

Jurnal Kimia Sains dan Aplikasi 18 (2) (2015): 50 - 56

Jurnal Kimia Sains dan Aplikasi Journal of Scientific and Applied Chemistry

Journal homepage: http://ejournal.undip.ac.id/index.php/ksa

Pengaruh H₂SO₄ pada PVA yang Dimodifikasi pada Campuran Biomassa Tongkol Jagung-Bulu Ayam sebagai Adsorben Campuran Logam Pb²⁺ dan Cu²⁺

Sitta Noor Fatmawati a, Rum Hastuti a*, Abdul Haris a

- a Analytical Chemistry Laboratory, Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jalan Prof. Soedarto, Tembalang, Semarang
- * Corresponding author: rum.hastuti@live.undip.ac.id

Article Info

Abstract

Keywords: corn cob-chicken feathers, metal competition, PVA with H₂SO₄ Research on the effect of H_2SO_4 on PVA modified on the biomass mixture of corncobchicken feather as adsorbent for the mixture of Pb^{2+} and Cu^{2+} ions has been done. The purpose of this study was to obtain data on the preparation of adsorbents from corncobchicken feathers before modified PVA with sulfuric acid (A_1) and after modification (A_2) and to determine the adsorption capacity, adsorption equilibrium constant, adsorption energy and the influence of competition of Pb^{2+} and Cu^{2+} ions. The resulting adsorbents were then characterized using FTIR and BET spectroscopy. The results showed that the addition of PVA with sulfuric acid to the biomass of corncob-chicken feathers was effective to decrease the concentration of Pb^{2+} and Cu^{2+} ions. This is because the addition of PVA with sulfuric acid could enlarge the pores of the corncob-chicken feathers adsorbent and increased the active OH group. This was shown from the results of BET analysis showing the increase of surface area by 43.42%, the average pore by 79.55% and total pore volume 2.5 times larger than the adsorbent A_1 .

Abstrak

Kata Kunci: tongkol jagungbulu ayam, kompetisi logam, PVA dengan H₂SO₄

Penelitian tentang pengaruh H₂SO₄ pada PVA yang dimodifikasi pada campuran biomassa dari tongkol jagung – bulu ayam sebagai adsorben untuk campuran ion Pb²⁺ dan Cu²⁺ telah dilakukan. Tujuan dari penelitian ini adalah memperoleh data mengenai pembuatan adsorben dari tongkol jagung – bulu ayam sebelum dimodifikasi PVA dengan asam sulfat A₁ dan setelah modifikasi A₂. Serta untuk menentukan kapasitas adsorpsi, konstanta kesetimbangan adsorpsi, energi adsorpsi dan pengaruh kompetisi campuran ion Pb²⁺ dan Cu²⁺. Adsorben yang dihasilkan selanjutnya dikarakterisasi menggunakan spektroskopi FTIR dan BET. Hasil penelitian menunjukkan bahwa penambahan PVA dengan asam sulfat pada biomassa dari tongkol jagung – bulu ayam efektif untuk menurunkan kadar campuran ion Pb²⁺ dan Cu²⁺. Hal ini dikarenakan penambahan PVA dengan asam sulfat dapat memperbesar pori–pori adsorben dari tongkol jagung – bulu ayam serta menambah gugus aktif OH. Hal tersebut ditunjukkan dari hasil analisis BET yang menunjukkan kenaikan luas permukaan sebesar 43,42%, rata-rata pori sebesar 79,55% dan total volume pori 2,5 kali lebih besar dibandingkan adsorben A₁.

1. Pendahuluan

Kandungan bulu ayam terdiri atas keratin yang berupa protein serat yang mengandung sulfur. Keratin dapat digunakan sebagai subtituen adsorben yang murah dan sederhana karena kandungan gugus-gugus N-H, C=O, O-H, COOH dan S-H [1]. Sifat-sifat keratin yang dikaitkan dengan gugus asam amino dan hidroksil yang terikat, maka menyebabkan sifat poli elektrolit kation

sehingga dapat berperan sebagai penukar ion dan sebagai adsorben terhadap logam berat dalam air limbah.

Penelitian-penelitian sebelumnya telah banyak dilakukan seperti halnya Ramya dkk. [2] telah berhasil melakukan adsorpsi logam Cu dan Ni dengan adsorben crosslink chitosan-g-acrylonitrile. Adsorpsi zat warna methylene blue dan ion logam Pb²+dalam air limbah menggunakan biomassa bulu ayam telah berhasil dilakukan untuk adsorpsi ion logam Cu²+ dengan biomassa bulu ayam.

