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The blade is the most critical part of turbine design because it is used to convert kinetic to mechanical
energy. In general, the blade types used for ocean wind turbines are taper and taperless blades, like
those operated at Ciheras Coastline. Previous research has been analyzed the type of airfoil used in
designing taper blades for ocean wind turbines using NACA 4412, which was selected as the optimal
foil configuration at sea wind speeds of 12 m/s. In this study, the comparison of taper and taperless
blade designs using NACA 4412 at a wind speed of 12 m/s is analyzed. The comparative study with
previous research has been carried out and resulted in the same graphical patterns and performance
results. In this study, the focus is on investigating the performance coefficient of power, mechanical
power, and electrical power. The final result shows that taper blade designs are highly recommended
for use in ocean wind turbines compared to taperless blades. In general, the performance produced by
taper blades is more significant than taperless blades at relatively high wind speeds. The maximum
performance coefficient of power, mechanical power, and electrical power generated by the taper
blades in sequent are 0.47, 1535 watts, and 786 watts, while the taperless blades have 0.44, 1437 watts,
and 736 watts.
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1. Introduction

Turbines are one of the leading technologies used for generating electricity other than generators [1]. In general, there
are two types of turbines based on the rotating axis, such as vertical and horizontal turbines. The horizontal axis turbine is
more commonly used for the development of wind power plants with a research and development percentage of 43%, while
the vertical turbine is about 33% [2], Based on the efficiency produced by the turbine value (Cp), the horizontal type provides
a higher Cp than the vertical type. In general, the Cp value of the horizontal turbine is above 0.4 (40%), while the vertical
turbine is above 0.3 (30%) [3],

In designing a horizontal turbine, it will not be separated to develop the blades because it is the main component that
can convert kinetic energy into mechanical energy. In general, the types of blades consist of taper, taperless, and inverse
taper blades. The tapered blade has a tip smaller than the base, the taperless blade has a similar size of the tip and the base,
while the inverse taper has a bigger tip than the base [4], The illustration of each type of blade can be shown in Figure 1.

Airfoil, as the basic form of the blade, has been developed by several researchers. A new type of airfoil was designed
from low Reynolds number airfoils based on their aerodynamic performance [5], The Seagull Airfoil has been developed
using the results of a foreign bionic experimental airfoil. This investigation showed that the seagull airfoil was suitable for
small-scale horizontal wind turbines [6], The blade design has been developed from a combination of two airfoils FX66-S-
196 and NACA63-621 [7,8], The 3 kW horizontal wind turbine has been developed using the NACA 4418 [9],
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Figure 1. Type of Blades in Horizontal Axis Turbine

Airfoil characteristics are studied to be applied to horizontal wind turbines experimentally. Experimental studies have
been carried out on the thin airfoil SG series thin airfoils (SG6040 SG6043) for small-scale wind turbines [10],
Experimentally, the AF300 airfoil was tested in the wind tunnel to compare the performance of 8 other airfoils [11], Besides
the airfoil aspect, the yaw characteristic of the horizontal wind turbine has also been analyzed experimentally using a model
with a diameter of 1 m [12], The horizontal wind turbine has been installed, and its performance has been analyzed in several
locations around Nepal [13].

Experimental studies require relatively more expensive costs so that analytical methods and numerical methods are
developed to determine airfoil performance, where the most popular method used is the blade element momentum (BEM)
method. The blade element momentum (BEM) method has been developed to design a 1 kW horizontal wind turbine using
an SD 7062 airfoil [14], Aerodynamic analysis using the blade element momentum (BEM) method has been carried out on
the blade of the small-scale horizontal axis wind turbine [15], Comparative studies have been carried out on aerodynamics
performances of the BEMT-blade and the Baseline-blade, a non-twisted and non-tapered type [16],

Yaw characteristic of the horizontal wind turbine can also be developed using a theoretical equation [17], Moreover,
the starting characteristic of the horizontal wind turbine has been investigated using the classical blade element theory and
wake modelling. Blade pitch angles between 0° and 35° have been analyzed to determine the starting characteristic of the
horizontal wind turbine [18], Numerical studies have been carried out to determine the lift and drag characteristic of the
NACA0018 wind turbine airfoil [19]. Rocha et al. [20] conducted a computational analysis on a small-scale horizontal axis
wind turbine using the SST k turbulence model. Furthermore, Edge Element-Momentum and Computational-Fluid-
Dynamics analysis was carried out on the blended airfoil of a horizontal wind turbine [21].

