sampled for the first 
time, it is sometimes obvious that some strata are more accessible to 
sampling th<1n others. ]n this event it pays to hazard a guess about the 
differences in costs. In other situation:" we are unable to predict. with any 
confidence which strata will be more variable or more costly, or we think 
that any such difference, will be small. Proportional allocation is then 
used. 

There is one common ~jtualion in which disproportiondle ~ampling 
pays large dividends. This occurs when the principal variable that is 
being measured has a highly skewed or asymmetrical distribution. Usuat-' 
Iy, such popUlations contain a few sampling units that have large values 
for this variable and many units that have small values. Variables that 
are related to the sizes of economit institutions are often of this type, for 
instance, the total sales of grocery stores, the number of patients per hos­
pital, the amounts of butter produced by creameries, family incomes, and 
prices of houses. 

With populations of this type, stratification by size of institution is 
highly effective, and the optimum allocation is likely to be much better 
than proportional allocation. As an illustratiOn, table 17.9.1 shows 
data for the nllmber of students per institution in a popUlation consisting 
of the 1.019 senior colleges and universities in the United States. The 
data, which apply O1ostly to the 1952-1953 academic year. might be used 

TABLE t7.9.1 
DATA FOR TOTAL REGISTRATIONS Pl:.R SENIOR COLLF.GEOR UNIV!RSliY, 

ARRANGED IN FUUR STRATA 

Stratum: Number Total Mean Stand:\rd 
Number of of Registration Per DeviatIOn Pel 
Students Institutions for the Institution In~t\tution 

Per Institution N. Stratum y. ", 
Less [han!.ooo 661 292,671 443 236 
1 ,OOO-.~.OOO 205 345,302 1,684 62; 
J,OOO-IO,()()() 122 672,728 5,514 2,008 
Over 10,000 It 573,693 181506 10,023 

Total I,Ot9 1,884,394 
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as background information for planning a sample designed to give a quick 
estimate of total registration in some future year. The institutions are 
arranged in four strata according to size. 

Note that the 31 largest universities, about 3% in number, have 30% 
of the students, while the smallest group, which contains 65% of the in­
stitutions, contributes only 15% of the students. Note also that the 
within-stratum standard deviation, 0"" increases rapidly with increasing 
size of institution. 

Table 17.9.2 shows the calculations needed for choosing the optimum 
sample' sizes within strata. We are assuming equal costs per unit within 
all strata. The products, N,O"" are formed and added over all strata. 
Then the relative sample sizes, N,i7J};Nhi7h' are computed. These ratios, 
when mUltiplied by the intended sample size n, give the sample sizes in 

. the individual strata. 

TABLE 17.9.2 
CALCULATIONS FOR OBTAINING THE OPTIMUM SAMPLE SIZES IN INDIVIDUAL STRATA 

Stratum: Number of Relative Actual Sampling 
Number of Institutions Sample Sizes Sample Rate 
Students N. Nil!" N"tJlr.ilN,,(Jh Sizes (%) 

Less than 1.000 661 155,996 .1857 65 10 
1,000-3,000 205 128.125 .1526 53 26 
3.000-10.000 122 244,976 .2917 101 83 
Over 10.000 31 310.713 3100 31 100 

Total 1,019 839,810 1.0000 250 ~-

As a consequence of the large standard deviation in the stratum with 
the largest universities, the rule requires 37"" of the sample to be taken 
from this stratum. Suppose we are aiming at a total sample size of 250. 
The rule then calls for (0.37)(250) or 92 universities from this stratum 
although the stratum contains only 31 universities in all. With highly 
skewed populations, as here, the optimum allocation may demand 100% 
sampling, or even more than this. of the largest institutions. When this 
situation occurs, the best procedure is to take 1 OO{: 0 of the "large" stratum, 
and employ the rule to distribute the remainder of the sample over the 
other strata. Following this procedure. we include in the sample all 31 
largest institutions, leaving 219 to be distributed among the first three 
strata. [n the first stratum, the size of sample is 

{ 
~1857 } 

219 = 65 
0.1857 + 0.1526 + 0.2917 

The allocations, shown in the second column from the right of table 
17.9.2, call for over 80% sampling in the second largest group ofinstitu-
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tions (101 out of (22). but only a 10~:, sample of the small colleges. In 
practice we might decide, for administrative convenience, to take a 100% 
sample in the second largest group as well as in the largest. 

It is worthwhile to ask: Is the optimum allocation much superior to 
proportional allocation? If not. there is little value in going to the extra 
trouble of calculating and using the optimum allocation. We cannot. of 
course. answer this question for a future sample that is not yet taken. but 
we can compare the two methods of allocation for the 1952-1953 registra­
tions. To do this. we use the data in tables 17.9.1 and 17.9.2 and the 
standard error formulas in section 17.8 to compute the standard errors of 
the estimated population totals by the two methods. These standard 
errors are found to be 26.000 for the optimum allocation. as against 
107.000 for proportional allocation. If simple random sampling had been 
used: with no stratification, a similar calculation shows that the corre­
sponding standard error would have been 216.000. The reduction in the 
standard error due to stratification~ and the additional reduction due to 
the optimum allocation. are both striking. In an actual future sampling 
based on this stratification. the gains in precision would presumably be 
slightly less than these figures indicate. 

EXAMPLE \7.9.1 - For the populatIon of college\> and universities discu~sed in'this 
section it was stated that a stratified sample of :!50 institutions. with proportional a-lloca­
(ion, would have a standard error of 107,000 for the e~umated (otal regiscraciol'l in all 1.019 
il'lstilUtions. verify thIS statemen! from the dal<l in table 17.9.1. Note that the standard 
error of the estimated popUlation total. with proportional allocation. IS 

~ ,_.. 1 - -. rrw.;;' Jl· ") 
Y It /Ii 

17.10-Stratified sampling for attributes. If an attribute is being 
sampled. the estimate appropriate to stratified sampling is 

p" = r W"p, 
where p, is the sample proportion in stratum hand W, = N,/ N is the strat­
um weight. To find the standard error of p" we substitute p,q, for S, ' in 
the formulas previously given in section 17.8. 

As an example. consider a sample of 692 families in iowa to deter· 
mine. among other things. how many had vegetable gardens in 1943. 
The families were arranged in three strata- urban, rural non·farm, and 
farm- because it was anticipated that the three groups might show differ­
ences in the frequency and Size of vegetable gardens. The data are given 
in table 17.10.1. 

The numbers of families were taken from the 1940 census. The 
sample was allotted roughly in proportion to the number of families per 
stratum. a sample of I per 1.000 being aimed at. 

The weighted mean percentage of Iowa families having gardens was 
estimated as 

r ~~p> = (0.445)(72.7) + (0.230)(94.8) + (0.325)(966) = 85.6~o 
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TABLE 17,]0.1 
NVM8(RS Of V['(.c:tABLf GARDENS AMONG low .... FAMiLIES. ARRANGED '" THREE Sn:~T·\ 

Number of Number in Number P~n:enta!!..: 
FamjJie~ Weight Sample With With 

Stratum N • W • n • Gardens Gardens 

Urban 312.393 0.445 300 21S 12.7 
Rurall'lon-farm ! 161.077 0.230 155 J47 94.S 
Farm 228.354 0.325 ~37 229 96.6 

Total 701.824 1.000 692 594 

This is practically the same as the sample mean percentage. 594/692 
or 8S.8~_I~. because allocation was so close to proportional. 

For the estimated variance of the estimated mean, we have 

:!: IV, 'p,qh}'n, = (0.445)2(72.7)(27.3)/300 + etc. = 1.62 

The standard error. then. is 1.27%. 
With a sample of this size. the estimated mean will be approximately 

normally distributed: the confidence lirnits may be set as 

85.6 ± (21( 1.27) : 83.I~o and 88.1';;; 

For the optimum choice of the sample sizes within strata. we should 
take ii, proportional to N • .J p,q" c,. If the cost of sampling is about the 
same in all strata. as is true in many surveys, this implies that the fraction 
sat1lpled. n"'N,, should be proportional to .,(p,q,. Now the quantity 
"pq changes little as p ranges from 25% to 75~". Consequently, propor­
tional allocation is often highly efficient in stratified sarnpling for attri­
butes. The optimurn allocation produces a substantial reduction in the 
standard error. as compared with proportional aHocation,only when.ome 
of the Ph are close to zero or }OO<:l o. or when there are differential costs. 

The exarnple on vege'table gardens departs from the strict principles 
of stratified sampling in that the slrata sizes and weights were not known 
exactly. being obtained from census data three years previously. Errors 
in the strata weights reduce the gain in precision from stratification and 
make the standard forrnulas inapplicable. It is believed that in this 
example these disturbances are of negligible importance. Discussions of 
s(ratification when errors in the weights are present are given in (2) and 
(10). 

EXAMPLE 17.1O.1-·'n stratified sampling for attributes. (he optimum sample distribu. 
tion. with equal costs per unit in all strata. follows from laking III< pr<Jponionai to N~"P~I/h. 
It follows (hal the actual .... alue of n~ is 
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In the Iowa vegetable garden survey, suppose that thep,. values found in the sample can be 
assumed to be the same as those in the population. Show that the optimum sample distribu­
tion gives sample sizes of 445, 115, and 132 in the respective strata, and that the standard 
eCTor of the estimated percentage with gardens would then be 1.17%, as compared with 
1.27i~ in the sample itself. 

17.II-Sampling in two stages. Consider the following miscellaneous 
group of sampling problems: (I) a study of the vitamin A content of 
butter produced by creameries, (2) a study of the protein content "fwheat 
in the wheat fields in an area. (3) a study of red blood cell counts in a 
population of men aged 20-30, (4) a study of insect infestation of the leaves 
of the trees in an orchard, and (5) a study of the number of defective 
teeth in third-grade children in the schools of a large city. What do these 
investigations have in commOn? First, in each study an appropriate sam­
pling unit suggests itself naturally-the creamery. the field of wheat. the 
individual man, the tree, and the school. Secondly, and this is the im­
portant point, in each study the chosen sampling units can be sub-sampled 
instead of being measured completely. Ind~ed. sub-sampling is essential 
in the first three studies. No one is going to allow us to take all the butter 
produced by a creamery in order to determine vitamin A content, Or 
all the wheat in a field for the protein determination, or all the blood in a 
man in order to make a complete count of his red cells. In the insect 
infestation study, it might be feasible. although tedious, to examine all 
leaves on any selected tree. If the insect distribution is spotty, however, 
we would probably decide to take only a small sample of leaves from any 
selected tree in order to include more trees. In the dental study we could 
take all the third-grade children in any selected school or we could cover 
a larger sample of schools by examining only a sample of children from 
the third grade in each selected school. 

This type of sampling is called sampling in two slages, or sometimes 
sub-sampling. The first stage is the selection of a sample of primary sam­
pling units-the creameries. wheat fields. and so on. The second stage is 
the taking of a sub-sample of second-slage units, or sub-units, from each 
selected primary unit. 

As illustrated by these examples. the two-stage method is sometimes 
the only practicable way in which the sampling can be done. Even when 
there is a choice between sub-sampling the units and measuring them com­
pletely, two-stage sampling gives the sampler greater scope, since he can 
choose both the size of the sample of primary units and the size of the sam­
ple that is taken from a primary unit. In some applications an important 
advantage oftwo-stage sampling is that it facilitates the problem of listing 
the population. Often it is relatively easy to obtain a list of the primary 
units. but difficult or expensive to list all the sub-units. To list the trees 
in an orchard and draw a sample of them is usually simple, but the prob­
lem of making a random selection of the leaves on a tree may be very 
troublesome. With two-stage sampling this problem is faced only for 
those trees that are in the sample. No complete listing of all leaves in the 
orchard is req uired. 
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In the discussion of two·stage sampling we assume at first that the 
primary units are of approximately the same size. A simple random sam· 
pie of n, primary units is drawn, and the same number n, of sub-units is se· 
lected from each primary unit in the sample. The estimated standard 
error of the sample mean y per sub·unit is then given by the formula 

l:(.ji, - W , 
n, - I 

s- = ---, .jn, 

where y, is the mean per sub-unit in the-ith primary unit. This formula 
does not include the finite population correction, but is reliable enough 
provided that the sample contains less than 10% of all primary units. 
Note that the formula makes no use of the individual observations on the 
sub-units. but only of the primary unit means y,. If the sub-samples are 
taken for a chemical analysis, a common practice is to composite the 
sub-sample and make one chemical determination for each primary unit. 
With data of this kind we can still calculate s ,. 

In section 10.13 you learned about the "components of variance" 
technique, and applied it to a problem in two-stage sampling. The data 
were concentrations of calcium in turnip greens, four determinations be­
ing made for each of three leaves. The leaf can be regarded as the primary 
sampling unit, and the individual determination as the sub-unit. Byapply­
ing .the components of variance technique, you were able to see how the 
variance of the sample mean was affected by variation between determina­
tions on the same leaf and by variation from leaf to leaf. You could also 
predict how the variance of the sample mean would change with different 
numbers of leaves and of determinations per leaf in the experiment. 

Since this technique is of wide utility in two·stage sampling, we shall 
repeat some of the results. The observation on any sub-unit is considere4_ 
to be the sum of two independent terms. One term, associated with the 
primary unit, has the same value for all second-stage units in the primary 
unit, and varies from one primary unit to another with variance (11

2
. The 

second term, which serves to measure differences between second-stage 
units, varies independently from one sub-unit to anOther with variance 
n,'. Suppose that a sample consists of n, primary units, from each of 
which n, sub·units are drawn. Then the sample as a whole contains n, 
independent values of the first term, whereas it contains n In, independent 
values of the second term. Hence the variance of the sample mean ji per 
sub·unit is 

The two components of variance, a 12 and (J 2 2, can be estimated from 
the analysis of variance of a two-stage sample that has been taken. Table 
17.11.1 gives the analysis of variance for a study by Immer (6), whose 
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object was to develop a sampling technique for the determination of the 
sugar percentage in field experiments on sugar beeiS. Ten beels were 
chosen from each of 100 plots in a uniformity trial, the plots being the 
primary units. The sugar percentage was obtained separately for each 
beet. In order to simulate conditions in field experiments, the Between 
plots mean square was computed as the mean square between plots within 
blocks of 5 plots. This mean square gives the experimental error variance 
that would apply in a randomized blocks experiments with 5 treatments. 

TABLE 17.11.1 
ANALYSIS OF VAJUANCE OF SOOAR PERCENTAGE Of BEITS (()N A SINGu·BuT BASIS) 

I Degrees of 

Between plots (primary units) 80 
Between beets (sub·units) within plots 900 

Mean 
Square 

2.9254 
2.1374 

Source of Variation ;GFreedom 

~~---

Parameters 
Estimated 

The estimate of 11 1', the Between plots component of variance, is 

51' = 2.9254 - 2.1374 = 00788 
10 ., 

the divisor 10 being the number of beets (sub-units) taken per plot. As an 
estimate of 11/, the within-plots component, we have 

5/ = 2.1374 

Hence, if a new experiment is to consist of" 1 replications, with ", beets 
sampled from each plot, the predicted variance of a treatment mean is 

, 0.0788 2.1374 
5\ ....... = --~ + --~ 

. Nl n1n2 

We shall illustrate two of the questions that can be answered from 
these data. How accurate are the treatment means in an experiment with 
6 replications and 5 beets per plot? For this experiment we would expect 

_ J(0.0788 2.1374) ~ 0 '9. 5,- -6-+3()-'~% 

The sugar percentage figure for a treatment mean would be correct to 
within ± (2) (0.29) or 0.58%, with 95% confidence, assuming y approxi­
mately normally distributed. 

If the standard error of a treatment mean is not to exceed 0.2%, what 
combinations of "1 and ", are allowable? We must have 

0.0788 + 2J374 = (0.2)' = 0.04 
"1 "I n2 
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Since n, and n, ate whole numbers, they will not satisy this equation 
exactly: we must make sure that the left side of the equation does not 
exceed 0.04. You can verify that with 4 replications (n 1 = 4), there must 
be 27 beets per plot; with 8 replications, 9 beets per plot are sufficient; 
and with 10 replications, 7 beets per plot. As one would expect, the in­
tensity of sub-sampling decreases as the intensity of sampling is increased. 
The total size of sample also decreases from 108 beets when n, = 4 to 70 
beets when n, = 10. 

17.12-The aIIoeation or resources in tw .... tage sampling. The last 
example illustrates a general property of two-stage samples. The same 
standard error can be attained for the sample mean by using various 
combinations of values of "I and ",. Which of these choices is the best? 
The answer depends, naturally, on the cost of adding an extra primary 
unit to the sample (in this case an extra replication) relative to that of 
adding an extra sub-unit in each primary unit (in tms case an extra beet 
in each plot). Similarly, in the turnip greens example (section 10.13, page 
280) the best sampling plan depends on the relative costs of taking an 
eXira leaf and of making an extra determination per leaf. Obviously, if 
it is cheap to add primary units to the sample but expensive to add sub­
units, the most economical plan will be to have many primary units and 
few (perhaps only one) suh-units per primary.unit. For a gelleral solution 
10 this problem, hpwever, we require a more exact formulation of the 
cOSIS of .... rious alternative plans. 

In lTlany sub-sampling studies the cost of the sample (apaT! from 
fixed overhead costs) can be approximated by a relation of the form 

The factor C, is the average cost per primary unit of those elements of 
cost that depend solely on the number of primary units and not on the 
amount of sub-sampling. The factor c" on the other hand, is the average 
cost per sub-unit of those constituents of cost ttu>t are directly proportional 
to the total number of sub-units. 

If advance estimates of these constituents of cost are made from a 
preliminary study, an efficient job of selecting the best amounts of sam­
pling and sub-sampling can be done. The problem may be posed in two 
different ways. In some studies we specify the desired variance V for the 
sample mean, and would like to attain tms as cheaply as possible. In 
other applications the total cost C that must not be exceeded is imposed 
upon us, and we want to get as small a value of Vas we can for tms outlay. 
These two problems have basically the same solution. In either case we 
want to minimize the product 
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Upon expansion, this becomes 
2 

2 2, 2 S2 C1 VC = (" c, + '2 C2 ) + n2., C2 + -­
n2 

It can be .hown that this eJ<pression has its smallest value when 

This result gives an estimate of the best number of sub-units (beets) per 
primary unit (plot). The value of n, is found by solving either the cost 
equation or the variance equation for n

" 
depending on whether cost or 

variance ·has been preassigned. 
In the sugar beet example we had 5,' = 0.0788,5,' = 2.1374, from 

which 

2.1374t;' Jf';' _- -=52 -
0.0788 c, . c, 

In this study, cost data were not reported. If c, were to include the 
cost of the land and the field operations required to produce one plot, it 
would be much greater than c,. Evidently a fairly large number of beets 
per plot would be advisable. In practice, factors other than the sugar 
percentage determinations must also be taken into account in deciding 
on costs and number of replications in sugar beet experiments. 