Tongkol jagung mengandung senyawa kimia salah satunya selulosa. Selulosa dapat digunakan sebagai adsorben karena gugus OH dapat berinteraksi dengan komponen adsorbat. Mekanisme serapan yang terjadi antara gugus OH yang terikat pada permukaan dengan ion logam yang bermuatan positif merupakan mekanisme pertukaran ion. Beberapa penelitian telah dilakukan, oleh Fahrizal [3] seperti modifikasi selulosa pada tongkol jagung yang mampu menyerap biru metilena dari limbah tekstil dengan kapasitas adsorpsi 518.07 µg/g adsorben. Penelitian lain dilakukan oleh Sulistyawati [4] yang memodifikasi tongkol jagung dengan larutan asam nitrat dan memanfaatkannya sebagai adsorben logam Pb(II).

Adsorpsi ion logam oleh bahan-bahan biomaterial dapat ditingkatkan dengan mengolah bahan-bahan tersebut dengan suatu bahan kimia tertentu seperti dengan penambahan PolivinilAlkohol (PVA). PVA mempunyai gugus OH yang tinggi serta dapat berperan sebagai porogen sehingga adsorben lebih banyak menyerap ion logam.

Berdasarkan uraian di atas adsorben bulu ayamtongkol jagung yang ditambahkan PVA dengan Asam Sulfat belum pernah dilakukan. Oleh karena itu penelitian ini diharapkan dapat meningkatkan kemampuan penyerapan ion logam untuk mengatasi logam campuran Pb²⁺ dan Cu²⁺ dalam limbah cair industri.

2. Metode Penelitian

Alat dan Bahan

Alat-alat yang digunakan adalah seperangkat alat gelas, kertas saring, pemanas listrik, magnetic stirrer, neraca analitik, oven, AAS, FTIR dan BET. Bahan yang digunakan adalah tongkol jagung, bulu ayam, asam asetat, dietil eter, pva, asam sulfat p.a, Pb(NO₃)₂, CuSO₄.5H₂O, Aqua DM, NaOH, glutaraldehida dan kertas saring.

Preparasi Adsorben Bulu Ayam

Bulu ayam dilakukan pencucian, penggilingan, perendaman dengan dietileter dan pengeringan hingga diperoleh serbuk yang halus.

Preparasi Adsorben Tongkol Jagung

Tongkol Jagung dicuci dan dikeringkan hingga kering selama ±24 jam kemudian dihaluskan dan disaring dengan ukuran 150 mesh hingga diperoleh serbuk tongkol jagung.

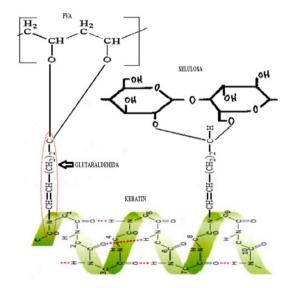
Preparasi PVA dengan H₂SO₄

PVA dilarutkan dalam aquades panas kemudian dinginkan. Lalu tambah dengan asam sulfat 11M secara pertetes dan diaduk selama 2,5 jam menggunakan *stirrer*.

Preparasi Adsorben Tongkol Jagung-Bulu Ayam (A1)

Larutan asam asetat 1% dipanaskan pada suhu 80°C selama 60 menit kemudian ditambahkan adsorben tongkol jagung dan bulu ayam (2:1). Setelah itu diambil dan direndam dalam larutan NaOH 1 M selama 24 jam. Kemudian direndam kembali selama 24 jam dalam larutan pengikat silang glutaraldehid 0,02% (v/v).

Preparasi Adsorben Tongkol Jagung-Bulu Ayam Modifikasi PVA dengan H₂SO₄ (A₂)


Larutan asam asetat 1% dipanaskan pada suhu 80°C selama 60 menit kemudian ditambahkan adsorben tongkol jagung dan bulu ayam (2:1) dan 5% PVA dengan H_2SO_4 . Campuran direndam selama 30 menit dan saring. Residu hasil penyaringan direndam dalam NaOH 1M selama 24 jam. Kemudian direndam kembali selama 24 jam dalam larutan pengikat silang gluteraldehid 0,02% (v/v).

