
Journal System Information Business 03(2025)
Copyright ©2024, JSINBIS, p-ISSN: 2502-2377, e-ISSN: 2088-3587

On-line: http://ejournal.undip.ac.id/index.php/jsinbis/article/view/72832

1

Event Driven Architecture Approach for Synchronization

Real Time NeoFeeder PDDIKTI

Sopingia* , Sri Sumarlindab

a,b Universitas Duta Bangsa Surakarta

Submitted April 30th, 2025; Revised: June 12th, 2025;

Accepted: June 19th, 2025; Available Online: September 29th, 2025

DOI: 10.21456/vol15iss1pp21-337

Abstract

This research aims to produce an Event-Driven Architecture based integration model that can increase the efficiency of data

synchronization between the internal academic system and PDDIKTI NeoFeeder. This research uses a Rapid Application

Development approach . The research results show that the system is capable of sending more than 1,000 data per second with

an average latency of 4.05 ms and a response time of under 40 ms. In conclusion , the Event Driven Architecture approach is

capable of helping synchronize academic data to NeoFeeder in real time, but this study has note discussed data consistency

between academic data and data in NeoFeeder. The Higher Education Database (Pangkalan Data Pendidikan Tinggi -

PDDIKTI) plays a vital role as the central information hub for higher education in Indonesia. NeoFeeder serves as middleware

designed to bridge the differences between academic information systems across universities and the centralized PDDIKTI

database. Currently, NeoFeeder operates using a batch system or manual triggers, which may result in delays in data updates

particularly when handling large datasets or sudden changes. To address these limitations, there is a need for a system

architecture that is more adaptive, scalable, and responsive to data changes. This research aims to develop an integration model

based on an Event-Driven Architecture (EDA) to enhance the efficiency of data synchronization between internal academic

systems and NeoFeeder PDDIKTI. The research adopts the Rapid Application Development (RAD) Approach. The results

demonstrate that the system is capable of transmitting over 1,000 data records per second, with an average latency of 4.05

milliseconds and a response time of under 40 milliseconds. In conclusion, the Event-Driven Architecture approach proves

effective in enabling real-time synchronization of academic data with NeoFeeder. However, this study does not yet address

issues related to data consistency between academic systems and the NeoFeeder database.

Keywords : Event Driven, NeoFeeder, Kafka Apache, Synchronization, Real Time

Abstrak

Pangkalan Data Pendidikan Tinggi memiliki peran penting sebagai pusat informasi pendidikan tinggi di Indonesia. NeoFeeder

hadir sebagai middleware untuk menjembatani perbedaan sistem informasi akademik antar perguruan tinggi dengan database

terpusat PDDIKTI. Implementasi NeoFeeder saat ini masih menggunakan sistem batch atau pemicu manual, yang dapat

menyebabkan keterlambatan pembaruan data, terutama jika data besar atau ada perubahan mendadak. Untuk mengatasi hal ini,

diperlukan arsitektur sistem yang lebih adaptive, scalable dan responsive terhadap perubahan data. Penelitian ini bertujuan

untuk menghasilkan model integrasi berbasis Event-Driven Architecture yang dapat meningkatkan efisiensi sinkronisasi data

antara sistem akademik internal dan NeoFeeder PDDIKTI. Penelitian ini menggunakan pendekatan Rapid Application

Development. Hasil penelitian menunjukkan bahwa sistem mampu mengirimkan lebih dari 1.000 data per detik dengan latensi

rata-rata 4,05 ms dan response time di bawah 40 ms. Kesimpulannya, pendekatan Event Driven Architecture mampu dalam

membantu sinkronisasi data akademik ke NeoFeeder secara real time, tetapi dalam penelitian ini belum membahas terkait

konsistensi data antara data akademik dengan data di NeoFeeder.

Kata kunci: Event Driven, NeoFeeder, Kafka Apache, Sinkronisasi, Waktu Nyata.

1. Introduction

The Higher Education Database constitutes a

critical component of Indonesia’s higher education

infrastructure, functioning as a centralized system for

the storage and dissemination of comprehensive

information pertaining to the administration and

delivery of higher education. Within this framework,

NeoFeeder has been introduced as a middleware

solution specifically designed to address the

heterogeneity of academic information systems across

higher education institutions and to facilitate seamless

integration with the centralized PDDIKTI database

(Auliana & Nurasiah, 2018).

