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The towing hook on the tugboat has a function to pull the barge. Because of this ability, a good towing
hook construction is needed to work optimally. Indications for the good construction is the value of
fatigue life, which is more than the value of design life of 20 years. A towing hook detail on tugboat
from PT. Asia Aditama Shipyard Balikpapan was selected as an example.This study aims to obtain the
value of fatigue life based on the total resistance calculated by BHP data in full, 75%, and 50% of the total
displacement volume and estimate the maximum size of a barge, based on maximal towing pull
capacity. The benefits of this research are providing information about the fatigue life of a towing hook,
analyzing several possible load cases, and giving the recommendation of the maximum principal
dimensions of the barge that the towing hook can be pulled. The method used in this study is the finite
element method using ANSYS, the fatigue life calculation approach is the Palmgren Miner cumulative
damage method and refers to the DNVGL rule. The results of the calculation of fatigue life in the
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1. Introduction

Many industries require the calculation of structural fatigue life. These industries are not only in the shipbuilding
industry [1],[2],[3], but also aircraft [4], the automotive industry [5], or manufacture [6], Therefore, it is important to study
and calculate the fatigue life of a structure. These studies are especially the failure related to structural fatigue that can trigger
an accident.

Some accidents that occur are caused by fatigue. One of them is the failure of the towing system, which caused an
accident on the truck vehicles on the road [7], Based on visual inspection and accident modelling, the researchers found the
accident's cause, which is the failure of the eyebolt connected to the hook on the A-frame trailer, after one year of use. Bolts
undergo a rapid degradation process due to wear and cyclic loads, thereby increasing excess gaps. A failure like this can also
happen to ships [8],

Moan [8] explained that the first rule for offshore structures that included fatigue requirements was published around
1970. This rule was refined after the failure of Ranger I and Alexander L. Kielland s semi-submersible jack-ups in 1979 and
1980. This accident made the fatigue analysis and calculation of fatigue life on ships essential.

Fatigue is an important criterion for evaluating ship structure. There are two methods for calculating fatigue life, namely
deterministic and spectral methods. With a spectral approach, calculation of the vertical and horizontal bending moments
induced by waves under two loading conditions, and the non-operating time is taken into account [9], In this research, the
fatigue life calculation approach using Palmgren Miner cumulative damage was carried out. One other method used to
predict fatigue life is to consider crack growth, especially in weld joints [10],

Calculation of fatigue life is usually done at weld joints. In the welded joint, there are effects of material properties,
loading, geometric shapes, residual stress, and the consequences of failure in welding [11]. This failure has led to much
research focused on improving welding techniques in ship structures while increasing cost efficiency in ship maintenance
[12], [13],

In the East Kalimantan area, many tugboats are operated. The tugboat is a ship whose function is to pull, push, or hold
other ships such as coal barges. Tugboats around the Mahakam and Barito rivers are used to towing barges loaded with coal,
wood, and others. In towing conditions, the towing hook functions as a hook to pull the barge.
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The pulling load generated on the tugboat causes excessive pressure around the towing hook. Pressure on the towing
hook area causes the towing hook construction to experience stress distribution. Tugboat s pulling force can cause fatigue
in the construction that receives the force's distribution, namely towing hook construction.

Rizky et al. [14] analyzed fatigue life using MSC Nastran Patran and MSC Fatigue software. Both software calculated the
stress and damage of the main deck construction and towing hook support. A Fatigue life calculation uses the Palmgren
Miner cumulative damage method and using BKI and DNV rules. The analysis obtained a construction fatigue life of 19 years.

Damanik et al. [15] investigated local stress analysis using a numerical finite element method (FEM). The analysis used
a static load analysis derived from the towing pull force to determine the stress characteristics and the maximum stress
based on a four-load case, namely lightweight barge, lightweight barge, deadweight barge, and sagging (full load), and
hogging (full load). The result is stress maximum occurs in full load sagging conditions.

Besides MSC Nastran Patran and MSC Fatigue software, another software can be used to obtain the structure's stress,
namely ANSYS. This paper provides information about the use of ANSYS for the finite element method to simulate the towing
hook. Based on the towing hook pull capacity data, the maximum principal dimensions of the barge are also recommended.