In the turnip greens example (section 10.13, page 280), n 1 is the num­
ber of leaves and n, the number of determinations of calcium concentra­
tion per leaf. Also, in the present notation. 

" 

5,' ~ s} = 0.0724 

s,' ~ s' = 0.0066 

Hence, the most economical number of determinations per leaf is estimated 
to be 

c,s,' = JO.0066 rc; = 030 rc; 
c,s,' 0.0724~c, . ~'Z, 

In practice, n, must be a whole number, and the smallest value it can have 
is 1. This equation shows that n, = I, i.e., one determination per leaf, 
unless c, is at least 25 times c,. Actually, since c, includes the cost of 
tbe chemical determinations, it is likely to be greater than c,. Tbe 
relatively large variation among leaves and the cost considerations both 
point to the cboice of one determination per leaf. 

This example also illustrates that a choice of n, can often be made 
from the equation even when information about relative costs is not too 
definite. This is because the equation often leads to the same value of n, 
for a wide range of ratios of ", to C2' Brooks (14) gives helpful tables for 
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this situation. The values of n, are subject to sampling errors; for a 
discussion, see (2). 

In section 10.14 you studied an example of three-stage sampling of 
turnip green plants. The first stage was represented by plants, the second 
by leaves within plants, and the third by determinations within a leaf. In 
the notation of this section, the estimated variance of the sample mean is 

Copying the equation given in section 10.14, we have 

, 0.3652 0.1610 0.0067 
Sy = --.-- + -- + --

n1 n1nZ nt nZn3 

To find the most economical values of n" n" and n" we set upa cost equa­
tion of the form 

and proceed to minimize the product of the variance and the cost as before .. 
The solutions are 

while n, is found by solving either the cost or the variance equation. Note 
that the formula for n, is the same in three-stage as in two-stage sampling, 
and that the formula for nJ is the natural extension or that for n,. Putting 
in the numerical values of the variance components, we obtain 

n, = JC ,(0.1610) = 0.66JE.!., 
c,(0.3652) c, 

c,(0.0067) = 0.20Jc, 
c,(0.161O) c, 

Since the computed value of n, would be less than I for any likely value 
of c,/c" more than one determination" per leaf is uneconomical. The 
optimum number n, of leaves per plant depends on the ratio c,/c,. This 
will vary with the conditions of experimentation. If many plants 'are 
being grown for some other purpose, so that ample numbers are available 
for sampling, c, includes only the extra costs involved in collecting a 
sample from many plants instead of a few plants. In this event the opti­
mum n, might also turn out to be I. If the cost of growing extra plants is 
to be included inc" the optimum n, might be higher than 1. 

EXAMPLE l7.12.1-This is the analysis of variance, on a single sub-sample basis, for 
wheat yield and perq.entage of protein from data collected in It wheat sampling survey in 
Kansas in 1939 (25). 



Yield Protein 
(Bushels Per Acre) (%) 

Degrees of Mean Degrees of Mean 
Source of Variation Freedom Square Freedom Square 

FieJds 659 434.52 659 21.388 
Samples within fields 660 67.54 609 2.870 

Two su~samples wert taken at random from each of 660 fields. Calculate the com­
ponents of variance for yield. Ans. Sll = 183.49, S12 "= 61.54. Note: Some of the protein 
figures were evidentJy not recorded separateJy for each su1HampJe, since there are only 
609 df. within fields. 

EXAMPLE 17.12.2-For yield, estimate the variance of the sample mean for samples 
consisting of (i) I 5ub-sampJe from each of 800 fields. (ii) 2 sub-samples from each of 400 
fields, (iii) 8 samples from eacb of 100 fields. Ans. (i) 0.313, (ii) 0.543. (iii) 1.919. 

EXAMPLE 17.12.3-With 2 sub-samples per field. it is desired to take enough fields so 
that the standard error of the mean yield wiU be not more than 1/2 bushel. and at the same 
time the standard error of the mean protein percentage will be not more than t%. How 
many fields. are required? AD$. about 870. 

EXAMPLE l7.12.4-Suppose that it takes on the average I man-hour to locate and 
pace a field that i~ to be sampled. A single protein determination is to be made on the bulked 
sub-samples from any field. The cost of a determination is equivalent to I man-hour. It 
takes' 15 minutes to I~te, cut, and tie a sub-sample. From these data and the analysis of 
variance for protein percentage (example 17.12,1), compute the variancc.oCost product, ve, 
for each value of "2 from I to 5. What is the most economical number of sub-samples per 
field1 Ans.2. How much more does it cost, for the same V, if 4 sub-samples per field are 
used? Ans. 12%. 

17.13-8election with probability proportional to size. In many im­
portant sampling problems, the natural primary sampling units vary in 
size. In national surveys conducted to obtain information about the 
characteristics of the popUlation, the primary unit is often an adminis­
trative area (e.g., similar to a county). A relatively large unit of this type 
cuts down travel costs and makes supervision and control of the field 
work more manageable. Such units often vary substantially in the num­
ber of people wey contain. A sample of the houses in a town may use 
blocks as first-stage units, the number of houses per block ranging from 
o to 40. Similarly, schools, hospitals, and factories all contain different 
numbers of individuals. 

With primary units like this, the belween-primary-unit variances of 
the principal measurements may be large; for example, some counties 
are relatively wealthy and some are poor. In these circumstances, 
Hansen and Hurwitz (15) pointed out the advantages of selecting primary 
units with probabilities proportional to their sizes. To illustrate, con­
sider 'a population of three schools, having 600, 300, and 100 children. 
The objective is 10 estimate the population mean per child for some char­
acteristic. The means per child in the three schools are Y, = 2, Yz = 4, 
Y, = I. Hence, the population mean per child is 
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r = [(600)(2) + (300)(4) + (100)(1)]/1,000 = 2.S 

To simplify things further, suppose that only one school is to be 
chosen, and that the variation in Y between children within tbe same 
school is negligible. It follows that we need not specify how the second­
stage sample of children from a school is to be drawn. since any sample 
gives tbe correct mean for the chosen sChool. 

In selecting the school with probability proportional to size. (Pps), 
the three schools receive probabilities 0.6, 0.3, and 0.1. respectively, of 
being drawn. We shall compare the mean square error of the estimate 
given by this method with that given by selecting the schools with equal 
probabilities. Table 17.13.1 contains the calculations. 

TABLE 17.13.1 
SELECTlON OF A SCHOOl.. W'TH PROItABIUTY PROPORTlONAl TO SIZE 

I 
Probability Mean per Error of 

No. of of Child Estimate 
School Chjldren Selection :1[( y, y'-y 0;- h' 

I 

I 
-, 

i 600 0.6 2 -0.5 0.25 
2 

i 
JOO 0.3 4 +1.5 2.25 

3 100 0.1 I -1.5 2.25 

Population I 1.000 1.0 2.5 

If the first school is selected. its estimate is in error by (2.0 - 2.5) 
= - 0.5. and so on. These errors and their squares appear in the two right­
hand columns of table 17.13.1. In repeated sampling with probability 
proportional to size, the first school is drawn 60~~ of the time. the second 
school 30%. and the third schooIIO,!~. The mean square error is therefore 

M.S.Epp• = (0.6)(0.2S) + (0.3)(2.25) + (0.1)(2.25) = 1.05 

If, alternatively, the schools are drawn with equal probability. the M.S.E 
is 

M.S.E.,. = H(D.2S) + (2.25) + (2.2S)J = I.5R 

This M.S.E is about 50"" higher than that given by pps selection. 
You may ask: Does this result depend on the choice or the order of 

the means. ::!. 4. I. assigned to schools I. 2. and 3: The answer is yes. 
With means 4, 2, I, you will find M.S.E,., = 1.29. M.S.E,. = 2.14. the 
latter being 66,%, higher. Over the six possible orders of the numbers 
I. 2. 4. the ratio M.S.E,./M.S.L~p, varies from 0.93 to 2.52. However. 
the ratio of the averages MS.E,.IM.S.Epp,' taken over all six possible 
orders. does not depend on the numbers 1,2.4. With N primary units in 
the population. this ratio is 
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N 

MT.i:,. (N - 1) + N L (1t, - il)2 
= N 

M.S.Epp• (N _ 1) - N L (1t, - il)2 

where 1t, is the probability of selection (relative size) of the ith school. 
Clearly, this ratio exceeds one unless all1t, are equal; that is, all schools are 
the same size. 

The reason why it usually pays to select large units with higher prob­
abilities is that the population mean depends more on the means of the 
large units than on those of the small units. The large units are therefore 
likely to give better estimates. 

With two-stage sampling, a simple method is to select n primary units 
with pps and take an equal number of sub-units (e.g., children) in every 
selected primary unit. This method gives every sub-unit in the popUlation 
the same chance of being in the sample. The sample mean per sub-unity 
is an unbiased estimate of the corresponding population mean, and its 
estimated variance is obtained by the simple formula 

, -
Sy2 = L (ji, - y)2/n(n - 1), (17.13.1) 

where ji, is the mean of the sample from the ith primary unit. 
We have illustrated only the simplest case. Formula 17.13.1 as­

sumes that the n units are selected with replacement (i.e., that a unit can 
be chosen more than once). Some complications arise when we select 
units without replacement. Often, the sizes of the units are not known 
exactly, and have to be estimated in advance. Considerations of cost or of 
the structure of variability ill_ the population may lead to the selection of 
units with probabilities that are unequal, but are proportional to some 
quantity other than the sizes. For details, see the references. In extensive 
surveys, multistage sampling with unequal probabilities of selection of 
primary units is the commonest method in current practice. 

17.14-Ratio and regression estimates. The ratio estimare is a differ­
ent way of estimating population totals (or means) that is useful in many 
sampling problems. Suppose ·that you have taken a sample in order to . 
estimate the population total of a variable. Y, and that a complete count 
of the population was made on some previous occasion. Let X denote the 
value of the variable on the previous occasion. You might then compute 
the ratio 

l:Y 
R=-, 

l:X 

where the sums are taken over the sample. This ratio is an estimate of the 
present level of the variate relative to that on the previous occasion. 
On multiplying the ratio by the known population total on the previous 
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occasion (i.e., by the population total of Xl, you obtain the ratio estimate 
of the population total of Y. Clearly, if the relative change is about the 
same on all sampling units, the ratio R will be accurate and the estimate 
of the population total will be a good one. 

The ratio estimate can also be used when X is some other kind of sup­
plementary variable. The conditions for a successful application of this 
estimate are that the ratio YI X should be relatively constant over the pop­
ulation and that the population total of X should be known. Consider 
an estimate of the total amount of a crop, just after harvest, made from a 
sample of farms in some region. For each farm in the sample we record the 
total yield, Y, and the total acreage, X, of that crop. In this case the ratio. 
R = :!: Y/:!:X, is the sample estimate of the mean yield per acre. This 
is multiplied by the total acreage of tbe crop in tlte region, whiclt would 
have to be known accurately from some other source. This estimate will 
be precise if the mean yield per acre varies little from farm to farm. 

The estimated standard error of the ratio estimate 5'. of the popula­
tion total from a simple random sample of size n is, approximately, 

:!:(Y _ RX)2 

n(n - 1) 

The ratio estimate is not always more precise than the simpler esti­
mate NJi (number of units in population x sample mean). It has aeen 
shown that the ratio estimate is more precise only if (1, the correlation 
coefficient between Y and X. exceeds Cx/2Cy, where the C's are the co­
efficients of variation. Consequently, ratio estimates must not be used 
indiscriminately, although in appropriate circumstances they produce 
large gains in precision. 

Sometimes the purpose of the sampling is to estimate a ratio, ~e.g., 
ratio of dry weight to totaf weight or ratio of dean woof to totaf woof. Toe 
estimated standard error of the estimate is then 

s(R) = ~ /:!:(Y - RX)2 
xV n(n - 1) 

This formula has already been given (in a different notation) at the end of 
section 17.5, where the estimation of proportions from cluster sampling 
was discussed. 

In chapter 6 the linear regression of Yon Xand its sample estimate. 

Y = y+ bx, 

were discussed. With an auxiliary variable, X, you may find that when 
you plot Y against X from the sample data. the points appear to lie close 
to a straight line, but the line does not go through the origin. This implies 
·that the ratio Y/ X is not constant over the sample. As pointed out in 
section 6.19, it is then advisable to use a linear regressiun estimate instead 
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of the ratio estimate. For the. population total of Y, the linear regression, 
estimate is 

NY = N{y + b(X - x)}, 

where X is the population mean of X. The term inside the brackets is 
the sample m~n, y, adjusted for regression. To see this, suppose that you 
have taken a sample in which y = 2.35, x = 1.70, X = 1.92, b = + 0.4. 
Your first estimate of the population mean would be y = 2.35. But in 
the sample the mean value of X is too low by an amount (1.92 - 1.70) 
= 0.22. Further, the value of b tells you that unit increase in X is accom­
panied, on the average, by + 0.4 unit increase in Y. Hence, to correct 
for the low value of the mean of X, you increase the sample mean by the 
amoullt ( + 0.4)(0.22). Thus the adjusted value of jI is 

2.35 + (+ 0.4)(0.22) = 2.44 = Y + b(X - x) 

To estimate the population total, this value is multiplied by N, tbe number 
of sampling units in the popUlation. 

The standard error of the estimated population total is, approxi­
mately, 

If a finite popUlation correction is required in the standard error formulas 
presented in this section, insert the factor .J(l - </». In finite popula­
tions the ratio and regression estimates are both slightly biased, but the 
bias is seldom important in practice. 

17.15-F'urther~. The \!,Cnoral books on sam\lle surve.,.. that 
have become standard, (2), (3), (4), (5), (13), involve roughly the same level 
of mathematical difficulty and knowledge of statistics. Reference (3) is 
oriented towards applications in business. and reference (13) towards 
those in agriculture. Another good book for agricultural applications, at 
a lower mathematical level, is (16). 

Useful short books are (17), an informal, popular account of some 
of the interesting applications of survey methods, (l8), which conducts the 
reader painlessly through the principal results in probability sampling 
at about the mathematical level of this chapter, and (19), which discusses 
the technique of constructing interview questions. 

Books and papers have also begun to appear on some of the commor 
specific types of application. For sampling a town under U.S. conditions, 
with the blockas primary sampling unit, references (20) and (21) are rec­
ommended. Reference (22), intended primarily for surveys by health 
agencies to check on the immunization status of children, gives instruc­
tions for the sampling of attributes in local areas. while (24) deals with the 
sampiing of hospitals and patients. Much helpful advice on the use 01 
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sampling in agricultural censuses is found in (23). Sampling techniques 
for estimating the volume of timber of the principal types and age-<:Iasses 
in foresty are summarized in (II). while (9) reviews the difficult prohlem 
of estimating wildlife populations. 
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* APPENDIX TABLES 

List of Appendix T_bles. 

A. 1 Random digits 
A 2 Normal distribution. ordinates 
A 3 Normal distribution. cumulative frequency 
A 4 Student's t, percentage points 
A 5 Chi-square. X2 , percentage points 

A 6 (i) Test for skewness, 5~~ and 1~~ points of g, 
A 6 (ii) Test for kurtosis, 5~~ and 1°/<) points of g2 
A 7 (j) 4¥. range analog of t, Hr'!,., 5%. 2~~~, and l~~ points 

A 7 (ii) Two-sample range analog of t. 10%, 5%, 2'/~, and I'/~ points 
A 8 Sign test, to~,~ 5%: and 1°J.. points 
A 9 Signed rank test, 5% and 1% points 

A 10 Two-sample signed rank test, 5% and 1% points 
A II Correlation coefficient. r, 5,/~ and I'/~ points 
A 12 Transformed correlations, z in terms of r 
A 13 Transformed correlations. r in terms of z 

A 14 (i) F, variance ratio, 5'?~ and I % points 
A 14 (ii) F, variance ratio, 25~~, 10%, 2.5%. and 0.5% points 

A 1-5 Studentized range, Q, 5% points 
A 16 Angular transformation. Angle = arcsin ..Jpercentage 
A 17 Orthogonal polynomial values 
A 18 Square roots 

Notes 

54, 
547 
548 
549 
550 
552 
552 
553 
554 
554 
555 
555 
557 
55S 
559 
560 
564 
568 
569 
572 
573 

Interpolation. In analyses of data and in working the examples in this 
book, use of the nearest entry in any Appendix table is accurate enough 
in most cases. The following examples illustrate linear interpolation. 
which will sometimes be needed. 

I. Find the 5% significance level of X' for 34 degrees of freedom. 
For P = 0.050, table A 5 gives 

df. 30 34 
X2 43.77 ? 

Calculate (34 - 30)/(40 - 30) = 0.4. Since 

34 = 30 + 0.4(40 - 30) 

the required va\ue of l is 

40 
55.76 

43.77 + 0.4(55.76 - 43.77) = 43.77 + 0.4(11.99) = 48.57 

Alternatively, this value can be computed as 

(O.4)xio + (0.6)X~o = (0.4)(55.76) + (0.6)(43.77) = 48.57 

541 
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Note that 0.4 multiplies xio. not xio. 
2. An analysis gave an F value of 2.04 for 3 and 18 dJ. Find the 

significance probability. For 3 and 18 dJ.. table A 14. part II. gives the 
following entries: 

P 0.25 ? 
F 1.49 2.04 

Calculate (2.04 - 1.49)/(2.42 - 1.49) = 0.55/0.93 = 0.59. 
tive method in the preceding example. 

p = (0.59)(0.10) + (0.41)(0.25) = 0,16 

0.10 
2.42 

By the alterna-

Finding Square Roots. Table A 18 is a table of square roots. To save 
space the entries jump by 0.02 instead ofO.Ol. but interpolation will rarely 
be necessary. With very large or very small numbers. mistakes in finding 
square roots are common. The following examples should clarify the 
procedure. 

Step (I) (2) (31 (4) 

Mark. Column Square 
Number Off Rea~ Reading Root 

6,028.0 60.28.0 Jlo" 7.76 77.6 
397.2 3.97.2 J. 1.99 19.9 
46.38 46.38 JIOn 6.81 6.81 
0.194 0.19.4 JIOn 4.40 0.440 
0.000893 0.00.08,93 ". 2.99 0.0299 

In step (I). mark olfthedigits in/wos to the right or left oftheclecimal 
point. Step (2) tells which column of the square root table is to be read. 
Witl'. >.97.2 and 0.00,0\\,93 read tM ..jn cn\umn, because tl'.ere is a singk 
digit (3 or 8) to the left of the first comma that has any non-zero digits to . 
its left. If there are (lVo digits to the left of the first comma, as in 6<l,28.0, 
read the "lIOn column. Step 0) gives the reading. taken directly from the 
nearest entry in the table. 

