Segmentasi Thresholding untuk Pemilihan Kualitas Telur Asin

*Oky Dwi Nurhayati orcid scopus  -  Diponegoro University, Indonesia
Diana Nur Afifah  -  Universitas Diponegoro, Indonesia
Nuryanto .  -  Universitas Diponegoro, Indonesia
Ninik Rustanti  -  Universitas Diponegoro, Indonesia
Received: 9 Jan 2018; Published: 30 Apr 2018.
Open Access
Citation Format:
Article Info
Section: Research Articles
Language: EN
Full Text:
Statistics: 811 559
Abstract

Visually, choosing the quality of salted eggs by looking at egg shells is something that is very difficult to do. In addition, the lighting and the weakness of the senses of vision also becomes difficult to see the quality of salted eggs visually. So far, to determine a good salted egg, only known from the weight of eggs. Not all eggs that have mild density have poor quality. So far, suppliers often get eggs that have bad quality (broken) so that when processed will produce defective salted eggs. The goal achieved as an effort to improve the quality of this production is software design to know the quality of salted eggs. Quality selection technology involves image processing techniques such as gray imagery, histogram equalization, P-Tile segmentation, and first-order statistical feature extraction that serves to recognize the type of egg image quality. The results obtained with the application of image processing techniques have a fairly good accuracy to determine the quality of salted eggs into two good and bad conditions.

Keywords
Quality Of Salted Egg, P-Tile, First Order Statistical Feature Extraction, Histogram Equalization

Article Metrics:

  1. Ahmad, U., 2005, Pengolahan Citra Digital & Teknik Pemrogramannya, Graha Ilmu, Yogyakarta.
  2. Arivazhagan, S., R.Newlin Shebiah, H.Sudharsan, R. Rajesh Kannan, R. Ramesh, 2013, External and Internal Defect Detection of Egg using Machine Vision, Journal of Emerging Trends in Computing and Information Sciences, Vol. 4, No. 3, March
  3. Cholifah, S., dan Yudha P., 2013, Perancangan Sistem Identifikasi Fertilitas dan Daya Tetas Telur Itik Berbasis Digital Image Processing, ITS-paper-32067-2509100160-paper, diakses tanggal 16 februari 2017
  4. Dehrouyeh, M.H., M. Omid, H. Ahmadi, S.S. Mohtasebi, M. Jamzad, 2010, Grading and Quality Inspection of Defected Eggs Using Machine Vision, International Journal of Advanced Science and Technology, Vol.17, April
  5. Egg Nutrition, Internet: www.eggs.ca diakses 2 Juni 2017
  6. Gonzalez, R.C and Rafael E.W, 2008, Digital Image Processing, Prentice-Hall, Inc., United State, America.
  7. Harsadi, P., 2014, Deteksi Embrio Ayam Berdasarkan Citra Grayscale Menggunakan K-Means Automatic Thresholding, J. Ilmiah Sinus, vol.12, 2014.
  8. Khabibulloh, M.A., A. Kusumawardhani, D.Y.Pratama, 2012, Rancang Bangun Sistem Deteksi Embrio Pada Telur Menggunakan Webcam, Jurnal Teknik Pomits, Vol. 1, No. 1, pp.1-6, 2012
  9. Munir, R., 2004, Pengolahan Citra Digital dengan Pendekatan Algoritmik, Informatika Bandung.
  10. Nurhayati, O. D., 2015, Sistem Analisis Tekstur Secara Statistik Orde Pertama Untuk Mengenali Jenis Telur Ayam Biasa dan Telur Ayam Omega-3, Jurnal Sistem Komputer (JSISKOM), Vol. 5, No. 2, November 2015.
  11. Rukmiasih,N.Uludi,W.Indriani, 2015, Sifat Fisik, Kimia dan Organoleptik Telur Asin Melalui Penggaraman dengan Tekanan dan Konsentrasi Garam yang Berbeda, Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan, Vol. 03 No. 3, Oktober, pp. 142-145
  12. Rosindah, O., 2014, Aplikasi Mobile Untuk Identifikasi Fertilitas Telur dengan Segmentasi Citra Menggunakan Bahasa Java dan Library OpenCV, Skripsi S-1, Universitas Gunadarma, Jakarta.
  13. Sancoko, R.A.A., dan E.Puspita, 2011, Pendeteksi Embrio Dalam telur Menggunakan Metode Image Processing, digilib.its.ac.id/public/ITS-paper-23276-2408100073-Paper.pdf diakses 16 Februari 2017.
  14. Sutoyo, T., E. Mulyanto, V. Suhartono, O.D Nurhayati, dan Wijanarto, 2009, Teori Pengolahan Citra Digital, Penerbit Andi, Yogyakarta.
  15. Zhu, Z., dan Meihu Ma, 2011, The identification of white fertile eggs prior to incubation based on machine vision and least square support vector machine, African Journal of Agricultural Research, Vol. 6(12), pp. 2699-2704, 18 June.
  16. Wulandari Z, Rukmiasih, T Suryati, C Budiman, N Ulupi, 2014, Tehnik pengolahan Telur dan daging Unggas, IPB Press. Bogor