skip to main content

Harvest Data Processing Information System for Rice Productivity Prediction in Indramayu Regency

*Riyan Farismana  -  Politeknik Negeri Indramayu, Jl. Raya Lohbener Lama No. 8, Indramayu, West Java, Indonesia, 45252, Indonesia
Debi Nabilah Sholihah  -  Politeknik Negeri Indramayu, Jl. Raya Lohbener Lama No. 8, Indramayu, West Java, Indonesia, 45252, Indonesia
Sonty Lena  -  Politeknik Negeri Indramayu, Jl. Raya Lohbener Lama No. 8, Indramayu, West Java, Indonesia, 45252, Indonesia
Open Access Copyright (c) 2025 Jurnal Sistem Informasi Bisnis

Citation Format:
Abstract

Rice plants that are processed into rice are the staple food of the Indonesian people, and the lack of rice production will have an impact on weakening national food security. Efforts that can be made are to process harvest data in national rice barn areas such as Indramayu Regency properly. So far, there are still many errors and differences in harvest data both by agencies and original data in the field. Differences in data cause inaccurate harvest data to be used as a reference for policies or to see the potential of rice in Indramayu. This study aims to build a website-based data processing information system so that it can be accessed and managed by agricultural officers in all sub-districts in Indramayu, and the agricultural service as admin, so that the data produced is accurate data and provides predictions of harvest results, and makes predictions of future harvests based on harvest data, land area and rainfall that affect the rice harvest in Indramayu using fuzzy tsukamoto. From the predictions made, there are 16 sub-districts that have the potential to experience a decrease in harvest from 31 sub-districts in Indramayu. This information system also displays harvest data and graphs based on year and sub-district in Indramayu so that the increase or decrease in harvest in previous years can be seen compared to predictions for the coming year.

Fulltext View|Download
Keywords: Harvest Data Processing; Rice Productivity Prediction; Indramayu Regency; Fuzzy Tsukamoto; Web-Based Information System

Article Metrics:

  1. T Wibowo., Pembangunan Ekonomi Pertanian Digital Dalam Mendukung Ketahanan Pangan (Studi di Kabupaten Sleman: Dinas Pertanian, Pangan, dan Perikanan, Daerah Istimewa Yogyakarta). Jurnal Ketahanan Nasional. 26(2), 204-228. https://doi.org/10.22146/jkn.57285
  2. Azzahra DM, Amir A, Siti., 2012. Faktor-faktor yang mempengaruhi impor beras di Indonesia. Journal Perdagangan Industri dan Moneter. 9(3), 181-192. https://doi.org/10.22437/pim.v9i3.14642
  3. Bahtiar A., 2023 Prediksi Hasil Panen Padi Tahun 2023 Menggunakan Metode Regresi Linier Di Kabupaten Indramayu. Jurnal Informatika Terpadu. 9(1), 18–23. https://doi.org/10.54914/jit.v9i1.657
  4. Henny K, Kharismawati D, Karjati D., 2021. Pengaruh Luas Lahan dan Jumlah Tenaga Kerja terhadap Produksi Padi di 10 Kabupaten Jawa Timur Tahun 2014-2018. Jurnal Ilmu Ekonomi. 3(2) 146-162. http://dx.doi.org/10.30742/economie.v3i1.1571
  5. E Ria Matulessy & A Uliarta Tambunan., 2023. Analisis Regresi PLS Sebagai Alternatif Dari Regresi Linear Berganda: Studi Kasus Pengaruh Luas Lahan dan Luas Panen Terhadap Produksi Padi di Kabupaten Manokwari. Jurnal Pendidikan dan Konseling(JPDK). 5(1), 3358-3361. https://doi.org/10.31004/jpdk.v5i1.11379
  6. Ofdiansyah R, Sumarna P, Mahmud Y, Dwimartina F., 2023 Performa Agronomi Beberapa Galur Harapan Tanaman Padi (Oryza Sativa L.) Pada Lahan Sawah Tadah Hujan Di Desa Kendayakan Kecamatan Terisi. Jurnal Argo Wiralodra.6(2),40–45. https://doi.org/10.31943/agrowiralodra.v6i2.99
  7. Mujio M, Sitorus SRP, Sodikin S. 2022. Suitability Of Existing Landuse With Legal Spacial Order Of Rtrw In Indramayu Regency West Java. Jurnal Ilmu Lingkungan. 6(2), 179-189. DOI 10.31258/jil.16.2.p.179-189
  8. M Wahyu Prayitno, H Toiba, R Hartono., 2021. Strategi Adaptasi Perubahan Iklim: Faktor yang Mempengaruhi dan Manfaat Penerapannya. Jurnal Ekonomi Pertanian dan Agribisnis. 5(4), 1169-1178. https://doi.org/10.21776/ub.jepa.2021.005.04.19
  9. Norvindes Dellas D, Purnamasari I., Rizki NA., 2020. Fuzzy Inference System Menggunakan Metode Tsukamoto untuk Pengambilan Keputusan Produksi (Studi Kasus: PT Waru Kaltim). Jurnal METIK. 4(2), 76-82. https://doi.org/10.47002/metik.v4i2.171
  10. Sapura L, Sinaga A, Siahaan F., 2020. Penerapan Sistem Fuzzy Tsukamoto Dalam Memperkirakan Hasil Produksi Padi. BRAHMANA: Jurnal Penerapan Kecerdasan Buatan. 1(2), 126–30. https://doi.org/10.30645/brahmana.v1i2.29
  11. U Sholihah., 2022. Penerapan Logika Fuzzy Tsukamoto untuk Memprediksi Curah Hujan di Kabupaten Kotawaringin Timur. EJECTS : E-Journal Computer, Technology and Informations System. 1(2), 78-86
  12. Purba MM, Katuju I., 2023. Perancangan Sistem Pengolahan Data Panen Berbasis Web Pada Kelompok Tani Harvest Mind. JSI (Jurnal Sistem Informasi) Universitas Suryadarma. 10(2), 187–208. https://doi.org/10.35968/jsi.v10i2.1087
  13. Murtopo, A. A., Aslam, M. N., Andriani, W., & Gunawan, G., 2024. Application of fuzzy tsukamoto method in forecasting weather . Jurnal Mandiri IT. 13(1), 116–126. https://doi.org/10.35335/mandiri.v13i1.305
  14. Mufti Anindya D, Laily Fithri D., 2023. Sistem Penentuan Jumlah Produksi Sirup Parijotho Menggunakan Metode Fuzzy Tsukamoto. Journal of Software Engineering Ampera. 4(2), 106–118. https://doi.org/10.51519/journalsea.v4i2.501
  15. Davvaz B, Mukhlash I, Soleha S., 2021. Himpunan Fuzzy dan Rough Sets. Limits: Journal of Mathematics and Its Applications. 8(1), 79-94. http://dx.doi.org/10.12962/limits.v18i1.7705
  16. Wijaya CF, Magdalena L, Ilyasa R., 2021. Sistem Prediksi Kondisi Kesehatan Pasien Penderita Talasemia dengan Menggunakan Logika Fuzzy Tsukamoto. Jurnal Teknik Informatika dan Sistem Informasi. 7(3), 565-582. https://doi.org/10.28932/jutisi.v7i3.3924
  17. Andy A, S, Tanzil M, F, Ari E, Marhendraputro S., 2022. Sistem Pendukung Keputusan Penyakit Stroke menggunakan Metode Fuzzy Tsukamoto dengan Basis Pengetahuan Framingham Risk Score. Jurnal Edukasi dan Penelitian Informatika. 8(2), 214-226. https://doi.org/10.26418/jp.v8i2.56362
  18. Erwin M, 2021. Aplikasi Sistem Precision Agriculture Dengan Menggunakan Teknologi Google Earth Api Dan Database Oracle. Jurnal ELKO (Elektrikal dan Komputer). 2(1), 58-70. https://doi.org/10.54463/je.v2i1.8

Last update:

No citation recorded.

Last update: 2025-06-14 03:55:46

No citation recorded.