 NeoFeeder is expected to facilitate and accelerate

the data reporting process while simultaneously

improving the accuracy and consistency of the

reported data. A well-developed information system

enables an institution to operate effectively, manage

various data processing tasks through the use of

*) Corresponding author: sopingi@udb.ac.id

http://ejournal.undip.ac.id/index.php/jsinbis/article/view/72832

Journal System Information Business 03(2025)
Copyright ©2024, JSINBIS, p-ISSN: 2502-2377, e-ISSN: 2088-3587

On-line: http://ejournal.undip.ac.id/index.php/jsinbis/article/view/72832

2

information technology, and meet users’ needs by

providing a clear understanding of the system design

and its implementation (Rafiezah Rizcha & Yaakub,

2023). According to the NeoFeeder web service

manual, data synchronization from academic

information systems to NeoFeeder is carried out on a

per-record basis and does not yet support batch

synchronization. As a result, the synchronization

process between an institution’s internal systems and

NeoFeeder faces several challenges, particularly

regarding latency, data inconsistency, and the lack of

real-time integration capabilities.

The current integration of NeoFeeder remains

batch-oriented or depends on manual triggering

mechanisms, which may result in delayed data

updates, particularly when handling large-scale

datasets or sudden modifications in academic records.

Such a non-responsive integration architecture

introduces potential risks, including data reporting

inaccuracies and latency in fulfilling reporting

obligations to the national higher education database

(PDDIKTI).

To address these challenges, a more adaptive,

scalable, and data-responsive system architecture is

required-one that can automatically respond to

changes in data without manual intervention. Event-

Driven Architecture (EDA) has emerged as a relevant

and promising solution. In an EDA-based system,

each data change is treated as an event that triggers

specific services to handle synchronization

automatically and in real time, eliminating the need for

manual triggers or scheduled synchronization

routines. An event-based microservices architecture

combines key attributes such as scalability,

maintainability, ease of deployment, resilience, and

reusability (Ubur, 2023).

Through research and development of this system,

it is hoped that an Event - Driven based integration

model or prototype can be produced. Architecture that

is able to increase efficiency and effectiveness in the

data synchronization process between the internal

academic system and NeoFeeder PDDIKTI. Thus, the

higher education information system can move

towards a more modern, real time and responsive

digital transformation to the dynamics of higher

education management.

2. Theoretical Framework

2.1. Event-Driven Architecture

Event-Driven Architecture (EDA) is a software

architecture pattern in which systems are designed

around the production, detection, consumption, and

reaction to events. Each event represents a significant

change in state, such as user input or a modification to

the database (Amazon Web Services, 2024).

According to a global survey conducted by Solace in

2021, 72% of organizations worldwide had adopted

EDA at varying levels of maturity. However, only

13% had reached full maturity, where EDA is

implemented comprehensively across the

organization. The key benefits reported include

improved application responsiveness (46%),

enhanced customer experience (44%), and the ability

to respond to changes in real time (43%) (Solace

Corporation, 2021).

2.2. Web Service

A web service is a software component that

facilitates communication and interaction between

applications over a network, typically using the HTTP

protocol. HTTP enables interoperability among

heterogeneous systems by leveraging open standards

such as XML, JSON, SOAP, and REST (Sopingi,

Setyowati, & Purnomo, 2020). Functioning as a

request-response protocol within the client-server

model, HTTP supports data transfer, request and

response handling, web access, and Hypertext

functionality. Web services enable diverse

applications or systems to exchange data seamlessly

and can be accessed from various devices, anytime

and anywhere, as long as an internet connection is

available.