The final step (4) finds the actual square roots. Consider, first. num­
hers greater than I. If column (I) has no comma to the left of the decimal, 
as with 46.38. the square root has one digit to the left of the decimal. If 
column (I) has one comma to the left of the decimal, as with 60,28.0 and 
3.97.2. the square root has two digits to the left of the decimal. and so on. 
With numbers smaller than I. replace any pair 00 to Ihe right of the deci­
mal by a single O. Thus, the square root of 0.00,08.93 is 0.0299 as shown. 
The square root of 0.00,00,08,93 is 0.00299. 
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TABLE A 1 
TEN TflOUSAND RANUOMLY ASSORTED OlGlTS 

00-<J4 05-<l9 I(H4 15--19 2<1-24 25--29 .30-34 35--39 4()-44 45--49 

00 544i>3 22662 65905 70639 79365 6738! 29085 69831 47058 08186 
01 15389 85205 18850 39226 42249 90669 96325 23248 60933 26927 
02 85941 40756 82414 020\5 \3858 18030 \6269 65978 on85 \5345 
03 6\149 69440 11286 882\8 58925 03638 52862 62733 3345\ 71455 
04 05219 81619 10651 67079 92511 59888 84502 72095 83463 75577 

05 41417 98326 87719 92294 46614 50948 64886 20002 97365 30976 
06 28357 94070 20652 35774 16249 75019 21145 05217 47286 76305 
07 17783 00015 10806 83091 91530 36466 39981 62481 49177 75779 
08 40950 84820 29881 85966 62800 70326 84740 62660 77379 90279 
09 82995 64157 66164 41180 10089 41157 78258 96488 88629 37231 

10 96754 17616 55659 44105 47361 34833 86679 23930 53249 27083 
II 34357 88040 53364 71726 45690 66334 60332 22554 90600 711D 
12 06318 37403 49927 57715 50423 67371 63116 48888 21505 80182 
13 62111 52820 07243 79931 89292 84767 85693 73947 22278 11551 
14 47534 09243 67879 00544 23410 12740 02540 54440 32949 13491 

15 98614 75993 84460 62846 59844 14922 48730 73443 48167 34770 
16 24856 03648 44898 0935\ 98795 18644 39765 71058 90368 44\04 
\7 96887 12479 8062\ 66223 86085 78285 02432 53342 42846 94171 
18 9080\ 21472 428\5 77408 37390 76766 52615 32141 30268 18106 
19 55165 773\2 83666 36028 28420 70219 81369 41943 47366 41067 

20 75884 12952 84318 95108 72305 64620 913\8 89872 45375 85436 
21 16777 37116 58550 42958 21460 439\0 01175 87894 81378 10620 
22 46230 43877 80207 88877 89380 32992 91380 03164 98656 59337 
23 42902 66892 46134 01432 94710 23474 20423 60137 60609 13119 
24 ~1007 00333 39693 28039 10\54 95425 39220 \9714 31782 49037 

25 68089 01122 511 II 72373 06902 74373 96199 97017 41273 21546 
26 204\ I 67081 89950 16944 93054 87687 96693 87236 77054 33848 
27 58212 13\60 06468 \5718 82627 76999 05999 58680 96739 63700 
28 70577 42866 24969 61210 16046 67699 42054 \2696 93758 03283 
29 94522 74358 71659 62038 79643 79169 44741 05437 39038 13163 

30 42626 BM\9 SS6S\ 88678 \740\ 0)252 99547 32404 \7918 62880 
31 \605\ 33763 5'1194 16752 54450 1903\ 58580. 47629 54132 60631 
3l 08244 27647 33851 44705 94211 46716 11738 55784 95374 72655 
33 59497 04392 09419 89964 51211 04894 72882 17805 21896 83864 
34 97155 13428 40293 09985 58434 01412 69124 82171 59058 82859 

35 98409 661.,2 95763 47420 20792 61527 ' 20441 39435 11859 41567 
36 45476 84882 65109 96597 25930 66790 65706 61203 53634 22557 
37 89300 69700 50741 30329 11658 23166 0S400 66669 48708 03887 
38 50051 95137 91631 66315 91428 12275 24816 68091 71110 33258 
39 3175) 85178 31310 89642 98364 02306 246\7 09609 83942 22716 

40 79152 53829 77250 20190 56535 18760 69942 /"7448 33278 48805 
4\ 44560 38750 83635 56540 64900 42912 13953 79149 18710 68618 
42 68328 83378 63369 71381 39564 05615 42451 64559 97501 65747 
43 46939 38689 58625 08342 30459 85863 20781 09284 26333 91717 
44 83544 86141 15707 96256 23068 13782 08467 89469 93842 55349 

45 91621 00881 Q4900 54224 46177 55309 17852 27491 89415 23466 
46 9\896 67126 04151 03795 59077 1\848 12630 98375 52068 60\42 
47 55751 62515 21108 80830 02263 29303 37204 96926 30506 09808 
48 85156 87689 95493 88842 00664 55017 55539 17771 69448 87530 
49 07521 56898 12236 60277 39102 62315 12239 07105 11844 01117 



5 .... Appendix TaIoI" 

TABLE A I--(Cominued) 
-_------.-------- --_---

50-54 55--59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 95--99 

00 59391 58030 52098 82718 87024 82848 04190 96574 90464 29065 
01 99567 76364 77204 04615 27062 96621 43918 01896 83991 51141 
02 10363 97518 51400 25670 98342 61891 27101 37855 06235 33316 
03 86859 19558 64432 16706 99612 59798 32803 67708 15297 28612 
04 11258 24591 36863 55368 31721 94335 34936 02566 80972 08188 

05 95068 88628 35911 14530 33020 80428 39930 31855 34334 64865 
06 54463 47237 73800 91017 36239 71824 83671 39892 60518 37092 
07 16874 62677 57412 13215 31389 62233 80827 73917 82802 84420 
08 92494 63157 76593 91316 03505 72389 96363 52887 01087 66091 
09 15669 . 56689 35682 40844 53256 81872 35213 09840 34471 74441 

10 99116 75486 84989 23476 52967 67104 39495 39100 17217 74073 
11 15696 10703 65178 90637 63110 17622 53988 71087 84148 11670 
12 97720 15369 51269 69620 03388 13699 33423 67453 43269 56720 
!l 11666 13841 71681 98000 35979 39719 81899 07449 47985 46967 
14 71628 73130 78783 75691 41632 09847 61547 18707 85489 69944 

15 40501 51089 99943 91843 41995 88931 73631 69361 05375 15417 
16 22518 55576 98215 82068 10798 86211 36584 67466 6937) 40054 
17 75112 30485 62173 02132 14878 92879 22281 16783 86352 00077 
18 80327 02671 98191 84342 90813 49268 95441 15496 20168 09271 
19 60251 45548 02146 05597 48228 81366 34598 72856 66762 17002 

20 57430 82270 10421 00540 43648 75888 66049 21511 47676 33444 
2i 73528 39559 34434 88596 54086 71693 43132 14414 ]9949 85193 
22 25991 65959 70769 64721 86413 33475 42740 06175 82758 66248 
23 78388 16638 09134 59980 63806 48472 39)18 35434 24057 74739 
24 12477 09965 96657 57994 59439 76330 24596 77515 09577 91871 

25 83266 32883 42451 15579 )8155 29793 40914 65990 16255 17777 
26 76970 80876 10237 39515 79152 74798 39)57 09054 73579 92359 
27 37074 65198 44785 68624 98336 84481 97610 78735 46703 98265 
28 83712- 06514 30101 78295 54656 85417 43189 60048 72781 72606 
29 20287 56862 69727 94443 64936 08366 27227 05158 50326 59566 

30 74261 32592 86538 27041 6Si72 85532 07571 80609 39285 65340 
31 64081 49863 08478 96001 18888 14810 70545 89755 59064 07210 
32 05617 75818 47750 67ti14 29575 10526 66192 44464 27058 40467 
J3 26793 74951 95466 74307 13330 42664 85515 20632 05497 33625 
34 65988 72850 48737 54719 52056 01596 03845 35067 03134 70322 

35 27366 42271 44300 73399 21105 03280 73457 43093 05192 48657 
36 56760 10909 98147 34736 33863 95256 12731 66598 50771 83665 
37 72880 43338 93043 58904 59543 23943 11231 83268 65938 81581 
38 77888 38100 03062 58103 47961 83841 25878 23746 55903 44115 
39 28440 07819 21580 51459 47971 29882 13990 29226 23608 15873 

40 63525 94441 77033 12147 51054 49955 58312 76923 96071 05813 
41 47606 93410 16359 89033 8%96 47231 64498 31776 05383 39902 
42 52669 45030 96279 14709 52372 87832 02735 50803 72744 88208 
43 16738 60159 07425 62369 07515 82721 37875 71153 21315 00132 
44 59348 11695 45751 15865 74739 05572 32688 20271 65128 14551 

45 12900 71775 29845 60774 94n4 2181D 38636 33717 67598 82521 
46 75086 23537 49939 33595 13484 97588 28617 17979 70749 35234 
47 99495 51434 29181 09993 38190 42553 68922 5::!125 91077 40197 
48 26075 31671 45386 36583 934S9 48599 520:!::! 41330 60651 91321 
49 11636 93596 23377 51133 95126 61496 42474 45141 46660 42338 
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TABLE A I-(Conli"""d) 

00-04 O~ W-14 1.5-19 20-24 2.5-29 30-34 3.5-39 40-44 45-49 

50 64249 63664 3%52 40646 97306 31741 07294 84149 46797 82487 
51 26538 44249 04050 48174 65570 44072 40192 51153 11397 58212 
52 05845 00512 78630 55328 18116 69296 91705 86224 29503 57071 
53 74897 68373 67359 51014 33510 83048 17056 72506 82949 54600 
54 20872 54570 35017 88132 25730 22626 86723 91691 13191 77212 

55 31432 96156 89177 75541 81355 24480 77243 76690 42507 84362 
56 66890 61505 01240 00660 05873 13568 76082 79112 57913 93448 
57 41894 57790 79970 33106 86904 48119 52503 24130 72824 21627 
58 11303 87118 81471 52936 08555 28420 49416 44448 04269 27029 
59 54374 57325 16947 45356 78371 10563 97191 53798 12693 27928 

6Q 64852 34421 61046 90849 13966 39810 42699 21753 76192 10508 
61 16309 20384 09491 91588 97720 89846 30376 76970 23063 35894 
62 42587 37065 24526 72602 57589 98131 37292 05%7 26002 51945 
63 40177 98590 97161 41682 845J3 67588 62036 49967 01990 12308 
64 82309 76128 93965 26743 24141 04838 40254 26065 07938 76236 

65 79788 68243 59732 04257 27084 14743 17520 95401 55811 76099 
66 40538 79000 89559 25026 42274 23489 34502 75508 06059 86682 
67 64016 73598 18609 73150 62463 33102 45205 87440 96767 67042 
68 49767 12691 17903 93871 99721 79109 09425 26904 07419 76013 
69 76974 55108 29795 08404 82684 00497 51126 79935 57450 55671 

70 23854 08480 85983 96025 50117 64610 99425 62291 86943 21541 
71 68973 70551 25098 78033 98573 79848 31778 29555 61446 23037 
72 36444 93600 65350 !4971 25325 00427 52073 64280 18847 24768 
73 03003 87800 07391 11594 21196 00781 32550 57158 58887 7304! 
74 17540 26188 36647 78386 04558 61463 57842 90382 77019 24210 

75 38916 55809 47982 41968 69760 79422 80154 91486 19180 15100 
76 64288 19843 69!l2 42502 48508 28820 59933 72998 99942 10515 
77 86809 51564 38040 39418 49915 19000 58050 16899 79952 57849 
78 99800 99566 14742 05028 3003) 94889 53381 23656 75787 59223 
79 92345 31890 95712 08279 91794 94068 49337 88674 35355 12W~ 

~~ 

80 90363 65152 32245 82279 79256 80834 06088 99462 56705 06118 
81 64437 32242 48431 04835 39()70 59702 31508 60935 22390 52246 
82 91714 53662 28373 J4333 55791· 74758 51144 18827 10704 76803 
83 20902 17646 31391 31459 3JJl5 03444 55743 74701 58851 27427 
84 12217 86007 70371 52281 14510 76094 %579 54853 78339 20839 , 
85 45177 02863 42307 53571 22532 74921 17735 42201 80540 54721 
86 28325 90814 08804 52746 47913 54577 47525 77705 95330 21866 
87 29019 28776 56116 54791 64604 08815 46049 71186 34650 14994 
88 84979 81353 56219 67062 26146 82567 33122 14124 46240 92973 
89 50371 26347 48513 63915 11158 25563 91915 18431 92978 11591 

90 53422 06825 69711 67950 64716 18003 49581 45378 99878 61130 
91 67453 35651 8?316 41620 32048 70225 47597 33137 31443 51445 
92 07294 85353 74819 23445 68237 07202 99515 62282 53809 26685 
93 79544 00302 45338 16015 66613 88968 14595 63836 77716 79596 
94 64144 85442 82060 46471 24162 39500 87351 ]6637 42833 71875 

95 90919 11883 58318 00042 52402 28210 34075 33272 00840 732~8 
96 06670 57353 86275 92276 77591 46924 60839 55437 03183 13191 
97 36634 93976 52062 83678 41256 60948 18685 48992 19462 96062 
98 75101 72891 85745 67106 26010 62107 60885 37503 55461 71213 
99 05112 71222 72654 51583 05228 62056 57390 42746 39272 96659 
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TABLE A I-(C_btued) 

SO-54 55-59 60-M 6~9 70-74 75--79 80-84 85-89 90-94 95--99 

50 32847 31282 03345 89593 69214 70381 78285 20054 91018 16742 
51 16916 00041 30236 55023 14253 76582 12092 86533 92426 37M5 
52 66176 34037 21005 27137 03193 48970 64625 22394 39622 79085 
53 46299 13335 1218O 16861 38043 59292 62675 63631 37020 78195 
54 22847 47839 45385 2328'1 47526 54098 45683 55849 51575 64689 

55 41851 54160 92320 69936 34803 92479 33399 71160 64777 83378 
56 28444 59497 91586 95917 68553 28639 06455 34174 11130 91994 
57 47520 62378 98855 83174 13088 16561 68559 26679 0623~ 51]54 
58 34978 63271 13142 82681 05271 08822 06490 44984 49307 61717 
59 37404 80416 69035 92980 49486 74378 75610 74976 70056 15478 

60 32400 65482 52099 53676 74648 94148 65095 69597 52771 71551 
61 89262 86332 51718 70663 11623 29834 79820 73002 84886 03591 
62 86866 09127 98021 03871 27789 58444 44832 36505 40672 30180 
63 90814 14833 08759 74645 05046 94056 99094 65091 32663 73040 
64 19192 82756 20553 58446 55376 88914 75096 26119 83898 43816 

65 77585 52593 S6612 95766 10019 29531 73064 20953 53523 58136 
66 23757 16364 05096 03192 62386 45389 85HZ 18877 55710 96459 
67 45989 96257 23850 26216 23309 21526 07425 50254 19455 29315 
68 92970 94243 07316 41467 64837 52406 25225 51553 31220 14032 
69 74346 59596 40088 98176 17896 86900 Z0249 77753 19099 48885 

70 87646 41309 27636 45153 29988 94770 07255 70908 05340 99751 
71 50099 71038 45146 06146 55211 99429 43169 66259 97786 59180 
72 10127 46900 64984 75348 04115 33624 68774 60013 35515 62556 
73 67995 81977 18984 64091 02785 27762 42529 97144 80407 64524 
74 26304 80217 84934 82657 69291 35397 98714 )5104 08187 48109 

75 81994 41070 56642 64091 31229 02595 1351) 45148 78722 30144 
76 59537 34662 79631 89403 65212 09975 06118 86197 58208 16162 
77 51228 10937 62396 81460 47331 91403 95007 06047 16846 64809 
78 31089 37995 29577 07828 42272 54016 21950 86192 99046 84864 
79 38207 97938 93459 75174 79460 55436 57206 87644 21296 43393 

80 88666 31142 09474 89712 63153 62333 42212 06140 42594 43671 
81 53365 56134 67582 92557 89520 33452 05134 70628 27612 )3738 
82 89807 74530 38004 90102 11693 90257 05500 79920 62700 43325 
83 18682 81038 85662 90915 91631 22223 91588 80774 07716 12548 
84 63571 32579 63942 25371 09234 94592 98475 76884 37635 33608 

85 68927 56492 67799 95398 77642 54913 91583 08421 81450 76229 
86 56401 63186 39389 88798 31356 89235 97036 32341 33292 73757 
87 24333 95603 02359 72942 46287 95382 08452 62862 97869 71775 
88 17025 84202 95199 62272 06366 16175 97577 99304 41587 03686 
89 02804 08253 52133 20224 68034 50865 57868 22343 55111 03607 

90 08298 03879 20995 19850 73090 13191 18963 82244 78479 99121 
91 59883 01785 82403 96062 03785 03488 12970 64896 38336 30030 
92 46982 06682 62864 91837 74021 89094 39952 64158 79614 78235 
93 31121 47266 07661 02051 67599 24471 69843 83696 71402 76287 
94 97867 56641 63416 17577 30161 87320 37152 73276 48969 41915 

95 57364 86746 08415 146~1 49430 22311 15836 72492 49372 44103 
96 09559 26263 69511 28064 75m 44540 13337 10918 79846 54809 
97 53873 55571 00608 42661 91332 63956 74087 59008 47493 99581 
98 35531 19162 86406 05299 77511 24311 57257 22826 77555 05941 
99 28229 88629 25695 9493Z 36721 16197 78742 34974 97528 45447 
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TABLE A 2 
Oit.OINATES OF THE NORMAL CURVE 

Z 
Second decimal place in Z 

0.00 om om 0.03 0.04 0.05 0.06 0.Q7 0.08 0.09 

0.0 0.3989 0.3989 0.3989 0.3988 0.3986 0.3984 0.3982 0.3980 0.3977 0.3973 
0.1 .3970 .3965 .3961 .3956 .3951 .3945 .3939 .3932 .3925 .3918 
0.2 .3910 .3902 .3894 .3885 .3876 .3867 .3857 .3847 .3836 .3825 
0.3 .3814 .3802 .3790 .3778 .3765 .3752 .3739 .3725 .3712 .3697 
0.4 .3683 .3668 .3653 .3637 .3621 .3605 .3589 .3572 .3555 .3538 

0.5 .3521 .3503 .3485 .3467 .3448 .3429 .3410 .3391 .3372 .3352 
0.6 .3332 .3312 .3292 .3271 .3251 .3230 .3209 .3187 .3166 .3144 
0.7 .3123 .3101 .3079 .3056 .3034 .3011 .2989 .2966 .2943 .2920 
0.8 .2897 .2874 .2850 .2827 .2803 .2780 .2756 .2732 .2709 .2685 
0.9 .2661 .2637 .2613 .2589 .2565 .2541 .2516 .2492 .2468 .2444 