3. Hasil Dan Pembahasan

Pembuatan Adsorben Tongkol Jagung-Bulu Ayam (A₁) Serta Pembuatan Tongkol Jagung-Bulu Ayam Modifikasi PVA dengan H₂SO₄ (A₂)

Pembuatan adorben A₁ bertujuan untuk dapat meningkatkan kapasitas adsorpsi. Adsorben A₁ dibuat dengan mencampurkan adsorben Bulu Ayam dengan adsorben Tongkol Jagung yang telah disaring dengan ukuran 150 mesh. Ukuran 150 mesh dipilih karena semakin kecil ukuran partikel maka akan semakin banyak zat yang akan diadsorpsi [5].

Gluteraldehid digunakan sebagai agen pengikat silang untuk menggabungkan adsorben tongkol jagung dan bulu ayam. Reaksi yang mungkin terjadi:

Gambar 1. Reaksi ikat silang tongkol jagung-bulu ayam oleh gluteraldehid

Adsorben A_1 selanjutnya di modifikasi dengan perlakuan penambahan PVA dengan H_2SO_4 sebagai adsorben A_2 . Penambahan H_2SO_4 pada PVA tidak menghasilkan gugus SO_3H yang dapat berinteraksi dengan ion logam sehingga hanya gugus OH yang dapat berperan dalam meningkatkan kualitas adsorben. Hasil karakterisasi FTIR adsorben A_2 tersaji pada (gambar 6).

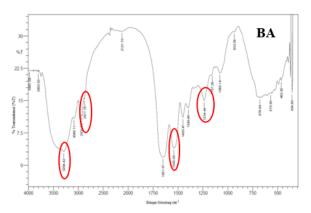
Reaksi yang terjadi antara PVA dengan H₂SO₄, disajikan pada gambar 2.

Tahap 1 (protonasi dan lepasnya air)

$$\begin{array}{c|c} & : \stackrel{\cdot}{OH} \\ C - \stackrel{\cdot}{C} \\ H_2 & H \end{array} \begin{array}{c|c} & \stackrel{\cdot}{H^* HSO_4} \\ \hline C - \stackrel{\cdot}{C} \\ \hline H_2 & H \end{array} \begin{array}{c|c} & \stackrel{\cdot}{C} \\ \hline H_2 & H \end{array} \begin{array}{c|c} & -H_2O \\ \hline H_2 & H \end{array}$$

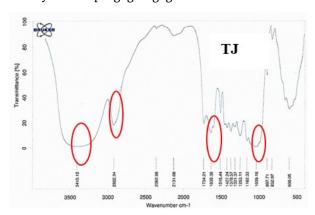
Tahap 2 (lepasnya H+)

$$\begin{array}{c|c} + & \\ - &$$

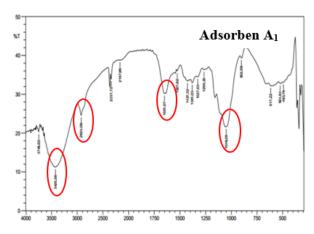

Gambar 2. Reaksi PVA dengan asam sulfat [6]

Bila suatu alkohol dicampur dengan H_2SO_4 maka akan berlangsung reaksi reversibel (dapat kembali kebentuk semula). Pada penelitian ini PVA trermasuk dalam alkohol sekunder, yang mana apabila alkohol sekunder direaksikan dengan asam sulfat akan menghasilkan produk alkena [6].

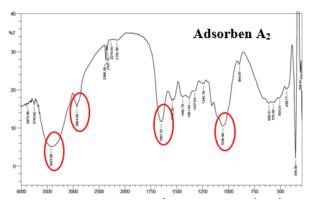
Berdasarkan perlakuan tersebut maka dilakukan penentuan gugus aktif dalam adsorben bulu ayam dan adsorben tongkol jagung serta adsorben tongkol jagungbuluayam (A_1) dan adsorben tongkol jagungbuluayam modifikasi PVA dengan H_2SO_4 (A_2) menggunakan spektrofotometer FTIR dan BET.


Karakterisasi Adsorben Menggunakan FTIR

Analisis dengan menggunakan Fourier Transform Infrared Spectroscopy (FTIR) bertujuan untuk menentukan gugus fungsi yang ada pada adsorben bulu ayam, adsorben tongkol jagung, adsorben bulu ayam-tongkol jagung (A1) dan adsorben bulu ayam-tongkol jagung modifikasi PVA (A2). Hasil analisis spektra FTIR dari adsorben bulu ayam, adsorben tongkol jagung, adsorben A1 dan adsorben A2 dapat dilihat pada gambar 3, 4, 5, 6


Gambar 3. Spektra FTIR adsorben bulu ayam

Dari gambar 2 pada spektra 3294 cm⁻¹ menunjukan rentang vibrasi ulur O-H simetris N-H. Adanya pita serapan pada daerah 1651 cm⁻¹ yang diidentifikasi sebagai gugus C=O, pada serapan 1234 cm⁻¹ menandai vibrasi ulur rentangan dari C-O asam karboksilat [7]. Berdasarkan hasil spektra FTIR dapat disimpulkan bahwa di dalam bulu ayam terdapat gugus-gugus keratin.