2.3. NeoFeeder

NeoFeeder is an application launched on February

25, 2022, to assist higher education institutions in

managing and synchronizing data with the national

higher education database (Pangkalan Data

Pendidikan Tinggi – PDDIKTI). The application is

essential for ensuring that data reporting complies

with the Indonesian Ministry of Research,

Technology, and Higher Education Regulation No. 61

of 2016 (Brawijaya & Widodo, 2023). NeoFeeder is

used to manage and transmit structured and verified

data—including information on students, lecturers,

curricula, courses, study plans (KRS), academic

transcripts (KHS), and more—from universities to

PDDIKTI. NeoFeeder is equipped with data

validation features that enable institutions to ensure

the accuracy and compliance of submitted data with

PDDIKTI standards, preventing formatting errors and

meeting government-mandated reporting

requirements. Additionally, NeoFeeder provides a

Web Service API that facilitates semester-based

reporting through integration with academic

information systems (Sistem Informasi Akademik –

SIAKAD).

2.4. Event Streaming

Event streaming refers to the practice of capturing

data in real time from a variety of sources. This

concept enables organizations to access and process

data as it is generated, rather than after it has been

stored in a database (Apache, 2020). The core

components of event streaming include: producers,

which may consist of applications, sensors, or users;

brokers, which function as event bus applications that

http://ejournal.undip.ac.id/index.php/jsinbis/article/view/72832

Journal System Information Business 03(2025)
Copyright ©2024, JSINBIS, p-ISSN: 2502-2377, e-ISSN: 2088-3587

On-line: http://ejournal.undip.ac.id/index.php/jsinbis/article/view/72832

3

manage the flow of events; consumers, which receive

and process the events; and stream processors, which

are responsible for analyzing and transforming

streaming data.

One of the application platforms that is capable of

performing event streaming is Apache Kafka. Apache

Kafka is an open-source solution that can be

developed for real-time data distribution in

environments requiring high availability and low fault

tolerance (Bucur, Stan, & Miclea, 2020). Apache

Kafka is a distributed, publish-subscribe messaging

system that enables data transmission from producers

to consumers, stores data in the form of logs, and

supports high scalability.

Figure 1 illustrates the architecture of Apache

Kafka, which consists of a Kafka cluster a group of

brokers that work collaboratively to provide a

distributed messaging service (Hesse, Matthies, &

Uflacker, 2020). Within this architecture, producers

act as message senders, while consumers serve as

message receivers.

Figure 1. Kafka architecture

(Sharma, 2025)

3. Method

This study focuses on the synchronization between

existing academic information systems and the

NeoFeeder PDDIKTI application using an Event-

Driven Architecture (EDA) approach. The research

adopts the Rapid Application Development (RAD)

methodology. RAD facilitates the accelerated

transformation of user requirements into software

solutions by integrating design, development, and

testing into shorter, iterative phases (Živanović,

Popović, Vorkapić, Pjević, & Slavković, 2020). The

research stages are presented in Figure 2.

Figure 2. Stage study with RAD approach

There are four main phases in this study, the

phrases are:

a. Planning Need

This study utilizes three servers: a server for the

academic information system (SIAKAD), a server

for NeoFeeder, and a server for Apache Kafka as

the event streaming platform. Each server is

interconnected via the internet.

b. Design System

A prototype is developed to conduct early

testing of the core functionality of the event

streaming system in achieving real-time

synchronization. This allows potential errors to be

identified and corrected at an early stage. At this

phase, the prototype is executed using console

commands from Apache Kafka, functioning both

as a producer and a consumer.

c. Development

The applications for the producer and consumer

are developed using the Node.js programming

language. The producer is integrated with

SIAKAD through direct database connections,

while the consumer is integrated with NeoFeeder

via web service calls

d. Implementation

The application is deployed in a real-world

environment to enable automatic and real-time

synchronization from SIAKAD to NeoFeeder. At

this stage, performance testing is also conducted

using the tools org.apache

.kafka.tools.ProducerPerformance and

org.apache.kafka.tools.ConsumerPerformance.