1.0 .2420 .2396 .2371 .2347 .2323 .2299 .2275 .2251 .2227 .2203 
1.1 .2179 .2155 .21l1 .2107 .2083 .2059 .2036 .2012 .1989 .1965 
1.2 .1942 .1919 .1895 .1872 .1849 .18:!6 .1804 .1781 .1758 .1736 
I.J .1714 .1691 .1669 .1647 .1626 .1604 .1582 .1561 .1539 .1518 
1.4 .1497 .147~ .1456 .1435 .1415 .1l94 .1374 .1l54 .1334 .IlIS 

115 .1295 .1276. .1257 .1238 .1219 .120(/ .1182 .1163 .1145 .1127 
1.6 .1109 .1092 .1074 .1057 .1040 .1023 .1006 .0989 .0973 .0957 
1.7 .094U .0925 .0909 .0893 .0878 .0863 .0848 .0833 .0818 .0804 
1.8 .0790 .0775 .0761 .0748 .0734 .0721 .0707 .0694 .0681 .0669 
1.9 .0656 .0644 .0632 .0620 .0608 .0596 .0584 .0573 .0562 .0551 

2.0 .054U .0529 .0519 .0508 .0498 .0488 .0478 .0468 .0459 .0449 
2.1 .044U .0431 .0422 .0413 .0404 .0396 .0387 .0379 .0371 .0363 
2.2 .0355 .0347 .0339 .0332 .0325 .0317 .0310 .0303 .0297 .0290 
2.3 .0283 .0277 .0270 .0264 .0258 .0252 .0246 .0241 .0235 .0229 
2.4 .0224 ·.0219 .0213 m08 .0203 .0198 .0194 .0189 .0184 .0180 

2.5 .0175 .0171 .0167 .0163 .0158 .0154 .0151 .0147 .0143 .0139 
2.6 .0136 .0132 .0129 .0126 .0122 .0119--. .0116 .011l .0110 .0107 
2.7 .0104 mOl .0099 .(J096 .(J093 .0091 .0088 .0086 .0084 .0081 
2.8 .0079 .0077 .0075 .0073 .0071 .0069 .0067 .0065 .0063 .0061 
2.9 .0060 .0058 .0056 .0055 .0053 .0051 .0050 .0048 0047 .0046 

First decimal place in Z 
Z 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

3 0.0044 0.0033 0.0024 0.0017 0.00]2 0.0009 0.0006 0.0004 0.0003 0.0002 
4 .0001 .0001 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
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TABLE A 3 
CUMUl AliVE NORMAl.. FREQUENCY DISTRIBUTION 

(Area under the standard nonnal curve from 0 to Z) 

Z 0.00 0.01 0.Q2 O.oJ 0.04 0.05 0.06 0.07 0.08 0.09 
.. ------. 
0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753 
0.2 .0793 .0&32 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141 
0.3 .1119 .1217 .1255 .1293 .1331 .1368 .1_ .1443 .1486 .1517 
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1712 .II!OII .1844 .1879 

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224 
0.6 .2251 .2291 .2324 .2351 .2389 .2422 .245-1 .2486 .2517 .2549 
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852 
0.8 .2881 .2910 .2939 .2967 .2'195 .3023 .3051 .3078 .3106 .3133 
0.9 .3\59 .311«> .3212 3238 .326<1 .32&9 .33\5 .3340 .3365 3389 

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621 
!.1 .3643 .3665 .3686 .3108 .3729 .3749 .3770 .3790 .3810 .3830 
1.2 .3849 .3869 .3888 .3907 .J92S .3944 .3962 .3980 .3997 .4015 
!.3 .4032 .. 049 .406fl .4082 .4099 .411 5 .4131 .4147 ,4162 .4177 

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319 

1.5 .4332 .4345 .4351 .4370 .4l82 .4394 .4401> .44\& .4429 .444\ 
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545 
1.7 .4554 .4564 .4573 .4582 ,4591 .4599 .4608 .4616 .4625 .4633 
1.8 .4641 .4649 .46,6 .4664 .4671 .4678 .4686 .4693 .4699 .4706 
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767 

2.0 .4772 4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817 
2.1 .4821 .4826 .483Q .4834 .4838 .4842 .4846 .4850 .4854 .4857 
2.2 .486\ .4864 4~68 481\ .4875 .4818 .4881 .48&4 .4881 .4890 
2.3 .4893 .4896 .4898· .4901 .4904 .4906 .4909 .4911 .4913 .4916 
2.4 .4918 .4920 .4922 4925 .4921 .4929 .4931 .4932 .4934 .4936 

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952 
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964 
2.1 4965 .4966 .4961 .4968 .4969 .4970 .4971 .4972 .4973 .4974 
2.8 .4914 .4975 .4976 .4917 .4971 .4978 .4979 .4979 .49&0 .4981 
2.9 .498\ .4982 .4982 .4983 .4984 .498. .4985 .4985 .4986 .4986 

3.0 ,4987 .4981 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990 
3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993 
3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995 
3.3 .4995 .4995 .4995 .4996 .4996 .4096 .4996 .4996 .4996 .4997 
3.4 .4997 .4997 .4991 .4997 .4991 41J97 .4997 .4997 .4997 .4998 

3.6 .4998 .4998 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 
3.9 .5000 



TABLE A 4 
THf DI~l"lu"lmo~ or ,. (TW<rTA.ILED TESTS) 

=:._-- ~_--- ,--- -
Degrees Probabilit) of a Larger Value. Sign Ignored 

of 
Freedom 0.500 0.400 ; 0~200 O~IOO 0.050 0~025 0~01O 0~OO5 O~OOI 

-. ~ _- -
I 1.000 I ~376 I 3~078 6.314 12.706 25~452 63~657 
2 0.816 1.061 1.886 2~920 4~303 6~205 9~925 14~089 31.598 

3 ~765 0.978 1.638 2.353 3~ 182 4~176 I 5~841 7~453 12.941 
4 .741 .941 1.533 2~ 132 2.776 3~495 4~604 I 5.598 8~61O 

5 ~727 .920 1.476 2.015 1.571 3~ 163 4~O32 4~773 6~859 

6 ~718 .906 11.440 11}4;\ 2.447 2.969 3~707 4~317 5~959 

; ~71\ $% 11.415 \%9" 2.~5 2.%41 3~4'l9 4~O29 5~405 

8 ~706 ~889 ' 1.397 1.860 :dllO 2.752 3.355 3~832 5~041 

9 ~ 703 .883 1.383 1.833 2.262 2~685 3.250 3.690 4~ 781 

10 .700 ~879 1.372 1.812 2.128 2.634 3~ 169 3.581 4.587 

II .697 .876 1363 1.796 2.201 2.593 3~106 3.497 4.437 

12 .695 .871 }.356 1.782 2,IN 2.560 3.055 ),428 4~318 

13 .694 JPO 1350 1.771 2160 2.533 3.012 JJ72 4~221 

14 .692 .868 1.345 1.761 2.145 1.510 2~977 ).326 4~140 

15 .691 ,866 1.34! 1. 753 2. 1.11 2.490 2.947 3~186 4~073 

16 .6,)() .865 I 337 I. 74tJ 2 120 1,473 2.921 J~252 4~015 

17 .689 ~863 I ~333 1.740 2,110 2.458 2.898 3.222 3.965 

IS .688 .861 J.330 1734 2.10\ 2.445 2.S7S ).197 )~922 

19 .688 .8¢1 1.32H I. 729 2.1J<!3 2.433 2~861 3,174 3.883 
20 .687 .860 1.325 1.71S 2086 1.423 2~84S ll53 l850 

21 .686 ~85. 1.123 1.721 2,ORO 2,414 2.831 3.135 3.819 
22 .686 ~858 1.311 1.717 2.074 2,406 2.819 3. Jl9 3.792 
23 .685 ~858 1.319 I. 714 2 U(1) 2.39H 1.807 3.104 3.767 
24 .685 .857 1.318 1.711 2,064 2.391 2.797 3~090 3.745 
25 .684 856 1.316 1,7ox ~ 06() 2.385 2.787 3,078 .l725 

26 .684 .856 1.315 I.JOt. :!.OS6 2.379 2~779· 3~067 3.707 
27 ~684 .8;5 !.l14 I. 7(13 2.052 2.373 2~ 771 3~0S6 3.690 
28 .683 .855 un 1.701 2,048 2~368 

I 
2~763 3~047 3~674 

29 .M:' ~854 UII 1.69') 2J}45 2.364 2~756 3.038 3.659 
30 .683 .854 !.lID 1.697 2.042 2.360 2~750 3030 3.646 

35 .682 .852 U06 1.690 2.1)30 2.342 2~724 2~996 }.5., 
40 ~681 .851 1.303 1.684 .1.021 2.329 2.704 2.971 3.551 
45 .680 .850 1.301 1.680 2.014 2.319 2.690 2.952 3.520 
50 .b80 .849 1.299 1.676 2~008 2~310 1.678 2.937 3.496 
55 .679 ~849 1.297 1.673 2.004 2.304 2.669 2.925 3,47fl 

60 .679 ~84% 1.2% 1.671 2~OOO 2.299 '.660 2.915 3.~l 

70 ~678 ~847 1.294 1.667 1.994 2.290 

) 

2.648 2.899 3.435 
80 ~678 ~847 1.293 I.M5 1.989 2~284 2,638 2.810 3.4Ifl. 
90 ~678 ~846 1.291 1.662 1.986 2.279 2.631 2.818 3.402 

100 ~677 .846 1.290 1.661 1.982 2.276 2.625 1.871 3.390 

120 ~677 .845 1.289 1.658 1.980 2~270 2.617 2~860 3~373 

xc .6745 ~8416 1.2816 1.6448 1.9600 2~2414 2.5758 2~8070 3.2905 _ 
-_~ 

• PartS Oflhls table are reprmted by permJsslon from R. A. Fisher's StalisTlcal Method! 
for Research W')rker~, published by Oliver and Boyd, Edinburgh (192'> 1950): from Maxine 
Merrington's "Table of Percentage POints ofthe I·DlstributlOn." Biometrika. 32: 300 (1942); 
and from Bernard Ulotle's Slatistin in Re.feurch. Iowa State University Press (1954). 
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TABLE A 6 
(i) TABLE FOR TtsTING SKEWNfSS 

(One-lajJed pertentage points of the distribution of Jb r = KI = mj/mz 1
11). 

Size 01 
Sample 

• 
I Percentage Points : II Size of : PtTl:entage Points 

Standard II Sa~ple ~-. -- Standard 
l)eviati~~~l~~ Deviation 

--2-5-+-0-.1-1I--I,-(}6-I-+I, -0-.4354 If 100 i O.3~q 0.561 0.23"71-

30 0.662 0.986 .4052~, 125 '0 350 0.50~ .2139 
35 0.621 0.923 I .3804 ;,',[' ISO 0.321 0.464 .1961 
40 1 0.587 0.870 .3596 175 0.29" 0.430 .1820 
45 0.558 0.825 .3418!. 200 0.280 0.403 .1700 
SO 0.534 0.787 .3264 

60 
70 
80 
9(} 

100 

0.492 
0,459 
0.432 
0.409 

I 0.389 

0.723 
0.673 
0.631 
0.596 
0.567 

.3009 

.28(}6 

.2638 

.249S 

.2377 

250 
300 
3SO 
400 
4SO 
SOO 

0.251 
0.230 

I O_~13 
O.~OO 
0.188 
0.179 

0.360 
0.329 
0.305 
0.285 
0.2&9 
0.255 

.1531 

.1400 

.1298 

.1216 

.1147 

.1089 

• Since the distribution of ,/h, is symmetrical about zero, the percentage points repre­
sent 10010 and 2% twcHailed values. Reproduced from Tabte 34 8 of Tabit'lfor Srar;sficUuu 
ami BiomE-tridans, Vol. 1. by permission of Dr. E. S. Pearson and the Bionwrrika Trustees. 

s;.., of 
Sample Upper 

" t% 

SO U8 
75 4.59 

100 4.39 
125 4..24 
ISO 4.13 

200 3.98 
2SO I 

3.87 
300 3.79 
3SO 1 3,72 
400 3.67 
4SO 3.63 
500 3.60 
5SO , 3.57 
600 

I 
3,54 

TABLE A 6--(Con,inlledl 
Iii) r"lIU' FOR TESTING KUJtTOSIS 

(Percentage points of the distribution of b} = m,/m,'r 
. JI' . ~ntage Points i PercenUt~e Pomts 

.. Size of )--- - - --
Upper L.,_ Lower \ Sample: Upper Upper i Lower 

5% S% t% ~i" l~o S% S,% 
, 

2,15 1.95 

I 
600 3.54 3.34 2.70 3,99 

3.87 2,21 2.08 6SO 3.52 3.33 2.71 
3.71 2.35 2.18 700 3.SO 3.31 2.72 
3,71 2.40 2.24 

I 

750 3.48 3.30 2.73 
3.65 2.45 2.29 800 3.46 3.29 2.74 

8.50 3.45 3.28 2.74 
3.57 2.51 2.37 900 3.43 3.28 2,75 
3.52 2.55 1.41 950 i 3A2 3.27 2,76 
3.47 2.59 2.46 1000 

\ 
3.41 3.26 2,76 

3.44 1.62 2.SO 
3.41 2.64 2.52 1200 I 3.37 3.24 2.78 
3.39 2.66 2.55 1400 I 3,34 3.22 2.80 
3.37 2.67 2.S7 1600 I l.32 3.21 , 2.81 
3.35 2.69 2.58 =1 3.30 3.20 I 2.82 
3.34 2.70 2.60 3.28 3.18 2.83 

lowcr 
-1% 

2.60 
2.61 
2.62 
2.64 
2.65 
2.66 
2.66 
2.67 
2.68 

2.71 
2.72 
2.74 
2.76 
2.77 

• Reproduced,from Table 34 C of Tables for Stallstil"ia/U and 8iomelricio"s, by permis· 
sian of Or. E. S. Pearson and ~hc Biometrika Trustees. 
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TABLE A 7 
(i) SICNJFJCANCE lEvELs. Of ' .. "" {X - ,u)/W IN NOIlMA.l S""_PLES. TWO-TAIUO TESt. 

O)VJDE P BY 2 FOR A ONE· T "'L.ED Ti!ST· 

Probability P 
Size of 
Sample 0.10 0.05 0.02 0.01 

2 3.157 6.353 15.910 31.828 
3 0885 1.304 2.111 3.008 
4 .529 0.717 1.023 1.316 
5 .388 .S07 -0.685 0,843 

6 .312 .399 .523 .628 
7 .263 .333 .429 .S07 
8 .230 ,288 .366 ,429 
9 .205 .255 ,322 .)74 

10 .186 .230 .288 .333' 

II .170 .210 .262 ,302 
12 .158 .194 .241 .277 
13 .147 .181 .224 .256 
14 .138 .170 .209 .239 
15 .131 .160 .197 ~24 

16 .124 .151 .186 ,212 
17 .118 .144 .177 .201 
18 ,113 ,137 .168 191 
19 .108 .131 .161 .18~ 

20 .104 .\~6 .154 .175 

• taken from more extensive tables by permission of E. Lord and the Editor of Bio­
merrtka. 
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·TABl.E A 7-(Contillued) 
(ii) SIGp.!IFIC .... NCE LF. .... :LS OF !.'\ I - X l)PI2(WI + H/l) toM Two NOK~to\L 

S .... MPLES Of EQUAL SIZES," TWO-TAILED TEST. 

Size of 
Probability p 

Sample 0.10 O.OS 0.02 0.01 

2 2.322 .1.427 5553 7.916 
3 0.974 1.272 J.71S 2.093 
4 .644 O.RI3 1.047 1.237 
5 .493 .6/3 0.772 0._ 

6 .405 .499 .621 .114 
7 .347 .426 .525 .600 
& .3a6 .373 .459 .521 
9 .275 .334 .409 .464 

10 .250 .304 .371 .419 

II .233 .2&0 .340 .3&4 
12 .214 .260 .315 .355 
13 .201 .243 .294 .331 
14 .189 ·72& .276 .31 I 
15 .179 .216 .261 .293 

16 .170 .205 .:!47 .278 
17 .162 .195 .236 .264 
'IS .m .1&7 .225 .252 
19 .149 .179 .216 .242 
20 .143 .172 .201 .232 

• From more extensive tables by permission of ~. Lord and the Editor of BioIMITilca. 

No. of 
Pairs 

5 
6 
7 
8 
9 

10 
11 
12 

TAlllE .4 j 

NUM8I:.RS OF LIKE SIGNS RE:QU1MED FOR SU'>NIFJeANCf. IN l"Hl: SIGN TEST, 

WITH Ani.JAL SIGNIFICANCE PkOBAB1LlTIES. TWO-TAILED TESr 

Significance Level No. of Significance Level 
1% 5% 10";' Pairs 1% 5% 10"10 

...... . ... 0(.062) J3 1(.003) 2(.022) 3(.092) 

...... 0(.031) 0(.031) 14 1(.002) 2(.01 )) 3(.057) 

.... 0(.016) 0(.016) 15 2(.007) 3(.035) 3(.035) 
0(.008) 0(.008) 1(.070) 16 2(.004) 3(.021) 4(.077) 
0(.004) 1(.039) 1(.039) 17 2(.002) 4(.049) 4(.049) 
0(.002) 1(.021) 1(.021) 18 3(.008) 4(.031) 5(.096) 
0(.001 ) 1(.012) 2(.065) 

I 
19 3(.004) 4(.019) 5(.063) 

1(.006) 2(.039) 2(.039) 20 3(.003) 5(.041) 5(.041) 



TABLE A 9 
SUM Of RANKS AT AppllOX1MAn 5",~ ANV 1~~ UVEL5 OF p,'" THESE NUMBI.RS 

OR S)f.U.lER JI'IDICATE RV.£CTJON. TW()-T,.\ILfD TEST 

Number of Pairs 

7 
8 
9 

10 
II 
12 
13 
14 
IS 
16 

2(0.047) 
2(0.024) 
6(0.054) 
8(0.049) 

) 1(0.05)) 
14(0.054) 
17(0.050) 
21(0.054) 
25(0.054) 
21110.05)) 

1% Level 

0(0.016) 
0(0.008) 
2(0.009) 
3(0.010) 
5(0.009) 
7(0.009) 

10(0.010) 
IJ(O.Oll ) 
16(0.010) 
11110.009) 

555 

.. The figures in pareoEheses ate the actual sipiftcaoce probabilities. Adapted from 
the article by WilcolI,on 12. Chapter 5). 

4 
5 
6 
7 
8 
9 

10 
II 
12 
Il 
14 
IS 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

TABLE A 10 
WILCOXON'S Two-SAMPLE RANK Tesr am MANN-WHITNEY TEST}. 