This study aims to calculate the fatigue life of the tugboat towing hook in which its data was obtained from the shipyard.
Towing hook construction is needed and was modelled in finite element software. The result is the fatigue life of tugboat
towing hook construction, whether the construction is satisfied or unsatisfied compared to design life. As the design life of
the towing hook, we assumed that the value is 20 years. The benefits of this research are providing information about the
fatigue life of a towing hook, analyzing several possible load cases, and giving the recommendation of the maximum principal
dimensions of the barge that the towing hook can pull.

2. Methods

This study's method includes calculating the total resistance, modelling towing hook construction using the finite
element method, meshing, analyzing using software based on the finite element, calculating the fatigue life, and determining
the main size of the barge. In the present work, a case study will be performed on the fatigue life prediction of a towing hook
structural detail in order to identify the fatigue life using the deterministic method. Visualization of a Tugboat Pulling a Barge
is presented in Figure 1. Fatigue analysis is used to review hotspot stress in the area that highly experienced cracking.

a

Figure 1. Visualization of a Tugboat Pulling a Barge [15]

2.1. Principal Dimension of Tugboat and Barge

Data collection of the tugboat was obtained from PT. Asia Aditama Shipyard Balikpapan such as principal dimension
(Table 1), general arrangement, construction profile, and towing hook detail.

Table 1, Tugboat Principal Dimension
Dimension Value
Length Overall
Breadth Moulded
Depth Moulded
Design Draft
Complement
Gear Box Rotation
Genset
Port Of Registry
Flag
Class

27.00 m
8.00 m
3.80 m
3.00 m
10.00 m
5.04 : 1
40 1<W
Balikpapan
Indonesia
RINA
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 2.2. Towing Hook

The modelled part of the towing hook is the construction part, which is welded with a tugboat bulkhead (Figure 2). This
part experienced the tensile force based on the pull capacity data, but the towing hook was not modelled in detail. The red
circle is the towing hook construction modelled in this paper, while the hook itself (construction with blue colour in Figure
3) was neglected and altered by the tensile force in two sections with a red arrow. Based on this picture taken from PT. Asia
Aditama Shipyard, the construction is modelled in Autocad to measure the dimension (Figure 4).
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Figure 2. Towing Hook Construction
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Figure 3. Model of Towing Hook Construction In Red Circle
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Figure 4. Detail of Towing Hook Construction

2.3. Load

Loads received by the tugboat are static loads that are assumed to originate from the loading of barges. Input loading
properties entered in the finite element-based program because the analysis used is static structural. The types of loads on
the ship include a) Static loads change when the total weight of the ship changes, as a result of loading and unloading
activities, fuel use, or changes in the ship itself. Static loading is a type of fixed loading; in this case, this load is assumed
unchanged, b) Dynamic loads change with time in a specific frequency that causes a vibration response to the ship's structure.
c) Impact loads occur due to slamming or pounding waves on the keel, bow, or other parts of the ship, including the green
water [15].

In this paper, the load input into the ANSYS is the total resistance in different loads of case condition, such as 100%, 75%,
and 50% displacement. This fatigue life value may be used to evaluate a state of towing hook construction that is still suitable
for use or in damaged conditions.

2.3.1. Towing Speed Vs Brake Horse Power

Towing speed Vs. Brake horsepower aims to discover how fast the barge s speed when pulled by a tugboat with a
specific BHP owned by a Tugboat as shown in Eq. 1 and Figure 5.

(1)

where Kts is Speed in Knots, BHP is the maximum value of brake horsepower from the engine. While the amount of 1.43 is
the assessment value that was obtained by Dave Geer. This assessment based on the approach that is taken. The value of 0.21
is a rank of the maximum value of the brake horsepower maximum of the engine [16],
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Figure 5. Towing Speed Vs Brake Horsepower Graph [IS]
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2.3.2. Ship Resistance

Ship resistance at a certain speed is the fluid's force acting on the ship in such a way as to counteract its movements.
The resistance will be the same as the fluid force component which works parallel to the ship's axis of motion. The term
"Resistance" often used in ship hydrodynamics, while "Drag" is commonly used in aerodynamics and for loads immersed in
water [17] as shown in Eq. 2.