4. Results And Discussion

4.1. Results

The results of the study are as follows:

a. Architecture System

To illustrate the synchronization process

between NeoFeeder and the academic system

using an Event-Driven Architecture (EDA)

approach, the author developed a system

architecture model, as presented in Figure 3

below.:

Figure 3. Architecture synchronization

http://ejournal.undip.ac.id/index.php/jsinbis/article/view/72832

Journal System Information Business 03(2025)
Copyright ©2024, JSINBIS, p-ISSN: 2502-2377, e-ISSN: 2088-3587

On-line: http://ejournal.undip.ac.id/index.php/jsinbis/article/view/72832

4

Whenever a change occurs in the academic

database, the SIAKAD system sends the data to the

Kafka broker via the producer application, without

the need to establish a direct connection to

NeoFeeder. The Kafka broker stores the data in a

log file and queues it for delivery to the consumer

application. Upon receiving the data, the consumer

application automatically forwards it to

NeoFeeder. After receiving a response from

NeoFeeder, the consumer application then updates

the academic database accordingly.

This mechanism significantly improves

synchronization performance in SIAKAD, as it

eliminates the need for SIAKAD to wait for a

response from NeoFeeder. The entire

synchronization process is delegated to the

consumer application. Moreover, SIAKAD is

capable of synchronizing large volumes of data

simultaneously, even though the consumer

application still processes and transmits one record

per request to NeoFeeder.

b. Development System

The producer and consumer applications were

developed using the ExpressJS framework, which

offers efficient capabilities for routing, handling

HTTP requests, and implementing middleware-

based security features (Grudniak & Dzieńkowski,

2021). To connect as a Kafka client, the author

utilized the KafkaJS library, which is known for its

lightweight architecture, flexibility, and lack of

external dependencies (Ornelas, 2023).

The following is a code snippet illustrating the

initialization of the Kafka producer client:

const { Kafka } = require('kafkajs');

const kafka=new Kafka({

 clientId: 'sopingi-kafka-producer',

 brokers: ['ip_server_kafka:9094']

})

Script for Sending Data to the Kafka Broker from

the Producer Application:

const producer_siakad = kafka.producer ()

const topic_siakad = 'sync-siakad'

const connectKafka = async () => {

 await producer_siakad.connect ()

};

connectKafka().catch(console.error);

router.post('/',async function(rq,rs,n)

{

try {

 var data = JSON.stringify (rq.body)

 await producer_siakad.send ({

 topic: 'sync-siakad ',

 compression: CompressionTypes.GZIP,

 messages: [{ value: data }],

 });

rs.send ({ message :'Success'})

 } catch (e) {

 rs.status(500).send({message:'failed'})

 }

}

Script for Initializing the Kafka Consumer Client:

const { Kafka } = require('kafkajs');

const kafka = new Kafka({

 clientId: 'sopingi-kafka-consumer',

 brokers: ['ip_server_kafka:9094']

})

Script for Subscribing to Data from the Kafka

Broker in the Consumer Application:

const consumer_siakad = kafka.consumer({

groupId : 'siakad' });

const topic_siakad = 'sync-siakad'

const connectKafka = async () => {

await consumer_siakad.subscribe ({

 topic:topic_siakad ,

fromBeginning : true

});

await consumer_siakad.run ({

 eachMessage : async ({ data }) => {

 var json = JSON.parse (data.value);

 var neoFeeder = await runWs(json);

 })

};

connectKafka ().catch(console.error);

The synchronization results can be monitored through

a Kafka UI application, as shown in Figure 4. The

Kafka UI provides a visual interface to track the

history of academic data that has been synchronized

with NeoFeeder.

Figure 4. Kafka UI application

http://ejournal.undip.ac.id/index.php/jsinbis/article/view/72832

Journal System Information Business 03(2025)
Copyright ©2024, JSINBIS, p-ISSN: 2502-2377, e-ISSN: 2088-3587

On-line: http://ejournal.undip.ac.id/index.php/jsinbis/article/view/72832

5

c. Testing Performance
The testing performance consists of three key

aspects: producer latency in data transmission, the

volume of data that can be delivered to the

consumer, and the response time of ExpressJS in

executing data delivery from the SIAKAD system.

Producer latency testing was conducted using

org.apache.kafka.tools.ProducerPerformance, a

built-in class provided by Apache Kafka. The test

was performed with 10,000 records at a

throughput rate of 200 records per second. The

results of the producer performance test are

presented in Figure 5.