V ALUF3 Of T flo T Two L£VELS 
(These values or smaller cause rejecUon, Two-tailed lcst. Take n I :5 nl·) 

6 
7 
7 

3 8 
) 8 
3 9 
4 9 
4 10 
4 10 
4 II 
4 11 
4 12 
5 12 
5 13 
5 13 
5 )4 
6 14 
6 15 
6 15 
6 16 
6 16 
7 17 

; \ 17 

10 
II 
12 
Il 
14 
IS 
U 
16 
17 
18 
19 
20 
21 
21 
22 
23 
24 
25 
26 
27 
28 
2~ 
29 

0.05 Lew! of T 

17 
18 26 
20 27 36 
21 29 J8 
II 31 40 
23 32 42 
24 14 44 
26 35 46 
27 37 48 
28 38 SO 
29 40 52 
11 \42 54 
12 43 56 
33 '\45 58 
14 46 60 
35

1

48 62 
37 50,64 
38 51 66 
)9 53 68 
40 \55 
42 

I 

49 
51 63 
5316578 

55 681 81 
58 71 85 
60 73 l1li 
63 76 91 
65 79 94 
67 82 97 
70 84 100 
72 81 103. 
74 90 107 
n 93 110 
79 95 
82 

96 
99 115 

103 119 I 137 
106 , 123 '141 160 
110 127 I 145 164' 185 
114 . III ISO 169 
117 il35 : 154 ' 
121 '139 
124 

, 

I 
, 

I 
I 
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TABLE A 1000Ccrt/i"wJ) 

0.01 Lc:vel 0( T 

n . ... l 
"1 2 :\ 4 5 6 7 8 9 10 II 12 13 14 IS 
l 

s- IS 
6 10 16 23 
7 10 17 24 32 
8 II 17 2S 34 43 
9 6 II 18 26 35 45 56 

10 6 12 19 27 37 47 58 71 
II 6 12 20 28 38 oW 61 7. 87 
12 7 13 21 30 40 SI 63 76 90 (06 
13 7 14 22 31 41 53 65 ~ 93 109 125 
14 7 14 22 32 43 54 67 81 96 112 129 147 
IS 8 IS 23 33 44 56 7() 84 99 liS Jl3 lSI 171 
16 8 15 24 34 ~ 58 n 8(1 102 H9 m ISS 
17 8 16 2S ']6 47 60 74 89 lOS 122 140 
18 8 16 26 37 0111 62 76 92 lOS 125 
19 3 9 17 27 .lII SO 64 78 94 III 
20 3 9 18 21 19 52 ft6 81 97 
21 3 9 18 29 40 53 6IS 83 
22 3 10_ 19 29 41 5S 70 
23 3 10 19 JO 43 51 
2. 3 10 ~ 31 44 
25 3 II 20 32 
26 3 11 21 
27 4 11 
21 4 

• "I and " 1 are the Dumflers of ases in the two groups. If the JI'OUPS are unequal in 
size. "I refers CD the amaller. 

Table is reprioted from While (12, Chapter S). who eJltended the IDetbod ofWiJcoltOG. 

.. 
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TABLE A II 
CORIl£LATION COEFFtCl£NTS AT THf sa;. AND 1% LEvELS Of SIGNIFICANn 

Dearees of Degrees of 
Freedom 5', '. Ii'o Freedom S~;. 1% 

I .997 1.000 24 .388 .4'16 
2 .950 .990 25 .381 .487 
3 .878 .959 26 .374 .411 
4 .811 .917 27 .367 .470 
5 .754 .874 28 .361 .463 
6 .707 .834 

I 
29 .355 .456 

7 .666 .798 30 .349 . .449 
8 .632 .765 I 35 .325 .411 
9 .102 .735 <40 .304 .)93 

10 .576 .708 45 .288 .372 
II .553 .68<4 50 .213 .354 
12 .532 .661 10 .250 .125 
13 .514 .641 70 .232 .J02 
14 .497 .623 !Ill .217 283 
15 .482 .606 9Q .205 .267 
16 .468 .59Q 100 .195 .254 
17 .456 .575 125 .174 .:!2I 
18 .. 444 561 ISO .159 .208 
19 .433 .549 200 .138 .181 
20 .423 .537 JOO .113 .148 
21 .413 .516 400 .0'18 .128 
22 .404 .515 SOO .0Ii8 .1" 
23 .3% .S(.I) 1,000 .0()2 .1lI1 

, 
Portions: of this labie wrre taken from Table VA in SIoJi51icaJ M~/Jtodsfor b~ 

WOI'brs by pennission of Professor R. A. Fisher aDd his publishers. OH .. -er aod Boyd. 
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TABLE A 12 
TABLE OF : = ! LOG .. (I + r)/( I - r) TO TRANSFORM TlU CORlt.ELATION COEfFICIENT 

r 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.Q7 0.08 0.09 

.0 0.000 0.011) 0.020 0.0)0 0.040 0.050 0.060 0.070 0.080 0.090 

.1 .100 .110 .121 .131 .141 .151 .161 .172 .182 .192 

.2 .203 .2)) .224 .234 .245 .255 .266 .277 .288 .299 

.3 .310 .321 .332 .343 .354 :365 .377 .388 .400 .412 

.4 .424 .436 .448 .460 .472 .485 .497 .510 .523 .536 

.5 .549 .563 .576 .590 .604 .618 .633 .648 .662 .678 

.6 .693 .709 .725 .741 .758 .775 .793 .811 .829 .848 

.7 .867 .887 .908 .929 .950 .973 .996 1.020 1.045 1.071 

.8 1.099 1.127 1.157 1.188 1.221 1.256 1.293 1.333 1.376 1.422 

r 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 

.90 1.472 1.478 1.483 1.488 1.494 1.499 1.505 1.510 1.516 1.522 

.91 1.528 1.533 1.539 1.545 1.551 1.557 1.564 1.570 1.576 1.583 

.92 1.589 1.596 1.602 1.609 1.616 1.623 1.630 1.637 1.644 1.651 

.93 1.658 1.666 1.673 1.681 1.689 1.697 1.705 1.713 1.721 1.730 

.94 1.738 1.747 1.756 1.764 1.774 1.783 1.792 1.802 1.812 1.822 

.95 1.832 1.842 1.853 1.863 1.874 1.886 1.897 1.909 1.921 1.933 

.96 1.946 1.959 1.972 1.986 2.000 2.014 2.029 2.044 2.060 2.076 

.97 2.092 2.109 2.127 2.146 2.165 2.185 2.205 2.227 2.249 2.273 

.98 2.298 2.323 .2.351 2.380 2.410 2.443 2.477 2.515 2.555 2.599 

.99 2.646 2.700 2.759 2.826 2.903 2.994 3.106 3.250 3.453 3.800 
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TA8LE A 13 
TABLE OF r IN TERMS OF Z· 

---------
Z O.ClO 0.61 0.02 0.03 0.04 0.05 0.06 0.Q7 0.08 0.09 

----- ------- ------
0.0 0.000 0.010 0.020 0.030 0.0-10 0.050 0.060 0.070 0.080 0.090 

.1 .100 .110 .119 .129 .139 .149 .159 .16>< .178 .187 

.2 .197 .207 .216 .226 .236 .245 .254 .264 .213 .282 

.3 .291 .300 .310 .319 .327 .336 .345 .354 .363 .l7I 

.4 .380 .389 .397 ..105 .414 .422 .430 438 .446 .454 

.5 .462 .470 .478 485 .493 .500 .;01< .515 .523 .530 

.6 .537 .544 .551 .558 .565 .572 .518 .585 .592 .598 

.7 .604 .611 .617 .623 .629 .635 .641 .647 .653 .658 

.8 .664 .670 .675 .680 .686 .691 .696 .701 .706 .711 

.9 .716 .721 .726 .731 .735 .740 .744 _749 .753 .757 

1.0 .762 .766 .770 .774 .778 .782 .786 .790 .793 .797 
1.1 .800 .804 .808 .811 .814 .818 .lei -tC4 .818 .831 
1.2 .834 .837 .840 .843 .846 .848 .851 .854 .856 .859 
I.J .862 .864 .867 .869 .872 .874 .876 .879 .881 .883 
1.4 .885 .888 .890 .892 .894 .896 .898 .900 .902 .903 

1.5 .905 _907 .909 .910 .912 .914 .915 .917 .919 .920 
1.6 .922 .923 .925 .926 .928 .929 .930 .932 933 .934 
1.7 .935 .937 .938 .939 .940 .941 .942 .944 .945 .946 
1.8 947 .948 .949 .950 .951 .'52 .953 .954 .954 .955 
1.9 .956 .957 .958 .959 .960 .960 .961 .962 .%3-- .963 

2.0 .964 .965 .965 .966 .967 .967 .968 .969 .969 .970 
2.1 .970 .971 .972 .972 .973 .913 .974 .974 _915 .915 
2.2 .976 .976 .977 .977 .978 .978 .978 .979 979 .980 
2.3 .980 _980 .981 .981 .982 .982 .982 .983 .983 .. 983 
2.4 .984 .984 .984 .985 .985 .985 .986 .986 .986 .986 

2.5 .987 .987 .987 .987 .988 .988 .988 .988 .989 .989 
2.6 .989 .989 .989 .990 .990 .990 .990 .990 .991 .991 
2.7 .991 .991 .991 .992 ,992 992 .992 .992 992 .992 
2.8 .993 .993 .993 .993 .993 .993 .993 .994 .994 .994 
2.9 .994 .994 .994 .994 .994 .995 .995 .995 .995 .995 

• r = (eh - l)/(eh + 1). 
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TABLE. A 16 
ANGLES CORRESPONDING TO PERCENTAGES, ANGLE = ARC.SJN.,jPERCENTAOE, 

AS GIVEN ~ C. 1. BLIss· 

% 0 2 3 4 $ 6 7 8 9 

0.0 0 0.57 0.81 0.99 1.15 1.28 1.40 1.52 1.62 L12 
0.1 1.81 1.90 1.99 2.07 2.14 2.22 2.29 2.36 2.43 2.50 
0.2 2.56 2.63 2.69 2.75 2.81 2.87 2.92 2.98 3.03 3.09 
0.3 3.14 3.19 3.24 3.29 3.34 3.39 3.44 3.49 3.53 3.58 
0.4 3.63 3.67 3.72 3.76 3.80 3.85 3.89 3.93 3.97 4.01 

0.5 4.05 4.09 4.13 4.17 4.21 4.25 4.29 4.33 4.37 4.40 
0.6 4.44 4.48 4.52 4.55 4.59 4.62 4.66 4.69 4.73 4.76 
0.7 4.80 4.83 4.87 4.90 4.93 4.97 5.00 5.03 5.07 5.10 
0.8 5.13 5.16 5.20 5.23 5.26 5.29 5.32 5.35 5.38 HI 
0.9 5.44 5.47 5.50 5.53 5.56 5.59 5.62 5.65 5.68 5.71 

I 5.74 6.02 6.29 6.55 6.80 7.04 7.27 7.49 7.71 7.92 
2 8.13 8.33 8.53 8.72 8.91 9.10 9.28 9.46 9.63 9.81 
3 9.98 10.14 10.31 10.47 10.63 10.78 10.94 11.09 11.24 IU9 
4 11.54 11.68 11.83 11.97 12.11 12.25 12.39 12.52 12.66 12.79 

5 12.92 13.05 13.18 13.31 13.44 13.56 13.69 D.81 D.94 14.06 
6 14.18 14.30 14.42 14.54 14.65 14.77 14.89 15.00 15.12 15.23 
1 15.34 15.45 15,56 15.68 15.79 15.89 16,00 16,11 16,22 1632 
8 16.43 16.54 16.64 16.74 16.85 16.95 17.05 17.16 17.26 17.36 
9 17.46 17.56 17.66 17.76 17.85 17.95 18.05 18.15 18.24 18.34 

10 18.44 18.53 18.63 18.72 18.81 18.91 19.00 19.09 19.19 19.28 
II 19.37 19.46 19.55 19.64 19.73 19.82 19.91 20.00 20.09 20.18 
12 20.27 20,36 20.44 20.53 20.62 20.10 20,79 20.88 20.96 21.05 
13 21.13 21.22 21.30 21.39 21.47 21.56 21.64 21.72 21.81 21.89 
14 21.91 22.06 22.14 22.22 22.30 22.38 22.46 22.55 22.63 Zl.71 

15 22.79 22.87 22.95 23.03 23.11 23.19 23.26 23.34 2),42 23.50 
16 23.58 23.66 23.13 23.81 23.89 23.97 24.04 24.12 24.20 24.n 
17 24.35 24,43 24.50 24.58 24.65 24,73 24,80 24.88 24.95 25.03 
18 25.10 25.18 25.25 25.33 25.40 25.48 25.55 25.62 25.70 2577 
19 25.84 25.92 25.99 26.06 26.13 26.21'>', 26.28 26.35 26.42 26.49 

20 26,56 26.64 26.71 26.18 26.85 26.92 26.99 27.06 21.1.1 27.20 
21 27,28 27.35 27.42 27,49 27.56 27.63 27.69 27.76 27.83 17.90 
22 27.97 28.04 28.11 28.18 28.25 28.32 28.38 28.45 28,52 28.59 
23 28.&; 28.73 28.79 28:86 28.93 29,00 29,(16 19.13 29.20 29.27 
24 29.33 29.40 29.47 29.53 29.60 29.67 29.73 29.80 29.87 29.93 

25 30.00 30.07 3O.J3 30.20 30.26 30,33 30.40 3O.4/> 30.53 10,$9 
26 30,66 30.72 20.79 30.85 30,92 30.98 31.05 3L11 31.18 31.24 
27 3UI 3U7 31.44 31.50 31.56 31.63 31.69 31.76 31.82 31.88 
28 31.95 32.01 32.08 32.14 32.20 32.27 32.33 32.39 32,46 32.S2 
29 32.58 32.65 32.71 32.77 32.83 32.90 32.% 33.02 3).(19 33.15 

• We are indebted (0 Dr. C. 1. Bliss for permission to reprodua this laole. whic'h 
appeared in Plant PrOlection. No. 12. Leningrad (1937). 

(Tohl~A /6 ("Ontinuedon pp. 570-71) 
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TABLE A 16-(Continueci) 

% 0 2 3 4 5 6 7 8 9 

30 33.21 33.27 33.34 33.40 33.46 33.52 33.58 33.65 33.71 33.77 
31 33.83 33.89 33.96 34.02 34.08 34.14 34.20 34.27 34.33 34.39 
32 34.45 34.51 34.57 34.63 34.70 34.76 34.82 34.88 34.94 35.00 
33 35.06 35.12 35.18 35.24 35.30 35.37 35.43 35.49 35.55 35.61 
34 35.67 35.73 35.79 3'.85 35.91 35.97 36.03 36.09 36.15 36.21 

35 36.27 36.33 36.39 36.45 36.51 36.57 36.63 36.69 36.75 36.81 
36 36.87 36.93 36.99 37.05 37.11 37.17 37.23 37.29 37.35 37.41 
37 37.47 37.52 37.58 37.64 37.70 37.76 37.82 37.88 37.94 38.00 
38 38.06 38.12 38.17 38.23 38.29 38.35 38.41 38.47 38.53 38.59 
39 38.65 38.70 38.76 38.82 38.88 38.94 39.00 39.06 39.11 39.17 

40 39.23 39.29 39.35 39.41 39.47 39.52 39.58 39.64 39.70 39.76 
41 39.82 39.87 39.93 39.99 40.05 40.11 40.16 40.22 40.28 40.34 
42 40.40 40.46 40.51 40.57 40.63 40.69 40.74 40.80 40.86 40.92 
43 40.98 41.03 41.09 41.15 41.21 41.27 41.32 41.38 .41.44 41.50 
44 41.55 41.61 41.67 41.73 41.78 41.84 41.90 41.96 42.02 42.07 

45 42.13 42.19 42.25 42.30 42.36 42.42 42.48 42.53 42.59 42.65 
46 42.71 42.76 42.82 42.88 42.94 42.99 43.05 43.11 43.17 43.22 
47 43.28 43.34 43.39 43.45 43.51 43.5.7 43.62 43.68 43.74 43.80 
48 43.85 43.91 13.97 44.03 44.08 44.14 44.20 44.25 44.31 44.37 
49 44.43 44.48 44.54 44.60 44.66 44.71 44.77 44.83 44.89 44.94 

50 45.00 45.06 45.11 45.17 45.23 45.29 45.34 45.40 45.46 -45.51 
51 45.57 45.63 45.69 45.75 45.80 45.86 45.92 45.97" 46.03 46.09 
52 46.15 46.20 46.26 46.32 46.38 46.43 46.49 46.55 46.6.1 46.66 
53 46.72 46.78 46.83 46.89 46.95 47.01 47.06 47.12 47.18 47.24 

54 47.29 47.35 47.41 47.47 47.52 47.58 47.64 47.70 47.75 47.81 

55 47.87 47.93 47.98 48.04 48.10 48.16 48.22 48.27 48.33 48.)9 

56 48.45 48.50 48.56 48.62 48.68 48.73 48.79 48.85 48.91 48.97 
57 49.02 49.08 49.14 49.20 4926 49.31 49.37 49.43 49.49 49.54 
58 49.60 49.66 49:72 49.78 49.84 49.89 49.95 50.01 50.07 50.13 
59 50.18 50.24 50.30' 50.36 50.42 50.48 50.53 50.59 50.65 50.71 

60 50.77 50.83 50.89 50.94 51.00 51.06 51.12 51.18 51.24 51.30 
61 51.35 51.41 51.47 51.53 51.59 51.65 51.71 51.77 51.83 51.88 
62 51.94 52.00 52.06 52.12 52.18 52.24 52..30 52.36 52.42 52.48 
63 52.53 52.59 52.65 52.71 52.77 52.83 52.89 52.95 5).01 53.07 
64 53.13 53.19 53,25 53.31 53.37 5J.43 53.49 53.55 53.61 53.67 

65 53.73 53.79 53.85 53.91 53.97 54.03 54.09 54.15 54.21 54.27 
66 54.33 54.39 54.45 54.51 54.57 54.63 54.70 54.76 54.82 54.88 
67 54.94 55.00 55.06 55.12 55.18 55.24 55.30 55.37 55.43 55.49 
68 55.55 55.61 55.67 55.73 55.80 55.86 55.92 55.98 56.04 56. " 
69 56.17 56.23 56.29 56.35 56.42 56.48 56.54 56.60 56.66 5613 
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TABLE A 16-(Continued) 

/'~ 0 2 3 4 5 . 6 7 8 9 

70 56.79 56.85 56.91 56.98 57.04 57.10 57.17 57.23 57.29 57.35 
71 57.42 57.48 57.54 57.61 57.67 57.73 57.80 57.86 57.92 57.99 
72 58.05 58.12 58.18 58.24 5UI 58.37 58.44 59.50 58.56 58.63 
73 58.69 58.76 58.82 58.89 58.95 59.02 59.08 59.15 59.12 59.28 
74 59.34 59.41 59.47 59.54 59.60 59.67 59.74 59.80 59.87 59.93 