Gambar 4 Spektra FTIR Adsorben tongkol jagung

Dari gambar 2 pada spektra 3410 cm⁻¹ menunjukkan rentang vibrasi ulur OH, vibrasi C-H ulur muncul pada serapan 2922 cm⁻¹, vibrasi C-O ulur muncul pada serapan 1039 cm⁻¹, vibrasi CH₂ muncul pada serapan 1427 cm⁻¹ [8]. Berdasarkan hasil spektra FTIR dapat disimpulkan bahwa di dalam tongkol jagung terdapat gugus-gugus selulosa.

Gambar 5 Spektra FTIR adsorben A₁

Gambar 6 Spektra FTIR adsorben A2

Hasil yang diperoleh pada spektra FTIR, baik gambar 5 (adsorben A₁) maupun gambar 6 (adsorben A₂) menunjukkan peak adanya gugus yang mempunyai pergeseran kimia seperti yang ditunjukan oleh spektra FTIR bulu ayam (gambar 3) dan tongkol jagung (gambar 4) sehingga dapat disimpulkan bahwa baik A₁ maupun A₂ mengandung keratin dari bulu ayam dan selulosa dari tongkol jagung.

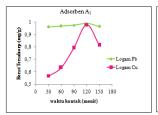
Gambar 6 menunujukkan bahwa H₂SO₄ yang ditambahkan PVA pada adsorben adsorben A₂ tidak menghasilkan adanya spektra baru yaitu S=O maupun C=C pada panjang gelombang 1369 cm⁻¹ dan 3100 cm⁻¹. Menurut Fessenden dan Fessenden [6] H₂SO₄ bersifat reversible (dapat kembali kebentuk semula). Jika alkohol pada PVA dipanaskan pada suhu 100°C bersama asam sulfat pekat akan mengalami dehidrasi (melepas molekul air) membentuk alkena. Dalam penelitian ini H₂SO₄ tidak bereaksi dengan PVA karena direaksikan menggunakan suhu ruang. Namun, gambar 6 menunjukan terjadinya perubahan pada % transmitan.

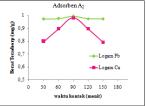
Berdasarkan spektra di atas, terlihat bahwa %T pada adsorben A₂ lebih rendah yaitu sekitar 5% sedangkan pada A₁ sekitar 11,2%. Hal ini menunjukkan bahwa absorbansi pada adsorben A₂ lebih besar jika dibandingkan dengan adsorben A₁. Ini membuktikan bahwa reaksi PVA dengan H₂SO₄ pada gambar 2 tidak terjadi. Sehingga dapat disimpulkan bahwa penambahan H₂SO₄ pada PVA tidak mempengaruhi struktur A₂. Kualitas adsorben tetap lebih baik karena jumlah gugus OH meningkat, sehingga dapat memperbaiki kualitas adsorben A₁.

Karakterisasi Adsorben Menggunakan BET

Analisa dengan BET (*Brunauer, Emmet, Teller*) bertujuan untuk mengetahui luas permukaan, rata- rata pori, dan total volume pori adsorben. Karakterisasi adsorben A_1 dan adsorben dengan BET terlihat pada tabel 1.

Tabel 1: Hasil analisis BET

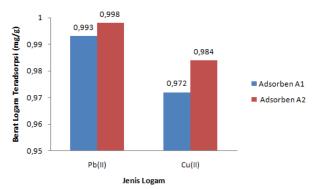

	Tongkol Jagung-Bulu Ayam		
Hasil -	Adsorben (A ₁)	Adsorben (A ₂)	
Luas Permukaan (m²/g)	0.836	1.199	
Total Volume Pori (cc/g)	1.23 x 10 ⁻³	3.175x10 ⁻³	
Rata-rata Pori (Å)	5,90081x10 ¹	1,059502x10 ²	


Berdasarkan data pada tabel 1 terlihat adsorben A₂ mengalami kenaikkan luas permukaan sebesar 43,42%, rata-rata pori sebesar 79,55% dan total volume pori sebesar 2,5 kali lipat lebih besar dibandingkan dengan A₁. Kenaikan luas permukaan terjadi karena penambahan gugus OH dari PVA, sehingga kemampuan adsorpsinya akan semakin besar dalam menyerap ion logam. Dampak dari pertambahan ukuran pori akan mempengaruhi kemampuan adsorben dalam melakukan penyerapan terhadap ion logam campuran tembaga dan timbal sehingga hasil yang diperoleh menjadi maksimal.