Figure 5. Test results latency producer

Based on the results, when the producer

transmitted 10,000 records with a throughput of

200 records per second, the average latency was

recorded at 4.05 milliseconds. The consumer

performance was evaluated using the

org.apache.kafka.tools.ConsumerPerformance

class to measure the number of records received

over a 5-second interval. The results of this

evaluation are presented in Table 1.

Table 1. Test Results Customer Performance

Header Value

data.consumed.in.MB 1,9913

MB.sec 0.5654

data.consumed.in.nMsg 10372

nMsg.sec 2944,9177

rebalance.time.ms 3418

fetch.time.ms 104

fetch.MB.sec 19,1475

fetch.nMsg.sec 99730,7692

As shown in Table 1, the consumer was able to

receive an average of 2,944.9 messages per second,

with a total of 10,372 messages received over a 5-

second period.
The performance of ExpressJS in executing data

transmission from the SIAKAD system was evaluated

using Apache JMeter, a tool capable of testing web

service response time performance (Sopingi &

Wulandari, 2023). The response time test was

conducted with 100 requests over a 30-second period,

and the resulting performance graph is presented in

Figure 6.

Figure 6. Graph testing response time

Based on the graph shown in Figure 6, the

maximum response time recorded was 125

milliseconds, while the average response time

remained below 40 milliseconds.

4.1. Discussion

 PDDIKTI (Pangkalan Data Pendidikan Tinggi)

serves as the national higher education data center

managed by the Indonesian Ministry of Education,

Culture, Research, and Technology

(Kemendikbudristek). Its main function is to collect

and manage data related to all higher education

activities in Indonesia. The PDDIKTI business

process model consists of the following stages: 1)

Data collection, which includes student records,

lecturer profiles, curriculum structures, course

information, class schedules, grades, student

activities, and enrollment status from higher education

institutions. 2) Data processing and validation,

conducted by both the respective institutions and the

PDDIKTI system. 3) Data reporting and utilization,

which supports official reporting, accreditation (e.g.,

BAN-PT), tracer studies, and national higher

education policy-making.
NeoFeeder, on the other hand, is a supporting tool

implemented at the institutional (campus) level to

manage and report data to PDDIKTI in a standardized

and routine manner. The NeoFeeder business process

includes: 1) Data synchronization from the academic

information system (SIAKAD) to the NeoFeeder

application. 2) Data management, including students,

lecturers, curricula, courses, class schedules, grades,

student activities, and academic status, either directly

or through API integration with the institution’s

information system. 3) Local data validation, followed

by uploading the verified data to the central PDDIKTI

system through a synchronization mechanism. 4) Data

status monitoring, which involves tracking

synchronization success, identifying errors, and

performing data corrections when necessary.

Based on the results of this study and performance

testing, the Event-Driven Architecture (EDA)

approach demonstrated excellent performance in

enabling real-time and automated synchronization of

academic data without requiring manual triggers. The

http://ejournal.undip.ac.id/index.php/jsinbis/article/view/72832

Journal System Information Business 03(2025)
Copyright ©2024, JSINBIS, p-ISSN: 2502-2377, e-ISSN: 2088-3587

On-line: http://ejournal.undip.ac.id/index.php/jsinbis/article/view/72832

6

system achieved a data transmission rate of over 1,000

records per second, with an average latency of 4.05

milliseconds and an average response time of less than

40 milliseconds. These findings are supported by

previous research, which has shown that event

streaming platforms such as Apache Kafka offer high

throughput performance (Köstler, Reiser, Habiger, &

Hauck, 2021). Similarly, Luan Lazzari concluded that

event-driven applications provide faster

responsiveness to data changes (Lazzari & Farias,

2023). Moreover, the response time testing using the

ExpressJS framework also demonstrated strong

performance for synchronization tasks, consistent

with the findings of Prayogi, who reported that

ExpressJS could achieve 100% throughput under

high-load conditions (Prayogi, Niswar, Indrabayu, &

Rijal, 2020).
In contrast to previous research conducted by Irfan

Darmawan et al., which also focused on

synchronization of PDDIKTI reporting, their study

utilized GraphQL and REST-based methods. The

results indicated that the response time for 1,000

requests using GraphQL reached 11,862 milliseconds,

while REST recorded a response time of 18,202

milliseconds (Darmawan, Rahmatulloh, & Gunawan,

2022).