75 60.00 60.07 60.13 60.20 60.27 60.33 60.40 60.47 60.53 60.60 
76 60.67 60.73 60.80 60.87 60.94 61.00 61.07 61.14 61.21 61.27 
77 61.J4 61.41 61.48 61.55 61.62 61.68 61.75 61.82 61.89 61.96 
78 62.03 62.10 62.17 62.24 62.31 62.37 62.44 62.51 62.58 62.65 
79 62.72 62.80 62.87 62.94 63.01 63.08 63.15 63.22 63.29 63.36 

80 63.44 63.51 63.58 63.65 63.72 63.79 63.87 63.94 64.01 64.08 
81 64.16 64.23 64.30 64.38 64.45 64.52 64.60 64.67 64.75 64.82 
82 64.90 64.97 65.05 65.12 65.20 65.27 65.35 65.42 65.50 65.57 
83 65.65 65.73 65.80 65.88 65.96 66.03 66.11 66.19 66.27 66.34 
84 66.42 66.50 66.58 66.66 66.74 66.8i 66.89 66.97 67.05 67.13 

85 67.2i 67.29 67.37 67.45 67.54 67.62 67.70 67.78 67.86 67.94 
86 68.03 68.11 68.19 68.28 68.36 68.44 68.53 68.61 68.70 68.78 
87 68.87 68.95 69.04 69.12 69.21 69.30 69.38 69.47 69.56 69.64 
88 69.73 69.82 69.91 70.00 70.09 70.18 70.27 70.36 70.45 70.54 
89 7M3 70.72 70.81 70.91 71.00 71.09 71.19 71.28 71.37 71.47 

90 71.56 71.66 71.76 71.85 71.95 72.05 72.15 72.24 72.34 72.44 
91 72.54 72.64 72.74 72.84 72.95 73.05 73.15 73.26 73.36 73.46 
92 73.57 73.68 73.78 73.89 74.00 74.11 74.21 74.32 74.44 74.55 
93 74.66 74.77 74.88 75.00 75.11 75.23 75.35 75.46 75.58 75.70 
94 75.82 75.94 76.06 76.19 76.31 76.44 76.56 76.69 76.82 76.95 

95 77.08 77.21 77.34 77.48 77.61 77.75 77.89 78.03 78.17 78.32 
96 78.46 78.61 78.76 78.91 79.06 79.22 79.37 79.53 79.69 79.86 
97 80.02 80.19 80.37 SO.54 80.72 80.90 81.09 81.28 81.47 81.67 
98 81.87 82.08 82.29 82.51 82.73 82.96 83.20 83.45 83.71 83.98 

99.0 84.26 84.29 84.32 84.35 84.38 84.41 84.44 84.47 84.50 84.53 
99.1 84.56 84.59 84.62 84.65 84.Q8 84.71 84.74 84.77 84.80 84.84 
99.2 84.87 84.90 84.93 84.97 85.00 . 85.03 85.07 85.10 85.13 85.17 
99.3 85.20 85.24 85.27 85.31 85.34 85.38 85.41 85.45 85.48 85.52 
99.4 85.56 85.60 85.63 85.67 85.71 85.75 85.79 85.83 85.87 85.91 

99.5 85.95 85.99 86.03 86.07 86.11 86.15 86.20 86.24 86.28 86.33 
99.6 86.37 86.42 86,47 86.51 86.56 86.61 8M6 86.71 86.76 86.81 
99.7 86.86 86.91 86.97 87.02 87.08 87.13 87.19 87.25 87.31 87.37 
99.8 87.44 87.50 87.57 87.64 87.71 87.78 87.86 87.93 81.01 88.10 
99.9 88.19 88.28 88.38 88.48 88.60 88.72 88.85 89.01 89.19 89.43 

\00.0 90.00 
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n ..In ..lIOn 

1.00 1.00 3.16 
1.02 1.01 3.19 
1.04 1.02 3.22 
1.06 1.03 3.26 
1.08 1.04 3.29 

1.10 1.05 3.32 
1.12 1.06 3.35 
J,14 1.07 3.38 
1.16 1.08 3.41 
1.18 1.09 3.44 

1.20 1.10 3.46 
1.22 1.10 3.49 
1.24 1.11 3.52 
1.26 I 1.12 3.55 
1.28 1.13 3.58 

1.30 1.14 3.61 
1.32 1.15 3.63 
1.34 1.16 3.66 
1.36 1.17 3.69 
1.38 \,17 3.71 

1.40 1.18 3:74 
\.42 1.19 l.77 
1.44 1.20 3.79 
1.46 1.21 ·3.82 
1.48 1.22 3.85 

1.50 1.22 3.87 
1.52 1.23 3.90 
1.54 1.24 3.n 
1.56 1.25 3.95 
1.58 1.26 3.97 

1.60 1.26 4.00 
1.6;! 1.27 4.02 
1.64 1.28 4.05 
1.66 1.29 4.07 
1.68. 1.30 4.10 

1.70 1.30 4.12 
1.72 1.31 4.15 
1.74 1.32 4.17 
1.76 1.33 4.20 
1.78 1.33 4.22 

1.80 1.34 4.24 
1.82 1.35 4.~7 
1.84 1.36 4.29 
1.86 /.36 4.3/ 
1.88 1.37 4.34 

1.90 /.38 4.36 
1.92 1.J9 4.38 
1.94 1.39 4.40 
1.96 1.40 4.43 
1.98 1..41 4.45 

TABLE A 18 
TABLE OF SQUARE ROOTS 

n ..In .j11Pr 

2.00 1.41 4.47 
2.02 1.42 4.49 
2.04 1.43 4.52 
2.06 1.44 4.54 
2.08 1.44 4.56 

2;10 1.45 4.58 
2.12 1.46 4.60 
2.14 1.46 4.63 
2.16 1.47 4.65 
2.18 1.48 4.67 

2.20 1.48 4.69 
2.22 1.49 4.71 
2.24 1.50 4.73 
2.26 1.50 4.75 
2.28 1.51 4.77 

2.30 1.52 4.80 
2.32 1.52 4.82 
2.34 1.53 4.84 
2.36 \.54 4.86 
2.38 1.54 4.88 

2.40 1.55 4.90 
2.42 1.56 4.92 
2.44 1.56 4.94 
2.46 1.57 4.96 
2.48 1.57 4.98 

2.50 1.58 5.00 
2.52 1.59 5.02 
2.54 1.59 5.04 
2.56 1.60 5.06 
2.58 1.61 5.08 

2.60 1.61 5.10 
2.62 1.62 5.12 
2.64 1.62 5.14 
2.66 1.63' 5.16 
2.68 1.64 5.18 

2.70 1.64 5.20 
2.72 1.65 5.22 
2.74 1.66 5.23 
2.76 1.66 5.25 
2.78 1.67 5.27 

2.80 1.67 5.29 
2.82 1.68 5.31 
2.84 1.69 5.33 
2.86 1.69 5.35 
2.88 1.70 5.37 

2.90 1.70 5.39 
2.92 1.71 5.40 
2.94 i.71 5.42 
2.96 1.72 5.44 
i.98 1.73 5.46 
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n ..jn ..110. 

3.00 1.73 5.48 
3.02 1.74 5.50 
3.04 1.74 5.51 
3.06 1.75 5.53 
3.08 1.76 5.55 

3.10 1.76 5.57 
3.12 1.77 5.59 
3.14 1.77 5.60 
3.16 1.78 5.62 
3.18 1.78 5.64 

3.20 1.79 5.66 
3.22 1.79 5.67 
3.24 1.80 5.69 
3.26 1.81 5.71 
3.28 1.81 5.73 

3.30 1.82 5.74 
3.32 1.82 5.76 
3.34 1.83 5.78 
3.36 1.83 5.80 
3.38 1.84 5.81 

3.40 1.84 5.83 
3.42 1.85 5.85 
3.44 1.85 5.87 
3.46 1.86 5.88 
3.48 1.87 5.90 

3.50 1.87 5.92 
3.52 1.88 5.9, 
3.54 1.88 5.95 
3.56 1.89 5.97 
3.58 1.89 5.98 

3.60 1.90 6.00 
3.62 1.90 6.02 
3.64 1.91 6.03 
3.66 1.91 6.05 
3.68 1.92 6.07 

3.70 1.92 6.08 
3.72 1.93 6.10 
3.74 1.93 6.12 
3.76 1.94 6.13 
3.78 1.94 6.15 

3.80 1.95 6.16 
3.82 1.95 6./~ 
3.84 1.96 6.20 
3.86 1.96 6.1/ 
3.88 1.97 6.23 

3.90 1.97 6.25 
3.92 1.98 6:26 
3.94 1.98 6.21 
3.96 1.99 6.2' 
3.98 1.99 6.31 
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TABLE OF SQVARE RO()TS-(Continued) 

n in i lO
" 

n in ,,/1011 n in .,jIOn -. 
4.00 2.00 6.32 5.00 2.24 7.07 b.tlO 2.45 7.75 
4.02 2.00 6.34 5.02 2.24 7.09 6.02 2.45 7.76 
4.04 2.01 6.36 5.04 2.24 7.10 6.04 2.46 7.77 
4.06 I 2.01 6.37 5.06 2.25 7.11 6.06 2.46 7.78 
4.08 2.02 6.39 5.08 2.25 7.13 6.08 2.47 7.80 

4.10 2.02 6.40 5.10 2.26 7.14 ('1.]0 2.47 7.81 
4.12 2.03 6.42 5.12 2.26 7.16 6.12 2.47 7.82 
4.14 2.03 6.43 5.14 2.27 7.17 6.14 2.48 7.84 
4.16 2.04 6.45 5.16 2.27 7.18 6.16 2.48 7.85 
4.18 2.04 6.47 5.18 2.28 7.20 6.18 2.49 7.86 

4.20 2.05 6.48 5.20 2.28 7.21 6.20 2.49 7.87 
4.22 2.05 6.50 5.22 2.28 7.22 6.22 2.49 7.89 
4.24 2.06 6.51 5.24 2.29 7.24 6.24 2.50 7.90 
4.26 2.06 6.53 5.26 2.29 7.25 6.26 2.50 7.91 
4.28 2.07 - 6.54 5.28 2.30 7.27 6.2S 2.51 7.92 

4.30 2.07 6.56 5.30 2.30 7.28 6.30 2.51 7.94 
4.32 2.08 6.57 5.32 2.31 7.29 6.32 2.51 7.95 
4.34 2.08 6.59 5.34 2.:n 7.31 6.34 2.52 7.96 
4.36 2.09 6.60 5.36 2.32 7.32 6.l6 2.52 7.97 
4.38 2.09 6.62 5.38 2.32 7.33 6.J~ 2.53 7.99 

4.40 2.10 6.63 • 5.40 2.32 7.l5 6.40 2.53 8.00 I 
4.42 2.10 6.65 5.42 I 2.33 D6 6.42 2,53 8.01 
4.44 2.11 6.66 5.44 I 2.ll 7.38 6.44 2.54 8.02 
4.46 2.11 6.68 5.46 

I 
2.34 7.39 6.46 2.54 ·8.04 

4.48 2.12 6.69 5.48 2.34 7.40 6.48. 2.55 8.05 

4.50 I 2.12 6.71 5.50 i "-35 7.42 6.50 2.55 8.06 
4.52 

! 
2.13 6.72 5.52 

I 
2.35 7.43 6.52 2.55 8.07 

4.54 2.13 6.74 5.54 2.35 7.44 6.54 2.56 8.09 
4.56 2.14 6.75 5.56 2.36 7.46 6.56 2.56 8.10 
4.58 2.14 6.77 5.58 2.36 7.47 6.58 2.57 8.11 

4.60 2.14 6.78 5.60 2.37 7.48 6.60 2.57 8.12 
4.62 2.15 · ...... 6Jm 5.62 2.37 7.50 6.62 2.57 8.14 
4.64 2.15 6.81 5.64 2.37 7.51 6.64 2.58 8.15 
4.66 2.16 6.8l 5.66 2.38 7.52 6.66 2.58 8.16 
4.68 2.16 6.84 5.68 2.38 7.54 6.68 2.58 8.17 

4.70 2.17 6.86 5.70 2.39 7.55 ·6.70 2.59 8.19 
4.72 2.17 6.87 5.72 2.39 7.56 6.n 2.59 8.20 
4.74 2.18 6.88 5.74 2.40 7.58 6.74 2.60 8.21 
4.76 2.18 6.90 5.76 2.40 7.59 6.76 2.60 8.22 
4.78 2.19 6.91 5.78 2.40 7.60 6.78 2.60 8.23 

4.80 2.19 6.93 5.80 I 2.41 7.62 6.80 2.6I 8.25 
4.82 2.20 6.94 5.82 2.41 7.63 6.82 2.61 8.26 
4.84 2.20 6.96 5.84 2.42 7.64 6.84 2.62 8.27 
4.86 2.20 6.97 5.86 2.42 7.66 6.86 2.62 8.28 
4.88 2.21 6.99 5.88 2.42 7.67 6.88 2.62 8.29 

4.90 2.21 7.00 5.90 2.43 7.68 6.90 2.63 8.31 
4.92 2.22 7.01 5.92 2.43 7.69 6.92 2.63 8.32 
4.94 2.22 7.03 5.94 2.44 7.71 6.94 2.63 8.33 
4.96 2.23 7.04 5.96 2.44 7.72 6.96 2.64 8.34 
4.98 2.23 7.06 5.98 2.45 7.73 6.98 2.64 8.35 
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TABI.F. OF SQUARE ROOTS--(Continued) 

n .jn .jIOn n .jn .jIOn n .jn .jlOn -- - 1---------
7.00 2.65 8.37 8.00 2.83 8.94 9.00 3.00 9.49 
7.02 2,65 8.38 8.02 2.83 8.96 9.02 3.00 9.50 
7.04 2.65 8.39 8.04 2.84 8.97 9.04 3.01 9.51 
7.06 2.66 8.40 8.06 2.8' 8.98 9.06 3.01 9.52 
7.08 2.66 8.41 B.08 2.84 8.99 9.08 3.01 9.53 

7.10 2.66 8.43 8.10 2.85 9.00 9.10 3.02 9.54 
7.12 2.67 8.44 8.12 2.85 9.01 9.12 3.02 9.55 
7.14 2.67 8.45 8.14 2.85 9.02 9.14 3.02 9.56 
7.16 2.68 8.46 8.16 2.86 9.03 9.16 3.03 9.57 
7.18 2.68 8.47 8.18 2.86 9.04 9.18 J.OJ 9.58 

7.20 2.68 8.49 8.20 2.86 9.06 9.20 J.03 9.59 
7.22 2.69 850 8.22 2.87 9.07 9.22 3.04 9.60 
7.24 2.69 8.51 8.24 2.87 9.08 9.24 3.04 9.61 
7.26 2.69 8.52 8.26 2.87 9.09 9:26 J.a,! 9.62 
7.28 2.70 8.53 8.28 2.88 9.lD 9.28 J.05 9.63 

7.JlJ 2.70 8.54 8.30 2.88 9.11 9.30 3.05 9.64 
7.32 2.71 8.56 8.32 2.88 9.12 9.32 3.05 9.65 
7.34 2.71 8.57 8.34 2.89 9.13 9.34 3.06 9.66 
7.36 2.71 8.58 8.36 2.89 9.14 9.36 3.06 9.67 
7.38 I 2.72 8.59 8.J8 2.89 9.15 9.38 3.06 9.68 , 

7.40 I 2.72 8.60 8.40 2.90 9.17 9.40 3.07 9.70 
7.42 I 2.72 8.61 8.42 2.90 9.18 9.42 3.07 9.71 
7.44 I 2.73 8.63 8.44 2.91 9.19 9.44 3.07 9.72 
7.46 2.73 8.64 8.46 2.91 9.20 9.46 3.08 9.73 
7:48 I 2.73 8.65 8.48 2.91 9.21 9.48 3.08 9.74 

7.50 2.74 8.66 8.50 2.92 9.22 9.50 3.08 9.75 
7.52 2.74 8.67 8.52 2.92 9.23 9.52 3.09 9.16 
7.54 2.75 8.68 8.54 2.92 9.24 9.54 3.09 9.77 
7.56 2.75 8.69 8.56 2.93 9.25 9.56 3.09 9.78 
7.58 2.75 8.71 8.58 2.93 9.26 9.58 3.10 9;19 

7.60 2.76 8.72 8.60 2.93 9.27 9.60 3.10 9.80 
7.62 2.76 8.73 8.62 2.94 9.28 9.62 3.10 9.81 
7.64 2.76 8.74 8.64 2.94 9.30 9.64 3.10 9.82 
7.66 2.77 8.75 8.66 2.94 9.31 9.66 3.11 9.83 
7.68 2.77 8.76 8.68 2.95 9.32 9.68 3.11 9.84 

7.70 2.77 8.77 8.70 .:95 9.33 9.70 3.11 9.85 
7.72 2.78 8.79 8.72 2.95 9.34 9.n 3.12 9.86 
7.74 2.78 8.80 8.74 2.96 9.35 9.74 3.12 9.87 
7.76 2.79 8.81 8.76 2.96 9.36 9.7~ ,3.12 9.88 
7.78 2.79 8.82 8.78 2.96 9.37 9.78 3.13 9.89 

7.80 2.79 8.83 8.80 2.97 9.38 9.80 3.13 9.90 
7.82 2.80 8.84 8.82 2.97 9.39 9.82 3.13 9.91 
7.84 2.80 8.85 8.84 2.97 9.40 9.84 3.14 9.92 
7.86 2.80 8.86 8.86 2.98 9.41 9.86. 3.14 9.93 
7.88 2.81 8.87 8.8S" 2.98 9.42 9.88 3.14 9.94 

7.90 2.81 8.89 8.90 2.98 9.43 9.90 3.ll 9.95 
7.92 2.81 8.90 8.92 2.99 9.44 9.92 3.1S 9.96 
7.94 2.82 8.91 8.94 2.99 9.46 9.94 3.15 9.97 
7.96 2.82 8.92 8.96 2.99 9.47 9.96 3.16 9.98 
7.98 2.82 8.93 8.98 3.00 9.48 9.98 3.16 9.99 
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Index to numencal examples 

analyzed In text 

(The index. is arranged by the statistical technique involved. The type of data being 
analyzed is described in parentheses.) 