Numerical studies have major constraints on the availability of software licenses. Open-source software for performing
aerodynamics analysis on horizontal wind turbines, such as the open-source Q.-Blade software, can be a solution. In addition,
developing countries need applied research in specific locations, using easy-to-build airfoils, and supported by open-source
software for wind turbine analysis. Wind turbine operation in Indonesia has been implemented on the Ciheras coastline
operated by PT. Lentera Angin Nusantara. In general, the types of blades used are taper and taperless blades. Successful
research by PT. Lentera Angin Nusantara to build a wind turbine can trigger and motivate young Indonesian researchers to
study the potential of wind energy development, especially in Indonesia's ocean area. Previous research has analyzed the
design of taper blades for ocean wind turbines at Ciheras coastline by PT. Lentera Angin Nusantara. The focus of the study
investigated the type of foil, such as Clark-Y, NACA 4412, NACA 3612, NACA 4418, NACA 0012, and NACA 0018. The final
results show that NACA 4412 has the best performance at sea wind speeds of 12 m/s [22], Moreover, NACA 4412 is also
relatively easy-to-make. So, further research needs to be conducted to investigate the performance of NACA 4412 foil with
different blade configuration types.

Apart from selecting the type of foil used on the blades, it is also necessary to choose the number of blades because it
greatly determines the performance of a turbine. The research on the number of blades has been carried out, and the optimal
results are three blades compared two blades and four blades [23], Based on the previous work, this research will focus on
investigating the performance of three blades for ocean wind turbines.

The location chosen in this study is on Ciheras Coastline, which is one of the southern coasts of Java Island, as shown in
Figure 2. The potential for wind on Ciheras Coastline is suitable to be used to drive a power generator turbine, with an average
wind speed of 3-12 m/s. The wind speed that has the potential to turn the turbine must be above 5 m/s and can be found in
most place on the south coast of Java Island [24], Thus, Ciheras Coastline, which is the centre of wind turbine studies by PT.
Lentera Angin Nusantara is very suitable to be used as a research location for new and renewable energy sourced from the
ocean wind.

The objective of the research is to analyze the performance comparison of different blade types. Two different blade
types, such as taper and taperless blades are compared by analyzing the performance and power of the blade using the open-
source software Q-Blade in Ciheras Coastline, West Java. The results of this study are expected to be used as a reference for
other researchers to study developing marine wind turbine technology in Indonesia, as we know, given the huge potential
of sea breezes in Indonesia, but until now it has not been optimally utilized for future energy. In addition, the results of this
preliminary study can be used as recommendations for supporting methods such as Computational Fluids Dynamics (CFD),
Experimental Fluids Dynamics (EFD), and field studies of marine wind turbine models.
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Figure 2. The Wind Turbine in Ciheras Coastline, West Java

2. Methods

2.1. Turbine Blade Geometry

The design of taper and taperless blade marine wind turbines can be shown in Figure 3. The taper blade has a tip smaller
than the base, the taperless blade has a similar size of the tip and the base, while the inverse taper has a bigger tip than the
base. Meanwhile, the turbine blade geometry data refers to the research conducted by Madi et al. [22], which can be shown
in Table 1.