Compared to their findings, the results of the

present study demonstrate significantly better

performance, with faster response times and lower

latency, highlighting the efficiency of the Event-

Driven Architecture and event streaming approach

implemented in this research.

5. Conclusion

The Event-Driven Architecture (EDA) approach

has proven effective in supporting real-time

synchronization of academic data to NeoFeeder,

achieving an average latency of 4.05 milliseconds and

an average response time below 40 milliseconds.

However, the author acknowledges that this study did

not address the issue of data consistency between the

academic database and NeoFeeder. Therefore, it is

recommended that future research focuses on

developing a synchronization mechanism that ensures

data consistency between the institutional academic

system and the NeoFeeder platform.

Acknowledgement

The writers would like to express sincere

appreciation and gratitude to Universitas Duta Bangsa

Surakarta for providing the necessary facilities,

including server infrastructure, internet access, and

data resources used for system testing.

Bibliography

Amazon Web Services, I. (2024, November 22). What

is EDA (Event-Driven Architecture)? Retrieved

March 15, 2025, from

https://aws.amazon.com/what-is/eda/

Apache, K. (2020, June 25). What is event streaming.

Retrieved March 15, 2025, from Kafka website:

https://kafka.apache.org/intro

Auliana, S., & Nurasiah, I. (2018). Penerapan

Knowledge Management pada Proses Pelaporan

Data Perguruan Tinggi (Studi Kasus di STIE

Bina Bangsa). Indonesian Journal of Strategic

Management, 1(1), 3–12.

https://doi.org/10.25134/ijsm.v1i1.838

Brawijaya, H., & Widodo, S. (2023). Implementation

of PDDIKTI Neo Feeder Web Service in

Recording of Independent Campus Activities.

Jurnal Riset Informatika, 5(2), 203–210.

Bucur, V., Stan, O., & Miclea, L. (2020). An Analysis

of the Implementation of Kafka in High-

Frequency Electronic Trading Environments.

International Journal of Modeling and

Optimization, 10(2), 52–56.

https://doi.org/10.7763/IJMO.2020.V10.746

Darmawan, I., Rahmatulloh, A., & Gunawan, R.

(2022). Web Service Modeling for GraphQL

Based College Data Service Access. 2022

International Conference Advancement in Data

Science, E-Learning and Information Systems

(ICADEIS), 1–6. IEEE.

https://doi.org/10.1109/ICADEIS56544.2022.1

0037508

Grudniak, M., & Dzieńkowski, M. (2021). REST API

performance comparison of web applications

based on JavaScript programming frameworks.

Journal of Computer Sciences Institute, 19,

121–125. https://doi.org/10.35784/jcsi.2620

Hesse, G., Matthies, C., & Uflacker, M. (2020). How

Fast Can We Insert? An Empirical Performance

Evaluation of Apache Kafka. 2020 IEEE 26th

International Conference on Parallel and

Distributed Systems (ICPADS), 641–648. IEEE.

https://doi.org/10.1109/ICPADS51040.2020.00

089

Köstler, J., Reiser, H. P., Habiger, G., & Hauck, F. J.

(2021). SmartStream: towards byzantine

resilient data streaming. Proceedings of the 36th

Annual ACM Symposium on Applied

Computing, 213–222. New York, NY, USA:

ACM.

https://doi.org/10.1145/3412841.3441904

Lazzari, L., & Farias, K. (2023, August 10).

Uncovering the Hidden Potential of Event-

Driven Architecture: A Research Agenda.

https://doi.org/10.48550/arXiv.2308.05270

Ornelas, T. (2023, February). Kafkajs, a Modern

Apache Kafka Client for Node.Js. Retrieved

March 28, 2025, from https://kafka.js.org

Prayogi, A. A., Niswar, M., Indrabayu, & Rijal, M.

