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 Tuberculosis (TB) is an infectious disease caused by a bacterium called Mycobacterium 
tuberculosis. TB infection spreads through the air and is more likely when using 
inappropriate disinfectants in medical and laboratory equipment related to TB 
research. Appropriate disinfectants used for laboratory equipment can reduce the risk 
of TB disease transmission. Alcohol compound is a common disinfectant with broad-
spectrum activity against microbes, viruses, and fungi. Molecular Docking can be 
applied to support virtual receptor-ligand screening in finding the right 
mycobactericidal agent as a disinfectant candidate from the alcohol group. Based on 
docking analysis, octadecanol (C18) has potential as a mycobactericidal agent with InhA 
as its specific receptor. Gibbs (ΔG) free energy obtained by octadecanol (C18) and InhA 
is -4.9 kcal/mol. 

 

1. Introduction 

Based on data from the World Health Organization 
(WHO), in 2018, tuberculosis (TB) is still included in the 
top ten diseases that cause death. In 2017, 10 million 
people were affected by TB, and 1.6 million died from this 
disease (including 0.3 million of those affected by HIV). In 
the same year, an estimated 1 million children were 
affected by TB, and 230,000 children died from this 
disease (including those affected by HIV). TB is the main 
killer in people suffering from HIV-positive. Tuberculosis 
with Multi-Drug Resistance (MDR) causes a public health 
crisis and threatens health security. WHO estimates there 
are 558,000 new cases with resistance to rifampicin (the 
most effective first-line drug, 82%). In 2010, a school in 
South India reported tuberculosis (TB) infection in nurse 
candidates [1]. Besides, research in Lima, Peru, has 
revealed the potential presence of TB infection in the 
Emergency Department (ED). Several public places have 
also been reported as sites of infection, including 
hospitals [2] and orphanages [3]. 

TB infection spreads through the air and can also 
spread when using inappropriate disinfectants on 
medical equipment used for TB research in laboratories 
[4]. Appropriate disinfectants should be used in 

laboratory equipment to reduce the risk of TB 
transmission [5, 6]. This research is essential in 
investigating the most effective disinfectants as 
mycobactericidal agents through the reaction of several 
mycobactericidal compounds to M. tuberculosis. Uniquely, 
the structure of M. tuberculosis cell walls has hydrophobic 
properties and is more resistant to biocides compared to 
other bacteria, so that these bacteria can live longer in 
specific environments [7, 8, 9, 10]. 

Alcoholic compounds and their derivatives have been 
shown to have antimycobacterial activity [11, 12, 13]. The 
antimycobacterial activity of alcohol compounds is 
influenced by the number of carbon chains (C), polarity, 
double bonds, and triple bonds in the structure of alcohol 
[14]. Previous studies reported that alcohols with 7-10 
carbon atoms have antimycobacterial potential, whereas 
C10 (1-decanol) has the best ability to inhibit M. bovis and 
M. tuberculosis [15]. However, there is little research on the 
effect of alcohol as a disinfectant. In general, alcohol is 
known to damage cell membranes and denature proteins 
that affect cell metabolism and lysis [16]. 

Several enzymes involved in TB cell wall biosynthesis 
are attractive targets in the design of antituberculosis 
drug compounds [17]. The function of the enoyl-acyl 
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carrier protein reductase (InhA) is to catalyze the process 
of reducing the 2-trans-enoyl carbon chain with at least 
12 carbon chains. This enzyme is responsible for the final 
process of every carbon extension in the biosynthesis of 
fatty acids. InhA is involved in the production of long-
chain fatty acids and mycolic acids, which makes it an 
attractive target in the design of inhibitors to inhibit the 
biosynthesis of fatty acid chains in the cell wall of M. 
tuberculosis [18, 19, 20]. 

Drug discovery and design are processes that involve 
many scientific disciplines such as drug chemistry, 
pharmacology, biochemistry, and computational biology. 
Previously, the researchers did it through an 
experimental process that was a barrier to drug 
development because it took time and money. At present, 
computational methods supporting the drug design 
process are becoming more efficacious [21, 22]. The 
virtual screening process involves drug design and 
computer-aided development (CADDD) methods. The 
virtual screening method uses molecular docking 
simulation to illustrate the orientation of small molecules 
that bind to the target protein based on the calculation of 
the value of activity and affinity [23, 24, 25]. 

Determining the right disinfectant is significant for 
controlling the spread of infectious diseases in public 
places [26]. Research on molecular Docking of alcohol 
compounds with the InhA receptor as an appropriate 
disinfectant to eradicate M. tuberculosis growth has been 
carried out by [27]. The study focused on alcohol 
compounds (C1-C15) only, and the results showed that C15 
has the potential as a mycobactericidal agent with a Gibbs 
free energy value (ΔG) of -4.9 kcal/mol. This study 
examines the potential of alcohol compounds with a 
longer C atom (C16-C20) as a mycobactericidal agent. 