(a) (b)
Figure 3. Blade Types, (a) Taper, and (b) Taperless

Table 1. Turbine Blade Geometries NACA 4412
ValueParameters

Number of blades
Blades length
Flub radius
Number of blades element 10
Ocean wind speed

3
1 m
0.22 m

12 m/s

2.2. Performance Parameters

In determining the performance of turbine blades, this study uses only the analytical method with Q.-Blade software.
Q.-Blade uses Euler-Bernoulli Beam Module. The foil profile of the blade is analyzed using the Q-Blade in the range of angle
of attack -5° to 50° with Reynold numbers 100000. After that, the Q-Blade software will give the results of the lift coefficient
(C/) against the angle of attack (AoA). The turbine blade geometry is formed using the Q-Blade by providing position, chord,
and twist input values. After that, it is analyzed for a tip speed ratio TSR( ) of 1 to 10, a wind density of 1.225 kg/m3, and a
viscosity of 0.0000178 kg/ms, and then the Q-Blade gives the results of power coefficient (Cp) on TSR. As for getting the
position, chord, and twist values using the following parameter equation; the first parameter needed is to calculate the
position of the blade element (r) using the following equation [25],
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(1)

where R is the length of the blade in meters (m) and n is the number of blade elements. The second parameter needed is to
calculate the partial TSR ( r) of each blade element by using the following equation [25],

(2)

where is the TSR that has been determined for the calculation, which is assumed as 7 The third parameter needed is to
calculate the chord width (Cr) for each blade element by calculating using the following equation [25],

(3)

where C/ is the lift coefficient obtained from the design results, and B is the number of blades. The fourth parameter is to
calculate the flow angle ( ) for each blade element using the following equation [25],

(4)

The fifth parameter is the twist angle (IS) on each blade element, using the following equation [25],

(5)

where is the angle of attack is 6° obtained from the design results. These five parameters are taken into account to design
the taper and taperless blade shapes. The parameters needed to determine the performance of the blades are, first by
calculating the wind kinetic power ( ), using the following equation [25],

(6)

where p is the density of the wind, which is 1.225 kg/m3, A is the turbine swept area (m2), and 1/ is the ocean wind speed
(m/s). Besides that, calculating for the performance of turbine mechanical power (Pt) using the following equation [25],

(7)

where Cp is a power coefficient. It is obtained from the design result. The last performance is calculating the amount of
electric power (Pi) generated, using the following equation [25],

(8)

where, Sys is the system efficiency from the multiplication of blade efficiency (Cp), generator efficiency (80%), controller
(80%), and transmission (80%).

3. Results and Discussion

3.1. Comparative Assessment

The comparison in this research is to compare the performance with previous studies. The Cp obtained from the
simulation results using the open-source software Q-Blade v.08. The data used are the same as in previous studies. This
research uses the method of analysis with a structural Euler-Bernoulli beam module on Q-Blade software. The results are in
the value of TSR and Cp curves, as shown in Figure 4. The figure shows a similar value of TSR and Cp between the results of
the study and the previous data. The red curve is the result of the performance of the previous study [22], while the blue
curve is the result of the performance of this study. The TSR ranges used are from 1 to 10. The TSR that is capable of resulting
Cpmax on both graphs is the same (TSR = 7) according to the initial design.
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Figure 4. Comparative Assessment with Previous Research

Figure 4 shows that Cp value is very low below 0.1 at TSR 1 to 3. It is caused by TSR represents the value of sea wind
speed, so that at low TSR the sea wind speed is also low. Based on Eq. 6, if the sea wind speed is low, the sea wind kinetic
power value is low too. As a result, Cp generated by the turbine blades becomes very small based on Eq. 7, When TSR 4 shows
Cp results increase sharply to the maximum point on TSR 7. The sea breeze increases until the maximum sea wind speed of
12 m/s on TSR 7 with a maximum Cp value of 0.47. This event is usually called a pre-stall, an event towards the peak point
before a stall occurs. At TSR 8 to 10, the results have shown a stall event which causes Cp value decreases after reaching its
maximum point. The possibility of a stall occurs because the turbine blade is unable to maintain the lift force after reaching
equilibrium at the maximum Cp.

3.2. Comparison of Taper and Taperless Blade Geometry Design

The geometry of the taper blade (position, chord, and twist) used in this study is the same as the previous study [22],
This study compares the results with another type of blade, namely taperless blade to determine the best performance of the
two types of blades that are feasible used for marine wind turbines. The geometry is obtained based on calculations using
Eq. 1 to Eq. 5.

