skip to main content

Kombinasi Modified K-Nearest Neighbor dan Certainty Factor untuk Peningkatan Akurasi Diagnosis Malnutrisi

*Hulwani Zati  -  Magister Sistem Informasi, Universitas Diponegoro, Gedung TTB-B, Lantai 6 Jl. Imam Bardjo SH No. 5, Semarang, Jawa Tengah 50241, Indonesia
Sediyono Eko  -  Sekolah Pasca Sarjana Magister Sistem Informasi, Universitas Diponegoro, Gedung TTB-B, Lantai 6 Jl. Imam Bardjo SH No. 5, Semarang, Jawa Tengah 50241, Indonesia
Surarso Bayu  -  Sekolah Pasca Sarjana Magister Sistem Informasi, Universitas Diponegoro, Gedung TTB-B, Lantai 6 Jl. Imam Bardjo SH No. 5, Semarang, Jawa Tengah 50241, Indonesia
Open Access Copyright (c) 2024 Jurnal Sistem Informasi Bisnis

Citation Format:
Abstract
Malnutrition remains a major public health challenge in low and middle-income countries. This research proposes a method for diagnosing malnutrition diseases by combining Certainty Factor (CF) and Modified K-Nearest Neighbor (MKNN). CF is used to obtain certainty values from the symptoms experienced by patients, while MKNN classifies patient symptom data into specific disease classes based on proximity to the training data. The symptom CF values are combined with the rule CFs to obtain the final CF for each disease. The patient's CF data becomes the testing data, while the disease dataset is the training data. The MKNN technique involves calculating the Euclidean distance, validity, and applying weight voting to identify the class to which the testing data belongs based on the majority class of the k nearest training data. In the test case, CF indicated a tendency towards Kwashiorkor, reinforced by MKNN with the majority of the nearest training data classified as Kwashiorkor. Cross-validation testing with 20 testing data resulted in an accuracy of 95% for the combined CF-MKNN method. The combination of the two methods mutually reinforces and increases the confidence in the diagnosis.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Turnitin Check
Subject
Type Other
  Download (2MB)    Indexing metadata
Keywords: Certainty Factor; Malnutrisi; Modified K-Nearest Neighbor; Sistem Pakar

Article Metrics:

  1. Ayyad, S.M., Saleh, A.I., Labib, L.M., 2019. Gene Expression Cancer Classification using Modified K-Nearest Neighbors Technique. Biosystems, 176, 41-51. https://doi.org/10.1016/j.biosystems.2018.12.009
  2. Bakthavachalam, M.D., Albert S., Raj, A., 2020. A Study on Breast Cancer Analysis by using K-Nearest Neighbor with Different Distances and Classification Rules using Machine Learning. European Journal of Molecular and Clinical Medicine, 7(3), 4842-4851
  3. Cholissodin, I., Evanita, F.M., Tedjasulaksana, J.J., Wahyuditomo, K.W., 2021. Klasifikasi Tingkat Laju Data Covid-19 untuk Mitigasi Penyebaran Menggunakan Metode Modified K-Nearest Neighbor (MKNN). Jurnal Teknologi Informasi dan Ilmu Komputer, 8(3), 595-600. https://doi.org/10.25126/jtiik.2021834400
  4. Halfon, P., Penaranda, G., Ringwald, D., Retornaz, F., Boissel, N., Bodard, S., Feryn, J.M., Bensoussan, D., Cacoub, P., 2024. Laboratory Tests for Investigating Anemia: From an Expert System to Artificial Intelligence. Practical Laboratory Medicine, 39, e00357. https://doi.org/10.1016/j.plabm.2024.e00357
  5. Ibtasam, M., 2021. Accuracy Measurements and Decision Making by Naïve Bayes and Forward Chaining Method to Identify the Malnutrition Causes and Symptoms. Scientific Journal of Informatics, 8(2), 320-324. https://doi.org/10.15294/sji.v8i2.29317
  6. Meidelfi, D., Alfarissy, S., Fauzi, A., Azura, R., 2021. Sistem Pakar Mendeteksi Malnutrisi pada Remaja dengan Metode Forward Chaining. Jurnal Teknologi Informasi dan Komunikasi, 11(1), 25. http://dx.doi.org/10.35585%2Finspir.v11i1.2608
  7. Rojas, J.S., Rendon, A., Corrales, J.C., 2019. Consumption Behavior Analysis of Over the Top Services: Incremental Learning or Traditional Methods?. IEEE Access, 7, 136581-136591. https://doi.org/10.1109/ACCESS.2019.2942782
  8. Saputri, A.E., Sevani, N., Saputra, F., Sali, R.K., 2020. Using Certainty Factor Method to Handle Uncertain Condition in Hepatitis Diagnosis. ComTech: Computer, Mathematics and Engineering Applications, 11(1), 1-10. https://doi.org/10.21512/comtech.v11i1.5903
  9. Sari, R.D., Rahmadani, R., Putri, T.T.A., Hutahaean, H.D., Sriadhi, S., 2020. Certainty Factor and Dempster-Shafer Method Analysis for Early Detection of Final Year Student Depression. IOP Conference Series: Materials Science and Engineering, 830(3), 1-7. https://doi.org/10.1088/1757-899X/830/3/032007
  10. Stadnyk, M., Fryz, M., Zagorodna, N., Muzh, V., Kochan, R., Nikodem, J., Hamera, L., 2022. Steady State Visual Evoked Potential Classification by Modified KNN Method. Procedia Computer Science, 207, 71-79. https://doi.org/10.1016/j.procs.2022.09.039
  11. Sumiati, Saragih, H., Rahman, T.K.A., Triayudi, A., 2021. Expert System for Heart Disease Based on Electrocardiogram Data using Certainty Factor with Multiple Rule. IAES International Journal of Artificial Intelligence, 10(1), 43-50. https://doi.org/10.11591/ijai.v10.i1.pp43-50
  12. Swinburn, B.A., et al., 2019. The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. The Lancet, 393 (10173), 791-846. https://doi.org/10.1016/S0140-6736(18)32822-8
  13. Talukder, A., Ahammed, B., 2020. Machine Learning Algorithms for Predicting Malnutrition Among Under-Five Children in Bangladesh. Nutrition, 78, 110861. https://doi.org/10.1016/j.nut.2020.110861
  14. Vahedifar, M. A., Akhtarshenas, A., Sabbaghian, M., Rafatpanah, M. M., Toosi, R., 2023. Information Modified K-Nearest Neighbor. http://arxiv.org/abs/2312.01991
  15. Victora, C.G., Christian, P., Vidaletti, L.P., Gatica-Domínguez, G., Menon, P., Black, R.E., 2021. Revisiting Maternal and Child Undernutrition in Low-Income and Middle-Income Countries: Variable Progress Towards an Unfinished Agenda. The Lancet, 397(10282), 1388-1399. https://doi.org/10.1016/S0140-6736(21)00394-9
  16. Wafi, M., Faruq, U., Supianto, A.A., 2019. Automatic Feature Selection for Modified K-Nearest Neighbor to Predict Student’s Academic Performance. IEEE. https://doi.org/10.1109/SIET48054.2019.8986074

Last update:

No citation recorded.

Last update: 2025-01-13 23:12:03

No citation recorded.