2. Methodology 

2.1. Equipment and Materials 

Computational visualization and molecular docking 
analysis were performed using PyMol software, Visual 
Molecular Dynamics (VMD), and Ligplot Plus. Meanwhile, 
the hardware used is Lenovo Ideapad 330 Laptop with 
AMD A9-9425 processor, 4 GB RAM, and 1 TB hard disk 
and using Windows 10 as the operating system.  

2.2. Ligand Preparation 

Alcohol compounds (C16-C20), Isoniazid, triclosan 
and mycolic acid were selected for docking analysis, and 
the structure was taken from the PubChem chemical 
structure database (https://pubchem.ncbi.nlm.nih.gov/). 
Isoniazid is a drug for the treatment of TB. Triclosan is a 
common ingredient in disinfectant products, whIle 
mycolic acid is a natural ligand from the InhA protein. 
Isoniazid and triclosan were used in comparing 
mycobactericidal activity with alcohol compounds used in 
this study. All chemical structures were stored in PDB 
format. Previously, all ligands were optimized for their 
structures using Marvin Sketch software in which the 
optimal structures are presented in Figure 1: 
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Figure 1. Structure of alcohol (a) C16 (b) C17 (c) C18 (d) C19 
(e) C20 and (f) isoniazid (g) triclosan (h) mycolic acid 

2.3. Receptor Preparation 

The three-dimensional (3D) structure of the target 
receptor or enzyme (InhA) was obtained from the Protein 
Data Bank (PDB) (https://www.rscb/pdb.org) [28]. The 
crystal structure for InhA used in this study was PDB ID: 
2B37. Based on previous research, residual binding sites 
for InhA were identified and presented in Table 1 [18, 29]. 
The InhA structure is visualized in Figure 2: 

 

Figure 2. InhA structure is distinguished by secondary 
structure in which light blue is a beta-sheet, red is an 

alpha coil, and purple is part of an amino acid arch  

Table 1. Active sides of the receptor 

Protein name Active side of residue 

InhA Met103, Phe149,  

 Met155, Tyr158,  

 Met161, Ala198, 

 Met199, Ala201,  

 Ile202, Leu207, 

 Ile216, Leu218, 

  Thr196 

https://pubchem.ncbi.nlm.nih.gov/
https://www.rscb/pdb.org
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2.4. Ligand-receptor Docking 

Molecular Docking is done using the AutoDock Vina 
4.2 software (http://vina.scripps.edu/). The docking step 
preparation for ligands and receptors was conducted 
using the AutoDock Tools (ADT) 1.5.4 application. The 
receptor preparation focused on adding all the hydrogen 
atoms to the receptors and grid box parameters. The Grid 
box for InhA was (x = 12,832, y = 16,388, z = 6,306), with 
a space of 1 Å. Molecular Docking was supported by virtual 
screening based on minimum Gibbs free energy (ΔG). The 
negative value of Gibbs free energy (ΔG) indicates that 
the ligand has the potential to block the receptor pathway. 
Ligand-receptor Docking was carried out up to 9 times, to 
get the convergent Gibbs energy value. 

3. Results and Discussion 

3.1. Gibbs free energy (ΔG) 

Molecular Docking is carried out on an alcohol 
compound (C16-C20) against the InhA receptor. Molecular 
Docking is advantageous for virtual filtering of the 
potential inhibition of alcohol compounds to the 
receptors. The potential of alcohol is shown by Gibbs free 
energy (ΔG) from the results of molecular Docking. 
Gibbs's free energy value (ΔG), which is more negative, 
indicates binding energy, which is more stable and 
stronger on ligands and receptors. 

Table 2 shows the Gibbs free energy (ΔG) obtained 
from the Lamarckian Genetic Algorithm (LGA) 
calculation on the AutoDock Vina. Gibbs free energy 
values (ΔG) reveal that alcohol compounds have more 
potential in inhibiting InhA. It is observed that the longer 
chain of carbon atoms in alcohol produces higher binding 
energy, which is characterized by the increasingly 
negative value of ΔG) between the ligand and the 
receptor. For instance, the binding energy for 
octadecanol-InhA is ΔG = -4.9 kcal/mol, for 
hexadecanol-InhA ΔG = -4.5 kcal/mol, and so on. 