(2)

where RF is calculated using the ITTC formula 1957; (1+ki) is a form factor; RAPP is complementary or additional resistance;

Rw is the wave resistance; and RB is an additional resistance due to the existence of a bulbous bow and ship models that
include effects such as roughness and air resistance [18],

2.4. Finite Element Method

A numerical method that is very suitable for digital computers is the finite element method. This method is an elastic
continuum in which a structure is discretized into several elements. Then, the element is used in the matrix, while the
deflection of each node will be associated with loading such as material properties, geometric properties, and others. The
finite element method has been widely used to solve various mechanical problems with complex geometry. This method is
mostly used because computationally it is very efficient, providing a variety of accurate solutions to complex problems [19],

2.4.1. Model Geometry

A 3D model of a towing hook construction was performed by using the Pro-Engineering software, widely used in design
and mechanical engineering (Figure 6). In the 3D modelling, only the towing hook construction that was welded with tugboat
bulkhead was taken into account. The hook was not modelled but was applied by pulling force directly in the Ansys
Workbench. The finite element analysis was performed by using the Ansys Workbench software. The 2D finite elements that
model profiles and plate as they are given in the model were assigned material properties, including the thickness of each
component.

i

Figure 6. 3D Model of Towing Hook Construction in ANSYS Workbench

2.4.2. Boundary Condition

Regarding the boundary condition for the analysis, the fixed support is applied in the welding section. The towing hook
construction consists of a plate, T profile, and C profile. The links with the blade, i.e„ with the grader frame, were made using
rigid elements fixed in all degrees of freedom. Besides, the force was applied in normal direction to the working surface of
the towing hook construction (Figure 7).
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Figure 7. Force Applied in Towing Hook Construction

2.4.3. Meshing

Meshing aims to set the distance between elements that must be performed to use finite element-based software
through the pre-processing stage before carrying out the analysis. After determining the Meshing Size and the number of
elements and nodes in this modelling, the meshing process is done to get the results of Figure 8. The type element in this
research was tetrahedral. A meshing sensitivity analysis was conducted to illustrate uncertainties in the simulation results
arising from the mesh size and stress.

Based on meshing sensitivity analysis, we can determine the element size that can obtain consistent stress. Regarding
computer limitation, in this meshing, the authors uses 9.0 mm Element Size and 4.8 million elements as shown in Figure 9.
If the meshing process runs smoothly without error, it can proceed to the next step, the solving step in finite element-based
software.

§1 —

Figure 8. Meshing Modelling

<& &

Figure 9. Stress Compare to the Element Size
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2.5. Fatigue Life Calculation

The fatigue calculation of the existing structure on this tugboat is based on the application of the Palmgren Miner
cumulative damage rule. This rule used the fatigue damage ratio. D has a value more than once; it can be ascertained that
the structure is not accepted (appendix of JTP Common Structural Rules, 2006). DM values are obtained through Eq. 3.

(3)

Where D is Accumulated Fatigue Damage; Vo is Average zero up-crossing frequency; Td is Design life in seconds; is the
intercept of the design S-N curve with the log N axis; q is Weibull stress range scale distribution parameter; h is Weibull

stress range shape distribution parameter and

The stress-cycle concept (S-N) is the first approach taken to understand the phenomenon of fatigue (Figure 10). This S-
N curve is widely used in material design applications where stresses occur in elastic regions, and fatigue life is long enough.
This S-N curve method cannot be used in reverse conditions (stress in plastic regions and relatively short fatigue life) [21].

- is Gamma function [20],

MIX

-
-r

Figure 10. S-N Curve In Air [22]

Where D is Accumulated Fatigue Damage; Vo is Average zero up-crossing frequency; Td is Design life in seconds; is the
intercept of the design S-N curve with the log N axis; q is Weibull stress range scale distribution parameter; h is Weibull

stress range shape distribution parameter and

where the value is used to find the value of fatigue life. The formulas were obtained from Det Norske Veritas (Norway) and
Germanischer Lloyd (Germany) or abbreviated with DNV-GL [22], Fatigue life is calculated using Eq. 4, where design life is
20 years as DNV regulation and D is Accumulated fatigue damage.

- is Gamma function [20], Formula (4) calculates the fatigue damage

(4)

3. Results and Discussion

3.1. Total Resistance

The total resistance on a barge certainly has a varying value due to variations in loading, which have been calculated in
the previous sub-chapter. The results of total resistance's calculations are based on variations in loading that are at 100% of
the total displacement volume, 75% and 50% of the total displacement volume, as shown in Table 2.