Pengaruh waktu kontak

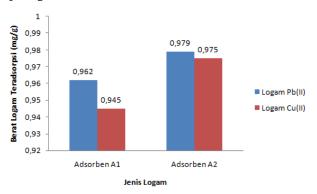
Penelitian ini dilakukan untuk menentukan waktu kontak terbaik adsorben A_1 maupun A_2 dengan perbandingan larutan ion logam (1:1). Larutan dicampur dengan 0,5 gram adsorben A_1 maupun A_2 kemudian di homogenasi dengan variasi waktu kontak 30, 60, 90, 120, dan 150 menit dengan menggunyakan pH tetap yaitu 5.

Kecenderungan adsorpsi adsorben A₁ maupun A₂ pada berbagai variasi waktu terhadap ion Pb²⁺ dan Cu²⁺ digambarkan dalam grafik sebagai berikut:


Gambar 8. Grafik hubungan berat ion logam Pb²⁺ dan Cu²⁺ teradsorpsi dengan variasi waktu kontak pada adsorben A₁ (a) dan A₂ (b)

Dari grafik diatas dapat diketahui bahwa semakin lama waktu kontak dengan adsorben baik A₁ maupun A₂, maka kemampuan adsorpsinya semakin tinggi. Proses adsorpsi terhadap logam Cu²⁺ memerlukan waktu yang lama untuk terjadinya peningkatan kemampuan adsorpsi dibandingkan dengan logam Pb²⁺.

Hal tersebut dikarenakan ion logam Pb²⁺ memiliki jari-jari ion lebih besar dibandingkan dengan Cu²⁺, sehingga Pb²⁺ lebih cepat sampai ke permukaan adsorben dan terserap oleh adsorben dibandingkan Cu²⁺. Kenaikan secara signifikan pada berat teradsop untuk logam Cu²⁺ dikarenakan adsorben A₂ memiliki gugus aktif OH yang lebih banyak yang menyebabkan meningkatnya muatan negatif pada adsorben dan dapat mengikat logam lebih banyak. Selain itu ditinjau dari data BET, luas permukaan adsorben A₂ lebih besar sehingga data tersebut menjawab bahwa semakin banyak logam yang akan diserap.


Semakin lama waktu kontak menyebabkan daya adsorpsi semakin besar, hal ini dimungkinkan karena semakin banyak interaksi antara adsorben dengan adsorbat [9]. Waktu kontak antara adsorbat dan adsorben yang melebihi waktu optimum dapat menyebabkan desorpsi. Atkins [5] mendefinisikan desorpsi sebagai pelepasan adsorbat dari permukaan adsorben. Fenomena ini terjadi akibat jenuhnya permukaan adsorben, sehingga molekul adsorbat yang telah terserap kembali ke dalam larutan. Besarnya kemampuan adsorpsi juga dipengaruhi oleh banyaknya adsorben yang digunakan. Semakin banyak adsorben yang digunakan maka adsorpsinya semakin besar.

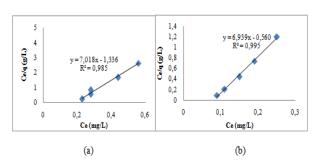
Untuk mengetahui kompetisi adsorpsi ion logam tunggal Pb^{2+} dan Cu^{2+} oleh adsorben A_1 maupun A_2 pada kondisi terbaik, masing-masing larutan logam Pb^{2+} dan Cu^{2+} 10 ppm sebanyak 50 mL dengan pH 5 dicampur dengan 0,5 gram adsorben A_1 maupun A_2 . Kemudian lakukan pengadukan selama 120 menit untuk adsorben A_1 dan 90 menit untuk adsorben A_2 . Hasil yang diperoleh disajikan pada gambar berikut:

Gambar 9. Grafik adsorpsi ion logam tunggal Pb^{2+} dan Cu^{2+} dengan Adsorben A_1 dan A_2

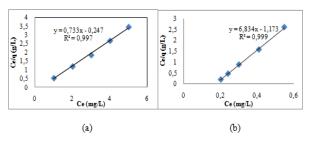
Untuk ion logam campuran penentuan kompetisi ion logam dilakukan dengan kondisi waktu terbaik pada waktu kontak 120 menit untuk adsorben A_1 dan waktu kontak 90 menit untuk adsorben A_2 pada perbandingan larutan (1:1) 10 ppm sebanyak 50 mL dengan berat adsorben 0,5 gram. Hasil adsorpsi ion logam timbal dan tembaga oleh adsorben A_1 maupun adsorben A_2 disajikan pada gambar berikut:

Gambar 10. Grafik adsorpsi ion logam campuran Pb²⁺ dan Cu²⁺ dengan Adsorben A₁ dan A₂

Berdasarkan gambar 9 dan 10 Pada saat adsorpsi ion logam tunggal menggunakan adsorben A1 logam Pb2+ mampu teradsorpsi sebanyak 0,993 mg g-1 dan logam Cu²⁺ sebanyak 0,972 mg g⁻¹. Sedangkan pada saat menggunakan adsorben A₂ logam Pb2+ mampu menyerap 0,998 mg g⁻¹ dan logam Cu²⁺ sebesar 0,984 mg g⁻¹. Dan pada saat ion logam campuran menggunakan adsorben A₁, logam Pb²⁺ mampu menyerap 0,962 mg g⁻¹ dan logam Cu²⁺ mampu menyerap 0,945 mg g⁻¹, sedangkan pada saat menggunakan adsorben A2 logam Pb2+ mampu menyerap sebanyak 0,979 mg g-1 dan logam Cu2+ sebanyak 0,975 mg g-1. Jika dibandingkan adsorpsi pada keadaan campuran timbal dan tembaga, terlihat berat teradsorp (mg g-1) kedua ion logam mengalami penurunan baik pada adsorben A₁ maupun A₂. Sehingga dapat disimpulkan bahwa pada keadaan campuran ion logam timbal dan tembaga menunjukkan adanya kompetisi ion-ion logam tersebut. Hal ini dapat dijelaskan dengan membandingkan ukuran atom antara kedua ion logam tersebut. Berdasarkan ukuran atom, timbal lebih kecil dibandingkan dengan tembaga yang dalam hal ini terdapat dalam bentuk terhidrat. Apabila jari-jari ion terhidrat suatu atom turun maka akan bertambah kekuatan adsorpsi dari adsorben. Suatu


molekulatau atom yang memiliki jari-jari terhidrat yang besar akan lebih sulit teradsorpsi. Untuk ion divalen urutan jari-jari ion terhidrat adalah sebagai berikut [10]: $BA_2^+ > Pb^{2+} > Sr^{2+} > CA_2^+ > Ni^{2+} > Cd^{2+} > Cu^{2+} > Co^{2+} > Zn^{2+} > Mg^{2+} > UO_2^{2+}$

Ion logam Pb²⁺ memiliki jari-jari ion terhidrat 4,01 °A, sedangkan jari-jari ion terhidarat Cu²⁺ adalah 4,19 °A. Dengan jari-jari ion terhidrat kecil, maka ion logam Pb²⁺ akan mudah masuk kedalam ruang antar selulosa dari tongkol jagung dan keratin dari bulu ayam pada permukaan adsorben A₁ maupun A₂. Dapat disimpulkan bahwa ion logam timbal lebih mudah masuk dalam poripori adsorben dibandingkan dengan ion logam tembaga.


Pengaruh Konsentrasi Logam

Uji terhadap pengaruh konsentrasi bertujuan untuk menentukan kapasitas adsorpsi. Kapasitas adsorpsi maksimal dan energi adsorpsi dapat ditentukan melalui adsorpsi pada temperatur tetap (isotherm adsorpsi). Isotherm adsorpsi terhadap Pb^{2+} dan Cu^{2+} menggunakan isotherm langmuir dilakukan dengan konsentrasi bervariasi yaitu 10 ppm, 20 ppm, 30 ppm, 40 ppm dan 50 ppm pada pH 5 dan waktu untuk adsorben A_1 120 menit dan adsorben A_2 90 menit.

Kapasitas adsorpsi maksimum Pb^{2+} dan Cu^{2+} oleh adsorben A_1 maupun A_2 dapat diperoleh dari grafik Ce/q versus Ce.