Table 2. Gibbs Free Energy (ΔG) obtained from Docking 

No Compound 
Docking result, 
ΔG (kcal/mol) 

The average value of re-
docking (ΔG (kcal/mol) 

1 Hexadecanol (C16) -4.5 -4.25 

2 Heptadecanol (C17) -4.2 -4.0375 

3 Octadecanol (C18) -4.9 -4.675 

4 Nonadecanol (C19) -4.3 -4.1125 

5 Eicosanol (C20) -4.7 -4.3875 

6 Isoniazid -4.2 -4.10 

7 Triclosan -6.4 -5.925 

8 Mycolic acid -5.9 -5.6375 

Compared with Isoniazid, the C10-C15 alcohol 
compound almost has the same ability as an InhA 
inhibitor where the binding energy is -4.2 kcal/mol. 
Unlike the triclosan binding energy as an inhibitor, 
receptors are relatively more reliable than alcohol 
compounds. The triclosan affinity energy with InhA is -
6.4 kcal/mol. Because the binding energy of alcohol is 
between Isoniazid and triclosan, it is concluded that this 
type of alcohol (C16-C20) has the ability to inhibit InhA. 

3.2. Ligand-Receptor Interaction 

The Gibbs free energy data (ΔG) in Table 2 shows that 
octadecanol is the strongest ligand in inhibiting InhA (ΔG 
= -4.9 kcal/mol) compared to other alcohol compounds, 
whIle heptadecanol is the weakest ligand (ΔG = -4.2 
kcal/mol). 

3.2.1. Octadecanol-InhA 

Among the five alcohol compounds docking with 
InhA, octadecanol was found to have Gibbs free energy 
(ΔG = -4.9 kcal/mol), which was more negative than 
other ligands. 

 

Figure 3. Interactions between octadecanol (C18) and 
InhA residues having Gibbs (ΔG) free energy of -4.9 
kcal/mol. The black dots represent 18 C octadecanol 

atoms, and the red one is the O-atom of the hydroxyl 
group at C18. Red signs are hydrophobic residues around 

octadecanol. Four hydrophobic residues of Leu218, 
Met199, Phe149, and Tyr158 around octadecanol form the 

InhA binding site (Table 1). 

Octadecanol is an alcohol compound with 18 C atoms 
and creates hydrophobic interactions with the InhA 
residue is Ile215, Leu218, Met199, Phe149, Ile194, Pro193, 
Asp148, Gly192, Gly192, Ala191, Met147, Ile21, Tyr158. The 
presence of hydrogen bonds is found in interactions 
between octadecanol and InhA. Hydrogen bonding occurs 
between Pro156 and the hydroxy group present in 
octadecanol (C18) with a length of 3.01 Å. The hydrogen 
bond occurs between the O atom in the Pro156 hydroxy 
group and the O atom in the octadecanol (C18) hydroxy 
group. Orientation and interaction of pentadecanol when 
binding with InhA is illustrated in Figures 1 and 2. All 
potential ligands are bound at the binding site of each 
receptor, where the residue at the binding site is the best 
residue for docking ligands (Figure 3-4). 

Furthermore, the ligand interacts with other 
residues in each receptor that affects the energy 
configuration in the receptor-ligand complex (Table 2). 
Previous studies mention the influence of the C atom [27], 
which states that Pentadecanol, which has fifteen 
rotational bonds on the compound, gives the effect and 
orientation on the InhA binding side. This also happens to 
octadecanol because it has a rotational bond that affects 
the orientation of octadecanol on the InhA binding side. 
In addition, the hydrophobic effect of amino acids around 

http://vina.scripps.edu/
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the ligand influences the orientation and binding energy 
of octadecanol on the InhA binding site. Van der Walls 
energy has a binding energy of 40 kJ/mol [30]. These 
results indicate that octadecanol has potential as an 
inhibitor in the InhA enzymatic reaction. This results in 
the potential of InhA as an enzyme that helps the genus 
Mycobacterium's energy supply be inhibited, resulting in 
reduced bacterial growth. 

 

Figure 4. Three-dimensional interaction between 
octadecanol (C18) and the InhA receptor. The top image is 

a visualization of the position and orientation of 
octadecanol that binds to InhA whIle the bottom image 
reveals the interaction of octadecanol with the alleged 

binding site at InhA. 

3.2.2. Mycolic acid -InhA 

In addition to the alcohol compound docking with 
InhA, mycolic acid was found to have more negative Gibbs 
(ΔG) free energy than other ligands (ΔG = -5.9 kcal/mol) 
(Table 2). 

 

Figure 5. Interaction between mycic acid and InhA 
residue having Gibbs (ΔG) free energy of -5.9 kcal/mol. 

The black dots represent 32 C atoms of mycolic acid 
whIle the red one is the O-atom of the hydroxyl group on 
mycolic acid. Red signs are hydrophobic residues around 

mycolic acid. Seven hydrophobic residues, i.e., Met103, 
Tyr158, Ile202, Ala198, Met199, Phe149, and Thr196, 

around mycic acid, form the InhA binding site (Table 1). 