Additivity. Tukey's test 
Latin squares (responses of monk.eys to stimuli), 335 
two-way classification (numbers of insects caught in ligbt trap), 333 

Analysis of covarianc~ 
in one-way classification, computations 

one X-variable (leprosy patients, SCores for numbers of bacilli), 422 
two X-variables (rate of gain. age, 8lld/weight of pigs). 440 

in two-way classification. computations 
one X -,'ariable {menta\ activit)' 'SCOtts of students), 426 
(yields and plant numbers of corn), 428 
two X-variables (yields. heights, and plant numbers of wheat), 444 ____ ---

interpretation of adjustments (per capita incomes and expenditures pCir-pupil in schools), 
431 

Asymptotic regression, fitting (temperatures in refrigerated hold), 469 

Binomia.l distribuiion 
fitting to data (random digits). 20S 
see a/so Proportions, analysis of 

Bivariate normal distribution, illustration (heights and lengths of forearm of men), ',77 

Cluster sampling, estimation of proportions (numbers of diseased plants), 514 
Components of variance 

nested ciassification, estimation of components 
equal sizes (calcium contents of turnip greens), 286 
unequal sizes (wheat yields of farms), 292 

one~way classification, estimation of components 
equal siles (calcium contents oftumip greens), 281 
unequal sizes (percents of conceptions to inseminations in cows), 290 

Correlation 
comparison and combination of ,'s and r~z transformation (initial weights and gai,!s in 

weight of steers), 187 
computation and test of r (heights of btotbers and sisters), 172 
intracJass. computations (numbers of ridges on fing.!fs of twins), 295 
partial. computations (age, blood pressure, and cholesterol level of women), 401 
rank correlation coefficient, computations (rated condition of rats), J94 

Discriminant functidn, computations (prtsence or absence: of Alotobacter in soils), 416 
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Exponential growth curve, filting (weights and ages of ctw:kcns), 450 

F~tori8.1 experiments. analysis 
2 x 2, i.nteraction absent (riboflavin conctntration of collard leaves), 343 
2 )( 2. interaction present (gains in weight of pig~), 346 
J x 2. (gains in weight of rats), 347 
2 x .2 x 2 and 2 )( 3 x 4 (gains in weight of pigs). 359, 362 

Kurtosis, lest of (numbers of inhabitants of U.S. cities). 87 

Latin square 
analysis (yields of miUet for different spacings), ~ 13 
missing value, e:'limation (milk yields of ~ows). 272 

Least s'lgniftcant ~)f'feTen,e lLSD) \~oughnu\'S.). 2n 

Moan 
computation from frequency distribution (weights of swine), 82 
estimation and confidence interval (vitamin C content of tomato juice), 39 

Median, er.limation and. confuknce interval (days from calving to oestrus in cows), t23 
Missing values, estimation and analysis 

latin square (milk yields of cows), 319 
two-way classi~ation (yields of wheat), 318 

Nested (split-plol) design. a'nalysis (yields of alfalfa), 371 
Nested da£sifications. analysis for mixed etfo;ts model (gains in weight of pigs). 289.- St'e 

also Components 0( variance. 
Newman-Kculs test (grams of fat absorbed by doughnuts), 213_ 
Normal distribution 

confidence interval for mean In- unknown) (vitamin C content o(tomato juice), 39 
tests of skewness and kurtosis (numbers of inhabitants of U.S. cities). 85--87 

One-way c1assi~tion. frequencies 
examination of \fariation he:~ween and within classes {T\umbers ("I( inse(:t lar1Jae OR ~al1-

bages\.234 --.... 
1.tSt of equality of frequendes (random digits), 232 
lest of estimated frequencies (numbers of weed seeds in meadow grass), 237 
test of specified frequencies (Mendelian) (color of crosses of maile), 228 

One-way classification, measurements. Set' also Components of variance. 
analysis of variance 

more than two cla.sses (grams of fat absorbl.:d by doughnuts), 259 
samples of unequal sizes. (sut'1Jival times of mic~ with typhoid), 278 
two classes (comb weights. of chickens), :!67 

standard error of comparison among class lT1ean.~ lyieh.h of sugar), 269 
Ordered classifications, analysis by assigned scor~s ihealth stalus and degree of infiltration of 

leprosy palienls), 245 
Orthogonal polynomials, tilting (weights of chl.:k embryos), 461 

Paired samples . ..:omparis.on of means 
meas_urements (iesions 'On tobacco leaves.l, 9S 
proportions (diphtheria bacilli on throatS of p<.Ilicnts), ~13 

Partitioning of T realmenls sums of squares 
(area/weight ratio of leaves of citrus trelS), 309 
by orthogonal polynomials (yields df sugar). 350 
in factorial experiment (gain!. in weight ofraI5), _~49 
hoybtan ~s, failures to g,erminate). )0% 

Perennial experiment.. analysis (weights of ilsparagus~, 3-78 



Poisson distribution 
fitting (weed seeds in meadow grass). 224 
homogeneity tests (deaths of chinch bugs under exposure to cold), 242 
test of goodness of fit (weed seeds), 237 
variance test (random digits), 232 

Proportions. analysis of 
confidence interval (fields sprayed for corn borer). 5 
in one-way classification. see Two-way classification. frequencies 
in two-way classification 

2 x 2 table (percent survival of plum root-stocks). 495 
2 x 3 table (percent of children and parents with emotional problems), 497 

583 

R x C table (in logs) (death rates afmeo by age and numbers of cigarettes smoked), 498 

Range 
analog of I-test (numbers of worms in rats). 121 
estimation of (J' from (vitamin C content of tomato juice), 39 

Ranks 
signed ranI. le,,1 (Wilcoxon) (lengths of corn seedlings). 129 
two-sampk sum of rallks test (Mann-Whitney) 

~qual sizes (numhcrs of borer eggs on corn planls). 13() 
unequal sizes (survival iimes of cats and rabbits). 131 

Rank correlation coelllcient (rated condition of rats), 194 
Ka!ios. estimation (Silt!S and corn acres in farms), 168 
Regression 

comparison of "between classes" and "within classes" regressions (S\:ores for bacilli in 
lepros) p .. lients). 437 

comparison of regression in two samplc-s (age and cholesterol'concentration of women), 
4JJ 

filled to treatmenl ml',WS (yields of mille!) . .114 
lilting of Imear 

(age and blood pn:ssurc of women). 136 
(percent worm~ fruits and size of crop of apple tr«s), 150 

fitling of quadratic (protdn content and yield of wheal), 454 
multiple. tilting for ~ and 3 X-v,.malcs (phosphorus conrents o{soils). 384,405 
lest for Imear tn:nd In Pfl)POrtl(ll1~ !leprosy patients), ::47 
test of intercept (~pced ;Ind draft of pluu,!!.ps I. 167 
tc-;t or linearil) (suT\,j\al time of cats with ()u.rbain), ~~/:( 

Rejcdi(lIl of oh~en-alions. app!k:allon of ruk ()icldS'of wheat). 318 
Rc~pon~e curves. two-factor c:>.perimenl~ /)icld" of cowpea hay). 352 
Re"ponst wrface. fitting (a~corbic at:ld lOntcnt of snaphcans). 354 

Sampk "it.: c~til11dtion fyidd" of wheal). 417 
III IW{l'~la,g~ .'>amplln,g (percenl of su,gar in sugar-becls). 517 

Scrie. of experimenb. analy"l~ (numhers of soybean planh). 37i 
Seh of .2 )( ::. table". anal)sis (prohlcm children in "chQol and prC\iou~ I.nfant losses llf 

mothers). 253 
Sign test (ranking of beef patlics). 126 
Skewne_~_~, test of (m •. nbers of inhabilanh in U.S. cillt!1}. 85 
Split-plol ex.periment. analysis (yields or alfalfal. 311 
Standard dc\ lation. computation (vitamin C ,,:onten! of l()mato juice~. 39 

from frequenc) distribution {weights of ~wincl. K:! 
Slratilied random sampling 

opllmum alllXalion (numbers ot's(uden[s in colleges). 524 
standard error of mean <wheat yields), 522 
with attributc,- and proportions (numbers ofvegetablc gardens). 5Z7 
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Student's Hcst 
in independent samples 

equal sites (comb weights of chid:.ens). 103 
unequal sizts (gains in weight offals}. 105 

in paired samples <numbers of lesions on tobacco [eave!>./. 95 
Studentized Range test (dou~nurs), 27J 

Transformations 
arcsin (angular) (percent unsalable ears of corn). 328 
logarithm (numbers of plankton caught by nets). 329 
square roots (numbers of poppies in oats). 326 

Two·way classification. frequencies 
heterogeneity Xl. test of Mendelian ratios (numbers of yellow seedlings of corn), 248 
test (or a linear trend in proportions (leprosy patients), 247 
2)( 2 table (mortality of pipe smokers and non~smokers). 216 
2 )( C table (health status and degree- of infiltration of leprosy patients), 239 
R x C table (tenure status and sOH type of farms), 250 

Two~way classification, measurements 
unequal n\.1mbers per sub-class 

analysis by proportional numbers (dressing percents of pigs), 480 
approximate analysis by equal numbers and by equal numbers within rows (survival 

times of mice with typhoid), 476, 478 
aproKimate analysis by proportional numbers(tenure status and soil class offamls), 482 
(artificial data to illus1. 'ate complexities). 471 
least sqiT,ues analysis. 'x 2 table (comb weights of chickens). 483 
least sqlJares analysis;.K x 2 or 2 x C table (gains in weights of rats), 4&4 
least sqllares analysis. R x C table (mice), 489 

usual analysis. standard errors of comparisons, and partitioning of Treatments sum of 
squares (failures to germinate of soybean seeds), 300. 301, 308 

Variance 
Bartlett'S tesl of equality (birth weigtus of pigs), 297 
confidence interval (vitamin C). 75 
test of equality of 2 varia noes 

tndeQendent samples (concentration of syru? by bees). I! 7 
paired S#lmples (heights and,_)eg lengths of boys), 197 



Abbreviated Doolittle method, 403 
Absolute value, 44 
Addition rule 

in chi-square, 73 
in Poisson distributi· n, 225 
in probability, 200 
sums of squares and degrees of freedom. 

307-310 .'.' _ .~-~ /..:1 \: , 

Additivity 
in factorial experiments, 345 
in Latin square. 313 
in twei-way classification. 302 
test of, 331-337 

Adjusted mean, 421. 429 
Allowances, 5% risk. 275 
Analysis of covariance. 419 

computations, 421-425 
efficjency. 423-424 
in one-way classification, 421--425 
in fwo-way classification. 425--428 
interpretation of adjusted means. 429-432 
model,419 
multiple 

in one-way classification, 438--443 
in two-way classification, 443-446 

test of adjusted means, 424-425 
test of linearity of regression, 460 
uses, 419---421 

Analysis of variance, 163 
effects of non-conformity to modeJ, 32J 

336 
non-additivity, 330-331 
non-independence in errors, 323 
non-normality. 325 
unequal error variances. 324 

factorial experiments. 339--369 
in linear regression, I60-J63. 314-316 
in one-way classifications. 258--268 

effects of errors in u5umptions, 276-
J77 

SUbject index 

model J. fixed eft'ects. 275 
model n. random effects, 279-285, 289-

291 
samples of unequal sizes, 277-:-278 

in two-way cJassifications, 299-J(}7 
latin squares, 312-316 
objectives, 259-260 
partitioning (subdividing) sums of 

squares, 308-310, 348---349 
perennial experiments, 377-379 
series of experiments, 315--377 
split-plot (nested.) experiments, 369--375 

A.ngular transformation, 327 
Arcsin transformation. 327 
Area sampling, SIt 
Arra),.4O 
AsymPtotic regress~on. 448 

method ofbttibg, 467-471 
Attribute. 9 

ftalancing in experimental design. 4.18 
l\artlett's test of homogeneity of variances. 

2%-298 
Ikhrens-Fisher test, 115 
ftias. 506 

precautions against. 109-11. 
unbiased estimate. 45-46 

1\imodaJ distribution. 124 
8inomial distribution. 17. 3(}.202 

campa "ton of two proportions. 213-223 
£onfidence intervals. 5-7, 210-211 
fitung to data. 205--207 
formula for frequency. 17. 202-20S 
mean, 207-209 
normal a:ppro~mation. 209-213 
standard deviation, 207-209 
table of confidence intervals, 6-7 
test ofa binomial propOrtion. 211-213 
1rs1l>f ~ I>f ~~ ~:D' 
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variance tcst of homogeneity. 240-242 
Bivariate normal distribution. 177-179 
Blocks. 299 

efficiency of blocking. 31 J 

Cas<stwly, 152 
CentralliPlil theorem. 51. 209 
Chi-square (X'), 20-26, 30, 212 

correction for cot1.1inuily. 125. 209-210 
distribution of, 22-26. 73 
in goodness of fil tests. 236-238 
in R x· (contingency tables. 250-253 
in tests of Mendelian ratios, 228--231, 

248-2$0 
in 2 )( C contingency tables. 238-240 
in 2 x 2 contingency tables, 215-220 
in variance test for binomial. 240-243 
in variance test for Poisson. 231-233 
normal approximation to. 233 
relation to distribution of sample vanance 

s2,73-74 
table of, 5~551 
test of binomial proportion. 20-22. 213-

214 
Class 

interval. 23 
mark. 67. 73. 82 

Cluster Sampling. 51) 
formulaS in simple cluster sampling. SI3-

515 
Coding. 81 
Coefficient of variation. 62 
Common elements, 18 t 
Comparison 

among more than two means. 268--275 
definition. 269 
of all pairs of means. 211-275 
of mean scores. 244-245 
of observed and expected frequeocies 

more than two classes. :!28-238 
two classes, 20-27 

of two means in independent samples. 
IOO-Wl, 114-116 

of two means in paired samples. 93-95, 
97-99 

of two proportions in independent sam­
pIes. 215-223 

of two proportions in paited samples. 
213-215 

orthogonal. 309 
rule for standard error. 269.301-302 

Components of variance. 280 
in factorial experiments. 364-369 
in three-stage sampling. 285-288. 291-294 
in two-stage sa~pling. 280-285. 2R9-291. 

529-5l3 
confidetlce lim!ts, 284-2&5 

Compound interest law. 447 
Confidence intervals. 5-7. 14-15. 29 

for an individual Y.givenX.155-157 
for binomial proportion. 210-211 
for components of variance. 284--285 
for correlation coefficient. ISS-- 1 SS 
for partial regression coefficients. 391 
for population mean (a known). 56 
for population mean (0" unknown). 61. In 
for population median. 124--125 
for population regression line. 153" 155 
for population variance. 74--76 
for ratio of two variances. 197 
for slope in regression. 153 
one-sided, or one-tailed. 57 
table for binomial distribution. 6 7 
upper and lower. 58 

Confidence lim..its. 5-7. S(>t> a/so Confidence 
intervals, 

upper and lower. 58 
Contingency table 

R x C, 2~252 
2 x C. 23&-243 
2 x 2,215-223 
sets of 2 x 2 tables. 253-256 

Continuity correction. 125. 209-210. 230-· 
231 

Continuous distribution. 23 
Correction 

for continuity. 125.209-210 
for finite size of population, S 13 
for ·mean. 261-262 
for working mean. 41-48 
Sheppard's. 83 

Correlation 
and common elements. 181-183 
ca1culation in large sample, )90-193 
coefficient. 172 

combination of separate estimates, 187 
comparison of several coefficients. 186 
confidence interval for. 185 
tabies. 557-559 
tests of signi&;ance. 184-188 

intracIass. 294 
multiple. 402 
nonsense. 189 
partial,400-401 
rank. 19:3-195 
relation to bivariate nonnal distribution. 

177-179 
relation to regression. 175-177 
role in selection. 189 
role in stream extension. 189 
utility of. 188-190 

Covariance. 181. St>e also Analysis of co­
,variance. 

Curve fitting. 447-471 



Degrees of freedom. 4S 
for chi-square 

in contingency tables. 217. 239. 251 
in goodness of fit tests. 237 
in tests of homogeneity of variance. 297 

in analysis of variance 
Latin square. 314 
one-way classificalion. 261 
two-way classification, 301. 307 

in correlation, 184 
in regression. 138, 145, 162-163.385 

Deletion of a variable. 412 
Dependent variable in regression. 135 
Design of investigations 

comparison of paired and independenl 
samples, 106-109 

efficiency of blocking, 311-312 
factorial experiments, 339-364 
independent samples, 91. 100--106. 114--

116.258-275 
Lalin M,Juares. 312-317 
Missing data. 317-321 
paired samples. 91-1)9 
perennial crops. 377- 379 
randomized blocks or groups. 299 -31 0 
role of randomization. 109--111 
sample size, 111-114.221-223 
sample surveys. S04 
series of experiments. 375 -377 
two-stage (spiit-plot or. nested) designs, 

369-375 
use of covariance. 419- 432 
use of regression. 135 

Deviations 
from sample mean. 42 

VigilS 
random. 12 
table of. 543-546 

Discrete dislribution. 16 
Discriminant function. 414 

cumputations. 416-4 J 8 
relation to m'ultiple regression. 416 
u!.eS.414 

Distance between populations. 415 
Distribution. See also the specifw distribu-

tion. 
binomial. 17 
bivariate normal. 177 
chi-square. 73 
F fV;1riance ratio). 117 
mu1tinornial. 235 
normal. 32 
Poisson. 223 
Student's '-. 59 

Dummy 'Iariabie. 416 

Effidency of 

analysis of covariance. 423-424. 427 
Latin squares. 316 
randomized blocks. 311 
range, 46 
rank tests. 132 
sign test, 127 

Equally likely outcomes, 199 
Error 

of first kind (Type I), 27. 31 
o( measurement 

58T 

effect on estimates in regrel>sion. 164-
166 

of second kind. (Type II). 27. 31 
regression. 421 
standard (See Standard error.) 

Estimate or estimator 
interval. 5. 29 
point. 5. 29 
unbiased. 45. 506 

Expected numbers. :W. 216. 228··240 
minimum size for / h .. 'Sts. 215. 241 

Experiment. St'!' Design of investigation~. 
Experimental sampling. used to illustrate 

binomial confidence limits. 14 
binomial frequency distribution. 16 
central limit theorem. 51 ;5 
chi-square (I dj:) for binomial. 22-26 
confideDl,:C interval for population mean 

p.78-79 
distribution of sample means from a nor· 

mal distribution. 70-T2 
distribution of iample stand.lrd deviation 

s.72-73 
distribution of sam~ variance .\.1. 7:?:-B 
F..distribution. 266 
r-distributlon. 77-78 

Exponential 
decay curve, 447 
growth curve. 447, 449.:4.53 

Extrapolation. 144. 4S6 

F...distribution. 117 
effect of correlated errors. 323 
eRect of heter~eneous errors. 324 
effect of non~normality. 325 
one-tailed tables, 560-567 
two-tailed table. 117 

Factor. 339 
Factorial experiment. 339 

an.liysis of:P factorial 
interaction absent. 342-344 
interaction present. 344-346 

analysis of 2J factorial. 359-361 
analysis of general three·factor experi· 

ment.361-364 
analysis of generallwo~factorexpcriment, 

J46 349 
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compared with single·factor experiment, 
339-342 

fitting of response curves to treatments, 
349-354 

fitting of response surface, 354--358 
Finite population correction. 513 
First-order reaction curve, 448. See also 

Asymptotic regression. 
Fixed effects model 

in factorial experiments, 3M-369 
in one-way classification. 275 

Fourfold'{2 x 2) ta~le, 215 
Freedom, degrees of. See Degrees of free­

dom. 
Frequency 

class, 23 
cumulative. 26 
distribution. 16, 30 

continuous, 23 
discrete. 16 
number of classes needed. 80--81 

expected, 20 
observed. 20 

91 and gl tests for non-normality. 86-87 
Genetic ratios 

tests of. 228-231, 248--249 
Geometric mean. 330 
Goodness of fit test, 12

, 84. See also Chi­
square. 