(2020). Design and Implementation of REST

API for Academic Information System. IOP

Conference Series: Materials Science and

http://ejournal.undip.ac.id/index.php/jsinbis/article/view/72832
https://aws.amazon.com/what-is/eda/
https://kafka.apache.org/intro
https://doi.org/10.25134/ijsm.v1i1.838
https://doi.org/10.7763/IJMO.2020.V10.746
https://doi.org/10.1109/ICADEIS56544.2022.10037508
https://doi.org/10.1109/ICADEIS56544.2022.10037508
https://doi.org/10.35784/jcsi.2620
https://doi.org/10.1109/ICPADS51040.2020.00089
https://doi.org/10.1109/ICPADS51040.2020.00089
https://doi.org/10.1145/3412841.3441904
https://doi.org/10.48550/arXiv.2308.05270
https://kafka.js.org/

Journal System Information Business 03(2025)
Copyright ©2024, JSINBIS, p-ISSN: 2502-2377, e-ISSN: 2088-3587

On-line: http://ejournal.undip.ac.id/index.php/jsinbis/article/view/72832

7

Engineering, 875(1), 012047.

https://doi.org/10.1088/1757-

899X/875/1/012047

Rafiezah Rizcha, Y., & Yaakub, S. (2023). Sistem

Informasi Manajemen Sumber Daya Manusia

Pada Universitas Muhammadiyah Jambi. Jurnal

Manajemen Sistem Informasi, 8(1), 78–93.

https://doi.org/10.33998/jurnalmsi.2023.8.1.76

5

Sharma, A. (2025, April 4). Apache Kafka: A Deep

Dive into Its Architecture and Workflow.

Retrieved June 15, 2025, from Medium website:

https://medium.com/@minervaaniket/apache-

kafka-a-deep-dive-into-its-architecture-and-

workflow-510709dff298

Solace Corporation. (2021, August). Results from the

Industry’s First Event-Driven Architecture

Survey. Retrieved March 15, 2025, from

https://solace.com/event-driven-architecture-

statistics

Sopingi, S., & Wulandari, S. (2023). Integrasi Sistem

Pembelajaran dengan Google Classroom

melalui Google Apps Script. 6(2), 195–206.

https://doi.org/https://doi.org/10.31764/justek.v

6i2.15061

Sopingi, Setyowati, R., & Purnomo, S. (2020).

Pengembangan Web Service Digital

Assessment Test of English for International

Communication (TOEIC). Jurnal E-Komtek

(Elektro-Komputer-Teknik), 4(1), 75–90.

https://doi.org/10.37339/e-komtek.v4i1.232

Ubur, S. D. (2023, March 2). Reviewing the Scope and

Impact of Implementing a Modernised IT

Event-Driven Architecture from Traditional

Architecture using Agile Frameworks: A Case

study of Bimodal operational strategy.

https://doi.org/10.48550/arXiv.2303.12082

Živanović, S., Popović, M., Vorkapić, N., Pjević, M.,

& Slavković, N. (2020). An overview of rapid

prototyping technologies using subtractive,

additive and formative processes. FME

Transactions, 48(2), 246–253.

https://doi.org/10.5937/fmet2001246Z

http://ejournal.undip.ac.id/index.php/jsinbis/article/view/72832
https://doi.org/10.1088/1757-899X/875/1/012047
https://doi.org/10.1088/1757-899X/875/1/012047
https://doi.org/10.33998/jurnalmsi.2023.8.1.765
https://doi.org/10.33998/jurnalmsi.2023.8.1.765
https://medium.com/@minervaaniket/apache-kafka-a-deep-dive-into-its-architecture-and-workflow-510709dff298
https://medium.com/@minervaaniket/apache-kafka-a-deep-dive-into-its-architecture-and-workflow-510709dff298
https://medium.com/@minervaaniket/apache-kafka-a-deep-dive-into-its-architecture-and-workflow-510709dff298
https://solace.com/event-driven-architecture-statistics
https://solace.com/event-driven-architecture-statistics
https://doi.org/https:/doi.org/10.31764/justek.v6i2.15061
https://doi.org/https:/doi.org/10.31764/justek.v6i2.15061
https://doi.org/10.37339/e-komtek.v4i1.232
https://doi.org/10.48550/arXiv.2303.12082
https://doi.org/10.5937/fmet2001246Z