Mycolic acid is a natural ligand of the InhA protein 
with 32 C atoms and creates hydrophobic interactions 
with the InhA residue Pro156, Ile21, Ser94, Ile194, Met103, 
Tyr158, Ala157, Gly104, Ile202, Ile215, Ala198, Met199, 
Phe149, Thr196, Met103, Tyr158, Ala157, Gly104, Ile202, 
Ile215, Ala198, Met199, Phe149, Thr196, Met193, Tyr158, 
Ala157, Gly104, Ile202, Ile215, Ala198, Met199, Phe149, 
Thr196, Gly192, Ala191, Asp148, Lys165. There are 
hydrogen bonds found in interactions between mycolic 
acid and InhA. Hydrogen bonds that occur between Gly96 
with a hydroxy group in mycolic acid compounds with a 
length of 3.12 Å. The hydrogen bond occurs between the O 
atom in the Gly96 group and the O atom in mycolic acid. 
The orientation and interaction of mycic acid when 
binding to InhA is illustrated in Figures 5 and 6. 

 

Figure 6. Three-dimensional interaction between 
mycolic acid and InhA receptors. The top image is a 

visualization of the position and orientation of mycic 
acid binds to InhA, whIle the bottom image reveals the 

interaction of mycic acid with the alleged binding site at 
InhA. 

3.2.3. Triclosan-InhA 

Triclosan bound to InhA is a comparative ligand used 
as an active disinfectant. It has the best Gibbs free energy 
value, among other test ligands (-6.4 kcal/mol). 
Triclosan with 15 C atoms creates hydrophobic 
interactions with the InhA residue, i.e., Met199, Ala191, 
Gly192, Pro193, Phe149, Met103. There are hydrogen bonds 
found in interactions between triclosan and InhA. The 
hydrogen bonding between Tyr158 and the hydroxy group 
present in the triclosan compound is 2.73 Å. The hydrogen 
bond occurs between the O atom in the Tyr158 group and 
the O atom in the triclosan. The orientation and 
interaction of triclosan when binding with InhA is 
illustrated in Figures 7 and 8. 
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Figure 7. Interaction between triclosan and InhA residue 
with Gibbs free energy (ΔG) is -6.4 kcal/mol. The black 
dots represent 12 C (C1-C12) triclosan atoms. The green 

dot represents 3 C (C11-C13) triclosan atoms, and the red 
one is the O-atom of the hydroxyl group in the triclosan. 

Red signs are hydrophobic residues around triclosan. 
Three hydrophobic residues of Met199, Phe149, and 
Met103 around triclosan form the InhA binding site 

(Table 1). 

 

Figure 8. Three-dimensional interaction between 
triclosan and InhA receptors. The top image is a 

visualization of the position and orientation of the 
triclosan that binds to InhA whIle the bottom image 

reveals the triclosan interaction with the alleged binding 
site at InhA 

3.2.4. Isoniazid-InhA 

Based on the data obtained, Isoniazid, which is a 
tuberculosis drug that is commonly used, has a Gibbs free 
energy value of -4.2 kcal/mol. Isoniazid has 6 C atoms and 
creates hydrophobic interactions with the InhA residue, 
i.e., Pro193, Ile21, Ala191, Gly192, Phe149, Asp148. The 
presence of hydrogen bonds is found in interactions 
between Isoniazid and InhA. The hydrogen bond that 
occurs between Ile194 and the amine group present in the 
isoniazid compound has a bond length of 2.95 Å and 3.07 
Å. The hydrogen bond occurs between the O and N atoms 
in the Ile194 group and the N atoms in Isoniazid. The 
orientation and interaction of Isoniazid when binding to 
InhA is illustrated in Figures 9 and 10.  

 

Figure 9. Interaction between isoniazid and InhA residue 
with Gibbs free energy (ΔG) is -4.2 kcal/mol. The black 

dots represent 6 C isoniazid red atoms are O-atoms from 
the hydroxyl group in Isoniazid, and the blue dots 

represent N atoms of the amine group. Red signs are 
hydrophobic residues around Isoniazid. One 

hydrophobic residue of Phe149 around Isoniazid forms 
the InhA binding site (Table 1). 

 

Figure 10. Three-dimensional interaction between 
isoniazid and InhA receptors. The above image is a 

visualization of the position and orientation of Isoniazid 
that binds to InhA. The figure below reveals the 

interaction of Isoniazid with the binding site at InhA.  

4. Conclusion 

Based on the Molecular Docking study, the right 
disinfectant is influenced by several factors; 1) receptors 
as targets of the inhibition process, 2) ligands as 
inhibitors, 3) stability of interactions between receptors 
and ligands. Based on Molecular Docking, the C15-C20 
alcohol compound has potential as a mycobactericidal 
agent. From the study of alcohols with C16 to C20, it is 
found that Octadecanol is more appropriate as a 
mycobactericidal agent because of its inhibitory activity 
against the InhA receptor. 
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