Gambar 11. Grafik adsorpsi Isotherm ion logam Pb²⁺untuk adsorben A₁ (b) A₂

Gambar 12. Grafik adsorpsi Isotherm ion logam Cu²+untuk adsorben (a) A₁ (b) A₂

Data yang dihasilkan di interpresitasikan dengan isotherm adsorpsi *Langmuir* [5] untuk menentukan kapasitas adsorpsi maksimum ion logamPbdan Cu oleh adsorben A_1 maupun A_2 yaitu :

$$qe = \frac{Qo.K.Ce}{1 + K.Ce}$$

di mana:

Qo = kapasitas adsorpsi maks (mg.g⁻¹)

Ce = konsentrasi analit sisa (mg.L-1)

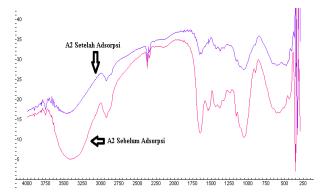
Qe = jumlah zat yang teradsorpsi (mg.g⁻¹)

K = konstanta isotherm

Untuk mengetahui jenis interaksi antara logam dan adsorben dapat dilakukan dengan menghitung energy adsorpsi berdasarkan rumus [11]:

$$E \ ads = -\Delta G^0 \ ads = R \ T \ln K$$

K adalah tetapan kesetimbangan adsorbsi yang diperoleh dari persamaan Langmuir dan energi total adsorbs sama dengan energy bebas Gibbs [11]. Tabel 2 menunjukkan nilai hasil perhitungan kapasitas adsorpsi (Qo) dan energi adsorpsi (E) pada adsorben A_1 dan A_2 .


Tabel 2: Parameter isotherm adsorpsi langmuir

	oen/Ion gam	Kapasitas Adsorpsi (mg/g)	Tetapan Kesetimbangan (K)	Energi Adsorpsi (kJ/mol)
	Pb	7,634	13,66x10 ⁴	29,49
$\mathbf{A_1}$ Cu	Cu	5,952	32,96x10 ⁴	28,09
Pb ${f A_2}$ Cu	8,065	7,81x10 ⁴	31,69	
	Cu	6,494	8,50x10 ⁴	28,31

Berdasarkan data tabel 2 diatas dapat dilihat bahwa kapasitas adsorpsi ion logam Pb²+ dan Cu²+ oleh adsorben A² lebih besar dibandingkan dengan adsorben A¹. Peningkatan kapasitas adsorpsi pada adsorben A² disebabkan oleh bertambahnya jumlah situs aktif (OH) yang berperan dalam adsorpsi untuk berinteraksi dengan ion logam. Menurut Langmuir, pada konsentrasi awal ion logam kecil, jumlah ion logam yang teradsorpsi kecil. Dengan meningkatnya konsentrasi awal ion logam, jumlah ion logam yang teradsorpsi juga meningkat karena ion-ion menempati situs-situs aktif pada adsorben. Makin banyak ion logam makin banyak situs-situs adsorben yang ditempati dan akan maksimal jika semua situs pada adsorben telah terisi oleh logam [11].

Tabel 2 menunjukan bahwa energi adsorpsi dalam larutan campuran ion logam Pb²+dan Cu²+ pada adsorben A₁ sebesar 29,49 kJ mol⁻¹ dan 28,09 kJ mol⁻¹, sedangkan untuk adsorben A₂ sebesar 31,69 kJ mol⁻¹ untuk ion logam Pb²+dan 28,31 kJ mol⁻¹ untuk ion logam Cu²+. Berdasarkan data tersebut adsorpsi campuran ion logam Pb²+dan Cu²+, baik oleh adsorben A₁ maupun A₂ dikategorikan sebagai adsorpsi secara kimia (kemisorpsi) yang melibatkan ikatan langsung antara adsorbat dengan gugus aktif adsorben. Seperti yang dijelaskan oleh Adamson [12] bahwa adsorpsi kimia (kemisorpsi) terjadi apabila energi adsorpsi lebih dari 20,92 kJ mol⁻¹.

Setelah dilakukan pengamatan kondisi terbaik dalam adsorpsi ion logam timbal dan tembaga, dilakukan kembali analisis FTIR untuk melihat perbedaan adsorben A_2 sebelum dan sesudah mengadsorpsi ion logam Pb^{2+} dan Cu^{2+} . Hasil adsorbsi ion logam timbal dan tembaga oleh adsorben A_2 dapat dilihat pada gambar 13.

