BibTex Citation Data :
@article{JSINBIS27085, author = {Chrisdano Dasmasela and Irwan Sembiring and Hindriyanto Purnomo}, title = {Sistem Peringatan Dini Rawan Bencana Longsor Di Kota Ambon menggunakan IoT}, journal = {JSINBIS (Jurnal Sistem Informasi Bisnis)}, volume = {10}, number = {2}, year = {2020}, keywords = {GIS; IoT; Landslide; Early Warning System.}, abstract = { Landslide disasters not only cause property losses but also have a multidimensional impact, for example people's psychology becomes disrupted, relocation of residential settlements and even disruption of investment as capital for economic development in Ambon City. This research aims to design a early warning system for landslide prone disasters in Ambon city and analysis using IoT . The results of the analysis use satellite landsat imagery as supporting spatial data with overlay indicators for landslide causes, including: rainfall, soil type, slope, population and land cover combined with placing IoT devices in landslide prone areas resulting in an early warning system for landslides. This IoT device uses a soil moisture sensor to read soil moisture and an MPU6050 accelerometer sensor to read soil movements. The results of the two sensors if they meet the criteria for landslide prone will be processed and sent as a notification to the smartphone. This research produces a landslide detection system starting from the analysis of landslide hazard maps to using sensors to detect landslide symptoms and then sending notification as a danger sign. }, issn = {2502-2377}, pages = {220--227} doi = {10.21456/vol10iss2pp220-227}, url = {https://ejournal.undip.ac.id/index.php/jsinbis/article/view/27085} }
Refworks Citation Data :
Landslide disasters not only cause property losses but also have a multidimensional impact, for example people's psychology becomes disrupted, relocation of residential settlements and even disruption of investment as capital for economic development in Ambon City. This research aims to design a early warning system for landslide prone disastersin Ambon city and analysis using IoT.The results of the analysis use satellite landsat imagery as supporting spatial data with overlay indicators for landslide causes, including: rainfall, soil type, slope, population and land cover combined with placing IoT devices in landslide prone areas resulting in an early warning system for landslides. This IoT device uses a soil moisture sensor to read soil moisture and an MPU6050 accelerometer sensor to read soil movements. The results of the two sensors if they meet the criteria for landslide prone will be processed and sent as a notification to the smartphone. This research produces a landslide detection system starting from the analysis of landslide hazard maps to using sensors to detect landslide symptoms and then sending notification as a danger sign.
Article Metrics:
Last update:
Penulis yang mengirimkan naskah harus memahami dan menyetujui bahwa jika diterima untuk dipublikasikan, hak cipta dari artikel adalah milik JSINBIS dan Universitas Diponegoro sebagai penerbit jurnal.Hak cipta (copyright) meliputi hak eksklusif untuk mereproduksi dan memberikan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm dan setiap reproduksi lain yang sejenis, serta terjemahan. Penulis mempunyai hak untuk hal-hal berikut:
JSINBIS dan Universitas Diponegoro serta Editor melakukan segala upaya untuk memastikan bahwa tidak ada data, pendapat atau pernyataan yang salah atau menyesatkan yang dipublikasikan di jurnal ini. Isi artikel yang diterbitkan di JSINBIS adalah tanggung jawab tunggal dan eksklusif dari masing-masing penulis.
View My Stats This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.