Graphical representation. 16. 40 
Grouping 

loss of accuracy due to. 81 
Growth curve 

exponential. 449 
logistic, 448-449 

Harmonic mean. 475 
Heterogeneity 

chi-square, 248 
of variances. 296. 324 

Hi.erarchal classifications, 285--289 
Histogram, 25 '" 
Homogeneity, test of 

in binomial proportions, 240 
in Poiss(,m counts, 231 
in regres'sion coefficients, 432 
of between- and within-class regressions, 

436 
Hotelling's ~-test, 414, 417 
H ypolheses about populations, 20. See 

Tests of significance. 
null. 26, 30 
tests of 

Independence 
assumption of 

in analysis of variance, 323 
in binomial distribution, 201 
in plobabiJity, 201 
with attributes, 219 

Independent samples 
comparison of two means, 100-105, 114-

116 
comparison of two proportions, 215-223 

Independent variable in regression, .135 
Inferences about population, 3-9, 29, S04-

505. See also Confidence intervals. 
Interaction, 341 

possible reasons for. 346 
three-factor, 359-364 

in contingency ta bles. 496 
two-factor. 341-349. 473 

Interpolation in tableS. 541 
Interval estinate, 5, 29. See also Confidence 

interval. 
Inlraclass correlation, 294-296 
Inverse matrix, 389, 403. 409-412 
Kenda]J's t, 194 
Kurtosis, 86 

effect on variance of .f2. 89 
test for, 86--88 

table. 552 

Latin square. 312 
efficiency, 316 
model and analysis of va'riance, 312-315 
rejection of observations. 321-323 
test of additivity, 334--337 

Least Significant difference, 272 
Least squares. method of, 147 

as applied to regression. 147 
Gauss theorem. 147 
~n two-way tables with unequal numbers. 

483-493 '. 'A' 
Level of significance. 27 
Limits, confidence. Se~ Confidence intervals. 
likelihood. maximum. 495 
Linear calibration. 159-160 
Linear regression. See Regression 
Listing, 509-511 
Logarithm 

common and natural. 451-452 
Logarithmic 

graph paper. 450. 45:! 
transformation. 329 .no 

Logistic growth law. 448--449 
logit transformation. 494. 497~503 
Lognormal distribution,- 276 

Main effect. 340-342 
Main.plot, 369 
Mann-Whitney test. 130 

significance levels. I J I. 555-556 



Mantel-Haenszel test, 255-256 
Mathematical model for 

analysis of covariance, 419 
exponential growth curve. 449 
factorial experiment, 357, 364--369 
Latin square, '313 
logistic growth curve. 448-449 
multiple regression, 382. 394 
nested (split-plot) designs, 370 
one-way classification 

fixed effects. 275 
mixed effects, 2S8 
random effects, 279. 289 

Qrthogonal polynomials. 460--465 
regression. 141 

asymptotic, 468 
non-linear. 465 

two-way classific-ation. 302-308. 473 
Matrix. 390 

inverse. 390, 409, 439, 490 
Maximin method. 246 
Maximum likelihood. 495 
Mean 

amo\utt tat'f\a\\()\\, 4d. 
adjusted. 421. 429 
arithmetic, 39 
correction for. 261-262 
distribution of, 51 
geometric. 330 
harmonic, 475 
weighted. 186,438.521 

Mean square, 44 
expected value 

in factorial experiments, 364-369 
with proportional suh-class numbers. 

481-482 
Mean square error 

in sampling finite populations, 506 
Measurement data, 29 
Median 123 

calculation from large sample, 123 
confidence interval. 124-125 
distribution of sample median. 124 

Mendelian inheritance 
heterogeneity X2 text. 248-249 
test of specified frequencies, 228-231 

Missing data 
in Latin square, 319-320 
in one-way dassification. 317 
in two-way classification, 317-321 

M itscher1ich's law. 447. See a/:"o Asymptotic 
regression. 

Mixed effects model, 
in factorial experiments. 364-369 
in nested classifications. 288-289 

Mode. 124 
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Model. See Mathematical model. 
Model I, fixed effects. See Fixed effects 

model. 
Model II, random effects. See Random 

effects model. 
Moment about mean, 86 
Monte Carlo method, 13 
Multinomial distribution, 235 
Multiple comparisons, 271-275. 
Multiple covariance. See Analysis of co-

variance. 
Multiple regression. See Regression. 
Multiplication rule of probability, 201 
Multivariate t-test. 414, 417 
Mutually exclusive outcomes, 200 

Nested. 
classifications, 285-289. 291-294 
designs, 369 

Newman·Keuls test, 273-275 
Non-additivity 

effects of in analysis of variance, 330-331 
removal by transformation. 329, 331 
\t'!.\'!. fN 

in Latin square. 334-337 
in two-way classification. 331-334 

N on-parametric methods 
Mann-Whitney test. 130 
median and percentiles, 123-125 
rank correlation. 193-195 
sign test, 127 
Wilcoxon signed rank test. 128 

Normal distribution, 32 
formula for ordinate. 34 
mean, 32 
method of fitting to observed data. 70--72 
reasons for use of. 35 
relation to binomial, 32, 209-213 
standard deviation, 32 
table of cumulative distribution. 548 
table of ordinates. 547 
tests of nonnality, 86-88 

Normal equations. 383 
in multiple regression, 383. 389. 403 
in two-way classifications. 488--491 

Normality. test of, 84-88 
Null hypothesis, 26, 30 

One-tailed tests. 76-77, 98-99 
One-way classification, frequencies 

expectations equal, 231-235, 242-243 
expectations estimated. 236-237 
expectations known. 228-231 
expectations small. 235 

One-way classification, measurements 
analysis of variance. 238-248 
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comparisons among means, 268-275 
effects of errors in assumptions. 216-277 
model L fixed effects. 275 
model II. random effects. 279-285. 289-

291 
rejection of observations. 321-323 
samples of une4ual sizes. 277-278 

Optimum allocation 
in stratified sampling. 523-526 
in three-stage sampling. 533 
in two-stage sampling. 531- 533 

Ordered ti:lassifications 
methods of analysis. 243-246 

Order statistics. 123 
Orthogonal comparisons. 309 

in analysis of factorial ex.periments. 346-~ 
-361 

Orthogonal polynomials. 349- -'51. 460-464 
tables of coefficients (value!.), 351. 572 

Outliers (suspiciously large deviations) 
in analysis of variance. 321 
in regression. 1 57 

Paired !.amples. 91 
comparison of means, 93--95. 97 -99 
comparison of proportions. 213-215 
,,"aDditions suitable for pairing. 97 
self-pairing. 91 
versus independent samples. IU6-IOS 

Paraholic regression. 453--456 
Param.:ter.32 
Partial 

correlation. 40() 
coefficient. 400 

regression coefflcieni. 382 
interpretation of. 393-397 
standard. 39M 

Pascal's triangle. 204 
Percentages. analysis of. Set!' Proportions. 

analysis of. 
Percentiles. 125 

estimation b) order statistics. 125 
Perennial experiments. 377-379 
Placebo. 425 
Planned comparisons. 268-270 
Point estimate. 5. 29 
Poisson distribution. 223-226 
. fitting to data. 224--225 

formula for. 223 
test of goodness of fit. 236-237 
variance test of homogeneity. 232 -236 

Polynomial regression or response curve. 
349-354 

Pooling (combining) 
correlation coeflkients. 187 
es~im<lted ditferences in 2 )( 2 tables. 254--

256 
estimates of variance. 101-IOJ 
of classes for X2 tests. 235 
regression coefficients, 438 

PopUlation. 4. 29. 504-505 
finite, 504-,505. 512 513 
sampled. J 5, 30 
target. 30 

Power function. 280 
Primary sampling units. 528 
Probabilit) 

simple rules. 199-202.219 
Probability sampling. 508--509 
Proportional sub-<:iass numbers. method of. 

478-4KJ 
Proportions. analysis of 

in one-wa} cI.Jssificl:ltions. 240--243 
test for a Imear trend. 246---24M 

in tWO-Win t:lassifications. 4Y3 
in angular (arcsin) scale, 496 
in log.it sl.:al~. 497 503 
in original (p) scale. 495- 497 
in setS of ~ x .2 tables. 153- 156 

Random digits (numbers). 12--13,30 
table. 543 546 

Random eft't!cls modcl 
in factorial experiments. 364- 369 
in one-way classification. 279-294 

Randomization. 110 
as precaution against bia~. 109 j II 

Randomization test (Fisher's). 133 
Randomized bloch. 299. Sl't' also Two­

way classifications. 
efficiency of blocking. 311 

Random sampling. 10-11. 30 
stratified. II 
with replacement. II 
without replacement. II. 505 

Range. 39 
efficiency relatl\'e to standard deviation, 

46 
relation 10 standard deviation, 40 
StudentlJ_ed Range test. 272-273 
I-test based on. 120 

table~, 55.'-,554 
use in comparison of means. 275 

Rank correlation. 193-195 
Ranks. 11K 

efficienc), relative to normal tests. 131 
rank sum test. ]3()..-132 
signed rank test. 128-130 

Ratio 
estimah:'s in sample surveys. 536-537 
estimation of. 170 
standard error of, 141. 515. 537 

Rect .. n~uJar t uniform) distribution ~ I 



Rel.:tifkatioJl.449 
Regression. 135 

analysis of variance for. 160-163 
coefficient (s!ope). 136 

interval estimate of. 153 
\'atuc in some simple cases. 147- L48 

comparison of "between classes" and 
"within classes" regression~. 436-·438 

comparison of regression lines. 432--436 
confidence interval for slope. 153 
deviations from. 138 
effects of errors in X. 164-166 
estimated regression line. 144-· 145 
estimated rcsiduul variaru.·c. 145-146 
estimates in sample surveys. 5.H··538 
equation. 136 
historical origin orthe tcm1. 164 
in one-way classification of frequencies. 

234 
line throuth ori~in, 166-169 
linear regression of proportions, 246-248 
mathematical modd. 141-144 
multiple, 381 

computations in fitting, 383--393. 40}·· 
412 

deletion of an independent variable. 412 
dc\ iations mean square. 3~5-389 
~ffec!s of omitted variables. 394-397 
importance of different X-variables, 

398 400 
interpn:talion of coefficients. 393-397 
partial regression coefficient. 382 
prediction of individual observation. 

392 
prediction of population line, 392 
purposes. 381 
selection of variates for prediction. 412-

414 
standard error of a deviation. 392 
stand<..lrd error ... of regression cO(:ffi­

cient~. 391 
testing a dt!\iation. 392-393 
tests of regrcs!.ion coefficients. 38tt---3MM 

nun-linl.!<..Ir in ~ome parameter!.. 465-471 
general method of fitting. 465-467 

parabolic. 45.3-456 
prediction of i.ndi.vidual observation. '55-

157 
prediction of the population line. 153 
prediction of X from Y.IS9-160 
relation to correlation, 175-177. 188-190 
shortcut computation. 139 
situation when X varies from sample to 

sample. 149-150 
testing a deviation, 157 ~158 
tests for linearity, 453-459 

Rejection of observations 

in analysis of vi.lriance. 3:!1-·323 
Relati\'C amount of information. 311 
Relatiw t!fficiency. 46 

of range. 46 
Relative ratc of increase. 450 
ReplicalloR\o,. 299 
Residuals, 300-- 30 I. 305 307 
Response curve 

polynomial. 349-351 
Response surface, 346 

example of fitting, 354-358 
Ridits,246 
Rounding errors. 81 

effect on accuracy of X and s. 81 

Sample. 4, 29 
cluster. 511. 513-515 
non-random, 509 
probability, 508-509 
random, to--l L 30, 505, 5 t t 
stratified random. 507. 520--527 
systematic. 519 

Sample mean. X. 39 
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calculation from a frequency distribution. 
~0-83 

frequency dislrihution of. 51 
Sample standard deviation .\", 44 
Sampling fraction, 512 

unequal, 507 
Sampling unit. 509 
Scales with limited values. 132 
Schetfe's test. 271 
Scores 

assigned to ordered classific(:llions. 244 
246 

Selection of candidates, 189 
Selection of variates-for prediction;!12-4f4 
Self-pairiRg,. 91, 97 ," . 
Self-weighting estimate. 521 -
Semi-logarithmic graph paper, 450 
Series of experiments. 375-377 
Sets of 2 x 2 tables. 253-256 
Sheppard's correction. 83 
Sign"iest.125-127 

efficiency of, 127 
table of significance levels. 554 

Signed rank test. \ 28 
significance levels. 129. 555 

Significance 
level,27 
tests of (See Tests of significance.) 

Simple random sampling. 505-S07 
of cluster units. 513-515 
properties of estimates. 511 ·515 
size of sotmple. 516-518 

Size of !!ample 
for comparing two proponiofls, 221-222 
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for estimating population mean, 5R 
for tests of signi(icance when comparing 

means, 111_114 
in sampling finite: populations, 516-518 
in two-stage (nested) sampling. 281 
within strata, 523-526 

Skewness, n 
test of, 86 

table, 252 
Smoothing, 447 
Spearman's rank correlation coefficient, 194 
Split-plot (nested) Jesign, 369 

analysis of variance, 370-373 
comparison with randomized blocks. 373 
reasons for use, j69-370 

Square roots 
method of finding, 541 
table, 573-575 

Square root transf(1nnation, 325-327 
Standard deviation 

of estimatl!s from data 
adjust~ difference. 423 
difference, 100, 104, 106,115, 190 
01 for skewnesS, 86 
91 for kurtosis. 87 
mean ofrandorn sample, 50, 512 
median, 124 
popUlation tottl.l, 51, 513 
regression coefficient, 138, 391 
sample total, 51 
sum, 190 
transformed correlation. 185 
variance, 89 

of population 
binornla),207-D 
normal, 32 
Poisson. 225 

Standard en ..... r. SO. See also Standard devia· 
tion, 

Standard normal deviatc, 36 
Standard normal vilriate. 36 
Standard partial regression coefficient, 398 
Step up and step down metlwds, 413 
Stratified random sampling, I I, 507, 520 

for attributes. 526---527 
optimum allocation, 523-526 
proportional allocation, 521-523 
reasons for use, 520 

Stream extension, 189 
Structural regression coefficient. 165 
Studentized Range test, 272-273 

shortcut computation using ranges, 275 
table. 568 

Student's r-distribution, 59 
table, 549 

Sub-class numbers 
equal. 475 

equal within rows, 477 
proportional,418 
unequal, 472 

Sub·plots, 369 
Sub-sampling. See Two·stage sampling. 
Sum 

of products, 136 
correction for means, 141 

of squares, 44-45 
correction for mean. 48-49 

Systematic sampling, 519 

t (Student's t.distribution). 59 
tablc, 549 

Tests of significance, 26--30 
goodness of fit test,"f, 84-85 
in analysis of covariance, 42J- 425 
in R x C contingency tables. 250--252 
in 2 x C contingency tables. 238-243. 

246-249 
binomial proportion. 26-28, 211-213 
aU differences among means. 271·-275 
correlation coefficient. 184-188 
difference between means of independent 

samples, 100-105, 114-116 
difference between means of paired sam" 

pies, 93-95, 97-99 
difference between two binomial propor' 

tions, 213-221 
equaHty of two correlated varianl'es, 195r 

197 
equality of two variances, 116 
goodness of fit of distributions. 236-237 
homogeneity of Poisson samples, 232-236 
homogeneity 01 varlances. 296-2913 
linear trend in proportions. 246-148 
linearity of regression. 453-460 
mUltiple correlation coefficient. 402 
rank correlation coefficient, 194-
single ctassifi.~ion with estimated fre­

quencies, 136-238 
single classification with equal frequen­

cles,231-234 
single. cia$Si.fk:ation with specified fre~ 

quencies,228-231 
HeSt based on' range, 120 
test of skewness, 86 
tes'5 of kurtosis, 86--88 

Three-stage sampling, 285-288, 533 
allocation of sample sizes, 533 

TfaOlforrnation, 277 
logarithmic, 329-330 
logit, 494, 497-503 
to remove non-additivity, 331-332 
to stabilize vaOanct. 325 

angular (arcsin), 327-329 
square root. 325-327 



use in fitting non·linear relations, 448-453 
Treatments, definition, 91 
Treatment combination, 340 . 
Tukey's tests for additivity, 331-337 
Two-stage sampling. 528 

reasons for use, 528 
with primary units of equal size. 529-533 
choice of sample and sub-sample sizes. 

531-533 
with primary units of unequal sizes. 534,-

536 
Two-way classifications. frequencies. 238--

243 
R x C tables. 250--253 
sets of 2 x 2 tables. 253--257 
2 x C tables. 238-243. 246--250 
2 x 2 (fourfold) tables. 215---223 

Two-way classifications. measurements 
additivity assumption, 302. 330-334 
analysis of variance. 299- 30 I 
mathematical model. 302-307 
rejection of observations. 321-323 
test of additivity, 331-334 
with unequal numbers. 472 

comphcations involved. 412--415 
equal weights within rows. 477--418 
ieast squares analysis. R x C table. 488-

493 
method of proportional numberi. 478--

483 
R x 2 table. 484-487 
2 x 2 table. 483-484 
unweighted analysis, .75--477 

Two-way classifications, proportions 
analysis in logit scale, 497-50) 
analysis in proportions scale, 495--497 
approaches to analysis. 493--495 

CAL I 

Unbiased estimate. 45 
Uniform distribution. 51 

in relation to roundins errors, 81 
Unweighted means, method of. 475--471 

Variance. 53 
analysis (See Analysis of variance.) 
comparison of two correlated variances, 

195-197 
comparison of two variances, 116 
components (Set! Components of vari· 

anee.) 
confidence interval for, 74 
ofdiffe,...." 100, 104, 106, 115, 190 
of sum, 190 
ratio. F. 265 

distribution under general hypothesis. 
280' 

table. 560--567 
test of homogeneity, 296--298 

Variation. coefficient of. 62 

Weighted mean 
i.n stratified, <;amplmg. 52 \ 
of differences in proportions. 255 
of ratios, 170 
of regression coefficients using estimated 

weights, 438 
of transformed correlations. 187 

Welch-Aspin test. 115 
Wilcoxon signed rank test. 128 

Z or z. standard normal variate. 51 
z-transformalion of a correlation co­

efficient. 1.85 
tables, 55&-559 