Based on Eq. 1, the partial radius values for the taper and taperless blades are obtained. The partial radius on each
element of the taper and taperless blades are the same. It is caused by the same hub position of both types (r = 0.22 m) and
the same blade length, which is 1 m. So, the calculation of the same partial radius is obtained for each element. The partial
radius or position of the taper and taperless blade positions on elements 1 to 10 are 0.30 m, 0.38 m, 0.45 m, 0.53 m, 0.61 m,
0.69 m, 0.77 m, 0.84 m, 0.92 m, and 1 m.

Based on Eq. 2 and Eq. 3, partial TSR values and partial chord length (Cr) are obtained on the taper and taperless blades,
as shown in Table 2. The table has shown that the partial TSR values for the taper and taperless blades are the same because
the values for the partial radius (r) on the two blades are also the same. Meanwhile, the chord length value (Cr) shows
different results for the two types of blades. On the taper bar starting from elements 0 to 10, the Cr value is getting smaller.

As a result, the tip of the taper blade design is smaller than the base. Meanwhile, the taperless blade elements show the
same amount of Cr. It means that the tip design of the taperless blade is as large as the shape of the base. Based on Eq. 4 and
Eq. 5, the partial TSR and chord length (Cr) values were obtained on the taper and taperless blades, as shown in Table 3. The
table has shown that the values of and IS for both blade types are the same because the partial TSR values based on the
calculation result show the same values as well. The process of linearizing IS and Cr data is needed to determine the shape of
the design of the two types of blades. The IS and Cr linearization data on the taper and taperless blades can be shown in Table
4.

Table 2. Comparison of and Chord Length (Cr) of the Taper and Taperless Blade Element
Number of Taper Blade

TSR( ) Cr(m)
Taperless Blade
TSR( ) Cr(m)element

0 1.54 0.15 1.54 0.15
1 2.09 0.11 2.09 0.15
2 2.63 0.09 2.63 0.15
3 3.18 0.07 3.18 0.15
4 3.72 0.06 3.72 0.15
5 4.27 0.06 4.27 0.15
6 4.82 0.05 4.82 0.15
7 5.36 0.04 5.36 0.15
8 5.91 0.04 5.91 0.15
9 6.45 0.04 6.45 0.15
10 7.00 0.03 7.00 0.15
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Table 3, The Value of and /? of the Taper and Taperless Blade Element
Number of Taper Blade
element

Taperless Blade
IS IS

0 22.00
17.07
13.87
11.64

16.00
11.07

22.00
17.07
13.87
11.64
10.02

16.00
11.071

2 7.87 7.87
3 5.64 5.64
4 10.02 4.02 4.02
5 8.79 2.79 8.79 2.79
6 7.82 1.82 7.82 1.82
7 7.04 1.04 7.04 1.04
8 6.40 0.4 6.40 0.4
9 5.87 -0.13

-0.58
5.87 -0.13

-0.5810 5.42 5.42

Table 4. Linearization of IS and Crof the taper and taperless blade element
The radius of the Taper Blade
taper blade (r)

Taperless Blade
Linearization Linearization Linearization Linearization
of IS of Cr of IS of Cr

0.22 5.66 0.07 5.42 0.15
0.30 5.00 0.07 4.79 0.15
0.38 4.34 0.07 4.17 0.15
0.45 3.69 0.06 3.54 0.15
0.53 3.03 0.06 2.92 0.15
0.61 2.37 0.05 2.29 0.15
0.69 1.71 0.05 1.66 0.15
0.77 1.05 0.04 1.04 0.15
0.84 0.40 0.04 0.41 0.15
0.92 -0.26

-0.92
0.04 -0.22

-0.84
0.15

1.00 0.03 0.15

Based on the calculation of the parameters, the taper blade shape is shown in Figure 5a, and the taperless blade is shown
in Figure 5b. The first one shows that the blue line is the Cr-r curve, which is the Cr data before being linearized. The yellow
line is the Crdata after being linearized, and the red line is the 25% Crdata linearization to form the taper bar. So that in Figure
5, two lines form the taper blade, such as the yellow and red lines. Figure 5b shows that the blue line is the Cr - r curve, which
is the Cr data before being linearized. The red line is the Cr data after 25% linearization to form a taperless blade. Thus, two
lines form the taperless blade, which is blue and yellow lines.
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(a) (b)
Figure 5. The Relation Between Partial Radius (r) and Chord Length (Cr) a) Taper b) Taperless