Gambar 13. Spektra FTIR adsorben A₂ sebelum dan sesudah adsorpsi

Gambar 13 menunjukkan pada adsorben A2 terjadi peningkatan %T dari 5% (sebelum adsorpsi) menjadi 16% (setelah adsorpsi). Peningkatan %T terjadi karena berkurangnya jumlah gugus aktif bebas pada adsorben yaitu gugus –OH, C-O dan C=O. Penurunan jumlah gugus aktif ini disebabkan telah terikatnya ion logam pada gugus aktif baik dengan pertukaran ion [13]. Akan tetapi untuk adsorpsi ion logam tembaga dan timbal kemungkinan terjadi tidak hanya secara kimia saja tetapi juga secara fisik, hanya saja interaksi kimia lebih dominan dibandingkan interaksi secara fisik. Hal ini dimungkinkan karena selain adsorpsi secara kimia terdapat juga kontribusi adsorpsi secara fisik, sebab pada kenyataannya hampir tidak semua adsorpsi hanya mengikuti satu jalur mekanisme saja.

4. Kesimpulan

Dari penelitian diperoleh hasil bahwa penambahan H_2SO_4 pada PVA tidak menambah gugus S=O dan C=C pada adsorben tongkol jagung-bulu ayam (A_1). Perlakuan PVA menambah gugus OH pada adsorben A_1 , sehingga dapat meningkatkan kapasitas adsorpsi logam. Kapasitas adsorpsi A_2 dan konstanta kesetimbangan adsorpsi ion logam Pb^{2+} jauh lebih besar dibanding dengan Cu^{2+} . Serta energi adsorpsi ion logam Pb^{2+} lebih tinggi dibanding energi adsorpsi Cu^{2+} yaitu sebesar 31,69 kJ mol $^{-1}$ dan 28,31 kJ mol $^{-1}$. Pada saat adsorpsi menggunakan adsorben A_2 untuk campuran logam (Pb^{2+} dan Cu^{2+}), kemampuan adsorpsi Pb^{2+} lebih besar daripada Cu^{2+} .

5. Daftar Pustaka

- [1] Ismael Alejandro Aguayo-Villarreal, Adrián Bonilla-Petriciolet, Virginia Hernández-Montoya, Miguel A. Montes-Morán, Hilda E. Reynel-Avila, Batch and column studies of Zn2+ removal from aqueous solution using chicken feathers as sorbents, *Chemical Engineering Journal*, 167, 1, (2011) 67-76 http://dx.doi.org/10.1016/j.cej.2010.11.107
- [2] R Ramya, P Sankar, S Anbalagan, PN Sudha, Adsorption of Cu (II) and Ni (II) ions from metal solution using crosslinked chitosan-g-acrylonitrile copolymer, *International journal of environmental* sciences, 1, 6, (2011) 1323
- [3] Fahrizal, Pemanfaatan tongkol jagung sebagai biosorben zat warna biru metilena, Fakultas Matematika dan Ilmu Pengetahuan Alam, IPB, Bogor

- [4] Sari Sulistyawati, Modifikasi Tongkol Jagung Sebagai Adsorben Logam Berat Pb (II), Fakultas Matematika dan Ilmu Pengetahuan Alam, IPB, Bogor
- [5] PW Atkins, Kimia Fisika jilid II. Kartohadiprodjo II, penerjemah; Rohhadyan T, editor, in, Oxford: Oxford University Press. Terjemahan dari: Physical Chemistry, 1999.
- [6] Ralph J Fessenden, Joan S Fessenden, Kimia Organik Jilid 2, ke-3. Aloysius Hadyana Pudjaatmaka. Penerjemah. Jakarta: Erlangga. Terjemahan dari: Organic Chemistry, (1986)
- [7] Hardjono Sastrohamidjojo, Spektroskopi, *Yogyakarta: Liberty*, (1991)
- [8] Robert Milton Silverstein, G. Clayton Bassler, Terence C. Morrill, Spectrometric Identification of Organic Compounds, 4 ed., Wiley, 1981.
- [9] Upendra Kumar, Manas Bandyopadhyay, Sorption of cadmium from aqueous solution using pretreated rice husk, *Bioresource Technology*, 97, 1, (2006) 104-109 http://dx.doi.org/10.1016/j.biortech.2005.02.027
- [10] Douglas A Skoog, F James Holler, Stanley R Crouch, Principles of instrumental analysis, Cengage learning, 1994.
- [11] Oscik, Adsorption, First Edition ed., Ellis Horwood Limited, England, 1982.
- [12] AW Adamson, Physical chemistry of surfaces, John willey and sons Inc, *New York*, (1990)
- [13] Dragana-Linda Mitic-Stojanovic, Aleksandra Zarubica, Milovan Purenovic, Danijela Bojic, Tatjana Andjelkovic, Aleksandar Lj Bojic, Biosorptive removal of Pb²⁺, Cd2+ and Zn2+ ions from water by Lagenaria vulgaris shell, *Water Sa*, 37, 3, (2011) 303-312