Table 2. Results from the Calculation of Total Resistance
Speed Draft Resistance Equivalent

Combination (Knot) (m) total (kN) Stress (MPa)
Number Of
Cycles

Load Fatigue Fatigue
Damage Life

100% 7.1 11.000 173.0
10.443 172.3
9.886 171.6

96.628
96.237
95.846

2,017,412.206 0.909 22
2,114,306.19 0.892 22
2,224,076,42 0,875 23

75% 7.1
50% 7.1

3.2. Stress Analysis Using Finite Element Software

Calculating the stress value in finite element software requires data in the form of a total resistance value and also the
availability of a model or construction. The model has been designed in Finite element software owned by each loading
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variation. The value of barges resistance has been calculated in the previous sub-chapter. From the data that has been
calculated, the following stress values are obtained as shown in Table 2.

3.2.1. Stress Distribution

Static stress analysis is done for the towing hook construction with pulling force acting on it. The analysis shows that
the maximum equivalent stress developed in the towing hook construction is lesser than the component material allowable
(250 MPa).

0.000 0.350 0.700(m)

0.175 0.525

Figure 11. Example of Maximum Principal Stress Results

Figure 11 shows the maximum equivalent stress in the towing hook construction, where the force is applied as figured
in red arrow Figure 3. The equivalent structural stresses are correlated to experimental fatigue data to predict the fatigue life
of the spot-welded joints. This equivalent structural stress was developed based on popular equivalent stress that is the von
Mises equation stress with the equation as below [23],

(5)

3.3. Fatigue Life Calculation

In the calculation of fatigue life, the formula used has been explained in the previous chapter. Calculation of fatigue life
can be calculated after getting the stress and accumulated fatigue damage value, which can be determined using the Eq. 4.
The value of the stress can be determined in the finite element method software, as shown in Table 2.

In Table 2, we get the value of fatigue damage with a variety of loading 100% of the total displacement volume or
maximum Towing Pull (with 7.1 knots speed, 11 meters draft, 173.0 kN total resistance, 96,628 Mpa stress, 2,017,412,206
some cycles) is 0.909. The value of fatigue damage with a variety of loading 75% of the total displacement volume (with 7.1
knots speed, 10.443 meters draft, 172.3 kN total resistance, 96,237 Mpa stress, and 2,114,306.19 number of cycles) is 0.892.
The value of fatigue damage with a 50% loading variation of the total displacement volume (with 7.1 knots speed, 9.886
meters draft, 171.6 1<N total resistance, 95,846 MPa stress and 2,224,076.42 number of cycles) is 0.875.

After getting the D or Accumulated fatigue damage, we can determine the fatigue life of the towing hook construction,
as shown in Table 2.

3.4. Calculation of Maximum Principal Dimension of Barge

Based on the towing hook s catalogue, the maximum towing pull capacity is 173 KN. This value was used to model and
optimize the barge size in Maxsurf Resistance that obtained the total resistance equivalent with 173 KN. The result is
validated with the ship registration data and the optimal barge size that can be pulled by a tugboat, as shown in Table 3.

Table 3. Barge Principal Dimension
ValueDimension

Length Overall 147.00 m
144.259 m
35.00 m
13.00 m
11.00 m
16,845,112 ton

LWL
B
H
T
Displacement
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4. Conclusion

Based on the analysis results, the following conclusions are obtained: the value of fatigue life in the towing hook
construction of the tugboat AsiaTirta 2005 under conditions of 100%, 75%, and 50% displacement volume is 22 (Twenty-two)
years, 22 (Twenty-Two) Years and 23 (Twenty-Three) Years, respectively. The maximum size of a barge that can be towed
by the tugboat at the maximum towing pull conditions are Length overall (Loa) = 147m, Length on the waterline (Lwl) =
144.529m, Beam (B) = 35m, Height (H) = 13m, Draft (T) = 11m.

Besides MSC Nastran Patran and MSC Fatigue software or ANSYS, other software may be used to model finite element
models such as ABAQUS, POSEIDON, or Maestro Marine. The use of this software may add the knowledge in the finite element
method and ensure the result consistency. In this paper, green water effect and slamming are neglected, for the future work,
these parameters need to be added.

Moreover, some numerical or physical parameters, such as mesh size and different force conditions, significantly impact
the simulation accuracy. We recommend using meshing sensitivity analysis to estimate and reduce the magnitude of errors
related to numerical solution methods.
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