3.3. Comparison of Taper and Taperless Blade Geometry Design

The blade performance referred to in this study is the lift coefficient (C/), the torque coefficient (Cr), and the power
coefficient (Cp). These three performances are obtained by using the method of analysis with a structural Euler-Bernoulli
beam module on the Q-Blade software. Cp taper blade in this study has been compared with previous research [22], as
described in Figure 4. Cp value represents the C; and Cr values to compare with previous studies [22], It is caused by Cp is the
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magnitude of the kinetic power of the sea breeze that can be absorbed by the turbine blades. If Cp values in this study are
comparable to those before [22], then Q and Cr values will follow. Furthermore, this study adds another blade variation,
namely the taperless blade compared to the taper blade that has been compared with previous studies [22],

The performance of a turbine that uses foil on the blades cannot be separated from the analysis of the lift force, which
the lift that can trigger the turbine to rotate. Thus, the lift force is significant to determine the ability of the turbine to rotate.
The lift force is represented by the lift coefficient (C/). The lift coefficient is generally related to the angle of attack (AoA),
which is the angle formed from the wind direction with the chord line. The C\ -AoA results on taper and taperless blades can
be shown in Figure 6. The figure shows the red line is the result of the lift coefficient on the taper blades, while the green line
is the result of the lift coefficient on the taperless blades. As can be seen, the result explains that taperless blades produce a
higher lift coefficient than taper blades. In conditions AoA 1 to 10, the two types of blades have shown very coinciding and
increasing results. It means that under these conditions, the lift coefficient on the two blade types is in the pre-stall period

14

1.8

Taped ess Blade

Taper Blade
1.6

1.4

1.2
o~

1

0.8

0.6 -

0.4

0 2 4 6 8 10 12 14 16 18 20

AoA

Figure 6. Cl-AoA Curve of Taper Blade and Taperless Blade

However, in this study, the taper blade shows a slight stall of the coefficient of lift which begins at AoA 10 to 11, then
slightly increases and a larger stall occurs at AoA 17 to 18. The occurrence of a stall has happened when the lift coefficient
performance has the maximum value. Then, the value will decrease as AoA increases. The stall of lift coefficient on the
taperless blade occurs during AoA 16 to 17. The earlier stall occurs on the taper blade possibly due to the uneven distribution
of the wind on the foil cross-section. It is caused by the unequal width of the foil and the smaller cross-section to the tip of
the blade. However, after a stall, both blades maintain a stable lift coefficient. In general, the results of the lift coefficient on
the two blades do not adequately describe a better performance because there are other factors such as the torque coefficient
and the power coefficient.

The torque coefficient (Cr) is a dimensionless number that represents the magnitude of torque. In general, the Cr curve
is related to the type of speed ratio ( TSR), which represents a dimensionless number that represents wind speed. The
simulation results of this study have shown the Cr -TSR curve, which can be seen in Figure 7. The red line curve is the Cr
result on the taper blade, while the green line is the result of the taperless blade. In the taper blade, there is an increase in Cr
from TSR 1 to 10, while the taperless blade increases Crfrom TSR 1 to 7, and after that, it shows stable results. It means that
in the TSR range 1 to 10 there is a continuous increase in torque on the taper blades. Thus, at relatively high wind speed, it is
very well recommended to use a taper blade design while the taperless blade design is excellent if used during low to
moderate wind speed conditions. It is caused by the increase of torque stops at TSR 7. After that, it is stable, and the stall will
possibly occur when the TSR is more than 10.
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Figure 7. TSR- Cr Curve of Taper and Taperless Blades

The power coefficient (Cp) is a dimensionless number that represents the magnitude of turbine power. In general, the Cp
curve is related to TSR. The simulation results of this study have shown CP-TSR curve in Figure 8. The red line curve is the
result of Q,on the taper blade, while the green line is the result of the taperless blade. As can be seen in Figure 8, TSR 1 to 5
shows that the green curve is above the red curve.
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On the contrary, it can be seen in TSR 6 to 10 that the red curve is above the green curve. From that result, it can be
concluded that taperless blades show better mechanical power performance than taper blades during TSR 1 to 5. However,
in TSR 6 to 10 taper blades show better mechanical power performance than taperless blades. Based on the study case, the
results show that taper blades are able to provide better performance than taperless in high wind speed conditions. In this
case, it can be said that taper blades are perfect for use as an ocean wind turbine design which is classified as high wind
speed. For the taperless blade, it is not recommended using in high wind speed because a stall will occur and will decrease
the performance. Its design can be applied to low to moderate wind speeds. As a result, taperless blades are not
recommended for wind turbine blade design.

The Cp -TSR curve of taper and taperless blades has shown in Figure 8. As can be seen in TSR 7, the taper blade yields the
best performance with Cp 0.47 (47%) compared to taperless with Cp 0.39 (39%). It can be concluded that taper blade has better
performance with Cpmax 0.47 at TSR 7, compared to 0.44 at TSR 4 for the taperless blade.
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Figure 8. TSR- Cp Curve of Taper and Taperless Blades

3.4. Comparison of Taper and Taperless Blade Electrical Power

Electric power (Pi) is obtained from the multiplication of system efficiency ( Sys) and wind power ( ) according to Eq. 8,
Wind power obtained from Eq. 6 is 3266.404 Watt, while system efficiency is derived from the multiplication of efficiency
of blades, generator, controller, and transmission. Based on the calculation, the Pl-TSR curve is obtained, as shown in Figure
9. The red line curve is the result of the Cp on the taper blade, while the green line is the result of the taperless blade. Both
two CP-TSR curves form the same graphic pattern. It is caused that the value of electric power is proportional to the coefficient
of mechanical power. In the TSR 1 to 5, it can be seen that the green curve is above the red curve. On the contrary, it can be
seen that the red curve is above the green curve in TSR 6 to 10. It means that the taperless blades show better electric power
than the taper blades during the TSR 1 to 5. However, when in TSR 6 to 10 the taper blades show better electrical power than
the taperless blades. So, the results show that the taper blades provide better electrical power than taperless at high wind
speed conditions. In this case, it can be said that the taper blades are suitable for use as an ocean wind turbine design. For
the taperless blade, it is not recommended for use in conditions of high wind speed because there is a stall which causes the
electric power to decrease. Its application is suitable to be applied in low and moderate wind speed. As a result, taperless
blades are not recommended for the design of ocean wind turbine.

Based on data from Figure 9, the Pl-TSR curve has shown that according to the design of the TSR 7, the taper blade
produces the best electric power of 786 watts compared to the taperless of 652 watts. PI max in taper blade is 786 watts on
TSR 7, and the taperless blade is 736 watts on TSR 4.

The mechanical power and electrical power curves between two different blade types shown in Figure 10 have explained
the power distribution produced by the taper blade (red line) and taperless blade (green line) blades.The results of this study
have shown that taper blade is superior to taperless if viewed from the maximum mechanical and electrical power capacity.
The results of the maximum mechanical and electrical power are 1535 watts and 786 watts for the taper blades and 1437
watts and 736 watts for the taperless blades, respectively.
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4. Conclusion

This research has been conducted in analyzing the comparison of taper blade and taperless blade applied for ocean
wind turbine design. The obtained result shows that taper blades are highly recommended for use in ocean wind turbines
compared to taperless blades. It is caused by the performance parameters such as power coefficient, mechanical power, and
electrical power produced by taper blades is more significant than taperless blades at relatively high wind speeds. The
maximum performance coefficient of power, mechanical power, and electrical power generated by the taper blades are, 0.47,
1535 watts, and 786 watts, respectively, while the respective taperless blades are, 0.44, 1437 watts, and 736 watts,
respectively.

In further research, an advanced development study will be carried out using CFD to determine the fluid analysis that
occurs around the taper and taperless blade. The final data generated from CFD can be used as a comparison of the previous
data obtained from Q.-Blade software. In the future, an experimental model using a laboratory-scale model to be tested can
be performed so that the collected data is more realistic with the comparison of the results of Q-Blade and CFD.
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